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Abstract

In modern mathematics, mechanised theorem proving software is playing an ever-
increasing role. By enlisting the help of computers mathematicians are able to
formally prove more complex results than they perhaps otherwise could, however
those computers are still incapable of drawing many of the conclusions which would
be obvious to a human user and so human intervention is still required.

In this thesis we consider the use of an adapted machine learning technique to
begin addressing this issue. We consider the use of proof strategies to provide a
high-level view of how a proof is structured, including information about why a
particular step was taken. We extend the Metagol meta-interpretive learning tool
to facilitate learning these strategies. We begin with a small set of examples and
refine our approach, demonstrating the improvements experimentally. We go on to
discuss the learning of more complicated strategies, some of the issues faced in doing
so and how we could address them. We conclude by evaluating the experiments as
a whole, identifying the weak points in our approach and suggesting ways in which
they can be addressed in future work.
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Chapter 1

Introduction

The use of mechanised theorem proving systems is growing in popularity among

mathematicians. The use of automated and interactive theorem provers to for-

malise results is increasing, with high-profile examples such as Gontier’s proof of

the four-colour theorem [15] and of the Feit-Thomson Odd Order Theorem [16],

along with Hales’ Flyspeck project [20]. Large projects such as these have demon-

strated the ability of theorem proving systems to aid discovery in both pure and

applied mathematics and fuelled the development of tools such as the Isabelle [35],

Coq [4] and HOL Light [21] provers.

As time passes an increasing amount of mathematics is formalised using these

mechanised tools. In addition to the prominent examples above, there are large col-

lections freely available online. The Archive of Formal Proofs1 (AFP), for example,

is a collection of proof libraries covering areas of mathematics ranging from group

theory to vector calculus, all formalised using Isabelle. It is regularly updated with

new content and checked for compatibility with new versions of Isabelle. The Mizar

project goes a step further by providing a system for mathematicians to formalise

results, including tools for verification. This is on top of the Mizar Mechanised Li-

brary2, an online journal of mechanised proofs which is even larger than the AFP.

Resources such as these, in conjunction with the built-in libraries of most provers,

allow easy access to formalised mathematics for anyone.

Studying the lemmas included in these libraries gives an insight into the simi-

larities between many of the proofs. Within a given field it is not uncommon to see

recurring sequences of similar steps across multiple proofs, or within a single large

proof. Indeed it is often the case that two similar lemmas can have virtually iden-

tical proofs apart from one or two steps. We often find that the only difference is

the number of times a technique (or sequence of techniques) is applied, rather than

different proof techniques being used. Consider the following proofs, constructed

using the Isabelle prover:

1see www.afp.sf.net
2see www.mizar.org/library

1
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Chapter 1: Introduction

lemma (A −→ B −→ C) −→ (A −→ B) −→ A −→ C

apply (rule impI)

apply (rule impI)

apply (rule impI)

apply (erule impE)

apply assumption

apply (erule impE)

apply assumption

apply (erule impE)

apply assumption

apply assumption

done

lemma (A −→ B) −→ (B −→ C) −→ A −→ C

apply (rule impI)

apply (rule impI)

apply (rule impI)

apply (erule impE)

apply assumption

apply (erule impE)

apply assumption

apply assumption

done

In both cases the initial goals are similar, and are resolved in a similar way.

Both begin with repeated use of the rule impI tactic, before erule impE is applied.

The erule impE tactic creates a branch point, i.e. a point in the proof where two

sub-goals are created by one tactic. One of these branches is resolved using the

assumption tactic, while further applications of erule impE progress the other. In

each branch the assumption tactic is the final step in proving the sub-goal.

The similarity between these proofs raises two interesting questions:

(i) Can we combine elements of both proofs to create a proof strategy applicable

to both?

(ii) Can we generate a proof strategy from one proof which can be successfully

applied to the other?

In considering these questions, we note that neither proof could be substituted

for the other and achieve the same result; sooner or later, the proof would apply an

unsuitable tactic to a goal and the proof would fail. Given that there is such a high

2
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rule impI

rule impE

assumption

impI type

impE type

assumption type

Figure 1.1: A proof strategy describing the example proofs

degree of similarity between them, though, we ask if there is a method by which we

can abstract over the finer details of the proofs to obtain a general outline of the

process.

A proof strategy will give us such an outline. Proof strategies allow us to make

the desired abstractions to varying degrees of detail: they can describe every step of

a proof, or give a high-level view of the process. For the proofs above we could define

a strategy as “applying rule impI three times, then applying erule impE until only

assumption is needed to finish the proof”. Both of the proofs shown above satisfy

this definition, but it does not fully capture either. In particular the branching

points are a concern, as the strategy does not include any indication of which sub-

goal a tactic should be applied to. When a tactic is recursively applied, such as rule

impI in our example, termination of that recursion can also become an issue.

To address these issues we will use the PSGraph proof strategy language [18].

PSGraph gives a graph-based representation of proof strategies, where tactics are

represented as nodes of a graph with goals moving along the edges between them.

Each edge is labelled with a goal type – a predicate which restricts the movement

of goals along that edge and ensures correctness. These goal types are defined

according to the tactic their edge leads to, and as such are crucial in directing goals

at branch points. For example, in a strategy describing the proofs above the edges

leading to the erule impE and assumption tactics would be labelled with different

goal types, meaning each sub-goal is directed to the correct tactic. Likewise there

are different goal types for rule impI and erule impE, ensuring that the recursion

around rule impI terminates when it should. An example of a strategy describing

the two proofs above is shown in Fig. 1.1.

While the use of proof strategies is a more efficient way of finding proofs than

a naive trial-and-error approach, finding such strategies based on even moderately

complex proofs is still a time-consuming process. While describing the overall struc-

3



Chapter 1: Introduction

ture of a proof (i.e.. the tactics used and the order in which they are applied) is

relatively straight-forward, it is the definition of the goal types used that takes time.

Often it is the case that a definition which appears to be suitable is not, and this is

only discovered when reusing the strategy elsewhere does not produce the expected

results. Given the number of goal types which could feature in even a small strategy,

plus their potential complexity, finding accurate definitions by hand is simply not

practical. In order to improve the efficiency of the process and mitigate against the

potential for human error to influence the results we consider the use of machine

learning to find a strategy which best fits a set of example proofs.

Existing work in learning proof strategies has met with some success. For auto-

mated theorem provers learning has been mainly successful, but there are still some

prevalent issues which hamper progress, such as the overall structure of a proof not

being learned. On the other hand, learning strategies for interactive provers (such

as Isabelle) has been mainly unsuccessful. We argue that changing the underlying

representation of a strategy will help to resolve this.

We will use the Metagol system [33] – a form of inductive logic programming

(ILP) [30] – to learn proof strategies. Metagol learns by using sets of positive

and negative examples to instantiate a user-defined set of rules, aided by available

background information. Enabling the user to provide the rules which will guide the

learning process allows for some degree of control over it – as we will demonstrate

later, Metagol requires some user-assistance to maximise it’s potential when learning

about proof strategies. By providing successful proofs as positive examples, failures

as negative examples and details of those proofs as background information (e.g.

tactics used, open sub-goals at each step) we will use Metagol to instantiate a set of

rules describing the structure of a strategy and construction of a goal type in order

to define a proof strategy.

Unlike some other learning tools which require a large number of examples to

learn from, Metagol can learn from as little as one example. It can also make use

of predicate invention to find pieces of required information which are not explicitly

given by analysing the available data.

These two factors were key to the decision to use Metagol for this work. Consider

the second question asked above: can we learn a proof from one strategy? Ideally we

would have a large selection of proofs to adapt and learn from, but often a user may

only have a small range of previous work in the field to study. Machine learning tools

which require large training sets are unlikely to be suitable across all our possible

use cases.

It is not uncommon to see a great diversity between proofs, with any given

user having their own syntactic preferences and habits. From a machine learning

perspective this is not always useful as it will likely lead to a different structure

in the data. By making use of predicate invention we can go some way towards

4



Chapter 1: Introduction

Δ ⊢ ΓΔ ⊢ Γ

Δ ⊢ ΓΔ ⊢ Γ

lemma Δ ⊢ Γ
 apply tac_1
 ...
 apply tac_n
 done

tac_1(g1,g2)
...
tac_n(gx,gy)
...

(1)

(2)

(3)
(4)

(5)

PSGraph MIL
C

on
je

ct
ur

e 
fa

m
ily

Interactive theorem prover

Figure 1.2: The relationship between proof, PSGraph and the meta-interpretive
learner (MIL) Metagol

circumventing this issue as Metagol can determine that there exists some condition

which must be satisfied which it can “invent” a definition for before fleshing out

that definition based on the available background information. We discuss Metagol

further in §3.4.

1.1 Objectives

The following were the key objectives for this project:

(i) To develop a representation for proofs and proof strategies which is compatible

with Metagol and which captures all the necessary information.

(ii) To demonstrate that Metagol can successfully find definitions for proof strate-

gies from a small number of proofs

(iii) To use Metagol to find definitions for goal types based on the goal information

provided

1.2 Contributions

Over the course of this project the following contributions have been made:

� Structured Proofs from a Graphical Proof Strategy Language [13]

Presented at the ARW2013 workshop. Describes a process for extracting a

proof script constructed using the ISAR framework [38] from an XML file

holding encoded details of a proof strategy defined in PSGraph

� Typed Meta-Interpretive Learning for Proof Strategies [14]

Published in the late-breaking papers of the ILP15 conference. Describes the

addition of a basic typing system to the Metagol meta-interpretive learner.

This work is expanded on in Chapter 5 of this thesis.
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� Typed Meta-Interpretive Learning for Proof Strategies [37]

Published in the proceedings of the 2015 AI4FM workshop. An abbreviated

version of the paper presented at ILP15, including some updates.

Using our objectives as a framework we have demonstrated in this thesis that it

is possible to learn strategy definitions from a small number of examples and that

those can include goal type definitions learned at the same time3. We demonstrate

that a learned strategy can be reused in later examples. Although we have not

implemented an automated process for this, we show through a worked example

that a learned strategy definition can be broken down to tactic applications and

manually reapplied to a proof in Isabelle.

1.3 Thesis Outline

The thesis is structured as follows:

� Chapter 2 reviews some of the literature in this field. We discuss theorem

proving, focusing on interactive theorem proving. We go on to look at a

selection of machine learning techniques, specifically those which have the

most potential for use in learning proof strategies. Finally we look at some

previous work in learning about proof, discussing similarities and differences

to our own.

� Chapter 3 introduces some required background knowledge. We introduce

Isabelle, the interactive theorem prover used throughout this project, and the

PSGraph strategy language in which our proof strategies are expressed. We

also introduce the Metagol meta-interpretive learner.

� Chapter 4 introduces the representation we use to describe proofs and proof

strategies, along with the method we use to translate Isabelle proofs into this

representation. We also describe initial attempts to learn proof strategies using

Metagol.

� Chapter 5 extends our representation by adding a type system, with the

aim of improving the quality of strategies learned by Metagol. We introduce

dependent learning as an alternative way of doing so, and assess the effects of

combining the two approaches.

� Chapter 6 investigates ways of using Metagol to find goal type definitions. It

assesses the effectiveness of different techniques and identifies the challenges

in using each.

3The full output of the experiments run in chapters 4, 5 and 6 is available at zen-
odo.org/record/6463127#.YIIUCejMIuU
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� Chapter 7 looks beyond our initial experiments to some potential areas for

future work.

� Chapter 8 reflects on the work done and evaluates it against similar work in

the field.

� Chapter 9 presents our conclusions and suggests areas for future work.
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Chapter 2

Literature Survey

2.1 Theorem Proving

As the popularity of formalised mathematics has grown, so too has the array of

mechanised tools available to mathematicians. Theorem Provers are an example

of such tools and, as the name suggests, are used to construct proofs which would

otherwise be beyond the reach of a user (see the examples listed in chapter 1). These

can be split into two main types: Automated and Interactive provers.

There is a wide range of theorem proving systems available today, both auto-

mated and interactive. Examples include the HOL prover4 [17], which (as the name

suggests) uses higher-order logic. As part of the wider “HOL family” there are also

the provers HOL Light [21], and ProofPower5, which also uses Z notation for formal

specification. Moving away from HOL, but staying within interactive proving, there

is the prover Coq [4]. Coq integrates some aspects of automated proving into its

interactive features and was used by Gonthier in his four-colour proof, a theorem

which has still not been proved without the aid of a computer. We also consider the

Ωmega prover, discussed later in this thesis.

2.1.1 ATPs

Automated Theorem Provers (ATPs) use first-order logic to discharge proof obliga-

tions with minimal input from the user. The user must define the initial goal to be

proved, but beyond that the prover can determine the steps needed to complete the

proof. Indeed some ATPs have proved capable of finding proofs which were beyond

their human users at the time. The first ATPs were developed in the 1950s and took

a heuristic approach to proof, attempting to map a human-like thought process to

the system [34].

Later systems developed algorithms which achieved completeness for first-order

logic, enabling ATPs to handle even more complex problems. However, the proofs

4http://hol-theorem-prover.org
5http://www.lemma-one.com/ProofPower/index/
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found were often very large and consequently difficult for a user to understand and

verify. Determining the validity of a goal, i.e. if the formula represented in the goal

is well-formed or not, presents further difficulties. Given unlimited resources a proof

could eventually be found for any valid goal, however limits on resources are inherent

in any computer system. In the case of invalid goals it is identifying the invalidity

which is the problem, since checking validity is itself a computationally intensive

process. These factors combine to leave us with a tool which is very powerful but

also has some significant weaknesses.

In practical terms, this means that an ATP may not be able to discharge a goal

it is given. On a small scale this is an annoyance, but when working on large-

scale industrial problems this can be a major issue. In a system with limited user

interaction this is even worse: if the prover is unable to discharge a proof then it will

simply fail with no option for the user to address the problem. It is often the case

that many of the proof obligations which cause ATPs to fail can easily be identified

ahead of time by an experienced user and so an opportunity for the user to intervene

could improve this process. Providing guidance to ATPs by considering proofs in a

different way may also help, and is one of the potential benefits of describing proofs

in terms of proof strategies (see §3.3).

2.1.2 ITPs

In contrast to ATPs, Interactive Theorem Provers (ITPs, also known as proof as-

sistants) are heavily reliant on user interaction. An ITP will typically present the

user with some sort of interface through which they can lay out the steps which

the prover should follow in order to complete the proof. Often the user can call on

predefined tactics (see §2.1.4) to assist in this process.

Most ITPs make use of Higher Order Logic in the construction of proofs. Some

focus exclusively on the use of HOL and these systems have their roots in the Logic

for Computable Functions (LCF) system [29]. Originally devised as a proof-checker,

LCF uses a form of induction to reason about recursively defined functions. Goals

are split into sub-goals using a set of commands (e.g. induction) resulting in sub-

goals which are either solved directly using a simplifier6 or are themselves split into

further sub-goals.

Compared to ATPs, ITPs enable the user to play a much more active role in the

construction of a proof. Where this becomes particularly significant is in the way in

which failure is handled. Where an ATP may fail to discharge a goal, an ITP user

can suggest alternatives or refactor a proof to approach the problem in a different

way.

6A tool which attempts to automatically apply theorems which been annotated as simplification
rules to the given problem. These rules can include case splits, rewrites, removal of tautologies
and any other theorem the user wishes to declare as a simplification rule
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In this work we will use the Isabelle [35] interactive prover, which we discuss in

greater detail in §3.2.

2.1.3 Inference Rules

Common to both ATPs and ITPs are the fundamental building blocks by which

correctness of a proof is assured. LCF systems, and indeed the HOL-based and

other systems which succeeded them, are built upon a polymorphic typed functional

language known as ML (for meta-language). Within that language an abstract type

is defined for the key components of a proof which are then defined concretely when

a proof is constructed. Harrison et al. [22] suggest three key components.

The first is the axiom, which is simply an element such as a formula or proposition

which has the abstract type. The second is the axiom schema, which defines a set of

functions taking arbitrary arguments but returning axioms with the abstract type.

The arguments are used to specify which axiom will be returned by the function.

The third is the notion of an inference rule, a function which takes one or more

axioms as arguments and returns another such that if the inputs are true so is the

output. It is these inference rules which provide a foundation for the provers.

Harrison et al. go on to make a distinction between primitive and derived in-

ference rules. Simple classical rules such as Modus Ponens can be considered as

primitive rules, while rules which themselves invoke one or more primitive rules are

considered to be derived rules. While many provers are available with many such

derived rules already built in to their kernel a user can always add their own derived

rules. Since these build on existing rules, which are themselves developed from a set

of primitive rules, a user can assume correctness.

2.1.4 Tactics

The proofs constructed by both automated and interactive provers can ultimately

be broken down into a series of function applications. The first of these functions

is applied to the goal to be proved before subsequent functions are applied to any

sub-goals returned. These functions are known as tactics and their precise implemen-

tation varies between provers. In Isabelle’s case they can be manually constructed

by the user, however there are also many built-in tactics which are based upon the

primitive inference rules discussed in §2.1.3.

The result of applying a sequence of tactics to a goal is an indicator of the success

of the proof. If there are no goals still to be resolved when all tactics have been

applied the proof attempt has been successful. Conversely, if the prover has goals to

resolve and none of the available tactics can be applied to it then the proof attempt

has failed. There is a distinction between such a failure and the scenario where

there are remaining goals but no more tactics to apply, in which case the proof is
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incomplete. In this case further tactics must be used to complete the proof.

In the case of the Isabelle prover used in this work the open goals are stored

on a stack. As new sub-goals are created they are added to the top of the stack,

with the next tactic in the proof being applied to the goal at the top of the stack.

This has significant efficiency advantages as it eliminates the need for the prover to

search for a goal which a tactic can be applied to, but is somewhat restrictive in

that attempting to apply a tactic to the wrong goal will result in the proof failing.

It is possible to manipulate the stack in order to bring a suitable goal to the top, but

this is only possible with user intervention and prior knowledge of which tactics can

be applied to which goals. One of the benefits of considering proof strategies rather

than concrete proofs is the potential to at least partially automate this process, with

the addition of a goal type indicating that a failure would occur before attempting

to apply the tactic.

2.2 Machine Learning

At its simplest level, machine learning can be thought of as the use of computer

programs to suggest a response to an input based on patterns found in available

data. That response can be carried out by the system itself or can be presented to

the user for them to act on. The data the suggestion is based on is found through

data-mining, which can be carried out in a multitude of different ways. There are

many different machine learning techniques available, each with their own niche.

As part of this project we will show that by presenting details of appropriately-

encoded tactics as input data we can apply a machine learning algorithm to it to

suggest a way in which they can be combined to form a proof strategy. In this

section we discuss some common machine learning approaches which we considered

using before describing the system we selected for this work.

2.2.1 Overfitting

Before we begin looking at specific techniques it is important to consider an issue

which affects many machine learning systems. Overfitting is the term used to de-

scribe a scenario where the output of a model is very closely tied to the training

data with the result that anything learned from unseen data may be significantly

less accurate. Typically overfitting is a consequence of poor decisions made at the

feature selection stage, i.e. deciding which variables should be included in the model.

If too many variables are selected, or if those chosen are highly-correlated to each

other, then noise in the training set can disproportionately affect the output when

the model is applied to unseen data.

The opposite (underfitting) is also a potential problem. We cannot generalise an

underfit model to new data, however it will also fail to model the training data in a
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meaningful way. Compared to overfitting, which may not become apparent until we

attempt to apply a model to unseen data, it will be immediately obvious that we

have an underfit model simply by testing it against the training set. Because they

are easier to detect it is much less common to see underfit models in use.

In our work we go some way towards mitigating this problem through the use of

predicate invention in the Metagol system (discussed in more detail in §3.4). This

takes the job of feature selection out of the user’s hands and leaves it up to the

learning system to select the most appropriate features. In a scenario where the

user is entirely responsible for determining which aspects of a goal are most relevant

we may find that Metagol learns definitions which can’t be reapplied elsewhere,

either because they are too closely tied to the goals they were learned from (overfit)

or don’t even sufficiently describe the strategy for the training example (underfit).

This is not a guaranteed fix, since the user still needs to provide training data and

the set of rules which the algorithm can apply to it, but it removes one potential

source of over/underfitting from the process.

2.2.2 Association Rules

Learning using association rules [1] is based on the observation of relationships

between one or more variables. A typical association rule may say that event X

is guaranteed to occur, based on events Y and Z having already been observed.

Similarly a reduced probability of X may be given if one or both of Y and Z have

not happened. A real-world example can be found in retail, where the likelihood of

a customer buying a given item can be predicted based on their recent purchases.

Shops can use those predictions to help make decisions when ordering stock, or for

targeted advertising when launching a new product, for example. In the context of

theorem proving, this is analogous to using a specific method in a proof depending

on the others used in the proof to that point. By looking at a large corpus of proofs,

we could define association rules which can predict the next steps based on the steps

already taken.

An association rule is generated according to the frequency with which the tar-

get items appear in all possible item sets (the support) and the probability of its

hypothesis being correct (the confidence). The major downside to using association

rules is the computational power required to calculate the support of a proposed

rule in a large data set – for a data set with n items, the number of possible item

sets is 2n − 1. While smaller data sets reduce the impact of this, we will be able to

calculate confidence more accurately from a larger data set.

There are ways in which this can be addressed. Algorithms such as the Apri-

ori algorithm [2] are designed to generate association rules and make use of some

techniques designed to improve the efficiency with which a rule’s support can be

calculated. In the case of Apriori a “frequency threshold” is set which determines
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how many times a particular pattern must be observed in order to be considered

significant, which excludes a lot of noise from the dataset. However in our work we

will considering the effectiveness of learning from a small number of examples mean-

ing that any frequency threshold would need to be very small, rendering algorithms

such as Apriori ineffectual for our purposes.

2.2.3 Probablistic Classifiers

Probablistic classifiers are a family of statistical methods which analyse a given input

and calculate probability values for specific events based on it. They are similar to

association rules where we simply ask: given X, what is the probability of Y ?

Some classifiers work on a binary basis and answer yes/no questions, building

decision trees where each branch point examines a particular characteristic of an

input and determines if some predicate is satisfied. Others, known as clustering

algorithms, look at multiple characteristics at once and where on a range of possible

outcomes a given input will land. Some, such as the Naive Bayes method [40], use

Bayes’ rule7 to calculate the distribution of probabilities and construct the classifica-

tion model accordingly. Others, such as those based on logistic regression, optimise

the model directly against the training set.

In any application, observed results can be compared with the algorithms pre-

dicted results and the model adjusted accordingly. The potential use in terms of

proof strategies is similar to that of association rules, namely in predicting future

steps in a proof based on those already taken. There is also potential for use of

either decision trees or clustering in terms of finding and defining goal types.

2.2.4 Artificial Neural Networks

Artificial Neural Networks (ANNs) [10] are another statistical method, although

more complex than Naive Bayes. Their outputs can be studied, errors assessed and

then used to “train” the model. Often specialised training data sets are used for

this before the model is applied to “live” data.

An ANN takes the form of a weighted tree. Each node on the tree represents

a “neuron” in the net, itself represents a function. That function is applied to any

branch which acts as an input to the node, with the result sent down the node’s

output branches. Those outputs then arrive at other nodes, which apply their own

functions8. Each edge is weighted, meaning the ultimate path of an input can be

7P (A|B) = (P (B|A) ∗ P (A))/P (B), i.e. the probability of observing event A given B is true is
equal to the probability of B given A, multiplied by the probability of A, divided by the probability
of B. This assumes P (B) 6= 0.

8The nodes can be weighted and configured in such a way as to replicate logical AND and NOT
combinators. Similar to logic gates in electronics, these can be combined to represent any other
logical combinator.
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predicted. A single input passing along that path will have an output displaying

one or more characteristics, which the user must interpret.

The training is done using methods such as back-propagation. This specifies

changes which must be made to the weightings of edges such that errors will be

reduced or eliminated when the ANN is run again with the same data set. Consider

the example of text recognition, where we have an ANN configured to correctly

recognise the 26 characters of the Latin alphabet. If we were to input “C” and the

ANN identify it as “G”, a back-propagation algorithm analyses the path followed

through the ANN and adjusts the edge weightings at an appropriate point. The

ANN is run again, hopefully giving “C” as the output. If not the algorithm runs

again to make more corrections, and so on.

In the early stages of this project we noted a potential application of ANNs in

learning about the goal types used in proof strategies. Given a goal as an input, an

ANN could have categorised it as having a particular goal type based on the observed

properties of that goal. However, the categories are limited to those defined by the

user and as such the ANN would be restricted in what it can find. We will discuss

in §3.4 ways in which our chosen learning system can overcome this challenge while

still defining the goal type based on the goal’s characteristics.

2.2.5 Inductive Logic Programming

Inductive Logic Programming (ILP) [30] is, as suggested by the name, a form of

inductive reasoning represented using logic programming. The experiments in this

thesis are based on Meta-Interpretive Learning (MIL)[33], which is a specialised

form of ILP with some extra functionality. In this context we refer to philosophical

rather than mathematical induction.

The fundamental basis of every ILP system is the same: given a set of observable

facts (known as background information) and a separate set of examples of the

desired outcome a hypothesis is generated based on them. The examples provided

can be split into sub-sets of positive and negative examples - those which illustrate

how a valid hypothesis could be structured and those which show invalid structures.

In subsequent work [31] Muggleton introduces further criteria based on these

sets which an ILP system must satisfy. The necessity criteria requires that it not be

possible to explain one or more of the positive examples simply be selecting a clause

from the background information. Sufficiency, on the other hand, requires that any

generated hypothesis be able to explain all of the positive examples. Finally con-

sistency ensures that a generated hypothesis does not contradict any facts provided

as background information and is consistent with the set of negative examples. The

negative example set is optional; an ILP system can demonstrate consistency so long

as there is no contradiction with the background information.

In this thesis we aim to hypothesise the structure of proof strategies within
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the framework of PSGraph. Our positive examples used for learning come from

a selection of completed proofs. Our background knowledge will be derived by

breaking those proofs down to the smallest possible level. Each tactic application is

noted along with the goal it acts on and any sub-goals it produces. These goals are

themselves broken down into hypotheses and conclusions which are in turn added

to the background information. A negative example set in this context would be

made up of failed proof attempts. Since there are a huge number of potential tactic

combinations which could cause a proof to fail and no clear indicator as to why one

may be more appropriate than the other in any given scenario we do not provide

negative examples in our experiments.

Every ILP system has some form of heuristic to give guidance as to how the

hypothesis should be constructed. In the case of MIL we use a set of “metarules”

which describe permitted structures and any restrictions on the ordering of clauses.

Although the nature of ILP makes it particularly effective at unsupervised learning,

these rules are user-defined and grant us some limited degree of supervision over the

process.

The metarules we provide are defined in terms of variables which are instantiated

using clauses from the background information, our goals and tactics. A hypothesis

satisfying the necessity criteria will be one which describes a complete proof using

some combination of goal and tactic details from the available background infor-

mation. There is often branching within a proof and sufficiency is satisfied if each

branch can be described by the strategy represented by the hypothesis. Part of the

work described in this thesis is focused on determining which metarules are required

for learning about proofs using this technique, extending them as appropriate and

comparing the results of using different metarule sets with the same background and

example sets.

While ILP is a powerful tool, it has some significant drawbacks. Given the

criteria described above, a noisy data set (ie. one with irrelevant data in it) can have

a disproportionate impact on the hypothesis learned. Any potential mis-labelling of

data can also lead to significant errors. Consider, for instance, a positive example

mistakenly labelled as negative. In such a scenario the hypothesis would be rendered

unsound as in order to maintain consistency it would be necessary to deny something

which should be covered by it.

2.2.6 Statistical Relational Learning

Statistical Relational Learning (SRL) focuses on domain models which have a rela-

tional structure but also exhibit uncertainty, which can be evaluated using statistical

methods. First-Order Logic is used to describe the domain’s relational properties,

while probabilistic methods are used to model the uncertainty. Some of the for-

malisms developed with SRL build upon methods used in ILP.
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There are several applications of SRL, many of which have some relevance here.

Link prediction is used to predict relationships (or lack of) between the members

of a group of objects. Link-based clustering groups objects together according to

those relationships and leads to collaborative filtering, which information relevant to

a given situation is filtered according to its usefulness in other similar situations.

Finally, collective classification simultaneously classifies objects according to their

attributes and the relationships between them.

In a similar way to the Artificial Neural Networks discussed in §2.2.4, SRL was

investigated as a potential tool in this project for use in defining goal types. There

are still drawbacks to this approach, although they differ from those with ANNs. In

this instance the clustering (or categorisation) of the goals can be achieved without

the user defining the classification, which has more in common with our eventual

approach. The pattern is simply observed though, there is no formal definition given

to it in the way that an ANN does.

2.2.7 Machine Learning and Automated Theorem Provers

There already exists a body of work which investigates the application of machine

learning techniques to proof. Various methods have been used in conjunction with

both automated and interactive provers. When applied to an ATP, machine learning

is primarily a matter of hypothesis selection. Given that one of the key features of

ATPs is their ability to function without any user guidance, it is important that

they are able to correctly select a hypothesis to use at any given stage of a proof.

However it is not always the case that there is an obvious choice of hypothesis to use

next, or indeed if there is that it is the correct one. The sheer number of available

hypotheses can in fact be the problem: if too many hypotheses are available, the

prover will fail.

In [3], Alama et al discuss methods for hypothesis selection through analysis of

a corpus of proofs making use of the Mizar library. They construct problems in

such a way as to allow an ATP to re-verify the Mizar proofs. This set of problems

can then be used as a repository of knowledge to enable the automatic learning

of premise selection using machine learning algorithms. A new algorithm for this

premise selection is defined, known as a “kernel method”.

The kernel method is defined in such a way that it can be seen as a measure of

similarity between two objects. In the context of machine learning, it compares a

theorem to be proven with previous problems. The hypotheses used in the problems

which are found to be “most similar” are re-used in the current proof. Should the

proof subsequently fail, hypotheses from other similar proofs can be used. The

process can be repeated until the proof as been discharged completely, at which

point it can be added to the set of proved theorems from which new proofs can

be learned. [3] shows the results of evaluating the efficiency of the kernel method
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using the MPTP2078 benchmark9 along with the Vampire ATP10. It shows that,

for the given data set and prover, this method can prove more theorems using fewer

premises than a typical Bayesian classifier.

Kühlwein et al continue this work in [26] by extending the evaluation to cover

more premise selection methods, while also introducing further new techniques. Us-

ing the same benchmark, they compare the recall (proportion of used premises

which feature among the n highest-ranked premises) and 100%recall (the number of

premises which must be given to an algorithm to ensure all necessary premises are

used) of a number of methods along with the number of problems solved. They then

combine some of these methods, finding that the resulting techniques are generally

more efficient.

However, the authors note that achieving both speed and precision is relatively

uncommon when using these methods, and focusing on one generally leads to a

reduction in the other. They also note that without expressive semantics the tech-

niques evaluated will, in common with many learning methods, attempt to “predict”

the expert proof. This is a consequence of the standard evaluation metrics used,

which discourage any suggestion of alternative proofs. It also raises questions about

the suitability of some metrics for quickly training premise selection methods.

Two of the authors of this work (Kühlwein and Urban) go on to discuss in [25]

the use of alternative proofs of a theorem and their effect on ATP performance.

It is noted that it is often the case – in mathematics at least – that there can

exist multiple proofs of a single result. These proofs often arise as a result of new

techniques being applied retrospectively to old problems11 and vary in quality. The

authors use some of the proofs generated by their work in [3] and [26] to test the

performance of the learning algorithms using different proofs in the training set.

Crucially, the training sets include both expert and ATP-generated proofs.

They show that while it is possible to combine proofs to provide high-level proof

guidance, it is often the case that a great deal of redundant information is introduced

in doing so. This extra information then negatively affects the ATP’s performance.

On the other hand, reducing that level of redundancy increases performance. The

authors conclude that “simple” proofs (where simplicity is measured according to

some user-defined metric) are better to learn from. They also demonstrate that the

best ATP proofs are more efficient to learn from than the best expert proofs, but

that there is less of a distinction when looking at “suboptimal” proofs.

9See http://wiki.mizar.org/twiki/bin/view/Mizar/MpTP2078
10See http://www.vprover.org/
11See, for example, Wiles’ proof of Fermat’s Last Theorem [39], which uses methods developed

decades after Fermat’s death
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2.2.8 Machine Learning and Interactive Theorem Provers

Just as machine learning techniques have been applied to automated provers, there

has been similar work in applying them to interactive systems. Here we consider

some examples, with a comparison with our own work given in Chapter 8.

A major issue facing automated theorem proving is the formation of tactics.

If a new tactic is created by a human user there are two issues which must be

addressed: the time taken to design such a tactic and the potential for user bias or

error. Automating the process can address both of these points, as any automated

system will be significantly faster than a human alternative. Automation through

the use of a machine learning system will remove a potential source of user bias

as the user will no longer be responsible for identifying the components of the new

tactic, although the heuristic by which the ML system does so will ultimately need

to be defined by that user. In her Ph.D. thesis [12] Duncan introduces the IsaNewT

tool to automate this tactic formation process. Although implemented in the ITP

Isabelle, the processes involved are designed to run without user interaction.

Duncan looks to exploit common patterns within a corpus of proofs to develop

new tactics. She defines a three-stage process in which a suitable corpus is selected

and then data-mined for patterns before those patterns are used in the formation of

tactics. Probabilistic reasoning is used to find the patterns. To enable evaluations of

the tactics, an automated theorem proving environment was created within Isabelle

with the implementation of the IsaAuto system. IsaAuto was used to provide a

benchmark against which the newly developed tactics could be evaluated.

There are similarities between Duncan’s work and our own. Where she uses

patterns in proofs to produce new tactics, we use them to produce high-level proof

strategies. The key difference in is our treatment of sub-goals: IsaNewT focuses on

tactics while paying no attention to goals, we want to use both.

By including sub-goals in the learning process, we address some of the main

issues with Duncan’s work. In common with many other approaches to learning

about proofs, IsaNewT doesn’t tell us anything about why a particular tactic is

used other than it having scored highly enough in a given metric. It is very difficult

to translate that into something a user can easily understand though and without

knowing the reasoning behind the use of a tactic it is very difficult to make any

assumptions about its future use or suitability for similar problems. Indeed, this

is one of the motivating factors behind this thesis. This inability to capture the

reasoning behind the use of a tactic extends to problems when multiple sub-goals

are present, particularly when different tactics must be applied to them. The prover

must try all possible ways of applying the available tactics to the open goals with

no guidance, vastly increasing the search space. There is also an issue with iterative

processes in finding a point of termination, in that without knowing why the iterative

tactic is applied it is difficult to know when to stop applying it.
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The LearnΩmatic package is based on the same representation used by Duncan,

and works in a broadly similar way. It is designed to work with the proof planner

Ωmega, where it takes a set of examples, learns frequently occurring reasoning pat-

terns and uses them to develop new proofs. The initial example set is selected by

the user, meaning LearnΩmatic can be tuned to a specific situation depending on

the user’s requirements.

After the initial example set is chosen, the theorems it contains are automatically

proved by Ωmega. Traces of these proofs are stored by LearnΩmatic, which are given

to a learning mechanism to automatically learn the outline method of each proof.

Additional information is added to these outlines to build them back up to the point

where they can be used in finding new proofs. However, there is an issue with this:

it may be the case that not all of the required information can be reconstructed.

The learner must introduce search in order to find it, which has an obvious negative

effect on the computational efficiency of the process.

2.2.9 Proof Terms

The use of proof terms has been investigated to help with the abstraction and subse-

quent re-use of proofs [24]. This work has been implemented in Isabelle and proven

to work with any of the logics encoded in it at the time of writing, however the

authors claim that the method should be compatible with any logical framework. A

three-step process is given for generalising theorems: making assumptions explicit;

abstraction of functions and types; implementation of abstractions as functions to

be applied to proof terms. When working in the meta-logic of Isabelle, abstraction

tactics can be defined to perform this abstraction process on entire theorems au-

tomatically. The authors also consider methods for the reapplication of abstracted

theorems. In the early stages of this project we considered using proof terms as part

of our learning process as a way of finding a generalised representation of a proof.

However we found that proof terms were too low-level for our approach, and so we

lost any sense of the high-level intentions of the user.

2.2.10 Capturing Proof

The ProofProcess framework [36] is designed to give a high-level representation of

the process behind the formulation of a proof. It generates an XML file describing

the structure of a proof independently of the theorem prover, which we then parse

back into the Isabelle implementation we are using here.

ProofProcess is motivated by the desire to capture a user’s intention when con-

structing a proof, rather than capturing the steps they ultimately take. Developing

a proof is seldom a straightforward activity, and often more is learned from the

attempts which don’t work than from the ultimate solution. ProofProcess gathers
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both, allowing for comparison between them.

In our work, we apply ProofProcess to procedural proofs written using the Is-

abelle/Eclipse12 implementation of the Isabelle ITP. In general, it is difficult to

identify the structure of a proof written in this way; a linear series of commands

masks the branching points of the corresponding proof tree. Using ProofProcess we

can locate those branching points and thus identify which tactics are being applied

to which sub-goals.

ProofProcess also enables us to study proofs at different levels, from a detailed

low-level to an abstract high level. As we will see in §3.3, this is somewhat analogous

to the way in which PSGraph lets us look at proof strategies at different levels of

abstraction. However, we do not make use of this feature here. Instead we focus only

on the smallest granularity, ensuring we capture every step of a proof and details of

every (sub-)goal. In doing this we make as much information as possible available

to the learning tool.

This information must be represented in such a way that the learner can process

it correctly. We do this by way of an semi-automated translator built on top of the

Isabelle prover, which we discuss further in §4.1.1. The translator takes the XML

file generated by ProofProcess as its input, using it to produce Prolog code for the

learner to use.

12Available at: https://andriusvelykis.github.io/isabelle-eclipse/
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Background

This chapter provides necessary details of some of the tools used in this work. We

describe the relevant parts and their interaction with each other, illustrated by a

running example. We will discuss:

� The Isabelle interactive theorem prover, in which proofs are constructed;

� The PSGraph strategy language, which captures proof strategies;

� The Metagol learning system, which uses Inductive Logic Programming (ILP)

to learn from small pools of examples.

3.1 A Note on Induction

Throughout this thesis we will frequently use the terms induction or inductive.

Before proceeding further it is important to note the different contexts in which

these can be used.

When we talk about using induction as part of a proof, e.g. proving by induc-

tion, we are referring to mathematical induction. This is the process by which we

demonstrate that some predicate P holds for an initial value or “base case”, often

0. We then show that if P holds for some arbitrary value then it also holds for its

successor, i.e. “if P (n) then P (n + 1)”. Given this recursive definition and given

the base case we prove that P must hold for all n ∈ N.

When referring to induction in the context of ILP, on the other hand, we mean

philosophical induction. Rather than introducing a similar recursive rule, this in-

volves stating a hypothesis based on observation of previous outcomes. For example,

let us assume we have many elements a1, a2, ..., an belonging to some set A and we

have some predicate P such that P (a1), P (a2), ..., P (an) all hold. If we introduce

a new variable ai ∈ A, by induction we hypothesise P (ai). Using induction in this

way is key to how our work in this thesis will develop as we suggest new definitions

based on those learned previously and those provided as background information.
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3.2 Isabelle

The Isabelle Interactive Theorem Prover13 [35] was originally developed by Paulson

and is still in widespread use today. In common with other ITPs it enables the user

to provide guidance to a proof as it is running by specifying which tactics to use

and which goals to apply them to. It is written in PolyML, and can be extended

with additional functionality by the user. It is under ongoing development, with

updates released annually14. In this work we use the higher-order logic embedding

of the prover (Isabelle/HOL), but other logics are supported natively.

There are two ways of constructing a proof in Isabelle: structured and procedural

(Fig. 3.1 shows an example of each). Structured proofs are constructed using the

Isabelle/Isar framework [38], where the proof of each sub-goal is shown as a “block”

within the proof script. These blocks can be nested within each other, thus showing

the proofs of any sub-goals within the proof of a larger goal. The representation

places the emphasis on the open goals at each stage of a proof and is thus close to

how a mathematician would write a proof naturally. It is clear which tactic is being

applied to a goal, and how it affects that goal.

lemma
fixes A B shows A ∧B −→ B ∧A
proof -

have g: A ∧B =⇒ B ∧A
proof -

assume h: A ∧B
have i: B
proof -

from h have o: B by (frule conjunct2)
from o show ?thesis by assumption

qed
have j: A
proof -

from h have n: A by (frule conjunct1)
from n show ?thesis by assumption

qed
from i j show ?thesis by (rule conjI)

qed
from g show ?thesis by (rule impI)

qed

lemma A ∧B −→ B ∧A
apply (rule impI)
apply (rule conjI)
apply (drule conjunct2)
apply assumption
apply (drule conjunct1)
apply assumption

done

Figure 3.1: The structured (left) and procedural (right) proofs of A ∧B −→ B ∧A

In this project, we will use Isabelle’s procedural representation to ensure com-

patibility with ProofProcess (see §2.2.10). In a procedural proof we first state the

lemma to be proved, then apply a series of tactics until all sub-goals have been

discharged. Sub-goals are handled sequentially, and typically we work with the first

sub-goal in the stack. Any new sub-goals generated are added to the top of the

13Available at isabelle.in.tum.de
14We use the 2013 version for this work
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stack and are evaluated before any others. A proof fails if the tactic being applied

cannot discharge the current goal, even if it could discharge a goal further down the

stack.

In the example in Fig. 3.1 above, we start with the initial goal A∧B −→ B∧A.

We apply the first tactic – rule impI – to update this to A ∧B =⇒ B ∧A. Strictly

speaking rule is a method while the impI inference rule is its argument. The method

directs the prover’s next action, while the argument indicates which part of the goal

it should act on. In this case rule indicates that the goal will be rewritten, with

impI replacing −→ with =⇒. The −→ symbol is a connective from higher-order

logic used to denote implication. The =⇒ symbol forms part of an inference rule

and separates the hypotheses of a goal from its conclusions. A table of the inference

rules available to Isabelle is shown in Fig. 3.2. There are other methods beyond

rule, such as erule for elimination rules which split goals into smaller sub- goals or

subst which substitutes one term for another. Since we nearly always use a method

together with an argument – the exception being the assumption method which

finishes successful proofs – we refer to both together as a “tactic” throughout this

work. This is partly for readability here but mainly for use in the Prolog encoding

(see Chapter 4).

Rule definition
assumption JP K =⇒ P
impE JP −→ Q;P K =⇒ Q
impI JP =⇒ QK =⇒ P −→ Q
disjE JP ∨Q;P =⇒ R;Q =⇒ RK =⇒ R
disjI1 JP K =⇒ P ∨Q
disjI2 JQK =⇒ P ∨Q
conjE1 JP ∧Q;P =⇒ RK =⇒ R
conjE2 JP ∧Q;Q =⇒ RK =⇒ R
conjI JP ;QK =⇒ P ∧Q
notE J¬P ;P K =⇒ R
notI JP =⇒ FalseK =⇒ ¬P
classical J¬P =⇒ P K =⇒ P

Figure 3.2: Isabelle’s inference rules

We go on to apply rule conjI to our new sub-goal, which produces two further

sub-goals: A∧B =⇒ B and A∧B =⇒ A. The next tactic (drule conjunct2 ) works

on the first sub-goal, reducing it to B =⇒ B, but does nothing to the second. The

new sub-goal is listed first in the stack, meaning the next tactic will be applied to

it. The assumption tactic discharges this sub-goal, but if we had proceeded to the

next step (drule conjunct1 ) to try to evaluate the outstanding sub-goal first then

the proof would fail. Isabelle does allow the user to change the order of sub-goals

in the stack, but §3.3 explains how PSGraph makes this unnecessary for us.
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3.3 PSGraph

One of the key features of this work is our approach to learning proof strategies.

We focus on high-level strategies which give a broad description of multiple proofs,

rather than detailed descriptions of individual proofs. These strategies require a

representation which permits both, enabling us to give general descriptions of a

family of proofs – “Apply tactic A so long as condition X holds, then use tactic B

to complete the proof if condition Y holds” – and specific details of each proof –

“Proof 1 is completed using tactic A three times, proof 2 only needs A twice”.

The PSGraph language [18] allows us to do this. It provides a graphical repre-

sentation of a proof strategy, where the tactics used in a proof are represented as

nodes in a graph with goals moving along the edges between them. Correctness in

the movement of goals is ensured by goal types, i.e. predicates on the edges. In order

to traverse an edge, a goal must satisfy that edge’s predicate. By using PSGraph to

describe our strategies we can visualise the general structure of a proof while using

the goal types present to see exactly how each sub-goal moves through the graph.

Fig. 3.3 shows an example of a strategy describing a proof. The proof tree in

the middle shows the evolution of the open goals as each tactic is applied, with each

branch representing the creating of a new sub-goal which must be resolved before

the proof is complete. This proof tree is unique to the combination of initial goal

and tactic applications. The proof strategy, on the other hand, is not unique to this

proof. It has been defined by the user in such a way as to capture the sequence

of tactics used in this proof but could also describe any other proof where these

tactics are combined in this order; the difference between the tree and the strategy

lies in the number of applications of each tactic. It will always be possible to define

a strategy, however it may not be the case that we are able to make use of loops to

minimise the number of nodes as we have done here. Indeed for complex proofs it

may be the case that a strategy is by necessity the same as the proof tree, but with

different labelling on the edges.

We describe a strategy as being a valid strategy if it satisfies the requirement of

its nodes each representing a tactic and its edges being labelled with predicates on

goals. If a graph has a node which does not represent a tactic, it is invalid. Likewise

if an edge is not suitably labelled, although it should be noted that an edge with

a “empty label”, i.e. a predicate which holds for any goal, is not the same as an

unlabelled edge.

3.3.1 Graphical Representation

An advantage of using PSGraph is that the movement of goals and the ease with

which it can be visualised is key to the representation. When working in the native

tactic language of a theorem prover it is not always possible to see why a failure
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lemma (A −→ B) −→
(B −→ C) −→
A −→ C

apply (rule impI)
apply (rule impI)
apply (rule impI)
apply (erule impE)
apply assumption
apply (erule impE)
apply assumption
apply assumption
done

rule impI

imp_goal

imp_goal

rule impI

imp_goal

imp_goal

erule impE

imp_hyp

imp_hyp

assumption

has_asm

rule impI

rule impI

rule impI

erule impE

assumption

assumption assumption

erule impE

` (A! B)! (B ! C)! A! C

(A! B) ` (B ! C)! A! C

(A! B), (B ! C) ` A! C

(A! B), (B ! C), A ` C

A, (B ! C), A ` A B, (B ! C), A ` C

B, C,A ` C B, A ` B

g0

g1

g2

g3

g4 g5

g6 g7

Figure 3.3: Left to right: Isabelle proof script; proof tree; and strategy as PSGraph.

occurs, and this makes correcting it difficult. Indeed, it can be the case that a user

will find a solution without understanding exactly why a particular alteration has

solved the problem – or indeed which of many alterations was responsible. The use

of a graphical representation not only makes it easy to identify the point of a failure

and which goals are causing the problem, but also enables the user to see the effects

of changes they make.

PSGraph also removes the requirement to handle goals sequentially. A goal can

be evaluated to completion before returning to look at the next, or each sub-goal

can be progressed at the same rate. This removes an inherent problem in Isabelle’s

procedural proof representation (and indeed any stack-based representation). In

Isabelle a tactic is applied to the first goal in the stack and any resulting sub-goals

are added to the top. Alterations to a proof which result in extra sub-goals or

change their characteristics will then likely result in the proof failing, as subsequent

tactics will be applied to the wrong goal. If a tactic does still succeed it may produce

unexpected sub-goals, which will exacerbate the problem and lead to failure in turn.

By removing the need to handle goals in order, PSGraph does not have this problem.

The graphs can be hierarchical, meaning that a node can represent the use of a

sub-strategy itself expressed in PSGraph. These sub-strategies can thus be handled

in the same way as a tactic, being repeated as necessary or incorporated into larger

sub-strategies represented as a node elsewhere. An example is the strategy shown in

Fig. 3.4 below, which describes Isabelle’s auto tactic. auto is used to automatically

evaluate any goal it is applied to using a combination of simplifiers and rewrite rules.

Often it succeeds in fully evaluating a goal, and will usually succeed in making some

progress with the proof. It can be described as a “black-box” tactic, where the

steps involved are hidden from the user by default. Consequently it is not obvious

exactly which of its sub-tactics have been applied, however the user may not need

that information. By representing auto as a single node in larger strategies we can

hide the complex composition of smaller tactics.

25



Chapter 3: Background

tactic a

tactic b

auto

tactic a type

tactic b type

auto type

simp

atomize prems tac

raw blast

safe tac

safe step tac

safe tac inst0 step tac

slow step tac no tac

prune params tac safe tac

i

ii

iii

iv

v

v

iv vi

vii viii xi

vii iv

v

i : simp type
ii : atomize type

iii : raw blast type
iv : safe tac type
v : safe step type

vi : inst0 type
vii : prune type

viii : slow step type
xi : no tac type

Figure 3.4: An example strategy including the auto tactic (left) and the enlarged
sub-strategy which represents auto (right)
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These hierarchies allow us to take a more abstract view of a strategy when

necessary. In the example above we could show all the tactics used in auto, but

since they themselves are largely simplifiers and not all are used it would add little

information to the graph. There is also the user to consider: when the proof is

constructed using auto and no further detail is given it is counter-productive to

include that information by default and over-complicate the strategy. Indeed this is

one of the advantages of using PSGraph: we can add or remove details as required

by combining tactics into a single node.

Consider another example, this time applying previously-proved lemmas as tac-

tics. While learning how to use Isabelle we defined and proved some lemmas in

group theory which were later used as examples for the learning tool15. The major-

ity of the proofs involved reusing a previous lemma, introducing a scenario similar

to the one we find with auto. When building a strategy to represent lemmas like

this we can consider the use of sub-strategies to describe the re-used lemmas in a

similar way, demonstrated in Fig. 3.5 below.

Each of these sub-strategies describes a proved lemma. Although they do not

feature branching in the way Fig. 3.4 does there is still the advantage of abstraction

here: a user does not have to see the detail of the individual lemmas if they don’t

want to. We could, if we wished, construct a single strategy which showed all fifteen

tactics however instead we can create a sub-strategy (as with auto) to present only

the essential information, leaving it up to the user to dig deeper if they so wish.

There is also the benefit that these substrategies can be re-used elsewhere, just like

the proofs they are derived from.

A key difference between a strategy illustrated using PSGraph and a proof de-

scribed using, for example, a proof tree is the way in which branches are handled.

In a proof tree (such as in Fig. 3.3) the branch points signify AND branching: each

branch represents a sub-goal created by the tactic on the parent node and all must

be discharged in order for the proof to succeed. In a PSGraph strategy, however, the

branches are OR branches. Each branch represents a possible outcome of applying

the tactic on the parent node, and so it will not necessarily be the case that each

sub-goal will follow its own branch. It may even be the case that all sub-goals follow

the same branch. It is still necessary for all sub-goals to be discharged or to reach

the nodes at the end of the strategy in order for us to say the strategy has been

successful, though.

3.3.2 Goal Types

At the most basic level, goal types can be seen as a way of describing similar goals

according to specific characteristics. For example, we can say that all goals con-

15The results of these experiments are discussed in §4.5. The full range of lemmas used and an
explanation of the terminology used here is given in Appendix B
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subst id rev

rule ax1

i

ii

subst ax3 sym

subst ax2 sym

subst inv rev

rule ax1

iii

iv

v

vi

subst ax3 sym

subst ax1 sym

subst aux1

subst ax2

subst ax3

subst ax3

subst ax2

subst ax3

subst ax1

rule refl

vii

viii

ix

x

xi

xii

xiii

xiv

xv

xvi

subst ax3

rule refl

xvii

xviii

i : id rev type
ii : ax1 type

iii : ax3 sym type
iv : ax2 sym type
v : inv rev type

vi : ax1 type

vii : ax3 sym type
viii : ax1 sym type

ix : aux1 type
x : ax2 type

xi : ax3 type
xii : ax3 type

xiii : ax2 type
xiv : ax3 type
xv : ax1 type

xvi : refl type

xvii : ax3 type
xviii : refl type

Figure 3.5: Example strategies for the id comm (far left), id rev (centre left), inv rev
(centre right) and aux1 (far right) lemmas with asscoiated goal types
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taining a particular term belong to the same goal type, or we can say that all base

cases after an induction step belong together. They direct the movement of goals

through a graph, and restrict the search space by preventing incorrect branching.

They provide labels for the edges in a graph, indicating the flow of goals between

tactics (see Fig. 3.3 above). In PSGraph goals which share a goal type are handled

in the same way, for example substitution of a common term.

More formally we define a goal type as a predicate P which a goal g must

satisfy in order to move along the edge labelled with P . These predicates ensure

correctness of the strategy: a goal can only move along an appropriate edge, and so

the possibility of failure by applying the wrong tactic is removed. Should a failure

occur it will be because there is no tactic which can be applied to a goal, and by

labelling the edges in the graph we make it easier to find the point at which failure

occurs.

Although goal types ensure that tactics cannot be applied to the wrong goals,

this does not account for the possibility of a tactic being applied to the “correct”

goal type but the type being incorrectly defined. This is a common problem when

using simple type definitions such as those examples given above. A key feature of

this work is the use of the machine learning tool to find the best possible definition

for a goal type from the available examples. The advantage of our approach is that

any failures can be used to refine our definition by providing negative examples to

the learner.

3.3.3 Proof Planning and PSGraph

The motivations behind the development of PSGraph are similar to those of proof

planning [5]. A proof plan is developed through analysis of patterns in a “family” of

proofs, providing guidance for attempts to prove related conjectures in future. For

an automated prover this presents significant benefits with regard to a reduction in

search space, helping to limit its rapid grow as the length of the proof increases.

Given a collection of related proofs a proof planner will study both the tactics used

and the preconditions for applying them. They also consider reasons for the failure

of a proof and suggest alternatives. However, this is focussed on the point at which

the failure occurred and helps the prover circumvent the problem; less consideration

is given to the potential for avoiding any mis-steps earlier in the process.

A range of proof planners were developed to put this into practice, including

IsaPlanner [11]. IsaPlanner was developed to add proof planning to Isabelle and

can work with the various logics supported there. In [18] the authors cite IsaPlanner

as an inspiration for PSGraph as it takes a similarly logic-agnostic approach. Indeed

they initially saw PSGraph as a new version of IsaPlanner, although did not pursue

this and instead developed PSGraph as a separate entity.

The goal types of PSGraph have some similarity to the conditions for tactic
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applications seen in proof planning. Likewise the tactics described in both PSGraph

and proof planning are similar with both capturing sequences of inference rules which

need to be applied. A proof strategy as a whole is closest to a proof plan’s methods,

with both the tactic and the pre-condition captured as one. The key difference is

that PSGraph does not capture post-conditions, nor does it care about the results

of applying the tactic at this level. However, if we consider a hierarchical strategy

composed of two or more smaller sub-strategies handling these outputs does become

important, with the goals outstanding after the first strategy is applied informing

which strategy should follow.

PSGraph does not currently support the use of critics in the construction of

strategies16. In an interactive setting this is less of a concern as the user will be able

to make adjustments manually and current implementations of tools using PSGraph

are focussed on use with ITPs. This user-driven feedback is one of the downsides

to PSGraph as it opens the process of defining a strategy to human error or bias.

Removing that human element, or at least abstracting it from the construction of

strategies, is a potential consequence of this work.

3.3.4 Theorem Proving and PSGraph

Although there are many similarities between PSGraph and proof planning, they

are designed to work at different ends of the theorem proving spectrum. While proof

planners are aimed at automated provers which are improved by the functionality

provided by the planners (critics, for example), the strategies generated using PS-

Graph are better suited for use with interactive provers where they can be guided

and refined by the user.

PSGraph has two particular uses in conjunction with theorem provers. The first

is in use as an explanatory tool, where a user can attempt to construct a strategy

to describe either a complete or partial proof. By building a strategy in this way a

user can not only capture the tactics they have used and the order in which they

were applied but also their reasoning. By defining a strategy’s goal types according

to their own motivation they can incorporate a degree of intuition and broader

understanding that an automated system may lack.

The second use is in the investigation of existing problems, where a proof strategy

can be applied to an open goal in an attempt to resolve it. Again the user’s insight

can be useful here with the potential for unseen patterns to be found which would

satisfy a given goal type. Depending on the outcome the strategy can be extended

or chained with another to form part of a larger strategy, or indeed if a proof is fully

discharged before the strategy is complete a sub-strategy can be identified within

it. Although there is no formal implementation of proof critics or patching within

16A proof critic [23] is an automated system triggered by failures in proof attempts. If an attempt
fails the critic will suggest an appropriate fix, based on the observed failure.
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PSGraph an analogous manual process could be carried out here by assessing any

failures when applying a strategy to a proof.

A tool has been designed by the developers of PSGraph to more formally inte-

grate these processes with theorem provers. The Tinker tool [19] provides a GUI for

the user with scope to both visualise and modify strategies. It has integrations for

both Isabelle and ProofPower, enabling a user to incorporate strategies into their

proofs and observe the flow of goals between the tactics as the interpreter progresses

through the proof.

3.4 Metagol

We use Meta-Interpretive Learning (MIL) [32, 33] – a form of Inductive Logic Pro-

gramming (ILP) – to learn definitions for proof strategies. Metagol [9] is a tool

based on an adapted Prolog meta-interpreter which makes use of MIL.

Like a standard meta-interpreter17, the adapted version used by Metagol at-

tempts to prove its goals through unification. While a standard meta-interpreter

fetches first-order clauses whose heads unify with a given goal, Metagol instead

fetches higher-order metarules whose heads unify with the goal. Resulting substitu-

tions are stored by the interpreter and can be reused in later proofs if needed. Once

a set of goals is proved Metagol forms a hypothesis by projecting these substitutions

onto the corresponding metarules, thus allowing recursive theories to be learned.

Metagol needs four things to be able to form a hypothesis:

(i) A set of metarules to instantiate

(ii) A list of primitives which can be used in the instantiation

(iii) Background information to guide the instantiation

(iv) A list of examples used to guide the learning process

To illustrate how these aspects work together, let us consider the problem of

learning ancestral relationships by working backwards through the list18. Say we

want to prove the goal child(bob, alice), i.e. that Bob is the child of Alice. To do so

we provide this goal as a positive example (iv) of what we want Metagol to learn.

Positive examples such as this are used to show the interpreter how the hypothesis

should look. Metagol also permits negative examples to limit hypotheses and prevent

over-generalisation, although they are used less often.

The background information (iii) we provide is the atom parent(alice, bob). In

order for this information to be used in the hypothesis, however, we must make

17An interpreter is a program which evaluates other programs. A meta-interpreter is an inter-
preter which evaluates programs written in its own implementation language.

18This example is based on the example of learning a family tree given in [33]

31



Chapter 3: Background

it available to Metagol. We do this by adding parent to the list of primitives (ii)

which Metagol can use. If a clause present in the background information is not

represented by an entry in the list of primitives then Metagol will not be able to use

it in learning.

These primitives are used to instantiate the metarules (i). These instantiations

form the basis of Metagol’s hypothesis and the structure of the metarules is critical

in generating a good one. In this example we have one metarule:

P (X, Y ) ← Q(Y,X)

This rule says that if an instantiation can be found for Q(Y,X) in the background

information then its inverse P (X, Y ) will also be true.

In our example, Metagol first fetches the metarule and attempts to unify its

head with the goal using the meta-substitution θ = P/child,Q/parent. A ground

atom inverse(child, parent) representing θ is saved by the interpreter before the

learner proceeds to prove the body of the metarule. When the proof is completed

the ground atom is projected onto the metarule to obtain the hypothesis, in this

case:

child(X, Y ) ← parent(Y,X)

i.e. X is the child of Y if Y is the parent of X.

MIL uses predicate invention in order to “fill in the gaps” in the available back-

ground information [28], and this feature will play a key role in the work described

here (see chapters 5 and 6). When Metagol is unable to find an appropriate clause

in the background information to use in an instantiation it can try to use the avail-

able metarules to generate one. This process works in the same way as the example

above, and is limited in the same way by the metarules supplied and the available

background information.

The metarules also give guidance to the interpreter on how the primitives can be

used through the inclusion of ordering constraints. These constraints are applied to

the instantiated variables in each metarule and are expressed as restrictions on the

position of each primitive used in the list of primitives. For two variables Q and R,

if we say that Q is “ordered above” R we mean that the primitive used to instantiate

Q must come before that used for R in the list. In this way we can prevent primitives

being used more than once in a clause, or force Metagol to express solutions in a

specified way19.

The examples we provide and any invented predicates are also considered as

primitives by Metagol, since they are used to instantiate the left-hand side of

metarules when learning. Supplied examples are always first in the list, followed

by invented predicates and then the primitives provided. The ordering constraints

19See the example of learning assumption type in chapter 6 for an example of this
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are not mandatory, and Metagol will be able to find a solution without them, but

by eliminating some potential instantiations of the metarules they can drastically

speed up the learning process.

We can also provide additional orderings and constraints on top of ordering

the primitives. For example, we can add extra conditions to metarules which

make checks on the background information being used in an instantiation, such

as the terms included or their size. These provide a further element of control over

Metagol’s hypotheses, including the obstruction of undesirable solutions.

The final aspect of MIL to consider is that of dependent learning, which we use

in chapter 5. Rather than presenting Metagol with a single large problem to solve,

we break the problem down into smaller pieces and allow Metagol to approach each

individually. Since Metagol works by storing meta-substitutions to project onto

metarules, it can extend this to work across multiple problems. Thus a hypothesis

learned from one example can be used to find another at a later time. Breaking up

problems like this results in smaller solutions as fewer predicates need to be included

in the overall solution, leading to reduced learning times.
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Learning Proof Structure

In this chapter we begin our experiments in applying Muggleton et. al ’s Metagol

system [33] introduced in §3.4 to the problem of learning definitions for proof strate-

gies. We begin by considering a way of encoding an Isabelle proof in Prolog in order

for it to be used as background information for Metagol. We conduct initial exper-

iments in which we learn strategies for proofs in propositional logic and in group

theory before analysing the results and considering potential improvements.

4.1 Representing Proof Structure in Metagol

In order to use Metagol to learn a definition for a PSGraph strategy we must first

find an appropriate representation. Since Metagol needs examples and background

information expressed in Prolog, our representation must be able to capture the

proofs it learns from in this way. We must also consider the strategies Metagol

learns, as these can be reused as future examples. We must therefore consider:

(i) The overall strategies, which include:

(ii) The application of tactics to goals

(iii) The goal types which each goal must satisfy

Throughout this chapter we will use a simple Isabelle proof as a running example.

The lemma we choose is (A −→ B) −→ (B −→ C) −→ A −→ C, one of the lemmas

we will use in our experiments (see Appendix A) with the proof tested in Isabelle

and shown in fig 4.1.

The corresponding proof tree is shown in fig. 4.2. This can be extracted from

the data provided by ProofProcess (see §2.3.5) and is unique for this particular

proof; if an alternative proof of the lemma was provided, for example by re-ordering

sub-goals, the proof tree would change to reflect that.
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lemma (A −→ B) −→ (B −→ C) −→ A −→ C
apply (rule impI)
apply (rule impI)
apply (rule impI)
apply (erule impE)
apply assumption
apply (erule impE)
apply assumption
apply assumption

done

Figure 4.1: Isabelle proof of the running example

4.1.1 Automated Extraction of Data

Expressing proofs in a way suitable for Metagol to use is a time-consuming process

if done manually. Even simple proofs can run to many lines, from which both tactic

and goal information must be extracted for each line. To speed up the process we

add a semi-automatic translator to the Isabelle prover.

One of the advantages of Isabelle (and a motivating factor for using it here) is

the ease with which additional functionality can be added by the user. We do so

here by adding files which parse the data generated by ProofProcess into strings,

which can in turn be interpreted by Metagol.

The string translation is a simple matter of pattern matching. Terms denoting,

for example, tactics are identified and a substituted for a string which captures the

name and type of the tactic (e.g. rule impI ) while stripping away information which

is needed by the theorem prover but not the learner. The structure of a proof, on

the other hand, is slightly more complex. At each term representing a node on the

proof tree, we identify the node’s “children”, representing the sub-goals generated

at that node. The translator is constructed such that every “child” is captured,

meaning that the branching these nodes represent is accurately represented. It is

also applied recursively to each child, ensuring each branch is captured fully.

We can also generate examples for Metagol to use in learning from the Proof-

Process data. At the highest level we can identify the main goal and the completed

state of each branch, combining the two along with an appropriate label to mark it

as an example. By counting the number of recursive steps taken by the translator,

however, we can construct examples of varying sizes for use in dependent learning

(see Chapter 5). We can also identify goal hypotheses and conclusions.

We refer to this as a “semi-automatic” translator because the process requires

user intervention to start; since ProofProcess is not a native part of Isabelle, we

cannot add the translation functionality to it such that it would run automatically.

It also requires the user to provide some details to it, such as a name with which
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rule impI

rule impI

rule impI

erule impE

assumption erule impE

assumption assumption

Figure 4.2: The proof tree for the running example

to label the examples generated. This is not necessarily a bad thing; giving the

user a degree of control makes it easier for them to understand the translator’s

output. It should be noted that Metagol must also be started manually, making

user-understanding of what it is trying to learn even more important. Linking and

automating the whole process (user constructing proof → ProofProcess extracting

data → translation → Metagol learning a strategy) is a consideration for future

work.

4.1.2 Expressing Tactic Applications in Metagol

For our purposes here, we can define a tactic t as a function t : x −→ Y that, given

an input goal x, produces a list of sub-goals Y 20. That list can be a singleton list,

contain multiple elements or be empty. Both non-empty cases represent progression

of a proof, with multiple elements representing branching in the proof tree. In the

case of a proof tree this is AND branching; a proof tree will never contain OR

branching as it is necessary for all sub-goals to be proved for the proof to be a

success. An empty output list represents completion of the proof with no more sub-

goals to show. If a tactic cannot evaluate the input goal then it fails, meaning no

output list is generated.

20For a more formal definition in the context of the Isabelle theorem prover see §2.1.4

36



Chapter 4: Learning Proof Structure

Consider a tactic t with input goal g0 which generates a single sub-goal g1. We

write this as:

t(g0) = [g1]

In Metagol we represent this as a binary clause:

t(g0, g1).

In our running example, the first step would be encoded as:

impI(g0, g1).

More generally, for a given tactic t with input x generating a single sub-goal y,

the translation into a Prolog clause is written as:

Jt(x) = [y]Kt  t(x, y).

In the case of multiple sub-goals, we provide a separate clause for each. If instead

of a single sub-goal g1 our tactic t generated three sub-goals g1,g2,g3, we would write

this as:

t(g0, g1).

t(g0, g2).

t(g0, g3).

In our example this occurs when the impE tactic is applied, e.g.

impE(g3, g4).

impE(g3, g5).

In general, for a tactic t with input x generating a set of sub-goals S the rela-

tionship between function and Prolog clause is:

Jt(x) =⇒ [s1, s2, ..., sn]K  t(x, s1), t(x, s2), ..., t(x, sn).

We are faced with the issue of our representation being so far dependent on

the presence of a sub-goal to work. Additionally, Metagol requires consistency in

representation in order to function properly; if we simply ignore the lack of output

and represent the tactic with the unary clause t(x) Metagol may fail to find a solution

(later examples will illustrate this). We resolve this by adding a dummy sub-goal

as an output.

Consider a tactic t with input g0 but producing no output. We add the dummy

sub-goal gcomplete to represent the “completed” state of the proof. Thus we have the
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binary clause:

t(g0, gcomplete).

In our running example:

assumption(g4, gcomplete 1).

In cases such as this featuring branches we label complete nodes with a number

in order to distinguish them. The general representation is:

Jt(x) =⇒ []K  t(x, gcomplete).

While only completion results in an empty list of sub-goals, it is not the only

reason for a lack of sub-goals after applying a tactic. If a tactic fails when applied

to a goal it does not produce a sub-goal either. Both are useful in the context of

learning proof strategies, but require different representations. Completed proofs are

used as positive examples by Metagol, and so a consistent, accurate representation is

key. Failed proofs, on the other hand, are useful as negative examples which Metagol

uses to refine over-general solutions. In these cases accuracy is less important – a

negative example simply has to be something which is not a valid proof – and so the

completed argument is not necessary. Note that in this work we are focusing only on

positive examples taken from completed successful proofs and so representing failed

proofs is not an immediate concern.

These encoded tactics provide background information for Metagol to learn from.

In order for this information to be useful in learning, at least a portion of it must

come from successful proofs. Tactics included in the background are used to instan-

tiate metarules, and so should not represent a failure. Although failed proofs are

still useful as negative examples, it is not necessary to represent them at this level

of detail.

4.1.2.1 A Complete Proof Represented in Metagol

Let us return to our running example, the proposition (A −→ B) −→ (B −→
C) −→ A −→ C, with Isabelle proof and proof tree as shown in §4.1. If we take the

proposition to be the initial goal g0 with g1 the sub-goal produced by the impI tactic
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(and g2 a subsequent sub-goal, etc.), the tactics here can be expressed in Prolog as:

impI(g0, g1).

impI(g1, g2).

impI(g2, g3).

impE(g3, g4).

impE(g3, g5).

assumption(g4, gcomplete 1).

impE(g5, g6).

impE(g5, g7).

assumption(g6, gcomplete 2).

assumption(g7, gcomplete 3).

The value represented by each goal gn is shown below in Fig. 4.3. Using this

representation, we can define a PSGraph strategy in Metagol.

Goal Encoded Value
g0 (A −→ B) −→ (B −→ C) −→ A −→ C
g1 A −→ B =⇒ (B −→ C) −→ A −→ C
g2 A −→ B =⇒ B −→ C =⇒ A −→ C
g3 A −→ B =⇒ B −→ C =⇒ A =⇒ C
g4 B −→ C =⇒ A =⇒ A
g5 B −→ C =⇒ A =⇒ B =⇒ C
g6 A =⇒ B =⇒ B
g7 A =⇒ B =⇒ C =⇒ C

Figure 4.3: Definitions of the goals represented in the running example

4.1.3 Expressing Goal Types in Metagol

An important part of a PSGraph strategy is the goal types used to label the edges

in the graphs. A key aim of this thesis is to demonstrate that Metagol can find

suitable definitions for these given appropriate information about the goals being

evaluated by a proof, and this will be investigated in Chapter 6. For now we are

concerned with how those learned definitions can be used to learn a strategy.

In PSGraph a goal either satisfies the predicate which a goal type represents or

it does not; there is no ambiguity21. As such we can make explicit statements about

which type(s) are satisfied by a goal in the form of a unary clause in Metagol. For

example, if goal g satisfies the predicate of goal type A, we say:

A type(g).

21Note that this does not discount the possibility of a poorly-defined goal type permitting a goal
to travel along an edge which it should not.

39



Chapter 4: Learning Proof Structure

A tactic can only be applied successfully to a goal which has the appropriate

goal type. In our running example we see that the impI tactic is applied to g0, and

so we say:

impI type(g0).

This means that g0 satisfies the predicate represented by the goal type impI type.

In initial attempts at learning the structure of a strategy we explicitly define the

goal type which each goal satisfies in the background information22. Returning to

the running example, the goal type of each goal is given as:

impI type(g0).

impI type(g1).

impI type(g2).

impE type(g3).

assumption type(g4).

impE type(g5).

assumption type(g6).

assumption type(g7).

Each goal type is named for the tactic which the goal is an input to. This

goal type representation will form part of the larger strategy representation. Each

of these goal types is used to label an edge in the strategy graph learned from the

proof, and so every sub-goal generated while evaluating the proof must satisfy a goal

type. The gcomplete n “sub-goals” are not generated by the theorem prover, however,

and only represent an addition made by us to assist Metagol. Since they are only

used to indicate that a proof has finished, and therefore that there are no more

sub-goals which must be directed along the graph, it is not necessary for them to

satisfy a goal type.

4.1.4 Expressing Proof Strategies in Metagol

It is the aim of this thesis to demonstrate that Metagol can be adapted to learn

definitions for proof strategies from example proofs. In order to do so, we must first

design a representation for these strategies in Prolog which Metagol can use. We

combine both the tactic and goal type representations above to build a complete

representation for proof strategies. These strategies are similar to tactics, in that

they have an input goal and produce a set of sub-goals, or complete a proof. However,

they also include the requirement for any input goal to satisfy a goal type before

a tactic is applied. Let us consider an arbitrary strategy s with input goal a and

22When we look at goal types in-depth in Chapter 6 we will instead provide information about
the hypotheses and conclusion of each goal and make use of Metagol’s predicate invention to define
the goal types.
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output sub-goal b:

s :: a→ b

This strategy will consist of a tactic or sequence of tactics describing the steps

required to move from goal a to goal b, along with a goal type per tactic which must

be satisfied before that tactic can be applied. Let us assume that there is a single

tactic t(a, b) which covers the transition, and the goal type on the input is typeT .

In Prolog we use these to represent the strategy s as:

s(A,B) ← typeT (A), t(A,B).

t

typeT

Figure 4.4: A PSGraph strategy for a single tactic application

This states that strategy s consists of a single application of tactic t, but with

the added condition that goal type typeT must be true for input goal a. If the goal

type holds, applying s to a will always yield sub-goal b. If it does not, attempting

to apply the strategy will result in the proof failing.

In practice, strategies will usually be made up of multiple tactic applications

with different goal types for each. To show this we link strategies together to form

a larger strategy:

s(X, Y ) ← s1(X,Z), s2(Z, Y ).

s1(X, Y ) ← type 1(X), tactic 1(X, Y ).

s2(X, Y ) ← type 2(X), tactic 2(X, Y ).

Here strategy s is made up of two smaller sub-strategies s1 and s2, with s1

progressing the proof as far as an intermediate goal and s2 completing it. A goal

type is not necessary in the high-level definition of s, as a goal type is already defined

in both sub-strategies. Although in this example the two sub-strategies are different,

repeated applications of one of the sub-strategies would also be valid.

We can handle such multiple applications of a tactic by defining a recursive

strategy, for example:

s(X, Y ) ← s1(X,Z), s(Z, Y ).

s1(X, Y ) ← type 1(X), tactic 1(X, Y ).
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s1

s2

s

tactic1

type1s1

tactic2

type2s2

Figure 4.5: A PSGraph strategy for a chained tactic application (left) and the sub-
strategies representing each tactic (centre, right)

s1s

tactic1

type1s1

Figure 4.6: A PSGraph strategy for a recursive tactic application (left) and the
sub-strategy representing the tactic (right)

In this case s applies sub-strategy s1 to progress the proof to an intermediate

goal before re-applying s to that new goal. So long as the intermediate goal Z has

goal type of type 1 the strategy can be reapplied. The recursion will terminate once

Z no longer satisfies type 1, as trying to apply tactic 1 will result in a failure of the

proof. Note that this does not guarantee termination, as we cannot guarantee in

general that there will come a point where type 1 is not satisfied.

Recall that branches in a PSGraph strategy represent OR branching, not the

AND branches we saw earlier in the proof tree. If the application of s1 completes

the proof then there will be no further sub-goals, but if it does produce a sub-goal

it is only necessary for it to satisfy the goal type of one of the output edges in order

to progress. If s1 produces multiple sub-goals they can all follow the same edge or

split across both. If a sub-goal is produced which does not satisfy the goal type of

any available edge, the strategy has failed.

In line with the hierarchical nature of PSGraph, this notation similarly does

not restrict us to repeatedly applying a single tactic. s1 in the example above can

represent a sub-strategy which is itself made up of smaller sub-strategies, possibly

containing recursive elements themselves. By representing a strategy in this way we

can take a high-level view if we wish, or look in more detail if necessary.
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4.1.4.1 A Complete Strategy in Metagol

Let us return again to our running example. The tactics used in the proof and

definitions of the goal types required to define a strategy are given in §4.1.1.1 and

§4.1.2 respectively. We can use these to express a definition for a strategy ex strat

describing the proof. We begin by finding sub-strategies to describe the application

of each tactic:

impI strat(X, Y ) ← impI type(X), impI(X, Y ).

impE strat(X, Y ) ← impE type(X), impE(X, Y ).

assumption strat(X, Y ) ← assumption type(X), assumption(X, Y ).

These say that each tactic can only be applied to a goal X if X satisfies the

appropriate goal type for each tactic. Looking at the proof, we immediately see that

more than one application of impI is required. We use a recursive definition to say

that “some applications” of impI are required:

impI repeat strat(X, Y ) ← impI strat(X,Z), impI repeat strat(Z, Y ).

impI repeat strat(X, Y ) ← impI strat(X, Y ).

This second clause acts as a “base case”, allowing the clause to terminate. Fol-

lowing impI in the proof, we have an application of impE. This can be captured by

impE strat above. However, the right-hand branch requires a second impE tactic.

This can be expressed as a strategy made up of two instances of the impE strat

sub-strategy:

impE twice strat(X, Y ) ← impE strat(X,Z), impE strat(Z, Y ).

However, using impE twice strat would force two uses of impE in all cases,

causing a failure on the left-hand branch of the proof tree. We instead create a

second recursive definition for impE repeat strat:

impE repeat strat(X, Y ) ← impE strat(X,Z), impE repeat strat(Z, Y ).

impE repeat strat(X, Y ) ← impE strat(X, Y ).

This allows any number of impE tactics provided the goal type is satisfied,

resolving our problem. Our complete strategy can be defined using each of these

sub-strategies:

ex strat(X, Y ) ← impI repeat strat(X,Z), ex strat 1(Z, Y ).

ex strat 1(X, Y ) ← impE repeat strat(X,Z), assumption strat(Z, Y ).
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Using this strategy, each branch of the proof tree can be completed by applying

impI at least once, impE at least once and assumption once. Defined in this way

we could, if we wished, reuse parts of this strategy to define others. We now have a

complete strategy which will fully evaluate our initial goal g0.

4.2 Learning the Structure of a Strategy using

Metagol

As described in §3.4, in order to learn a definition for a proof strategy Metagol

needs examples of what to learn, metarules to guide the learning process and back-

ground information to learn from. Here we will find positive examples based on our

running example, use the previously encoded tactics and goal types as background

information and choose appropriate metarules to guide the learning.

We will use a set of metarules which have been picked to cover the three possible

definitions for a strategy listed above:

Name Metarule Order
Lift P (x, y)← W (x), R(x, y) P � R
Chain P (x, y)← Q(x, z), R(z, y) P � Q,P � R
Loop P (x, y)← Q(x, z), P (z, y) P � Q, x � z � y

Figure 4.7: Metarules for learning the structure of a PSGraph, with associated
ordering constraints.

The metarules have been chosen to give a generalised version of the structure

of the strategy above. We were free to define the metarules however we wished

for these experiments, but preliminary experiments with other rule sets (both more

general and more specialised) either failed to yield any results or gave results which

were far too vague to be reusable. Refinement of the rules led to the set presented in

fig. 4.7. We will always need at least one metarule since Metagol cannot suggest an

output without a metarule to instantiate, but there is no upper limit on how many

we could use or indeed any way to predict how many Metagol will need to find a

solution to a given problem. We provide the rules in fig. 4.7 to Metagol to apply to

each problem with the reasons for doing so described below.

As discussed in §3.4 the ordering constraints add a restriction on the available

background information for Metagol to use in instantiating the metarules. For ex-

ample in Lift we order P above R, meaning P must appear before R in Metagol’s

list of available terms to attempt instantiation with. Metagol lists positive examples

before background information which is itself listed before any invented predicates.

In our rules the left-hand side of the expression represents strategies which will

be provided as positive examples. Our choice of ordering constraints ensures that

Metagol will always therefore attempt to define a strategy in terms of tactics pro-
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vided and/or any invented predicates, rather than, for example, defining a tactic in

terms of a target strategy. This ordering does matter and altering it would have an

impact on our results. In chapter 6 we will discuss any alterations which need to be

made to the rule set in order to handle learning goal types as well.

They are used as follows:

� Lift defines a scenario where some clause P holds if a clause W holds for

some variable x and there also exists a relationship R between x and y. This

represents the possibility of a tactic application if a goal type is satisfied, which

is the most fundamental requirement of defining a strategy in PSGraph.

� Chain describes a scenario in which clause P can also be described as two

separate clauses with a shared intermediary value. This represents the appli-

cation of a tactic resulting in a sub-goal which then has a second tactic applied

to it. By including this rule we can represent the hierarchical nature of a proof

strategy by connecting two clauses defined using the Lift rule.

� Loop describes a recursive relationship with clause P . For us this is recursive

application of a tactic, again necessary to describe a potential hierarchical

strategy where a clause learned with Lift, or indeed Chain, is applied to its

own output.

Defining this set of metarules is a core part of achieving our objectives set out

in §1.1. After experimenting with some alternatives we have settled on a core rule

set which enables Metagol to use the encoded details of the example proofs to learn

strategies from them.

We will look again at example strat from before, but this time we will let Metagol

learn it. The metarules we use are shown in fig. 4.7 and are constructed based on

the three different ways of defining a strategy in §4.1.4. We select three positive

examples:

(i) ex strat : psgraph(g0, gcomplete 1).

(ii) ex strat : psgraph(g0, gcomplete 2).

(iii) ex strat : psgraph(g0, gcomplete 3).

Each of these represents a completed branch of the proof. Since proof trees

feature AND branching, any definition learned must be satisfied by every branch of

the proof. Thus every branch representing a successfully resolved sub-goal must be

included as an example for Metagol to check its solution against.

Metagol begins the learning process by using a positive example to instantiate

the metarules supplied. If more than one metarule is present, they are tried sequen-

tially. If a metarule cannot be instantiated, the next one is tried. If a metarule is

instantiated successfully and the result is valid for all examples given, that instanti-

ation is chosen as the solution. As soon as a solution is found Metagol terminates,

even if there are untried rules in the list.
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In our example, instantiating the lift rule gives:

ex strat(g0, gcomplete 1) ← W (g0), R(g0, gcomplete 1).

Metagol then checks the background information to find instantiations for W

and R. Here W can be instantiated to impI type, but there is no suitable clause to

describe a tactic with g0 as its input and gcomplete 1 as its output and so we cannot

instantiate R. Thus we must try the next rule.

Instantiating the Chain rule gives:

ex strat(g0, gcomplete 1) ← Q(g0, Z), R(Z, gcomplete !).

This time we can find something to instantiate Q, namely impI(g0, g1), but

there is not a corresponding tactic with g1 input and gcomplete 1 output and so the

instantiation fails again. We must move on to try the final rule.

Instantiating Loop gives:

ex strat(g0, gcomplete 1) ← Q(g0, Z), ex strat(Z, gcomplete 1).

Again we can instantiate Q with impI(g0, g1), giving us:

ex strat(g0, gcomplete 1) ← impI(g0, g1), ex strat(g1, gcomplete 1).

Metagol now checks that the ex strat(g1, gcomplete) is a valid clause. In our exam-

ple g1 is evaluated using the impI tactic in the same way as g0, and so the solution

is found in the same way:

ex strat(g1, gcomplete 1) ← impI(g1, g2), ex strat(g2, gcomplete 1).

Likewise checking for g2 gives:

ex strat(g2, gcomplete 1) ← impI(g2, g3), ex strat(g3, gcomplete 1).

Checking ex strat(g3, gcomplete) will result in failure using this definition, however,

as g3 is not evaluated with the impI tactic. Metagol returns to trying Lift :

ex strat(g3, gcomplete 1) ← W (g3), R(g3, gcomplete 1).

Again an instantiation for W can be found (this time impE type(g3)), but noth-

ing for R. Metagol tries Chain:

ex strat(g3, gcomplete 1) ← Q(g3, Z), R(Z, gcomplete 1).
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Q is instantiated with impE(g3, g4), giving:

ex strat(g3, gcomplete 1) ← impE(g3, g4), R(g4, gcomplete 1).

This time R can be instantiated with assumption, giving:

ex strat(g3, gcomplete 1) ← impE(g3, g4), assumption(g4, gcomplete 1).

Combining this with the earlier instantiation and generalising, Metagol gives the

solution:
ex strat(A,B) ← impI(A,C), ex strat(C,B).

ex strat(A,B) ← impE(A,C), assumption(C,B).

However, testing this against the other positive examples provided results in

failure as they require two applications of impE rather than the one permitted by

this strategy. Metagol must improve its solution in order to prevent this. It tries

again using ex strat : psgraph(g0, gcomplete 2) as the target.

The initial stages proceed in the same way as when using ex strat :

psgraph(g0, gcomplete 1) as the example. Looking at the proof tree, we see that this

is because the branching does not occur until the first impE tactic. Attempting to

use the Lift rule at this point would fail in the same way as before, however this

time there is a difference when using Chain:

ex strat(g3, gcomplete 1) ← impE(g3, g5), R(g5, gcomplete 2).

Using this example Metagol tries to instantiate R such that the tactic it repre-

sents has input g5 and output gcomplete 2, and there is no such clause in the back-

ground information. Instead it tries Loop:

ex strat(g3, gcomplete 1) ← Q(g3, Z), ex strat(Z, gcomplete 2).

Again Metagol can replace Q with impE, giving:

ex strat(g3, gcomplete 1) ← impE(g3, g5), ex strat(g5, gcomplete 2).

ex strat(g5, gcomplete 2) is satisfied by one of the definitions found earlier, and

so Metagol now has a valid solution for ex strat(g0, gcomplete 2). Generalising and

adding this to the earlier solution gives:

ex strat(A,B) ← impI(A,C), ex strat(C,B).

ex strat(A,B) ← impE(A,C), ex strat(C,B).

ex strat(A,B) ← impE(A,C), assumption(C,B).

This solution satisfies all of the positive examples, and so Metagol has found a

47



Chapter 4: Learning Proof Structure

valid strategy.

4.3 Results & Analysis

ex strat can be used to generate the proof it was learned from, meaning that it is

a valid strategy as defined in §3.3, i.e. each node represents a tactic, every edge is

labelled with a predicate and each step in the proof could be recreated by stepping

through the graph of ex strat. However, being a valid strategy and being a good

strategy are not the same thing. In addition to finding the valid proof (and indeed,

many other valid proofs), ex strat would also generate many proofs which would

fail. There is no way to ensure termination of the loops and no way of deciding

which of the three clauses should be applied to a goal.

This is exemplified by further experiments. We provided Metagol with a list of

example proofs based in propositional logic (see fig.4.823, with the proofs given in full

in Appendix A), chosen for their use of low-level tactics (i.e. no use of auto or similar)

and for their varying lengths and complexity. The examples were encoded using the

method described in this chapter and a script used to repeatedly run Metagol with

increasing time limits. Since Metagol takes longer to find larger solutions, setting a

time limit for it to work in acts as a crude limiter on the complexity of the solutions.

Fig. 4.9 summarises how longer run times result in more strategies being learned,

which in turn increases the number of possible failures of the strategies learned. It

also highlights the “optimal” results of the experiments.

A : A −→ B −→ A
B : A ∨B −→ B ∨ A
C : A −→ ¬¬A
D : (A ∨ A) = (A ∧ A)
E : A −→ A
F : A ∨ ¬A
G : ¬¬A −→ A
H : A ∧B −→ B ∧ A
I : (A −→ B −→ C) −→ (A −→ B) −→ A −→ C
J : ((A −→ B) −→ A) −→ A
K : (A ∧B) −→ (A ∨B)
L : (A −→ B) −→ (B −→ C) −→ A −→ C
M : (¬A −→ B) −→ (¬B −→ A)
N : (¬(A ∧B)) = (¬A ∨ ¬B)
O : ((A ∨B) ∨ C) −→ A ∨ (B ∨ C)

Figure 4.8: Example lemmas used by Metagol

23The examples are taken from a tutorial on the Isabelle theorem prover, found at is-
abelle.in.tum.de/exercises
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Figure 4.9: Mean branching factor σ for learned strategies

This potential failure rate is represented by the “branching factor” σ for each

strategy. This branching factor indicates the number of possible proof trees – in-

cluding partial trees and failures – which can be generated by using the strategy to

evaluate a goal. When σ = 1 it indicates that a strategy is deterministic, i.e. only

one proof tree can be generated using that strategy. Higher values of σ indicate that

a strategy is “less deterministic”24. Branching points occur at points on the strategy

graph where a goal could follow more than one edge, usually through poorly-defined

goal types. A deterministic strategy would be the optimal outcome, as it would

indicate that any goal satisfying the goal type criteria could be discharged using

a proof built from the strategy. Recall that the branches in the strategy represent

OR branches, meaning that so long as there are no remaining sub-goals after the

strategy has been applied it has been successful, regardless of any unvisited nodes.

This optimal outcome is indicated on each of the result graphs in this thesis.

In our experiments here we learn a strategy from each example proof before

evaluating that strategy against the same proof, e.g. the strategy learned from

example a is evaluated against the lemma proved in example a. Doing this we

find a value of σ for each strategy. We take the mean value of σ for the strategies

learned at each time limit. The graph in fig. 4.9 shows the value of σ increasing

with time. This is the expected result, indicating that the strategies learned feature

more branching as they become more complex.

This is because of the lack of goal types in the learned definition. It should

24Strictly speaking any strategy where σ > 1 would be described as non-deterministic, however
in this situation we want a way to indicate that a strategy where, for example, σ = 5 is more useful
than one where σ = 50
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be noted that PSGraph does not require a goal type to be defined; an “empty

type” is still a valid predicate with which to label an edge. Thus ex strat is still

a PSGraph, even though it appears to have no goal types. A goal type being so

overly-generalised, however, is a prime example of a poorly-defined type leading to

high values for σ.

Basic goal types for each sub-goal were provided in the background information,

however Metagol did not include them in its solution. This is because, as described in

[33], Metagol will always look for the simplest solution. The solution above satisfied

the examples provided without including goal types, and so Metagol ignored them.

While this feature is useful in some respects, it would be useful to somehow “switch

it off” when it affects the quality of the solution. We address this problem through

the use of “types”, as described in chapter 5.

There is also the issue of termination to consider. In some experiments, especially

those where a “reflexive” metarule such as P (x, y)← Q(y, x) is used, Metagol may

not terminate. This is because it finds itself in a position where the clause it is

currently working on can be re-written and so it is, only to be left in a state which

can be further re-written. If this rewriting (or series of rewritings) leads back to

the starting statement, Metagol will find itself in an infinite loop. Work discussed

in the following chapters will go some way to addressing this by limiting the way in

which some metarules can be applied, but a more thorough investigation is an area

for future work.

4.4 Alternative Measures of Complexity

The proofs selected for these experiments have some overlap in the tactics used

and the terms present in the goals, but the is also some disparity in the number of

tactics needed to build each proof and the number of sub-goals generated as they

are applied. The table in Figure 4.10 shows this information for the proofs used.

For all lemmas there were two clauses included in the background information

for each tactic application: one for the goal type, one for the tactic. There were

positive examples for each branch point to show the sequence of tactics required

to discharge each branch. Figure 4.11 shows at which point in the experiment a

strategy was learned for each lemma.

Although the number of examples here is far too small to draw any firm con-

clusions from, we see some initial indicators of a pattern forming. The first is in

the number of clauses in a strategy definition relative to the length of time taken

to learn it, where we observe that strategies including more clauses take longer to

learn. Comparing the time taken to learn each strategy to the number of tactics

used in the lemmas they are learned from also shows some correlation. We note a

similar pattern, with a higher number of tactics used in the proof corresponding to
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Lemma Tactics Used Tactic Applications
A 2 3
B 5 6
C 4 4
D 6 11
E 2 2
F 6 6
G 4 4
H 4 5
I 3 10
J 5 8
K 4 4
L 3 8
M 5 7
N 10 19
O 5 11

Figure 4.10: Number of tactics used and number of tactic applications for each
example lemma

Lemma Learned After Clauses in Solution σ for Solution
A 1s 2 3
B 2s 4 10
C 1s 3 7
D 4s 4 8
E 1s 1 1
F 2s 4 7
G 1s 3 7
H 1s 3 6
I 1s 3 12
J 2s 4 16
K 1s 3 7
L 1s 3 10
M N/A N/A N/A
N N/A N/A N/A
O N/A N/A N/A

Figure 4.11: Time in which an untyped strategy was learned from each lemma and
number of clauses it contained - N/A indicates that no strategy was learned within
the time limit

a longer time taken to define the strategy.

There is however some nuance to this: the number of different tactics used is

of greater significance than the number of tactic applications in the proof. This

may seem counter-intuitive as a higher number of tactic applications is an indicator

of more sub-goals in the proof, since a tactic must be applied to each one. More

sub-goals means a longer proof, more branching or both. Comparing experimental

results (for lemmas F and I, for example) indicates that there is a degree of reuse
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in the definitions learned. This would be expected as Metagol only needs to derive

a sub-strategy for a tactic once before it can be reused elsewhere.

Considering the value of σ for each learned strategy, the most striking observation

is that is generally quite high for even the shorter proofs. As we will see in later

chapters this value will decrease as we develop our representation further, but the

pattern observed will remain. Strategies learned from proofs with a small number

of tactics and few applications, i.e. shorter proofs, have a lower value of σ, while

increasing either of these values leads to an increase in branching in the strategy.

Since the strategies learned are omitting goal type information this is to be expected,

but will be addressed by the modifications we make in future chapters.

4.5 Further Experiments

To further test Metagol and provide further data, we run another series of tests using

a different selection of lemmas. The results are collated and analysed in the same

way as the propositional logic tests, with the same time constraints applied. For this

second run we use proofs of a selection of results in group theory [27]. The proofs of

these results are constructed by the author (with the exception of the fundamental

axioms of group theory). The lemmas are stated in fig. 4.12 with the proofs given

in Appendix B.

A : e = (a-1)-1 ∗ ∗a-1
B : a ∗ ∗a-1 = e
C : a ∗ ∗e = a
D : e ∗ ∗a = a ∗ ∗e
E : a ∗ ∗a-1 = a-1 ∗ ∗a
F : g ∗ ∗a = e =⇒ g = a-1

G : en = e
H : gn ∗ ∗gm = g(n + m)

I : g(n + m) = g(m + n)

J : gm
n

= gn
m

K : gn ∗ ∗g = gn + 1

Figure 4.12: Example group theory lemmas used by Metagol (e denotes the group
identity element)

The graph in fig. 4.13 shows the results of the experiments. We note some

similarities to the pattern shown in the propositional logic examples, namely an

initial difference between the optimum and observed values of σ and an increase

in that difference as time progresses. In this case, however, we see that σ remains

constant after increasing, in contrast to a further climb observed previously. We

also note that it starts at a lower value. There are some differences between the two

example sets which may account for this.
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Figure 4.13: Mean branching factor σ for learned group theory strategies

The relative complexity of the lemmas being proved affects the value of σ in

two ways, with the first being on the its initial value. While there are some simple

results in the propositional logic set, most have some degree of complexity and

require multiple steps to complete. By contrast the simplest of the group theory

results are simply proving the inverse of the axioms and often require only one or

two steps. Other results are corollaries of those axioms and require reuse of a smaller

set of tactics. Having fewer tactics available in a strategy will naturally lead to a

lower level of branching, and so we see lower values of σ as a result.

The second effect occurs the other end of the scale, where lemma complexity

results in fewer large solutions being found in the available time and so lower values

of σ as a result. With propositional logic, although there were no strategies learned

for the most complex examples it was still possible to find results with higher levels of

branching. In group theory the more complex results, although drawing on a smaller

pool of tactics, require more steps and so take longer to evaluate. Consequently

fewer results are found before our script times out. Additionally, the complex group

theory proofs for which we are able to find strategies make use of induction. This

means that while a branch point is introduced into the strategy immediately, once

a goal has been classified as a base or step case fewer subsequent branch points are

introduced since the two are proved in different ways. This further contributes to

the lower values of σ.

We note that the strategies learned during this second run suffer from the same

problems as those learned before, namely a lack of goal type information and the

potential for termination issues. As with propositional logic, this will be further

investigated in subsequent chapters.
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4.6 Chosen Time Intervals

We have chosen to run our experiments over short time spans of 1, 2, 4, and 8

seconds. We observe that the calculated value of σ changes with the running time

which indicates that more strategies can be found when the experiments are run

for longer. The graphs in Appendix D shows the number of strategies successfully

learned for the propositional logic examples in the time periods given.

They show an increase in the number of strategies learned after the first two

increases, but no change when moving from 4 to 8 seconds. Additional experiments

were conducted with further doubling of the run time (first to 16 seconds, then to 32

seconds) and the number of strategies found recorded. We observe that there is still

no change when increasing to 16 seconds before an additional strategy is learned

after 32 seconds. This suggests that running the experiments for longer will not

lead to a commensurate increase in the number of learned results. As noted in our

discussion of Metagol in chapter 3, this is to be expected given that the search for

solutions has time complexity O(n2).

We observe a similar pattern in the number of group theory strategies learned.

Here the diminishing return is even more obvious, with no additional strategies being

learned after the doubling to 2 seconds. Finding additional strategies would require

much longer run times with associated extra system requirements. Given the lack of

additional results generated by longer running we will use a time limit of 8 seconds

for this work.

4.7 Summary

In this chapter we have presented a Prolog-based representation for proof strate-

gies constructed in PSGraph. We have discussed the representation of both tactics

and goal types and given an example of the two combining to describe a strategy.

We have walked through an example of how Metagol would learn such a strategy,

including the metarules used in the process and the examples required.

In order to do this we translated a selection of proofs constructed using Isabelle

into our representation. By successfully learning strategies for some of them we have

demonstrated that it is possible to make the leap from Isabelle proof to PSGraph

strategy using Metagol with minimal manual assistance. We have shown that in

general a strategy can be learned from an appropriately-represented proof, although

there is definite room for improvement.

We have also discussed some of the issues arising using the current approach,

illustrated by experimental evidence. By observing patterns among the structures

of the proofs the strategies are learned from and the properties of those strategies,

indeed even the success of Metagol in finding a strategy, we observed a relationship

between the structure of a proof and Metagol’s ability to learn from it. After analysis
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of the results a suggestion of how to improve them is made to implement moving

forward.
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Typed & Dependent Learning

The examples presented in chapter 4 illustrate valid strategies learned by Metagol

but they show high degrees of branching. This has some benefit in that it opens up

more potential combinations of the tactics which are used in a strategy, assuming

there are sufficient loops in its structure. However, a high value of σ leads to a larger

search space which will make any strategy learned less efficient, i.e. applying it to an

unseen lemma could take a long time to evaluate all possible approaches. Although

we were able to learn strategies from most of the examples, they all suffered from

the same issue.

Reducing the value of σ will mean less branching within the learned strategies,

making it more immediately obvious if a strategy can be applied to a given lemma.

In this chapter we consider ways of improving Metagol’s solutions by reducing the

search space, first by providing more guidance towards a suitable solution and then

by breaking down the solution into smaller parts.

5.1 Learning Structure With Types

The key issue in the solutions learned previously is the absence of goal types. While

not technically incorrect, the strategies learned present too many opportunities for

evaluation of a goal to fail for them to be of any value. This is simply a consequence

of using Metagol for learning, however, as it is designed in a way that leads it to

omit some of the information which would improve our solutions.

To address this we redefine the metarules we use in such a way as to force Metagol

to include a goal type in every solution which requires one. Redefining our metarules

requires matching changes to the background information we provide Metagol, and

the translator used to generate it.

We extend MIL to Typed MIL through the addition of a simple typing system25.

A predicate P is labelled with a constant t denoting its type, written P : t. Thus

P (X, Y ) becomes P : t(X, Y ). The type is represented internally as an extra ar-

25A paper describing this work [14] was presented at ILP15
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Name Metarule Order
Lift P : psgraph(x, y)← W : wpred(x), R : tactic(x, y) P � R
Chain P : psgraph(x, y)← Q : psgraph(x, z), R : psgraph(z, y) P � Q,P � R
Loop P : psgraph(x, y)← Q : psgraph(x, z), P : psgraph(z, y) P � Q

Figure 5.1: Typed metarules for learning the structure of a PSGraph, with associated
ordering constraints.

gument and is written P (t,X, Y ). For clarity we will write it here in the former

notation.

We introduce three types: tactic to label tactic applications, wpred for goal types

(short for “wire predicate”, in lieu of using type or gtype in order to avoid confusion)

and psgraph for strategies. We amend the background information of our running

example appropriately:

impI : tactic(g0, g1).

impI : tactic(g1, g2).

impI : tactic(g2, g3).

impE : tactic(g3, g4).

impE : tactic(g3, g5).

assumption : tactic(g4, gcomplete 1).

impE : tactic(g5, g6).

impE : tactic(g5, g7).

assumption : tactic(g6, gcomplete 2).

assumption : tactic(g7, gcomplete 3).

impI type : wpred(g0).

impI type : wpred(g1).

impI type : wpred(g2).

impE type : wpred(g3).

assumption type : wpred(g4).

impE type : wpred(g5).

assumption type : wpred(g6).

assumption type : wpred(g7).

We also amend the set of metarules to include these types (fig. 5.1).

We will look again at ex strat from before, but this time learn using types. The

positive examples are amended to:

(i) ex strat : psgraph(g0, gcomplete 1).

(ii) ex strat : psgraph(g0, gcomplete 2).

(iii) ex strat : psgraph(g0, gcomplete 3).
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Metagol begins by using Lift as before:

ex strat : psgraph(g0, gcomplete 1) ← W : wpred(g0), R : tactic(g0, gcomplete 1).

W can still be instantiated to impI type, but there is still no clause describing

a tactic with g0 input and gcomplete 1 output,so R still cannot be instantiated.

Instantiating the Chain rule gives:

ex strat : psgraph(g0, gcomplete 1) ← Q : psgraph(g0, Z),

R : psgraph(Z, gcomplete 1).

This time Metagol cannot find anything in the background information to in-

stantiate either Q or R, however it can make use of predicate invention. Both clauses

on the right-hand side of the expression are of type psgraph, meaning the metarules

supplied can be used to find definitions for them.

When Metagol invents a predicate it gives it a name based on the parent defini-

tion, in this case ex strat 1. Attempting to instantiate Lift once again, we have:

ex strat 1 : psgraph(g0, Z). ← W : wpred(g0), R : tactic(g0, Z).

As before, W can be instantiated to impI type. However, there isn’t a specified

output for the tactic clause. It is only necessary to find a tactic with g0 as an input

and some output, which we do have. Thus the definition Metagol finds is:

ex strat 1 : psgraph(g0, g1). ← impI type : wpred(g0), impI : tactic(g0, g1).

Replacing this in the overall definition gives:

ex strat : psgraph(g0, gcomplete 1) ← ex strat 1 : psgraph(g0, g1),

R : psgraph(g1, gcomplete 1).

Metagol still cannot instantiate R, and so uses predicate invention once again to

find ex strat 2. Lift gives:

ex strat 2 : psgraph(g1, gcomplete 1) ← W : wpred(g1), R : tactic(g1, gcomplete 1).

Once again Metagol can instantiate W , but not R. Trying again with Chain

gives:

ex strat 2 : psgraph(g1, gcomplete 1) ← Q : psgraph(g1, Z),

R : psgraph(Z, gcomplete 1).

This time Metagol can instantiate Q without using predicate invention using the
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ex strat 1 definition:

ex strat 2 : psgraph(g1, gcomplete 1) ← ex strat 1 : psgraph(g1, g2),

R : psgraph(g2, gcomplete 1).

Again R cannot be instantiated from background information, so Metagol looks

for ex strat 3. Lift fails in the same way as before, with Chain giving:

ex strat 3 : psgraph(g2, gcomplete 1) ← Q : psgraph(g2, Z),

R : psgraph(Z, gcomplete 1).

ex strat 1 fits here again, so we have:

ex strat 3 : psgraph(g2, gcomplete 1) ← ex strat 1 : psgraph(g2, g3),

R : psgraph(g3, gcomplete 1).

As discussed above, Metagol will always look for the simplest solution. That

is to say, it looks for the shortest solution with the fewest invented predicates. In

our example here, there are now three invented predicates describing the first three

steps of the proof when a single recursive definition would do the same job. With

this in mind, we look again at the invention of ex strat 1 using the Loop rule:

ex strat 1 : psgraph(g0, gcomplete 1) ← Q : psgraph(g0, Z),

ex strat 1 : psgraph(Z, gcomplete 1).

Q can be instantiated using an invented definition in the same way as before,

although with different numbering:

ex strat 2 : psgraph(g0, g1). ← impI type : wpred(g0), impI : tactic(g0, g1).

Replacing Q with this:

ex strat 1 : psgraph(g0, gcomplete 1) ← ex strat 2 : psgraph(g0, Z),

ex strat 1 : psgraph(Z, gcomplete 1).

A base case is found using Lift, giving the definition:

ex strat 1 : psgraph(g0, gcomplete 1) ← ex strat 2 : psgraph(g0, Z),

ex strat 1 : psgraph(Z, gcomplete 1).

ex strat 1 : psgraph(g0, g1). ← impI type : wpred(g0),

impI : tactic(g0, g1).

Thus we have a definition which describes the same part of the proof as the

one we found earlier, but which includes fewer invented clauses and is thus simpler

according to Metagol’s criteria. Replacing these clauses in the overall definition of
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ex strat gives us:

ex strat : psgraph(g0, gcomplete 1) ← ex strat 1 : psgraph(g0, g3),

R : psgraph(g3, gcomplete 1).

Metagol now looks for an instantiation of R. Again it needs to use predicate

invention, and again Lift will not find one. Using Chain:

ex strat 3 : psgraph(g3, gcomplete 1) ← Q : psgraph(g3, Z),

R : psgraph(Z, gcomplete 1).

Using Lift to find Q:

ex strat 4 : psgraph(g3, Z). ← W : wpred(g3), Q : tactic(g3, Z).

Metagol can instantiate both W and Q from the background information, how-

ever there are two ways of doing so:

ex strat 4 : psgraph(g3, Z). ← impE type : wpred(g3), impE : tactic(g3, g4).

ex strat 4 : psgraph(g3, Z). ← impE type : wpred(g3), impE : tactic(g3, g5).

This is because the impE tactic introduces branching to a proof, and so there are

two available clauses in the background information to use in learning. Metagol will

check these sequentially, and so proceeds by adding the first clause to the definition:

ex strat 4 : psgraph(g3, g4). ← impe type : wpred(g3), impE : tactic(g3, g4).

Since a definition can be found there is no need for Metagol to try the second

clause. Note that in this case doing so would result in a failure anyway, since there

is no path on the proof tree which allows progress from g5 to gcomplete 1. Inserting

this in the previous clause:

ex strat 3 : psgraph(g3, gcomplete 1) ← ex strat 4 : psgraph(g3, g4),

R : psgraph(g4, gcomplete 1).

Using Lift again Metagol can fully instantiate R:

ex strat 5 : psgraph(g4, gcomplete 1). ← assumption type : wpred(g4),

assumption : tactic(g4, gcomplete 1).
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This completes the strategy definition:

ex strat : psgraph(A,B) ← ex strat 1 : psgraph(A,C), R : psgraph(C,B).

ex strat 1 : psgraph(A,B) ← ex strat 2 : psgraph(A,C),

ex strat 1 : psgraph(C,B).

ex strat 1 : psgraph(A,B). ← impI type : wpred(A), impI : tactic(A,B).

ex strat 2 : psgraph(A,B). ← impI type : wpred(A), impI : tactic(A,B).

ex strat 3 : psgraph(A,B) ← ex strat 4 : psgraph(A,C),

ex strat 5 : psgraph(C,B).

ex strat 4 : psgraph(A,B). ← impe type : wpred(A), impE : tactic(A,B).

ex strat 5 : psgraph(A,B). ← assumption type : wpred(A),

assumption : tactic(A,B).

This definition fits (i), but, like in the untyped example, fails when tested against

(ii) and (iii). Again, this is because a second impE tactic is required in these

examples which is not permitted by the current definition. Metagol must amend

the strategy to permit these examples.

Like with the untyped definition, we note that the first steps in each example

are the same and so can be handled with the same strategy. Thus we can say that

some of the definitions learned previously are still valid:

ex strat : psgraph(g0, gcomplete 2) ← ex strat 1 : psgraph(g0, g3),

R : psgraph(g3, gcomplete 2).

The problem occurs in applying the impE tactic, which is handled by ex strat 4

above. Using Lift has not produced a valid definition, so Metagol tries Chain instead:

ex strat 4 : psgraph(g3, gcomplete 2). ← Q : psgraph(g3, Z),

R : psgraph(Z, gcomplete 2).

Renumbering the definitions learned before and including them in further pred-

icate invention allows Metagol to complete this definition:

ex strat 4 : psgraph(A,B). ← ex strat 5 : psgraph(A,C),

ex strat 6 : psgraph(C,B).

ex strat 5 : psgraph(A,B). ← impE type : wpred(A), impE : tactic(A,B).

ex strat 6 : psgraph(A,B). ← ex strat 5 : psgraph(A,C),

ex strat 7 : psgraph(C,B).

ex strat 7 : psgraph(A,B). ← assumption type : wpred(A),

assumption : tactic(A,B).

This is now a valid strategy to describe (ii) and (iii), but fails for (i). Metagol
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must revisit the definition for ex strat 4 again, this time using Loop:

ex strat 4 : psgraph(g3, gcomplete 2). ← Q : psgraph(g3, Z),

ex strat 4 : psgraph(Z, gcomplete 2).

Metagol can again find Q using Lift :

ex strat 5 : psgraph(g3, g5). ← impE type : wpred(g3), impE : tactic(g3, g5).

Metagol now has a definition which can represent as many uses of impE as is

necessary to complete a proof. Adding this to the overall definition, renumbering

where necessary:

ex strat : psgraph(A,B) ← ex strat 1 : psgraph(A,C),

ex strat 3 : psgraph(C,B).

ex strat 1 : psgraph(A,B) ← ex strat 2 : psgraph(A,C),

ex strat 1 : psgraph(C,B).

ex strat 1 : psgraph(A,B) ← impI type : wpred(A), impI : tactic(A,B).

ex strat 2 : psgraph(A,B) ← impI type : wpred(A), impI : tactic(A,B).

ex strat 3 : psgraph(A,B) ← ex strat 4 : psgraph(A,C),

ex strat 6 : psgraph(C,B).

ex strat 4 : psgraph(A,B) ← ex strat 5 : psgraph(A,C),

ex strat 4 : psgraph(A,B).

ex strat 4 : psgraph(A,B) ← impE type : wpred(A), impE : tactic(A,B).

ex strat 5 : psgraph(A,B) ← impE type : wpred(A), impE : tactic(A,B).

ex strat 6 : psgraph(A,B) ← assumption type : wpred(A),

assumption : tactic(A,B).

Metagol has now found a definition which satisfies all positive examples.

5.1.1 Results & Analysis

We must ensure that Metagol’s new solution is an improvement over the one found

in Chapter 4. To do so we revisit the set of examples used in Chapter 4. The back-

ground information and examples are augmented with the additional type informa-

tion required, and the updated set of metarules are used, but no other changes are

made. The mean branching factors for the new propositional logic strategies learned

by Metagol are shown in fig. 5.2 with the untyped results included for comparison.

The group theory results are shown in fig. 5.3.

The graphs show that the mean value of σ is 1 at all times, and so σ = 1 for all

strategies learned within the time frame allowed. Based on these experiments, the

addition of types to Metagol leads to deterministic strategies being learned. Thus

we can say that the quality of Metagol’s solutions is greatly improved by adding
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Figure 5.2: Mean branching factor σ for learned typed propositional logic strategies

types.

By making our strategies deterministic we remove the key problems with the

untyped versions, namely termination of loops and branch selection. This is because

we force Metagol to use a goal type, i.e. a wpred clause, every time it wants to use a

tactic. As discussed in §3.3.2 these goal types restrict the movement of goals around

the graph and so limit the number of branches a goal can follow. If the goal types

are suitably defined then there will only ever be one branch a goal can take. In our

examples we have manually defined the goal types such that this is guaranteed.

Loop termination is resolved in the same way. A recursive tactic application in

a graph represents a branching point: a goal can either follow the loop to reapply

the tactic or proceed to the next one. Including goal types ensures that in order to

follow the loop a goal must satisfy the goal type for the tactic. If it does not then

the recursion must terminate, with the goal either progressing to the next tactic or

the proof failing.

It is notable that σ = 1 for both sets of typed examples while it differs in the

untyped case. This reinforces the idea that our goal type definitions are responsible

for the low value of σ. While manually defining goal types in this way leads to

deterministic strategies it is obviously not practical to do so for every open sub-goal

in every proof we attempt to learn from. It also means that we do not capture any

information about the predicate the goal type represents and so we don’t know why

a given goal does or does not satisfy it.

Although the accuracy of the strategies improves, the number learned drops

when types are added. This is due to the increasing complexity of the solutions,

with the forced inclusion of goal types resulting in more clauses being needed. As
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Figure 5.3: Mean branching factor σ for learned typed group theory strategies

discussed in §3.4, larger solutions are harder for Metagol to find and the time taken

to find them grow exponentially. For the end user this is double-edged: accurate

strategies are clearly good, but fewer of them is disappointing. In fact within the

time limits given here Metagol is able to learn strategies from less than half of the

proofs. We need to strike a balance between finding as many strategies as possible

within a reasonable time frame and the strategies we find being useful, and so we

consider ways in which to address this.

5.1.2 Time & Clause Analysis

We repeat our additional analysis from §4.5 for the typed strategies learned from

the same lemmas. The details in Fig. 4.10 refer to the proofs themselves rather

than the strategies learned and so are not repeated here.

There are some striking differences to the data shown in Fig. 4.11. The most

obvious is the increase in “N/A” entries, with Metagol failing to learn a strategy

from over half of the proofs provided. This does follow the pattern first observed in

§4.4 though, as we see an increase in the number of clauses in the strategies across

the board. In the earlier examples the structure of metarules meant that goal types

were being ignored and tactics and could be chained together in a single step, but

now we have added typing this is no longer possible. Removing that possibility

means that the strategies must have at least as many clauses as there are tactics

in order to define all the necessary goal types, plus at least one more to chain the

tactics together.

Although this means Metagol must find more clauses, the type system limits the
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Lemma Learned After Clauses in Solution σ for Solution
A 1s 4 1
B N/A N/A N/A
C N/A N/A N/A
D N/A N/A N/A
E 1s 3 1
F N/A N/A N/A
G 2s 5 1
H 2s 5 1
I 1s 4 1
J N/A N/A N/A
K 2s 5 1
L 1s 4 1
M N/A N/A N/A
N N/A N/A N/A
O N/A N/A N/A

Figure 5.4: Time in which a typed strategy was learned from each lemma and
number of clauses it contained - N/A indicates that no strategy was learned within
the time limit

search space by specifying which clauses can be used in which parts of a definition.

The narrower search space results in larger solutions being achievable in the time

frame.

Also of note is the value of σ for the typed strategies. In the untyped examples

there was a single example of a deterministic strategy being learned by Metagol

with even a small increase in either the number of tactics in the proof or the number

of times they are applied leading to a big jump in branching. We observe that by

adding types to our representation we have reduced σ to 1 in all learned strategies,

making each of them deterministic.

Finally we note that although the strategies learned are deterministic there are

fewer of them than in the untyped case. This is because although Metagol has a

narrower search space there are still many possible instantiations of each metarule,

especially when learning from more complex proofs. As before we see that the

number of individual tactics is of greater significance than the number of tactic

applications, again indicating that sub-strategies are being reused.

5.2 Dependent Learning

The solution found above is large, including many invented predicates. Given that

a motivating factor for using PSGraph in this work was its user-friendly nature,

complex definitions with cluttered notation are undesirable here. By making use

of dependent learning (see §3.4) to “pre-learn” some of the clauses required we can

improve the solution. This has the added benefit of reducing the time needed for
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Metagol to find the solution, since it can draw on results which have been added to

the background information instead of finding them itself.

Dependent learning in this example requires no changes to the background in-

formation or metarules supplied, however it does need additional examples. In this

case we will be learning sub-strategies using dependent learning, and this can be

done at whatever level we like; we can learn definitions for individual nodes in the

proof tree, or we can look for a sub-strategy describing all applications of a tactic.

In this case we will choose the latter.

We must provide extra positive examples for Metagol to learn from. We augment

our example set from earlier with new ones describing impI, impE and assumption

sub-strategies:

(i) impI strat : psgraph(g0, g3).

(ii) impE strat : psgraph(g3, g4).

(iii) impE strat : psgraph(g3, g6).

(iv) impE strat : psgraph(g3, g7).

(v) assumption strat : psgraph(g4, gcomplete 1).

(vi) assumption strat : psgraph(g6, gcomplete 2).

(vii) assumption strat : psgraph(g7, gcomplete 3).

(viii) example strat : psgraph(g0, gcomplete 1).

(ix) example strat : psgraph(g0, gcomplete 2).

(x) example strat : psgraph(g0, gcomplete 3).

Learning these works in the same way as in the worked example in §4.2, producing

the same results. impI strat and impE strat are found using Loop, while Lift

generates assumption strat:

impI strat : psgraph(A,B) ← impI strat 1 : psgraph(A,C),

impI strat : psgraph(C,B).

impI strat : psgraph(A,B) ← impI type : wpred(A), impI : tactic(A,B).

impI strat 1 : psgraph(A,B) ← impI type : wpred(A), impI : tactic(A,B)

impE strat : psgraph(A,B) ← impE strat 1 : psgraph(A,C),

impE strat : psgraph(A,B).

impE strat : psgraph(A,B) ← impE type : wpred(A), impE : tactic(A,B).

impE strat 1 : psgraph(A,B) ← impE type : wpred(A), impE : tactic(A,B).

assumption strat : psgraph(A,B) ← assumption type : wpred(A),

assumption : tactic(A,B).
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Although still fairly large, these sub-strategies are learned individually and con-

tain at most one invented predicate each, so take less time for Metagol to learn than

if they were invented as part of a larger definition. Once learned they are added

to the background information for Metagol to use in future learning. With these

new definitions available predicate invention is no longer required when learning

example strat, and the solution becomes:

example strat : psgraph(A,B) ← impI strat : psgraph(A,C),

example strat 1 : psgraph(C,B).

example strat 1 : psgraph(A,B) ← impE strat : psgraph(A,C),

assumption strat : psgraph(C,B).

This solution is much shorter, much easier to interpret and is found much quicker

than the version without dependent learning.

5.2.1 Results & Analysis

For any comparison to be valid, we must first revisit our examples again. For

completeness we run both untyped and typed experiments. There are no further

changes made to the background information or metarules, but we add additional

examples for Metagol to learn from. These examples allow Metagol to learn sub-

strategies for each tactic application, reusing them when possible. The results are

shown in figs. 5.5 & 5.6.
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Figure 5.5: Mean branching factor σ for propositional logic strategies found using
dependent learning
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Figure 5.6: Mean branching factor σ for group theory strategies found using depen-
dent learning

The impact of using dependent learning is different on untyped and typed learn-

ing when looking at the propositional logic tests. In the untyped case, dependent

learning improves the results. The number of strategies found is unchanged, but

those that are learned successfully are constructed differently and in a way which

reduces branching. Instead of large definitions which have many options at each

step, Metagol learns strategies which are made up of smaller “building blocks” with

fewer possible branches. Metagol first learns a sub-strategy for each tactic using the

Lift rule, with each of these sub-strategies being added to the list of primitives it

can use in instantiation. The ordering constraints on the metarules mean that these

sub-strategies – which include goal types – are used by Metagol before the tactic

details in the background information. When this happens it ensures goal types

are present in the learned strategies, which restricts branching. However Lift is not

used in every case to learn sub-strategies, as shown earlier, and it is still possible

for Metagol to find a solution with no goal types. This explains the way in which σ

continues to increase with time.

In the case of typed learning, we actually find that σ begins to increase with time

when using dependent learning. Here the impact of learning sub-strategies first is

less, as using typed learning means there will be goal types present in the solution

anyway. It does, however, make it easier for Metagol to find more complex strategies

as less predicate invention is required, therefore reducing the size of the solution.

Consequently more strategies are found, and these new strategies do include a small

degree of branching. This refutes one of the conclusions suggested by the results

in §4.3, namely that using typed learning will result in deterministic strategies.
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However, these new results still show that typed learning will give results which are

at least as good as untyped learning, with the difference in branching growing with

time.

Conversely, the results when considering the group theory examples appear to

back up §4.3’s claim. We note that both untyped and typed examples have σ = 1

and are therefore deterministic. We also note an increase in the number of strategies

successfully learned in the typed case, particularly at longer running times. As we

have already observed, values of σ have been found to be lower for the group theory

examples than for propositional logic as a result of them being generally simpler

proofs and as such it is unsurprising to see that difference reflected here. Given

the contradiction between the two sets of examples we obviously cannot claim to

have confirmed that adding types leads to fully deterministic strategies. However

by observing that values of σ are at most equal to those in the untyped examples

we can say that it will improve results.

Both the untyped and typed strategies are learned based on background infor-

mation which includes explicitly-defined goal types. If this information was not

available these solutions could not be found, while if it had to be learned first it

would increase the complexity of the solutions. We will move on to consider these

goal types in more detail.

5.2.2 Time & Clause Analysis

The breakdown of learning time, number of clauses and branching for the strategies

learned for complete proofs is shown in figures 5.7 and 5.8 for the untyped and

typed examples respectively. For reasons of space we have not included the results

for the sub-strategies learned; there are nearly 300 strategies to consider when they

are included, the smallest of which are of trivial value.

Note that although the strategies suggested contain fewer clauses than in pre-

vious experiments, those clauses are defined using the sub-strategies learned earlier

meaning it is possible to chain far more tactics together than before. A side-effect

of this is a significant reduction in branching in the untyped examples, although

fewer were learned using this method. The same set of metarules are used so for the

smaller sub-strategies, i.e. a single tactic application, the only possible definition is

one which includes a goal type. These sub-strategies are then incorporated into the

later, larger examples and so the strategies defined entirely with tactics which we

saw in chapter 4 are superseded by strategies featuring goal types. Those goal types

mean we can direct goals appropriately between tactics, hence reduced branching.

In the case of the typed example we notice an increase in the number of strategies

learned. Again this relates to the breakdown into smaller sub-strategies: with fewer

clauses requiring invention it is easier for Metagol to produce a definition. In the

strategies learned after 1 or 2 seconds we see that there is still no branching, i.e. they
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Lemma Learned After Clauses in Solution σ for Solution
A 1s 1 1
B N/A N/A N/A
C 1s 1 1
D N/A N/A N/A
E 1s 1 1
F 1s 1 1
G 1s 1 1
H 1s 1 1
I N/A N/A N/A
J 4 2 2
K 1s 1 1
L 8s 2 4
M N/A N/A N/A
N N/A N/A N/A
O N/A N/A N/A

Figure 5.7: Time in which an untyped strategy was learned from each lemma and
number of clauses it contained based on dependent learning - N/A indicates that no
strategy was learned within the time limit

are deterministic. In contrast to what we saw in §5.1, however, the branching begins

to increase with time as more complex strategies are learned. Larger strategies can

be broken down into more sub-strategies, meaning more potential combinations of

sub-strategies. When using predicate invention these options are limited by Metagol:

it will invent a predicate for a specific situation and ignore any alternatives once

it has been found. When using dependent learning, however, the solution found is

contingent on everything which has been learned before it.

5.3 Effects of Clause Order on Dependent Learn-

ing

Our first experiments with dependent learning were assessed in the same way as

those which went before them: by comparing the learned strategy to the proof it

was learned from to see how effective it would be if applied to the same lemma.

While we could have included the strategies learned in Chapter 4 and earlier in

this chapter in the background information for further episodes, given that there

was only one proof which appeared in it’s entirety as a sub-proof of another in our

example set we knew that this would not lead to any strategy reuse.

When dependent learning is introduced that no longer applies as we no longer

need to find the entire proof being repeated elsewhere in order to reuse the strategy.

By learning strategies for individual tactics then combining them to form larger

strategies we are able to describe smaller sequences of tactics which do occur more

than once. We can now see if a strategy for a tactic learned from one proof can

70



Chapter 5: Typed & Dependent Learning

Lemma Learned After Clauses in Solution σ for Solution
A 1s 1 1
B N/A N/A N/A
C 1s 1 1
D N/A N/A N/A
E 1s 1 1
F 1s 1 1
G 1s 1 1
H 1s 1 1
I N/A N/A N/A
J 4 2 2
K 1s 1 1
L 8s 2 2
M N/A N/A N/A
N N/A N/A N/A
O N/A N/A N/A

Figure 5.8: Time in which a typed strategy was learned from each lemma and
number of clauses it contained based on dependent learning - N/A indicates that no
strategy was learned within the time limit

be reused in another where the same tactic is applied, or indeed if combinations of

smaller strategies can be reordered to represent a different proof.

The initial experiment run was conducted with the proofs learned individually

for consistency with previous tests. In those tests Metagol was asked to learn each

possible sub-strategy based on the proof tree with the tactics and goal types provided

as background information as before. We observe some reuse of the sub-strategy

definitions where previously predicate invention would have been used to plug the

gap. This is more efficient as it is no longer necessary to repeat the learning process

from the start in order to (potentially recursively) invent a new predicate to complete

the definition. There is however an associated increase in the amount of set-up

required. While the background information stays the same, the positive example

set grows significantly as each sub-strategy is added. As proofs grow in size the

problem grows more quickly. A linear proof of length n will have n! tactic sequences

to learn from; if there is any branching that number grows even faster.

An attempt was made to learn from all proofs at once using dependent learning

and represented in the same way as before, i.e. every possible sub-strategy from the

entire example set. Given that it was not possible to learn a strategy from every

proof within our time constraints this would clearly be unsuccessful if attempted

under the same conditions and so the first attempt was allowed to run for as long as

necessary. The attempt failed after multiple hours when hardware limitations were

reached and Metagol crashed. In light of this it was decided to reduce the example

set to a sub-set of proofs in order to demonstrate that the learned strategies can be

reused in other proofs.
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An experiment was run using lemmas A, C, E and G from the example set. The

proof tree of lemma E could be used to represent a branch of lemma A’s proof tree,

suggesting that a strategy representing it could act as a sub-strategy. The proofs of

lemmas C and G on the other hand both include a given sequence of tactics. We also

include positive examples of each of the tactics used in the proofs with background

information drawn from each proof. The lemmas are listed alphabetically. For

example, to learn a strategy impI step for the rule impI tactic we provide the

following background:

impI type(wpred, a0).

impI type(wpred, a1).

impI type(wpred, c0).

impI type(wpred, e0).

impI type(wpred, g0).

rule impI(tactic, a0, a1).

rule impI(tactic, a1, a2).

rule impI(tactic, c0, c1).

rule impI(tactic, e0, e1).

rule impI(tactic, g0, g1).

For all tactics Metagol successfully learns a strategy including the goal type.

Those strategies are added to the background information as they are learned, avail-

able for Metagol to use in learning the next strategy. We consider the results for

strat a, the strategy learned from the proof of lemma A:

strat a(psgraph,A,B) ← strat a 1(psgraph,A,C),

assm step(psgraph, C,B).

strat a 1(psgraph,A,B) ← impI step(psgraph,A,C),

impI step(psgraph, C,B).

Here the previously learned strategies for the tactics are reused as sub-strategies

within both the strat a definition and the invented predicate strat a 1. The strategy

describing lemma E is similar:

strat e(psgraph,A,B) ← impI step(psgraph,A,C), assm step(psgraph, C,B).

Observe that although the sequence of tactics which makes up strat e is also

included in strat a (albeit split across two clauses), the strategy itself is not. This

can be changed, but will require user intervention.

Unlike some other machine learning systems there is no random element to

Metagol’s approach. It will start with the first positive example and attempt to
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instantiate the first metarule with the first piece of background information, moving

on to the second if it fails. A consequence is that Metagol is deterministic: the same

proof information arranged the same way will always result in the same strategies

being learned since the approach to learning them is the same. Taken in conjunction

with the obvious issue that a strategy can’t be used before it has been learned, this

means that if we want strat e to be a sub-strategy of strat a we need to manu-

ally change the order in which we learn the strategies. Doing so demonstrates that

Metagol can re-use strategies which are more complex than single tactics.

strat a(psgraph,A,B)← impI step(psgraph,A,C), strat e(psgraph, C,B).

There is also the effect of Metagol’s ordering constraints to consider here. While

learning strat e before strat a in our example here means it is possible to use it

as part of the larger strategy it also means it gets added to the list of primitives

first. As a result an instantiation using strat e will always be attempted before one

using strat a, including any predicates invented while learning strat a, for any other

strategies until the experiment is concluded. The opposite is also true, meaning that

with our original ordering the invented predicate strat a 1 would be used ahead of

anything found later.

Determining the best way in which to order the strategies to be learned is not a

straight-forward question. The length of the proof (or partial proof) would seem to

be a good candidate as any sub-strategy must represent a sequence of tactics shorter

than the strategy we seek to use it in. However there may be other metrics such as

the number of distinct tactics used or the frequency of each tactic which would be

more appropriate. This determination should be a consideration for future work in

automating the translation process, potentially with consideration of incorporating

some other tool to perform any analysis.

Metagol was successful in also learning strategies from the two other lemmas

included in the example. The strategies learned from our initial alphabetised run

are shown below:

strat c(psgraph,A,B) ← strat c 1(psgraph,A,C),

strat c 1(psgraph, C,B).

strat c 1(psgraph,A,B) ← impI step(psgraph,A,C),

notI step(psgraph, C,B).

strat c 1(psgraph,A,B) ← notE step(psgraph,A,C), assm step(psgraph, C,B).
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strat g(psgraph,A,B) ← strat g 1(psgraph,A,C), strat c 1(psgraph, C,B).

strat g 1(psgraph,A,B) ← impI step(psgraph,A,C),

classical step(psgraph, C,B).

This highlights not only shows that can learned strategies be reused but also that

invented predicates can be reused in a different problem. In the context of learning

proof strategies this means that discovered sub-strategies can be reused with the

potential for invented goal type definitions to be reapplied when learning from other

proofs. There is, however a downside in the form of increased complexity.

The definition of strat c includes two uses of the invented strat c 1 predicate,

which has two possible definitions. Were we to apply this strategy to a proof we

would have the goal types to guide us as to which definition to use first and which

second but this relies on the goal types being well-defined. This issue is carried

forward into the definition of strat g where the invented predicate is reused, again

relying on the goal type to guide us towards the correct version. A poorly-defined

goal type here could lead to an increase in branching if it permitted an inappropriate

tactic to be applied to a goal.

We observe again that re-ordering the strategies as they are being learned leads

to a slightly different result.

strat g(psgraph,A,B) ← strat g 1(psgraph,A,C), strat g 1(psgraph, C,B).

strat g 1(psgraph,A,B) ← impI step(psgraph,A,C),

classical step(psgraph, C,B).

strat g 1(psgraph,A,B) ← notE step(psgraph,A,C),

assm step(psgraph, C,B).

strat c(psgraph,A,B) ← strat c 1(psgraph,A,C), strat g 1(psgraph, C,B).

strat c 1(psgraph,A,B) ← impI step(psgraph,A,C),

notI step(psgraph, C,B).

This time the invented predicate is a sub-strategy of strat g and reused in strat c

but the same issues with predicate invention are seen again. We note that the

reused sub-strategy describes the sequence of tactics we noted the repetition of

when examining the proofs and that it was identified and reused regardless of the

order in which the parent strategies were learned.

This experiment was carried out using the same set of metarules as the previous

experiments meaning it was subject to the same restrictions in terms of clause

structure and primitive ordering. Further exploration in dependent learning could
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justify investigation of further metarules to address some of the issues observed

here. In particular a rule of the form P (x, y) ← Q(x, y) to permit a previously-

learned strategy to be directly used in a definition could improve the efficiency of

the learner. However, this would not address the issues presented by the ordering

constraints which would still require further investigation.

5.4 Summary

In this chapter we have adapted the representation developed in Chapter 4 to include

a rudimentary typing system, labelling the clauses we learn as strategies (psgraph),

tactics (tactic) or goal types (wpred). Repeating the experiments from Chapter 4

shows that these types drastically improve the effectiveness of Metagol.

We also consider the impact of using dependent learning to break each strategy

into smaller pieces which can then be combined and/or reused. In this case the

experimental results suggest that using dependent learning will improve untyped

learning. Typed learning produces more strategies, but does so at the expense of

increased branching. However, typed learning is still as good as untyped learning

or better.

We demonstrated that in addition to using learned sub-strategies to build up to

one which describes a complete proof, Metagol can also reuse strategies learned from

one proof while defining a strategy for another. We note that the order in which

the strategies are learned has an effect on how they are able to be reused and note

that invented predicates can be reused in the same way as a complete definition.

We observe that Metagol’s ordering constraints and the structure of the metarules

are a limiting factor on how learned strategies can be reused and suggest this as a

potential area for future work.
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Learning Goal Types

Goal types are a critical part of any PSGraph strategy. They provide conditions for

recursion, guide sub-goals at case splits and prevent branching when evaluating a

goal. Learning them is the most challenging aspect of this work, and has not (to our

knowledge) previously been addressed by other attempts to learn proof strategies.

These goal types can be very simple – such as those given in chapter 4 for example

– or complex.

In our previous experiments these goal types have been provided in the back-

ground information; we now illustrate how Metagol can be used to learn them. We

provide details of the (sub-)goals in the proof and a set of metarules, which are

used by Metagol to construct tailor-made definitions. These definitions are crucial

in ensuring robustness of the strategies learned.

In a similar way to the structure of a strategy, we can use Metagol’s predicate

invention capabilities to find definitions for goal types which are not given in the

background information. This means our learned goal types satisfy the examples

given and will definitely be well-defined, but this is still conditional on the correct

metarules being provided by the user. In this chapter we revisit the worked example

from chapter 4, first by guiding Metagol towards definitions for the goal types be-

fore repeating the propositional logic experiments using predicate invention to learn

them. We then go on to consider the same problem using a general set of metarules

from which many possible definitions can be found.

6.1 Goal Representation

The goal types used in chapter 4 are provided by the user and represented accord-

ingly. While unambiguously stating that a goal has a given goal type, the definitions

are provided by the user and so are dependent on their interpretation of the data.

Automation is a key consideration here, as we cannot always rely on the user to

provide a definition. Instead of depending on the user, we want Metagol to find its

own definitions.
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As with learning the structure of strategies, learning goal types requires suitable

background information encoded in Prolog. We provide clauses to represent both

the hypotheses and conclusions of goals created by a proof. We also provide a

framework to describe the general structure of a goal in the unary/binary clauses

required by Metagol26. This framework is based on the typed lambda calculus used

by Isabelle, where a term t can be:

� a constant, written c(T )

� a variable, written v(T )

� a bound variable, written b(T ) and expressed in terms of de Bruijn indices

� an application written app(A,B), where A and B are both terms

To illustrate, A −→ B becomes app(app(c(−→), c(A)), c(B)). Note the counter-

intuitive ordering of the terms: one might expect it to read app(app(c(A), c(−→
)), c(B)) or app(c(A), app(c(−→), c(B))). This is a consequence of the translation

method used (see chapter 3).

Based on this representation we can write a set of atomic operations on traversing

terms which can be combined to describe the structure of a goal. Initially we have

three:

� left(app(T, ), T ), which returns the left branch of an application;

� right(app( , T ), T ), which returns the right branch; and

� const(c(X)), which checks that c(X) is a constant.

Using these rules we can introduce clauses describing the characteristics of each

goal. As an example, if we consider A −→ B again we may want to describe it in

terms of the symbols present. Giving the goal the label g, we say:

top level connective(c(−→), g) ← left(g,X), left(X, c(−→)).

That is, the goal g contains the −→ symbol if the left-hand side of its left-hand

side is −→.

We use these new clauses in turn to label the edges in a PSGraph. Returning to

our running example from the previous chapters, let us consider goal g1:

(A −→ B) ` (B −→ C) −→ A −→ C

26This excludes any arguments denoting types such as those discussed in chapter 5, as they are
added later by the user. With them included clauses are either binary or ternary
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This could be broken down into two smaller clauses in Metagol; one for the

hypothesis, one for the conclusion27. We suggest this as an example which fits with

the metarules we have provided:

hyp(g1, app(app(c(−→), c(a)), c(b))).

concl(g1, app(app(c(−→), app(app(c(−→), c(b)), c(c))), app(app(c(−→), c(a)), c(c)))).

In the background information used for learning the strategy in chapter 5 we have

defined goal types based solely on the tactics used to resolve a goal; no consideration

is given to the characteristics of the goals. For example, g1 is given the goal type

impI type because it is resolved using the impI tactic. Here we define the goal types

in terms of the symbol(s) present, as in the example above.

In the Isabelle proof the tactic applied to g1 is rule(impI). When a rule tactic

is applied by Isabelle it acts on the conclusion of a goal, whereas an erule tactic

(used later in the proof) acts on the hypothesis. This distinction, however, is not

captured by the translation into Metagol’s background information, where only the

tactic’s argument is captured. With appropriate background information Metagol

will be able to find patterns among the hypotheses and conclusions of each goal and

derive a definition for the goal type based on them.

For the purposes of our worked example we must manually filter the available

information in order to find a definition. If we begin by defining the impI type goal

type which g1 must satisfy we know that it will have a rule tactic applied to it,

therefore we discount the hypothesis clause and focus on the conclusion clause. We

note also that there is only one symbol present in the conclusion clause, namely the

−→ symbol for logical implication. We suggest the definition:

impI type(g1) ← top level connective(c(−→), A), concl(g1, A).

i.e. g1 has type impI type if its conclusion A includes the −→ symbol. This can

be generalised to:

impI type(X) ← top level connective(c(−→), Y ), concl(X, Y ).

Other goal types can be constructed in a similar way in order to fit different

symbols. Staying within propositional logic, we also have conjunction (∧) and dis-

junction (∨) to consider. Their goal types are almost the same as the one for −→:

conjI type(X) ← top level connective(c(∧), Y ), concl(X, Y ).

disjI type(X) ← top level connective(c(∨), Y ), concl(X, Y ).

Our example also contains a goal type which is not dependent on the presence of

27Note that c(−→) is used here for readability; in our encoding Metagol uses c(imp) (short for
“implication”) instead.
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Name Metarule Order
Link P (X)← Q(Z, Y ), R(X, Y ) P � Q,P � R,Q � R
Share P (X)← Q(X,Z), R(X,Z) P � Q,P � R,Q � R

Figure 6.1: Metarules for learning goal types

a particular symbol, namely assumption type. Instead this is based on similarities

between the hypotheses and conclusions of a goal. If there is a common term between

them, we can apply the assumption tactic to the goal.

Consider, for example, g7 in the running example – A,B,C ` C. It has three

hypotheses A, B and C with conclusion C. In Metagol we write this:

hyp(g7, A).

hyp(g7, B).

hyp(g7, C).

concl(g7, C).

This suggests a definition for assumption type:

assumption type(g7) ← hyp(g7, C), concl(g7, C).

Again we generalise:

assumption type(X) ← hyp(X, Y ), concl(X, Y ).

6.2 Guided Learning of Goal Types

To look at learning goal types we return to our running example from previous

chapters. Here the only tactics used relate to either assumption or implication and

so top level connective(c(−→), X), along with clauses relating to hypotheses and

conclusions, are the only ones we would expect to see. Clauses related to ∧ and ∨
would be learned in a similar way, however. In previous experiments a definition for

each goal type has been provided, and this definition has been sufficient. With that

in mind we will use these as target definitions for Metagol and construct metarules

which will enable it to find them (see Fig. 6.1).

In place of the goal types given in §4.1.3, we give details of each goal’s hypotheses
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and conclusion as determined by our translation tool, for example:

concl(g0, app(app(c(−→), app(app(c(−→), c(a)), c(b))), app(app(c(−→),

app(app(c(−→), c(b)), c(c))), app(app(c(−→), c(a)), c(c))))).

concl(g1, app(app(c(−→), app(app(c(−→), c(b)), c(c))), app(app(c(−→), c(a)), c(c)))).

hyp(g1, app(app(c(−→), c(a)), c(b))).

...

For readability here we simplify this by substituting some of the terms above for

T1, T2, etc.

concl(g0, T1).

concl(g1, T2).

hyp(g1, T3).

...

The list of primitives which Metagol can use to learn from is also augmented with

the general top level connective clause and the c(−→) constant, meaning they can

be used in learned definitions. We also add the definition for top level connective

given above to the background information (in future work we will aim to learn this

too):

top level connective(−→, g) ← left(g,X), left(X, c(−→))).

By placing a requirement on the Link metarule that Z have arity 0 and giving

c(−→) arity 0 in the list of primitives, we ensure that any definition found using this

metarule must include c(−→). When learning proofs which included other symbols

we can extend this to ensure only they can be instantiated in place of Z when using

Link.

We can use each goal as a positive example for each of the three types we want

to learn:
(i) impI type(g0).

(ii) impI type(g1).

(iii) impI type(g2).

For the most part the learning process is the same as before, with the added

complication of the arity 0 argument in one metarule. The process Metagol will

follow is described below. Beginning with impI type and using (i), it will first try

Link :

impI type(g0) ← Q(Z, Y ), R(g0, Y ).
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R, and therefore Y , can be instantiated by a clause from the background infor-

mation:

impI type(g0) ← Q(Z, T1), concl(g0, T1).

There is not another clause in the background information which could be

matched to Q, however since we added the extra primitives Metagol can try to

use them. top level connective is the only one with a matching arity, so replaces Q:

impI type(g0) ← top level connective(Z, T1), concl(g0, T1).

We have also stated in the metarule that Z must have arity 0. The only thing

which matches this is c(−→), so this replaces Z:

impI type(g0) ← top level connective(c(−→), T1), concl(g0, T1).

We now have a definition for the impI type goal type. Generalising gives:

impI type(A) ← top level connective(c(−→), B), concl(A,B).

This also satisfies (ii) and (iii), and so we move on to learn impE type and

assumption type. We have additional positive examples for each:

(iv) impE type(g3).

(v) impE type(g5).

(vi) assumption type(g4).

(vii) assumption type(g6).

(viii) assumption type(g7).

Using these examples Metagol will follow the same process to learn a definition

for each of our goal types:

impI type(A) ← top level connective(c(−→), B), concl(A,B).

impE type(A) ← top level connective(c(−→), B), hyp(A,B).

assumption type(A) ← hyp(A,B), concl(A,B).

Each of these is an expected definition. Note that the ordering of the clauses

in assumption type may differ depending on the way in which the user orders the

primitives when setting up Metagol. The ordering constraints on Share mean that

the primitive used to instantiate Q must be earlier in the list than the one used

for R. In our experiment we have listed hyp before concl, and so this is the only

solution possible; had we listed concl first the clauses in the solution would be the

other way round. However the order of the clauses doesn’t matter in this example;
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the requirement that B be both a hypothesis and conclusion of A is captured in

both solutions.

The downside to these definitions is the way in which they have been constructed.

In order to ensure they are suitable for our experiment we have chosen examples

and metarules which we know will find the definition we want, resulting in goal

types which are specific to this experiment. While this does not necessarily mean

that they can’t be reused elsewhere, it does introduce an element of doubt and the

possibility of better definitions existing. We can remove this element of doubt by

letting Metagol make use of predicate invention in order to find its own definitions.

6.3 Learning Structure and Goal Types Together

In chapter 4 Metagol learned a strategy based entirely on user-provided background

information, with no need for any predicate invention. Although chapter 5 used

predicate invention to find sub-strategies which could be fitted together, the goal

types required were still included in the background information. Here we revisit

this example, this time asking Metagol to invent the goal types as well.

To do so we must extend the goal type metarules to include the typing system

introduced in chapter 5. We previously labelled the goal type clauses with wpred

and do so again here. However, unlike the metarules used for learning structure, we

do not add type labels to the right-hand side of the rules. This is because doing so

would be redundant.

To demonstrate this, we consider the solutions Metagol finds. The learned def-

initions will be expressed in terms of conclusions and hypotheses, or terms which

are in turn defined using these clauses, as in §6.1. We would describe each of these

as goal data, abbreviated to gdata. Any other clause made up of these and forming

part of the definition (e.g. top level connective above) would only have a type label

itself if one was either specified in the background information and demanded by

the metarule used to find it. Since the point of learning goal types is to reduce the

amount of high-level information provided by the user, i.e. increase automation, we

cannot rely on the former. The latter requires limiting the metarule to only work

with specific parts of the background information, which is also more restrictive

than we want.

We can resolve this by omitting the type labels from the goal data clauses. From

a technical viewpoint this works so long as type labels are present on other clauses

in the background information, such as tactic and psgraph in chapter 5. The way

in which we present metarules and background information to Metagol is slightly

different to the way in which they are written in the tables here, making this possible

consider the Lift rule used in chapters 4 and 5:

P : psgraph(X, Y ) ← W : wpred(X), R : tactic(X, Y )
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This is expressed in Prolog as:

P (psgraph,X, Y ) ← W (wpred,X), R(tactic,X, Y )

i.e. binary clauses become ternary and unary clauses become binary as the type

label moves inside the brackets. Background information and examples are presented

in a similar way:

ex strat(psgraph, g1, g2).

tactic 1(tactic, g1, g2).

When Metagol tries to instantiate a Metarule, it does so by unifying clauses

in the examples or background information with those in the metarule. We want

Metagol to invent a definition for the wpred clause, and so it should only instantiate

the psgraph and tactic clauses. The typing limits it to using only ternary clauses,

and then only those clauses whose first argument is the correct type. The goal data

clauses will be binary, and so Metagol will not be able to use them. Thus adding a

type to them is redundant, as claimed above.

We also note that the rules in chapter 5 include binary clauses for goal types,

labelled with wpred. Unlike the psgraph and tactic clauses, this would cause a conflict

with goal data when learning. We can resolve this in the same way, however, by

removing the wpred label and reducing them to a unary clause. In experiments to

date we have found unary clauses for goal types to be sufficient, however we are

alert to the possibility of binary (or indeed larger) clauses being required and this

is a consideration for future work.

We therefore have four aspects of a strategy to consider when learning:

(i) Details of each goal – binary clauses included in background information;

(ii) A goal type for each goal, constructed using those details – unary clauses

learned by Metagol;

(iii) The tactics which make up a proof – ternary clauses included in background

information, including the label tactic;

(iv) Sub-strategies which can be combined to form larger strategies – ternary

clauses learned by Metagol, including the label psgraph.

As such we can reuse the metarules shown in Fig. 6.1 for learning types, while

adjusting those in Fig. 5.1 to learn structure. Fig. 6.2 shows how combining the

two tables gives us all the metarules needed to learn a strategy from our running

example.

We could incorporate the Link and Share rules into the existing metarules, but

doing so would require two versions of each to include both new rules or introduc-

ing the concept of an OR branch when instantiating the metarules. At the time of
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Name Metarule Order
Lift P : psg(X, Y )← W (X), R : tactic(X, Y ) P � R
Chain P : psg(X, Y )← Q : psg(X,Z), R : psg(Z, Y ) P � Q,P � R
Loop P : psg(X, Y )← Q : psg(X,Z), P : psg(Z, Y ) P � Q,X � Z � Y
Link P (X)← Q(Z, Y ), R(X, Y ) P � Q,P � R,Q � R
Share P (X)← Q(X,Z), R(X,Z) P � Q,P � R,Q � R

psg denotes psgraph

Figure 6.2: Partially-typed metarules for learning strategies

writing this has not been implemented, however even if it did exist it would be de-

batable if it would be any more efficient. Either method of integrating the new rules

would have the further complication of ordering constraints having to handle larger,

potentially conflicting, requirements. We have considered the use of a minimal set

of metarules from which others could be derived, removing the need to keep adding

more, and the results of experiments with this set are discussed in §6.4.

We combine the background information from the propositional logic examples in

chapter 5 and §6.2 above, removing the goal type clauses used in the initial structure

learning28. Dependent learning is used with the same positive examples supplied,

so that goal types are learned first then reused in learning structure. The same

examples are used to learn the structure of the graph as in §5.2. Note that we do

not repeat the non-dependent experiments in this way. This is because by adding

the requirement for Metagol to invent every goal type it needs to use, the solutions

it finds will necessarily be larger. This results in solutions which take longer to find,

and which cannot always be found within the permitted time limit.

Although the mean branching factor σ may be smaller in such a case, when it is

derived from fewer solutions we cannot claim that it is a “better” result. This is a

natural consequence of assessing branching by finding a mean value; if we have less

data to calculate the mean from, outliers have greater influence. A more accurate

representation of the mean is therefore gained by having more data available from

which to calculate it. In this work, that means more learned strategies. With fewer

strategies, one which is poorly defined and featuring a high degree of branching can

disproportionately distort the value of σ. Better accuracy clearly leads to better

solutions, and if we are not able to guarantee sufficient accuracy when repeating the

non-dependent experiments they should not be included here.

6.3.1 Results & Analysis

The experiment is rerun as described above. This time the dependent learning is

structured such that we learn goal types, then sub-strategies, then combine them.

28Note that we do not repeat the group theory examples in this chapter. This is because of the
differences in how the goals are structured, meaning the two example sets could not be tested using
the same representation. This is an obvious problem, and one which must be addressed in future
work as part of any further development
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Since previous experiments have been run with both typed and untyped metarules,

for consistency we do the same here and include the untyped results:
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Mean Branching – Dependent Learning Including Goal Types

Optimum Learned Strategies (untyped) Learned Strategies (typed)

Figure 6.3: Mean branching factor σ for strategies found using dependent learning
including goal types

As always, the optimum σ = 1 is marked. We see again that there is a difference

in the trend of σ between untyped and typed learning, although unlike in chapter 5

it is inconsistent for both. Here σ increases for the untyped example initially before

decreasing slightly with time. Compared to the results of dependent learning where

goal type predicates are given, the value of σ after 2 seconds is actually higher here,

suggesting that inventing goal types has made the learning process worse. However,

σ then decreases with time to a point where it is lower than with goal types given.

This illustrates how making more information available to Metagol can be double-

edged. Asking it to invent goal types will always lead to more things being learned,

especially if dependent learning is used. Although dependent learning results in

smaller solutions, since clauses can be reused from elsewhere rather than being

invented, the extra work in finding those clauses means Metagol takes longer to find

a solution. When working with a short time limit (1 or 2 seconds in this case) we

may find that Metagol is no longer able to find some solutions. With fewer solutions

found, the mean value of σ is more easily affected by outliers.

Conversely, dependent learning makes it easier for complex solutions to be found

since they are smaller due to the lack of predicate invention. The main difficulty

in defining complex strategies is their size, since the time it takes Metagol to find a

solution increases exponentially with the solution’s size. Dependent learning elimi-

nates the need for Metagol to include layers of invented clauses in a solution, since

previously-learned clauses can be reused from elsewhere. Consequently the solutions

85



Chapter 6: Learning Goal Types

are smaller, and so quicker to find. Thus Metagol finds more within the time limit,

making σ less vulnerable to the same outliers. σ improves as a result, to the point

that it is lower after 8 seconds than with goal types provided. This suggests that

for more complex examples, letting Metagol find definitions for goal types leads to

better results.

Lemma Learned After Clauses in Solution σ for Solution
A 1s 1 1
B 2s 2 2
C 1s 1 1
D N/A N/A N/A
E 1s 1 1
F 8s 1 1
G 4s 1 1
H 2s 1 1
I N/A N/A N/A
J N/A N/A N/A
K 1s 1 1
L N/A N/A N/A
M N/A N/A N/A
N N/A N/A N/A
O N/A N/A N/A

Figure 6.4: Time in which an untyped strategy was learned from each lemma and
number of clauses it contained based on dependent learning including goal types -
N/A indicates that no strategy was learned within the time limit

In the typed experiments we do not see the same fluctuation in σ, but like the

previous experiment we see it increase and quicker than before. Like the untyped

examples it immediately increases after 2 seconds, although not by as much. As

before, we can likely attribute this to having fewer solutions to work with. Unlike

the typed examples, σ does not then improve. Instead it remains constant before

increasing after 8 seconds. Indeed, this is the first instance in which σ has been

higher for the typed results than the untyped results.

A possible explanation is the complexity of the solutions. As in all other ex-

periments, typed solutions are generally larger than untyped solutions and so take

longer to find, even allowing for more efficient dependent learning. Given a longer

time frame we may find that σ follows a similar trend for typed examples and begins

to decrease as Metagol can find more solutions, bringing it back below the untyped

value. It should be noted that the value of σ is still very low (only slightly above

1.2) even at its peak on this graph, which is still a huge improvement on the initial

untyped, non-dependent experiments in chapter 4 (around 9.3 after the same period

of time).

In both cases the metarules used to find goal types are structured in such a way

that Metagol can only really find one definition for each. If we were to allow it
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greater flexibility it may be able to find a definition we had not considered and use

it to find a solution it otherwise could not, potentially improving the results. We

consider one such way of doing this in the next section.

Most significantly, these results show that it is possible for Metagol to handle the

extra burden of learning a goal type alongside learning the structure of the proof.

While there is still the limitation of the available metarules these can be added to

or swapped for another which can represent the structure of a goal differently. The

use of our typing system ensures that were we to do this the rule swap would not

affect Metagol’s ability to learn the tactic combinations which make up a proof.

Although the representation needs further refinement these results represent a key

contribution of this project as the strategies learned now have a firmer definition

for the goal types beyond our initial basic is type(A) clauses. Any future work

in implementing a tool to translate these strategies into a proof now has something

more concrete to work with, although with the examples being derived from Isabelle

proofs we acknowledge that it will be harder to construct proofs for other provers.

Lemma Learned After Clauses in Solution σ for Solution
A 1s 1 1
B 2s 2 2
C 1s 1 1
D N/A N/A N/A
E 1s 1 1
F 2s 1 1
G 1s 1 1
H 2s 1 1
I N/A N/A N/A
J 4s 2 2
K 1s 1 1
L 8s 2 2
M N/A N/A N/A
N N/A N/A N/A
O N/A N/A N/A

Figure 6.5: Time in which a typed strategy was learned from each lemma and
number of clauses it contained based on dependent learning including goal types -
N/A indicates that no strategy was learned within the time limit

6.4 Learning Using a Minimal Set of Metarules

Up to this point our experiments have been carried out using a common set of

metarules (with occasional adjustments). While this ensures continuity between

tests and gives us an idea of what the solution will look like, on the other hand

it also limits the scope of the solutions Metagol can find. This is not a problem

when learning the structure of a strategy. As discussed before, there are strict
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Name Metarule
Inversion P (X, Y )← Q(Y,X)
Chain Min P (X, Y )← Q(X,Z), R(Z, Y )

Figure 6.6: The minimal set of metarules defined in [8]

requirements which a solution must meet in order for it to satisfy the definition of

a PSGraph strategy. By incorporating these requirements into the metarules we

ensure that the limited scope works in our favour by only allowing Metagol to find

valid strategies. Goal types, however, are more of an issue.

In the experiments in §6.2 and §6.3 we know how the goal types we learn should

look and we tailor the metarules so that Metagol can find the solution we want.

With relatively simple goal types and when learning from a small quantity of data

this is fairly easy to do. However can we do the same with complex types or when

learning from large examples, particularly in new and unknown domains? The user

may not know the best way to define a robust goal type, or may indeed not be able

to if the goals are especially complex. Instead, as discussed before, we want to let

Metagol define the goal types itself based on the proofs it is learning from such that

robustness is ensured.

For it to do so, appropriate metarules must be available to it. For Metagol to

have complete freedom in finding a solution, we want it to have as many metarules as

possible available. To do so simply by listing every metarule we can think of would

not be practical; Metagol would take far too long to work through every possible

instantiation of each. Instead we make use of an existing minimised set of metarules

[8] from which others can be derived.

This set consists of two metarules and captures all metarules with at most two

clauses on the right-hand side, which each have distinct labels and arity 2. Variations

on inversion (P (X, Y ) ← Q(Y,X)) and chaining (P (X, Y ) ← Q(X,Z), R(Z, Y ))

can be found, including those rules used in our previous examples. Note that the

minimal set is untyped, and that it does not capture the recursive Loop rule above.

The minimal metarule set is used in conjunction with the rules already provided

in order to expand on them. We remove the Link and Share rules from the table and

replace them with a new “dummy” rule P (X)← Q(X, Y ) which we call Goal. The

minimal rules are added to the table and enable Metagol to use predicate invention to

find an appropriate right-hand side for Goal. The rules for structure are untouched,

giving us the table of rules shown in fig. 6.7.

Adding types to the minimal set was investigated, but is unnecessary in the same

way adding types in §6.3 was. Any predicate invented to describe a goal type must

be of the form P (X)← ..., i.e. have a unary predicate on the left-hand side. Since

both rules in the minimal set are binary, they can only be used in finding predicates

to satisfy the right-hand side of the goal types. As discussed above, were we to add

types to the right-hand side of these rules each clause would have the same type (the
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Name Metarule Order
Lift P : psg(X, Y )← W (X), R : tactic(X, Y ) P � R
Chain P : psg(X, Y )← Q : psg(X,Z), R : psg(Z, Y ) P � Q,P � R
Loop P : psg(X, Y )← Q : psg(X,Z), P : psg(Z, Y ) P � Q,X � Z � Y
Goal P (X)← Q(X, Y ) P � Q
Inversion P (X, Y )← Q(Y,X) –
Chain Min P (X, Y )← Q(X,Z), R(Z, Y ) –

psg denotes psgraph

Figure 6.7: Metarules augmented with the minimal set

hypothetical gdata) and so, in the context of a minimal set, types are redundant

here. Additionally, as already pointed out, they are the only binary clauses in any

of the rules and so do not need a type to distinguish them.

6.4.1 Results & Analysis

We repeat the experiment from §6.3 again, this time using the rules in Fig. 6.7.

However, this time we find that Metagol is unable to find any solutions within the

time frame available.

By adding the minimal set of metarules we allow Metagol much more freedom to

find a definition, however we also greatly increase the number of potential solutions

which must be checked. This is one aspect of the learning process in which adding

types would have been useful, since the restrictions they place on instantiation would

quickly rule out many possible solutions and therefore speed up the process. The

time taken is one aspect to consider when assessing the failure, but we should also

look at the size of the solutions.

Consider the running example. When we provided the goal types in the back-

ground information, we told Metagol explicitly what goal type g0 had:

impI type(g0).

When we moved on to learn a definition for g0’s goal type, we used a metarule

to guide Metagol towards a target definition:

impI type(g0) ← top level connective(c(−→), X), concl(g0, X).

Both these definitions require only a single clause, meaning they are quick to

learn. In contrast, we are now giving Metagol free reign to find the most appropriate

definition without any guidance from the metarules. Consequently we cannot be sure

that they will be the same size. Indeed, given the use of the Goal metarule to enable

the use of the binary rules to find a unary predicate we guarantee that any goal type

defined by Metagol will have at least two clauses.
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The definition for impI type could be generalised as follows:

impI type(A) ← top level connective(C,B), concl(A,B).

While Metagol could still find this definition, it would be considerably larger. A

possible result would be:

impI type(A) ← impI type 1(A,B).

impI type 1(A,B) ← impI type 2(B,A).

impI type 2(A,B) ← impI type 3(A,C), impI type 4(C,B).

impI type 3(A,B) ← impI type 5(B,A).

impI type 4(A,B) ← impI type 6(B,A).

impI type 5(A,B) ← top level connective(A,B).

impI type 6(A,B) ← concl(A,B).

Even using dependent learning, this solution will take Metagol a long time to

find. When more than one goal type is being learned as part of a strategy, in addition

to the structure of that strategy, the minimal set slows down the learning process

greatly.

As such, we cannot make a comparison between untyped and typed Metagol here

as we do not have any results to compare. However, we note that the untyped case

will suffer from the same problem as our initial experiments in that the untyped

psgraph and tactic clauses will once again be binary. Indeed the problem will be

worse here, since there are more rules in which those binary clauses could be used.

In light of this it is likely that typed Metagol would give results with a much lower

value for σ, but we cannot confirm this.

Despite this, the use of the minimal set is an interesting aspect of this work to

consider going forward. With refinements to the way in which goal data is included

in the background information, we may find that it becomes more practical to use in

our work. We also note that the goal type described here is particularly complex in

that it requires the Inversion rule to be used several times, lengthening the solution.

Future experiments may require simpler goal types, such that the definitions are

smaller and easier to find.

6.5 Summary

In this chapter we have considered different ways in which Metagol can learn goal

types. We have discussed the data required to define a goal in terms of its hypotheses

and conclusions and considered how this can be used to define a goal type in terms

of, for example, symbols present in the goal. We evaluated the effects of adding

metarules to guide Metagol towards learning goal types expressed in this way, finding
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that although the overall impact in terms of mean branching were relatively small

it did have an effect on how σ increased with time.

We went on to consider the use of a minimal set of metarules for goal type

learning with the aim of letting Metagol use them to find the best definitions from the

background information available. Learning using this approach was unsuccessful,

as the solutions would be too big for Metagol to find within a reasonable time, and

certainly within the time frames allowed by our experiments.

The biggest result from this chapter has been the addition of goal type learning.

Not only does this fulfil one of our objectives for this thesis, it fills a significant gap

in the results and takes steps towards generating strategies which users can apply

to unseen proofs.
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Chapter 7

Beyond Propositional Logic

So far we have demonstrated the proof of concept of using Metagol to learn proof

strategies defined in terms of tactics and goal types but there are many potential

avenues of further investigation. In this chapter we consider two of them: learning

goal type definitions for more complex goals and defining metarules which can be in-

stantiated using more complex tactics. We consider the current blockers to progress

in these areas in the context of a simple example of each.

To illustrate ways in which goal type representation could be built upon we

consider predicate logic. This was felt to be an obvious “next step” due to the ease

with which examples can be constructed in Isabelle and the broad similarity of the

tactics to those used in the propositional examples. Indeed, some of the tactics used

in those earlier examples can be used within predicate logic proofs too.

To highlight a potential evolution of the metarule set we consider rippling [6].

In this case both the goal types and tactics applied are more complex than those

seen in our earlier examples and will require either additions to the existing rule set

or changes to our rules’ structure.

7.1 Predicate Logic

While statements in propositional logic are unambiguously true or false, that cannot

be said for predicate logic. For example, “if x ∈ R then x2 ≥ 0” is always true and

therefore a proposition, whereas x > 10 is only true for certain values of x which

satisfy the predicate > 10.

When encoding proofs of predicate lemmas in Isabelle the overall structure is

very similar in terms of structure and indeed in terms of some of the tactics used.

Although the statement of the lemma may involve a predicate, at some stages the

proofs will include propositional clauses which can be discharged with the tactics

we have already seen. The predicate logic lemmas include quantifiers (∃, ∀) which

are more complicated to address in a proof.

We can still decompose the goal into sub-goals using introduction and elimination
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rules as before, but now they have slightly different consequences. Consider an

example:

lemma (∃x.∀y.Pxy) −→ (∀y.∃x.Pxy)

apply (rule impI)

apply (erule exE)

apply (rule allI)

apply (erule tac x = y in allE)

apply (erule tac x = x in exI)

apply assumption

done

The first step in this proof applies the impI introduction rule we have seen

previously, but after that we begin applying tactics which eliminate the quantifiers.

The elimination rule in the second step removes the ∃ quantifier from the goal, but

the resulting sub-goal looks like this: ∧x.∀y.Pxy =⇒ ∀y.∃x.Pxy
Instead of our goal saying ”for all values of x...“, now we aim to prove that ”for

a given value of x...“ the lemma holds. We introduce a given value of y in a similar

fashion in the next step. In the subsequent steps we could apply the erule(allE) and

rule(exI) tactics, however doing so would introduce free variables into the hypothesis

and conclusion respectively. By using them in conjunction with erule tac we can

substitute a value for those free variables as they are introduced, thus eliminating

them and turning out predicate into a proposition. By doing this until all predicates

are removed from the goal we can finish the proof by using propositional tactics, in

this case assumption.

This adds an extra level of complexity to our goal encoding as until this point

we have simply considered the symbols present in a goal. We could continue with

the is type(g) notation from earlier chapters if we simply wanted to find a strategy

for a predicate example, but as we subsequently showed this is not the best tool.

Even our has symbol() clauses from before have become insufficient as we now need

to consider variables too.

The example above is a relatively straightforward lemma in predicate logic, yet

already we see some issues in representing the necessary information in our encoding.

The first step of the proof uses a tactic seen in propositional logic and so the goal

can be encoded as before. The second and third steps would ideally be encoded in

terms of symbols as well, since the rules in question act on the symbols present in

the goal (∃ and ∀ respectively). However Isabelle’s underlying representation makes

this considerably harder as it does not represent quantifiers in the same way as the

symbols used in propositional logic.

The next steps are more complex still, as the tactics are doing more than any we

have seen previously. In order to apply them, we need to know more about our goals
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than we do simply by saying a symbol is included. It is still important to include

the details of the symbols since the second part of each tactic tells us which symbol

is being acted on, but we also need to know that the correct variable is present for

the substitution defined in the tactic to be made. This would be possible to encode

in the same way as the symbols, but it makes the goal types more complicated.

Instead of one clause we now need at least three: one each checking for the symbol

and variable and one combining the two.

is of type(g) ← has symbol(g), has variable(g)

Goal type encoding becomes particularly challenging when considering erule tac.

With other tactics we have worked with we have observed a pattern: erule tactics

take elimination rules as arguments (e.g. erule impE) while rule tactics take intro-

duction rules (e.g. rule impI). In the case of erule tac this does not apply, as even

in our short example here it has taken both an elimination and then an introduction

rule as an argument. In addition to that we must also consider the variable being

substituted and the value it is being substituted for.

Given that the tactic applied by erule tac must be an appropriate one for the

current goal, we can infer some of the information which would be required for an

erule tac goal type from that. For example, in the proof given above the allE tactic

is used, which would not be possible if the goal it is applied to was not appropriate

for that tactic. Therefore we know that in order to define a strategy the goal must

satisfy an appropriate goal type.

Identifying which variable is to be substituted could also be linked to existing

work. We have already explored the definition of goal types using the has symbol

clause suggested above, has variable could be defined in a similar way. While our

existing metarules would not be appropriate this should certainly be a consideration

for future development. Identifying the value to substitute the variable for is a more

complex problem, but given that it impacts the resulting sub-goals of an erule tac

application a comparison could be made between the input and output of a tactic

to determine the value (or range of values) which should be used.

A consequence of this is even more complex goal type definitions than those seen

in chapter 6, which we already saw leading to fewer strategies being learned. These

larger goal type definitions would present an obstacle by themselves, but combined

with the different representation of the quantifiers they become an even bigger issue.

We will need slightly different metarules to define the quantifier goal types, since

they don’t look the same as the propositional examples we saw before. We are then

faced with a choice: either we provide Metagol with all of the metarules it could need

to find goal types, or we try to somehow segregate the different parts of the strategy

and learn them separately. As we showed earlier, adding more metarules simply

increases the search space and can drastically slow the process. Also, if our aim is
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to move towards using the minimal rule set for learning we would be contradicting

this if we were to add further rules. Separating the problems would be somewhat

in line with our work on dependent learning, but in that instance we still used the

same set of rules for each episode and ultimately we would still need to learn the

same number of clauses.

The ultimate issue is the same as that which we encountered with the larger

propositional logic examples when we came to run Metagol: the solutions get too

big to find with the available resources. Unfortunately this issue became apparent

much more quickly since a basic predicate example is significantly more complex

than a basic propositional example, and as a result in our experiments we were

unable to learn any strategies which were of any use to this work.

With complexity of the strategy being the main issue, we consider the possi-

bility of learning a strategy to fit a fragment. An exploration of this idea would

require significant further work, firstly in investigating which syntactic restrictions

to impose on the language and then in expanding our Prolog representation to cap-

ture those restrictions. With the suggestions above we could begin to move towards

implementing this but the concerns around extending the set of metarules remain.

Note that at the tactic level our metarules are sufficient to learn structure, meaning

that if we completely abstracted away the goal type information and returned to the

is type style of definition from earlier chapters we could learn the structure of the

proof at least. However the addition of goal types is what marks this work out from

previous attempts to learn proof and is a key part of ensuring the learned strategies

are useful when translated back into a prover-friendly format.

Given the similarities between propositional and predicate logic and the success

we had learning the former, this is an area worth revisiting in future work. At this

time it would appear that further development of the encoding techniques have the

most potential to deliver improvements, since finding a consistent representation for

goal types would reduce the number of metarules needed. Development of these

techniques should always be a consideration as we move forward and resolving our

issues with predicate logic can act as a guide for that process.

7.2 Rippling

Rippling is a tactic for use with theorems featuring mathematical induction. It was

designed to aid the search for a proof of such theorems and was first investigated

as a potential case study at an early stage of this project. Sketching out a rippling

strategy by hand suggested a simple structure but complex goal types. These goal

types depended on more than one definition being satisfied, allowing us to test

Metagol with different levels of detail provided and thus make use of predicate

invention.
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Let us consider as an example the associativity of the + operator on the natural

numbers N, i.e.

∀X ∈ N,∀Y ∈ N, ∀Z ∈ N (X + Y ) + Z = X + (Y + Z)

If we are to prove this by induction the base case is almost trivial. Fixing X and

Y and applying induction on Z gives us:

(X + Y ) + 0 = X + (Y + 0)

X + Y = X + Y

Replacing X, Y and Z with skolem constants29 gives the induction hypothesis:

(x+ y) + z = x+ (y + z)

The inductive conclusion in this instance is:

(x+ y) + Suc(z) = x+ (y + Suc(z))

When applying rippling to this proof we identify the differences between the

two expressions, referred to as wavefronts. We annotate the inductive conclusion to

highlight the wave-fronts before applying a series of similarly annotated wave rules to

remove them before reaching the fertilization stage, where the inductive hypothesis

is used to complete the proof. With the wavefronts annotated our complete goal is:

(x+ y) + z = x+ (y + z) ` (x+ y) + Suc(z)
↑

= x+ (y + Suc(z)
↑

)

Typically the proof would be completed using the Peano axioms, namely:

n+ 0 = n (i)

n+ Suc(m) = Suc(n+m) (ii)

The first has already been used in proving the base case, but we can annotate

the second as a wave rule to become:

n+ Suc(m)
↑

= Suc(n+m)
↑

We can use this as a rewrite rule and apply it to the inductive conclusion.

29A constant substituted for a variable when eliminating a quantifier from the expression
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(x+ y) + Suc(z)
↑

= =⇒ Suc((x+ y) + z)
↑

= x+ (y + Suc(z)
↑

)

x+ (y + Suc(z)
↑

)

=⇒ Suc((x+ y) + z)
↑

= x+ ( Suc(y + z)
↑

)

=⇒ Suc((x+ y) + z)
↑

= Suc(x+ (y + z))
↑

=⇒ (x+ y) + z = x+ (y + z)

Applying the induction hypothesis now completes the proof.

In general we can talk about rippling between two abstract goals G1 and G2. In

the terminology we have used throughout this thesis we view these goals in terms of

their conclusions C1 and C2 along with a common hypothesis H. It is a precondition

of rippling that the hypothesis H be properly embedded in the conclusion C1, that

is to say that H is embedded in C1 while also not being a sub-expression of it.

If that condition is satisfied a wave rule can be applied to C1, resulting in some

intermediate sub-goal Gi with conclusion Ci. Rippling can be applied iteratively

until the resulting conclusion is equal to C2. At this point we can apply fertilization

and terminate the rippling.

A simple definition for rippling expressed in our encoding would look something

like:

ripple(H ` C,H ` C) ← H v C, fertilize(H,C).

ripple(H ` C1, H ` C3) ← H ⇀ C1, wave(C1, C2), ripple(H ` C2, H ` C3).

With v denoting a sub-expression and ⇀ a proper embedding. Using the ex-

pression turn(H,C) to encode the turnstile ` we were able to arrive at an initial

definition, with some caveats:

ripple([turn,A,B], [turn,A,B]) ← sub exp(A,B), fertilize(A,B).

ripple([turn,A,B], [turn,A,C]) ← prop embed(A,B), wave(B,D),

ripple([turn,A,D], [turn,A,C]).

This captures the basic definition of rippling by nesting clauses inside each other

on the left-hand side of both expressions and in the recursive part of the second.

Learning these definitions would stretch our set of metarules again though, as we

would need to introduce higher-order metarules. By doing so we would allow Metagol

to introduce parts of the left-hand side of the expression to the search space by using

metarules such as:
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P (A(X, Y ), A(X, Y )) ← Q(X, Y ), R(X, Y ).

P (A(X, Y ), A(X,Z)) ← R(X, Y ), Q(Y,W ), P (A(X,W ), A(X,Z)).

However this introduces an inconsistency with our previous work, as all experi-

ments in both propositional logic, predicate logic and group theory were conducted

without this extra search space. If we express our turn( , ) clauses in terms of hy-

potheses and conclusions as before we can build a definition of rippling consistent

with our earlier work:

ripple(A,A) ← hyp(A,B), concl(A,C), subexp(B,C), fertilize(B,C).

ripple(A,B) ← hyp(A,C), hyp(B,C), concl(A,D), prop embed(C,D),

wave(A,E), ripple(E,B).

We have another issue to contend with when it comes to learning definitions for

the goal types, specifically when we try to learn about proper embeddings. In the

simple experiments we carried out we were able to learn the definition of an improper

embedding, i.e. A is embedded in and is also a sub-expression of B:

improper embedding(A,B) ← embedding(A,B), sub exp(A,B).

While Metagol can learn this definition and incorporate it into others in the

same way as shown in previous chapters, it cannot modify it in such a way as to

include the necessary negation. This is because the concept of negation does not

exist within Metagol: if we were to provide the most basic information about the

goals involved in a proof and rely on predicate invention to define the goal types,

Metagol would not be able to find one which depended on something being false.

Metagol can, however, learn such a definition if given the information explicitly

in an appropriate clause (e.g. not sub expression(A,B)). While this would allow

us to learn rippling strategies it would also prevent any meaningful experimentation

using rippling, since supplying sufficient information to avoid the problem reduces

the complexity of the strategies to no more than that of the propositional logic

examples.

The higher-order metarules discussed above presented another potential solution

here. Using a higher-order metarule would allow us to abstract the learning of

negation up a level to be more closely-coupled with the overall strategy definition,

however Metagol would still lack the tools to learn the strategy without some explicit

help from the background information. The abstraction involved in this partial

solution would also mean that the learned definition of a proper embedding could

98



Chapter 7: Beyond Propositional Logic

not be reused elsewhere, which runs counter to what we are aiming to achieve.

On a more general note, it was felt that using higher-order metarules such as this

one would also undermine the validity of any results found from learning rippling.

Our examples up until this point had been learned using a defined set of metarules

and the rippling examples were intended to provide further evidence of their suit-

ability to use in further examples. If we were to add new rules to force a solution

from our examples we could not claim that it had any relevance to what has gone

before. Of course, we could revisit our earlier examples making use of higher-order

metarules and compare the results, but this was not practical in the time available.

It does, however, provide some scope for future work.

While researching and testing improvements to our encoding are promising ar-

eas for future work, improvements to Metagol itself (which are out with our direct

control) would help facilitate this. That said, Metagol is undergoing constant de-

velopment and recent work ([7]) has moved it towards support for higher-order

programs. Testing these developments in the context of this thesis is an obvious

next step.
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Reflections & Comparisons

The main aim of this thesis has been to demonstrate that Meta-Interpretive Learning

can be used to assist in interactive theorem proving in a way that has not previously

been considered. Overall we feel that we have been successful; we have shown that

MIL can define reusable proof strategies learned from as little as one proof. In

contrast to previous attempts at applying machine learning to theorem proving,

such as those discussed in §2.3, MIL can also capture the reasoning behind a given

tactic application and show why the prover does what it does. However, there

are also downsides to our approach, and in this chapter we identify them before

considering how to address them.

8.1 Representation

On the whole, our way of representing the required data for learning a proof strategy

works well. Due to the way in which Metagol is encoded, we are limited to a notation

which is analogous to Prolog code. That said, when dealing with simple unary or

binary concepts (such as a goal satisfying a given type or identifying the input and

output of a tactic) it works well. As described in Chapter 4, we can show that a

goal g satisfies a given goal type – for example Type A – using the simple unary

predicate is Type A(g). Likewise we can show that a tactic tactic A has input g1

and output g2 with the binary predicate tactic A(g1, g2).

Clauses like these are among the more elementary parts of the prerequisite infor-

mation, however. When defining goal types we find that the complexity of individual

goals can cause issues with readability. For example, in the running example used

in previous chapters we find that each goal is much larger when expressed in our

notation compared to natural language. Considering the relative simplicity of the

example, it follows that more complex goals will be larger still. While this is not an

issue for Metagol, provided the goal is correctly defined, it is difficult for the user

to understand. Although Metagol generalises its final solution before presenting it,

when debugging is required or failure needs to be assessed it is important that the
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user has a clear understanding.

The limited arity of the clauses used (predominantly binary with some unary,

with ternary clauses used when adding types in chapter 5) also acts as a limit on

the amount of information which one clause can contain. We can address this by

“nesting” clauses, for example when defining left-most in chapter 6 we first find the

left-hand side of one clause, then the left-hand side of that and so on. Breaking

complex definitions down in this way makes each layer easier to read, but increasing

the number of clause needed has some negative effects.

Firstly, the number of metarules needed to find a definition increases. Each

extra metarule added to the set can increase the time taken to find a solution, since

Metagol could try to use it in the wrong place. This slow-down is not guaranteed

however (if the metarules are listed in the correct order they will not be used out

of turn – finding that order would be down to trial and error, though, and it would

likely not be the same between any two examples), unlike the slow-down resulting

from the increased solution size. By nesting clauses we force the solution to contain

at least one more clause than it would have done otherwise, and since Metagol’s run

time increases exponentially as the solution size increases we affect performance by

doing so.

These issues are addressed by using dependent learning to find definitions for

goal types – or indeed constituent parts of goal types, such as has symbol – before

including them in a strategy. We have demonstrated in chapter 5 and chapter 6

that this improves the quality of solutions, based on the average level of branching

in the proof trees generated from the strategies.

8.2 Learning Structure

In chapter 4, we demonstrated that the structure of a proof strategy can be learned

using only three metarules. Those rules let Metagol define a single-node strategy

using a goal type and a tactic, link two or more such strategies together and define

recursive patterns around them. By adding types in chapter 5 we ensure that the

latter two operations can only be performed on strategies, greatly improving the

quality of Metagol’s solutions.

The problem of solution size is present again here. If Metagol were to attempt

to learn a large strategy then it would require several single-node strategies to be

linked together to form a complete strategy. Should there be any node with multiple

outputs, or any recursion the number of clauses needed will increase further. Once

again, however, dependent learning can be used to reduce the size of solutions. By

learning definitions for increasingly large sub-strategies and then combining them,

the run-time is cut drastically. The hierarchical nature of PSGraph means that

this is still a valid representation of a proof strategy, assuming each sub-strategy is
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properly defined down to single nodes.

In our experiments to date, this structural representation has been sufficient.

Even allowing for more complex strategies, we do not anticipate changes being

required since the metarules used mean any definition learned will satisfy the criteria

to be considered a PSGraph.

8.3 Learning Goal Types

Finding accurate definitions for goal types has been the most challenging aspect

of this work. Initially we simply stated which goals satisfied which types in the

background information, using the notation discussed above. While this ensured

that a goal type was given for each (sub-)goal in a proof, it was reliant on the user

knowing how to define it and had no scope for refinement. Given that a key aim of

this thesis was to show that MIL could be used to find definitions for goal types, a

better approach was required.

By learning goal type definitions as part of the learning process, Metagol was able

to find a definition for each goal type based on the available goal information and

tailored to each example. This, however, still had some negative points. The amount

of background information required increased and became more complicated, while

specific metarules were required to find definitions. While increased background

information is not a problem for Metagol, it does make debugging and failure analysis

more difficult. The metarules, however, are the main issue; in order for suitable goal

types to be learned, we have to provide Metagol with metarules which will enable it

to learn them. By doing this we limit Metagol’s capability to find its own definitions,

potentially ruling out the best because they cannot be found using those rules.

The addition of the typing system amplified this effect; not only are we forcing

Metagol to use a specific set of rules, those rules can only be used in specific situ-

ations. On balance, however, adding types had a positive impact on the solutions.

The problem of Metagol finding solutions which satisfied its requirements but which

made no sense in a real-world context was greatly nullified by encoding that context

using the types.

Overall, the first experiments in chapter 6 did show some improvement in the

quality of solutions found when learning goal types using a restricted set of typed

metarules. The reasons behind this are discussed in §6.3.1, but it bears repeating

that so far this has been the most successful method of learning goal types tested.

Further experiments focused on learning using a minimal set of metarules from

which others could be derived via predicate invention. Our aim was to apply this

minimal set to the available goal data in order to find the best possible definition for

each goal type, however this did not produce any usable solutions. As demonstrated

in §6.4.1, the solutions found are much larger than those found previously, to the
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point that even a fairly simple definition is too big for Metagol to learn within a

reasonable time frame. Even using dependent learning this is a problem, since we

cannot break the goal type down into smaller pieces when learning it in this way.

Going forward, we will be dealing with goal types which will necessarily be much

more complex. Experiments so far have been based on propositional logic, which has

limited depth and does not feature many of the concepts present in other areas. As

we look at more complex goals we will have to consider a wider range of possible goal

types, which may be defined in ways we have not yet considered in the course of this

work. While the user could determine a definition for each goal type and specify an

appropriate metarule for each, this would not be practical. We have already noted

the difficulty in finding suitable definitions for our examples so far; were we to take

this work to an industrial setting, for example, we would encounter proofs running

to tens of thousands of steps with vastly more complex goals to be evaluated.

With that in mind, we feel that the best approach to take going forward is to

focus on development of the minimal set. It may be necessary to do so in conjunction

with further developments in representation, such that the necessary information can

be expressed in fewer clauses. We noted in chapter 6 that typing was unnecessary

when using the minimal set, however we may reconsider this in light of any significant

representational changes. By doing so we may find a similar improvement in learning

goal types as when types were added to the metarules for structure.

8.4 Evaluating a Learned Strategy Using Isabelle

Here we will consider how effective Metagol has been at learning strategies by eval-

uating its results with Isabelle. We will use the strategy learned from our running

example and consider if it could successfully be used to prove the lemma, and also

if it can be reused with any other lemmas. Note that the translation will be done

manually: as discussed previously, these strategies are prover-agnostic and so au-

tomating the process for a specific prover is future work.

8.4.1 Interpreting Metagol’s Output

In light of the difficulties encountered when learning goal types, here we consider

a strategy where the goal type information has been provided as part of the back-

ground information. We also make use of dependent learning to best illustrate how

sub-strategies are identified and reused by Metagol in its definitions.

This example is listed as lemma L in Appendix A and so we ask Metagol to

label the learned strategy strat l. Dependent learning requires each possible step of

the proof to be defined and learned by Metagol as part of the process and we label

them in such a way that the example they belong to and the stage of the proof can

be identified. For example, the first single-goal step in proving lemma L would be
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labelled as step l1 1 and the next single-step example as step l1 2. Only our goal

type labels and the tactic applications are provided as background information.

The learned definition of strat l is as follows:

strat l(A,B) ← impI type(A), step l5 1a(A,B).

strat l(A,B) ← impI type(A), step l6 1b(A,B).

Note that there are two definitions given. Recall that branches in PSGraph are

OR branches so this is a valid result. We also note that the Isabelle proof of this

lemma (see Appendix A) includes three sub-goals to be discharged, indicating that

one of these definitions must be applicable to more than one goal. What is not clear

yet is if any additional goals could be discharged using only a sub-strategy taken

from one of these definitions.

In the first definition here, step l5 1a is an example of one of the sub-strategies

we have asked Metagol to learn. This in turn is made up of other sub-strategies:

step l5 1a(A,B) ← step l4 1b(A,C), step l1 8(C,B).

And so on. When Metagol learns one of the single-step sub-strategies it will only

include a goal type and a tactic application. For example step l1 1 is defined as:

step l1 1(A,B) ← impI type(A), rule impI(A,B).

The complete output for the running example under these conditions is given

in Appendix C. Note that in some instances Metagol will opt to reuse a learned

sub-strategy when a single tactic application would also be valid. This results in a

longer solution than necessary, but is a side-effect of Metagol’s ordering constraints.

Learned strategies are placed above background information in the hierarchy, so

scenarios such as this will occasionally arise.

8.4.2 Translation for Isabelle

As discussed previously, Metagol’s strategies are prover-agnostic and implementing

tools to translate them into an appropriate format for any given prover is future

work. However, we can do the translation manually through visual inspection of the

output. Here we will attempt to construct an Isabelle proof based on the output

from Metagol.

Note that here the goal type definitions have been provided as part of the back-

ground information and simply state that a goal has a particular type, there is no

indication of how that goal type would be defined. As a result our translation will

focus on the tactic applications suggested by Metagol. Again, incorporating goal

types will form future work.

Let us look again at the single-step example above:
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step l1 1(A,B) ← impI type(A), rule impI(A,B).

The tactic information is captured by the rule impI clause. The clauses present

in the background information and used to instantiate the metarules are uniquely

derived from the example proofs, so we reverse this process to build a proof from a

strategy. In this case apply (rule impI) is encoded as rule impI(A,B) in the back-

ground information, so for the step in the strategy shown above we add apply (rule

impI) to our translated proof. By parsing through the output shown in Appendix C

we can determine which tactics Metagol is suggesting and the order in which they

should be applied.

Once again we note that the PSGraph strategies Metagol is capturing make use

of OR branches, while an Isabelle proof uses AND branching. That means that we

could potentially find ourselves in a scenario where our learned strategy may not

precisely describe the proof. Addressing these issues will not be possible as part

of the learning process, since different provers will require different solutions. For

example, in Isabelle we could use the defer or prefer commands to change the order

in which sub-goals should be handled. For now we take note of this possibility and,

since we are manually building the proof, will address it if it arises.

8.4.3 Analysing the Results

The proof of the running example which was provided as background information

to Metagol is as follows:

lemma (A −→ B) −→ (B −→ C) −→ A −→ C

apply (rule impI)

apply (rule impI)

apply (rule impI)

apply (erule impE)

apply assumption

apply (erule impE)

apply assumption

apply assumption

done

Additionally, recall that in Fig.1.1 we suggested a strategy which could be applied

to both our running example and another similar lemma. We reproduce it here for

completeness:
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rule impI

rule impE

assumption

impI type

impE type

assumption type

This strategy could be used to evaluate any lemma whose proof requires at least

one application of rule impI followed by at least one application of erule impE before

ending with assumption.

Let us return to the strategy suggested by Metagol and shown in Appendix C.

Manual inspection shows the suggested sequence of tactics for the first clause to be:

apply (rule impI)

apply (rule impI)

apply (rule impI)

apply (erule impE)

apply assumption

While the second clause gives us:

apply (rule impI)

apply (rule impI)

apply (rule impI)

apply (erule impE)

apply (erule impE)

apply assumption

Neither of these would fully prove the lemma if applied to it. Indeed, the second

clause would fail due to applying the second erule impE to the incorrect goal. There

are important points to highlight though:

1. The definition given by the first clause is sufficient to discharge one of the

sub-goals generated.

2. Although the second clause would fail, note that it includes the same steps

required to discharge the second and third sub-goals as the full proof.

The second of these points is the most significant, as it highlights one of the major

benefits of learning strategies instead of proofs. If we take each learned definition
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as a possible method of discharging a given sub-goal, rather than as a suggestion

for a complete proof, we see that the second clause will enable us to discharge all

sub-goals not covered by the first. If we were to highlight the steps for each given

sub-goal in the full proof, we would see that the highlighted lines would correspond

to one of the two suggested strategies.

A high-level interpretation of the results would also closely align with the strategy

we suggested in Fig.1.1. For the first clause, we apply rule impI three times, erule

impE once then assumption. In the second we use rule impI three times, erule impE

twice then assumption. We could generalise these by describing the second step as

“at least one application of erule impE”. Exactly how many times a given tactic

should be applied would be determined by the goal type of the resulting sub-goal,

thus showing which path to follow in the diagram above.

We asked in Chapter 1 if strategies could be applied to other, similar proofs

and showed in §5.3 that it was possible to incorporate a previously-learned strategy

into a later definition. Recall in chapter 1 that we looked at our running example

alongside another lemma, (A −→ B −→ C) −→ (A −→ B) −→ A −→ C. We

claimed that the strategy we outlined in Fig.1.1 could be applied to both, and this

was true for the high-level description we gave then. Given the similarity with the

strategy learned by Metagol for our running example, we could make the claim that

Metagol has produced a strategy which can describe both proofs.

We demonstrate this re-use of strategies experimentally by adding the goal types

and tactics for our second lemma (lemma I in Appendix A to the available back-

ground information and adding the completed proof to the list of positive examples.

We do not add any potential sub-strategies for lemma I, meaning that Metagol can

only form a definition by re-using the definitions for lemma L. If such reuse is not

possible, Metagol will not be able to find a strategy.

The results are as follows:

strat i(A,B) ← impI type(A), strat l(A,B).

strat i(A,B) ← step l5 1c(A,C), step l2 5b(C,B).

Note that the first clause reuses the definition of strat l, indicating that the

strategy learned for the first lemma can be reused to discharge at least one of the sub-

goals generated while proving the second. The presence of a second clause indicates

that our previous strategy cannot discharge all of the goals, but the definition still

shows that sub-strategies from lemma L can be reused in finding a strategy for

lemma I.

Considering the diagram in Fig.1.1 again, note that there are no new tactics

introduced in the definition for strat i which would not fit the suggested strategy.

Compare the diagram to the proof:
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lemma (A −→ B −→ C) −→ (A −→ B) −→ A −→ C

apply (rule impI)

apply (rule impI)

apply (rule impI)

apply (erule impE)

apply assumption

apply (erule impE)

apply assumption

apply (erule impE)

apply assumption

apply assumption

done

Again we see that the high-level description is the same: at least one application

of rule impI, then at least one erule impE, then assumption. Thus we have shown

that a strategy learned from one example could, depending on the translation into

a prover-specific format, be re-applied to a similar example.

8.5 Comparison with Previous Work

In §2.3.2 we discussed the IsaNewT system introduced by Duncan. Although it is

the body of existing work with which this thesis has the closest similarities, there

are still some significant differences. While both aim to introduce new methods

for proof, either through the creation of new tactics or high-level guidance as to

which existing tactic to apply, the methods by which they get there differ in terms

of example selection and how those examples are handled. There are fundamental

differences in motivation: Duncan’s work is driven by discovery, ours by explanation.

Both have the potential to introduce new tools to assist their users.

Both this thesis and Duncan’s work use a pool of examples derived from Isabelle

proofs as their starting point, with both using their own encoding for those examples

to facilitate learning. Both allow any new discoveries to be added to that pool.

Although we are searching for different things, the results of both approaches have

some common features, namely a wide range in complexity and scale. In Duncan’s

case some of that complexity is managed by identifying and marking sequences of

repeated tactics as “macros”, similar to the sub-strategies we identify here. Both

can be learned then used to form part of solutions found later in the process.

8.5.1 Process

Pattern discovery in Duncan’s work involves data mining of existing proofs, searching

for recurring sequences of tactics among the starting examples. Two randomly
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selected examples are checked to see if either is a subset of the other, with a positive

match being identified as a macro as described above. Any branching is handled

by comparing the two branches and iteratively reducing them through removal of

common terms. A scoring system restricts the use of branches, doing the same job as

our typing system by preventing technically correct but practically useless solutions

being added to the example pool.

Metagol, by contrast, does not attempt to match patterns in this way. Instead

we use the examples provided as a guide for the instantiation of metarules. While

Duncan uses tactics as a criteria by which to judge whether or not a macro has

been found, we use them in conjunction with the goal details as the background

information for Metagol to use as necessary. By including the successful resolution

of all emerging sub-goals as positive examples and the sequence of tactics required

for each in background information we ensure that Metagol handles branches by

learning a strategy to describe each possible path along a proof tree, or at least

incorporating a sub-strategy which does so into a larger solution.

While IsaNewT iterates through all possible combinations of the available back-

ground information, Metagol stops its search once it finds a solution which satisfies

the criteria laid out for ILP systems in §2.2.5, namely that the solution satisfies all

positive examples and cannot simply be explained by the background information

alone. There is an advantage to IsaNewT here as this exhaustive matching ensures

all potential solutions are found. Metagol, on the other hand, may miss potential

solutions (which may or may not be “better”) as it is not required to continues past

the first solution. Metagol is also far more susceptible to issues with the data set:

as we have seen in §5.3, Metagol’s requirement for ordering constraints means that

simply presenting the clauses in a different order can impact on the results. By

checking everything IsaNewT avoids this issue.

In spite of the exhaustive search, IsaNewT appears to be the more efficient

of the two systems. The issues we have faced around runtime throughout this

project support this theory, although future work on metarule development and

proof encoding may address this. We suggest that Metagol’s predicate invention

algorithms may be responsible for this. If, for example, an attempt is made to

invent a predicate as part of a four-clause solution Metagol will apply the same

metarules to the same background information in an attempt to create a definition,

essentially repeating everything it has done up to that point for a different example.

IsaNewT lacks this recursion so does not face this problem.

The granularity of the search is different between the two systems, largely as a

consequence of the inclusion of goal types in our strategies. To IsaNewT a single

low-level tactic is of no use, since it will match with any occurrence of that tactic

and be flagged as a macro. For us, on the other hand, we consider not only the

application of the tactic but also the structure of the goal it is applied to in order to
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determine a goal type for it. A strategy describing a single tactic application is still

therefore useful to us as it can be reused as a sub-strategy within a larger solution.

This inclusion of goal types, while increasing the size of our solutions and con-

tributing to the inefficiency discussed above, is arguably the most significant dif-

ference between the output of the two systems. It stems from a difference in the

objectives of the authors, even if there are similarities in the results: Duncan aims to

discover new tactics which can be used in an ITP, while we are looking at high-level

strategies for describing proofs which can provide guidance as to when to use them.

That guidance helps us to resolve an issue which is not addressed by IsaNewT:

the reason why a given tactic is used. In linearly-structured proofs this is not an

issue, since there is only ever one possible tactic to be applied in the next step of

the proof, but whenever we reach a potential branch point with no indication of

which branch to follow we increase the search space for the problem. As discussed

ad nauseum elsewhere in this thesis, goal types enable us to minimise this search.

While it may find tactics which are simpler than those provided in the initial example

set or which allow multiple tactics to be condensed into one, IsaNewT doesn’t have

a similar search-limiting facility when it introduces a branch. This is also true in

instances when a loop is introduced, since without the assistance of a goal type there

is no indication of when the loop should be terminated30.

8.5.2 Example Selection

The examples used as the basis for both our and Duncan’s work are derived from

proofs developed using Isabelle. In each case, however, the system is not explicitly

tied to any one prover. Duncan argues that IsaNewT can be used in conjunction

with any theorem prover, provided the available corpus of proofs satisfies certain

fundamental conditions. That her work ultimately uses the Isabelle prover is a

result of Isabelle being the most suitable of the candidates evaluated rather than a

conscious decision. In our work, on the other hand, we have chosen Isabelle through

a combination of the availability of certain tools (e.g. ProofProcess) and the author’s

own proficiencies.

The use of Isabelle has an impact on the number of available examples for Dun-

can’s work. The vast library of available proofs are all constructed using tactics built

on the same low-level components, with those components themselves included in

the library. This means that there is a large, readily-available corpus of proofs for

IsaNewT to use. In turn this means that Duncan’s work can be carried out with po-

tentially several hundred starting examples, although there are associated efficiency

concerns. While Metagol could work with such a large number of examples, we have

30Although loops and branches usually appear to be visually distinctive when shown in a graph,
it is worth noting that from a practical point of view they are the same. In technical terms a loop
is simply another instance of a branch in which a tactic produces a sub-goal which still satisfies
the goal type of that tactic
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not tested it in that way and have no plans to. One of our motives in using Metagol

was to demonstrate that meaningful results could be gathered from a small number

of starting examples, and there would be an obvious contradiction in applying it to

the full Isabelle proof library. So long as we have the required information about

each proof, it could be argued that having fewer examples is better in Metagol’s

case.

The number of examples needed, on the other hand, is where we find a significant

difference. In terms of the absolute minimum requirements, IsaNewT by necessity

needs more proofs than Metagol: two in comparison to one. This is because IsaNewT

works by comparing proofs, which is simply impossible without at least two proofs

to work with. Metagol, on the other hand, can learn a proof strategy from a single

proof. As discussed above this still has some use, however it requires more infor-

mation about that proof in comparison to IsaNewT (goal structure, for example) in

order to learn a strategy which is actually useful. If we only have the name of the

tactic being applied then the strategy we learn is of very limited use.

In both systems it is observed that example selection matters, although in dif-

ferent ways. Duncan observes that for IsaNewT there is a significant difference in

how many successful patterns are learned if the starting examples are hand-picked

rather than randomly selected, with a chosen corpus more than twice as likely to

hit a target number in certain conditions. It is noted, however, that the intention

is for IsaNewT to work without human intervention and so a method to address

this discrepancy is introduced. For Metagol we note that random selection is not

compatible with the system, at least not to the same extent. We must at the very

least identify positive examples and appropriate background information, and even

if we were to go on to randomly select a sub-set of those to learn from we would be

potentially compromising our solution by having fewer examples available to ensure

sufficiency.

Instead it is the order in which the examples are presented which matters to

Metagol. As noted earlier, the ordering constraints on the metarules dictate that

certain predicates must appear before others in the list of clause to test potential

instantiations with. Background information will always be “ordered above” any

new clauses learned which are added to the end of the list, with those learned

earlier ordered above newer examples. The result is that by switching the order in

which two strategies are learned, one can be added or removed from the available

background to be used for the other. The effects of this are discussed in chapter

§5.3.

8.5.3 Results & Evaluation Metrics

IsaNewT goes beyond simply identifying patterns by combining elements of those

patterns to form new compound tactics. This is tested using both a traditional
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genetic programming algorithm and a more refined variation. The full algorithm

first ranks the discovered patterns according to how often they subsume another

pattern within the set before randomly mutating the highest-scoring using one of

three specified methods and scoring the result. If it compares favourably to the

original pattern it is retained and discarded if not. The second algorithm uses only

one of the mutation techniques and performs significantly better.

For us there is some similarity here to the process by which metarules are in-

stantiated using background information and tested against the example sets, but

only to a limited extent. For IsaNewT the random mutation and combination of

patterns is key to the discovery of new tactics whereas for Metagol the existing

structure is critical. Although by using meta-interpretive learning we can make

steps which other ILP systems may not be able to with predicate invention this is

still not as powerful as what can be achieved in terms of discovery by using genetic

programming.

In terms of evaluation, we have discussed in previous chapters our criteria for

assessing the “success” of Metagol in a given situation. IsaNewT is assessed on three

criteria: applicability, effectiveness and mathematical interest. Examining Metagol

in the same way, we find that one of these criteria is essential to consider it a success

while the other two are less critical.

Before checking the results against those criteria we must determine which sug-

gested patterns make the cut. Deciding how significant a result is in IsaNewT can

be determined by a set of programmed rules, but can also be decided by the user. A

threshold value is set to determine how often a pattern must be observed before it

can be considered significant, with the rules accounting for the previously observed

differences between a random selection of tactics compared to a hand-picked group-

ing. That threshold can, however, have a significant effect on the final result with

a low threshold likely to inflate the number of patterns found. We do not apply

any similar filter in our work, beyond that which is implied by the selection of the

positive examples; if a definition is successfully learned it must necessarily meet our

requirements.

Duncan defines applicability as an assessment of “how broadly [a learned tactic]

can be used”. For our work with Metagol to be considered a success, being able to

reuse a learned strategy is vital. That does not mean simply being able to describe

more than one proof using a strategy (although that is a consideration), but also

being able to integrate one strategy into another as part of a larger solution. This

was investigated when we looked at dependent learning in chapter 5, and we found

that learned strategies, or parts of strategies such as goal type definitions, could be

reused later. Thus we can say that our work passes the applicability test.

The effectiveness criteria is somewhat harder to assess, as Duncan defines it as a

measure of advancement in the proof. Since we are looking at proof strategies rather
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than proofs themselves we obviously cannot make a judgement in exactly the same

way, but we can find an analogous view of our results. If we consider “advance-

ment” in terms of strategies, we find ourselves looking at the complexity of a given

strategy and how “advanced” it is in relation to others. In this way our consider-

ation of effectiveness could be argued to be the same as that of applicability, since

the complexity of a strategy can be increased greatly by reusing previously learned

strategies as sub-strategies. Viewed in this way, this work meets the effectiveness

criteria for the same reasons as it meets the applicability one.

The third criteria is that of mathematical interest, and that is much harder to

judge in this context. A possible topic for future work based on this project could be

an investigation of strategies describing high-level concepts, including integration of

previously-learned strategies, but that was beyond the scope of this thesis. Here we

have concentrated on strategies describing low-level proofs which are comparatively

simple and so which are unlikely to be of any mathematical interest. We have,

however, demonstrated that simple concepts can be reused by Metagol to express

more complex ideas, and so we have grounds to believe that a future project may

be able to find more “interesting” strategies.

Finally we note that as yet there is not an automated method by which a proof

strategy learned using Metagol can be translated back into a format which could be

tested using a theorem prover. [12] describes the process of designing the IsaAuto

tool to assess the effectiveness of IsaNewT, illustrating that the new tactics learned

can be applied to proofs below a certain level of complexity specified by the authors.

Implementing such a system to apply learned strategies in Isabelle is future work.

113



Chapter 9

Conclusions & Future Work

This thesis has investigated the use of a machine learning technique known as meta-

interpretive learning in learning about proof strategies. In contrast to previous work

in the area, we have focused on learning high-level proof strategies which capture the

reasoning behind the steps taken in a proof, rather than only considering the tactics

used. In this chapter we summarise our work, highlight the conclusions which can

be drawn from it and suggest areas for future work.

9.1 Thesis Summary

We introduce a Prolog-based representation for proofs and proofs strategies, repre-

senting each step as a binary clause showing a tactic or strategy’s input and output.

This enables us to use the Prolog-based meta-interpretive learner Metagol to learn

definitions for proof strategies based on example proofs encoded in this way. We

discuss how tactics and goals are encoded before showing how the two can be com-

bined to form a proof strategy, then discuss the metarules which must be specified

to guide Metagol’s learning.

Using these rules and an example proof we illustrate how Metagol would go

about learning a proof strategy. We then extend this to cover sets of example proofs

in propositional logic and in group theory, using Metagol to learn a strategy from

each. We introduce the concept of the branching factor σ, which is used to evaluate

the quality of the strategies learned. We compare the average value of σ for the

strategies learned with increasing time limits on Metagol, enabling us to see the

effects of increasing the size of a strategy on branching.

Learning about proof strategies consists of two distinct but connected problems:

learning about the structure of the strategy and learning definitions for the goal

types it features. Handling these problems simultaneously impacts on the quality

of the solutions Metagol finds, as it cannot distinguish between clauses which repre-

sent tactics, those which represent goal type information and those which represent

previously learned strategies. In order to address this and improve the quality of
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solution we introduce a typing system to Metagol. By doing so we force Metagol to

distinguish between the different clauses, reducing the number of potential solutions

it can find and thus reducing branching. Re-learning strategies from the same set

of proofs as before shows a reduction in σ compared to the untyped results.

We also consider the concept of dependent learning, where previously learned

definitions are reused by Metagol in the solution to its current problem. In this case

this means learning sub-strategies from part of a proof which can then be combined

to find a strategy to describe the whole proof. We test this for both untyped and

typed examples, finding that the use of dependent learning decreases the difference

in mean values of σ for the two drastically. However, we still find that typed learning

produces better results when larger strategies are brought into consideration.

Goal types are a key part of any strategy, and we investigate different ways

of learning them using Metagol. Initially we provide definitions explicitly in the

background information. These must be given by the user however, and this has its

drawbacks. Instead we extend the set of metarules we use to include rules which

describe the structure of a goal type. We illustrate how Metagol would use these to

find a goal type before repeating our experiments again, this time allowing Metagol

to use the new rules to find its own goal type definitions. The results show similar

values of σ as before, although interestingly untyped learning gives better solutions

with larger strategies.

Learning goal types in this way is still dependent on the user, as the metarules

they provide will guide Metagol towards a specific shape for the solution. Instead

we introduce a minimal set of metarules from which others can be derived, allowing

Metagol to construct goal types in the most appropriate way based on the back-

ground information provided. However, when we repeat the experiments we find

no solutions. By manually constructing a solution in the same way Metagol would,

we find that this is due to this set of rules resulting in solutions which are much

larger than before and which cannot be broken down any further using dependent

learning.

9.2 Conclusions

The research presented here demonstrates that the use of meta-interpretive learning

is a viable approach to learning about proof strategies, but that further work is

needed to refine the way in which we use it. We have had some success with limited

examples, and the next steps should be to test Metagol with more complex problems.

Recall our objectives from chapter 1:

(i) To develop a representation for proofs and proof strategies which is compatible

with Metagol and which captures all the necessary information.
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(ii) To demonstrate that Metagol can successfully find definitions for proof strate-

gies from a small number of proofs

(iii) To use Metagol to find definitions for goal types based on the goal information

provided

We conside these objectives individually:

9.2.1 Representation

There are two stages to (i): design and implementation. We have achieved both,

however there is scope for further improvement in each area.

We were able to use existing work with Metagol as a starting point

for designing our representation. Previous work included many examples of

clauses describing relationships between two objects, e.g. mother(alice, bob).

These relationships are analogous to the relationships between different

goals within a proof, both at a low level within the theorem prover

(tactic applied(input goal, resulting subgoal) and at the higher level which can

be described using PSGraph (proof strategy(input goal, resulting subgoal). Us-

ing unary clauses to describe a particular property of an object enabled us to

capture simple, high-level descriptions of the goal types required by PSGraph.

Metagol’s metarules enabled us to combine these to specify conditions which

need to be satisfied before applying a proof strategy: strategy(input, result) ←
condition(input), tactic(input, output).

By basing our representation on these existing building blocks we have been able

to demonstrate not only that Metagol can be used effectively in a previously unseen

field, i.e. theorem proving, but also that it can be expanded to accept more than two

arguments. The extra arguments have made it possible to take the first steps into

adding a typing system to Metagol, which enabled us to meet our other objectives.

In terms of implementation we have developed a system which automates the

process of describing a proof using these binary clauses. Integrating this fully as

part of making the whole system a closed loop would be a consideration for future

work, but as it stands we are able to generate suitable background information for

Metagol to use.

The binary representation has, however, proved to be something of a limiting

factor when working with more complex goals. We have shown various examples

of a detailed goal being broken down into its constituent parts and a goal type

definition being successfully learned from it, but the limitations of using only two

terms at a time to describe it mean that the learning process becomes significantly

more complicated. As discussed in Chapter 8, this will be a limiting factor when

working with larger goals.

116



Chapter 9: Conclusions & Future Work

9.2.2 Learning From a Small Number of Proofs

In terms of objective (ii), we have demonstrated that it is possible for Metagol to

learn a reusable strategy from as little as one example proof. However, there are

caveats to this.

The first is that not every example proof proved to be suitable for learning

from. This was mainly due to the complexity of the proof, in that larger and

more complicated proofs could not be learned in sufficient time to meet our criteria.

Simpler proofs could be learned and indeed reused in later problems.

Our results in this area were improved in two ways. Firstly, the addition of types

helped narrow the search space and thus speed up the learning process. It also

ensured that previous results could be correctly applied to new problems. Second,

the use of explicit dependent learning improved strategy reuse. At this point in our

experiments we were not only learning a strategy to describe the whole proof but

also sub-strategies to describe steps within it. It was these sub-strategies which were

most often reused in other problems.

9.2.3 Learning Goal Type Definitions

Despite mixed results here, we feel that demonstrating that a goal type definition

(and thus the reasoning behind why a tactic should be applied) can be learned is

the biggest contribution of this thesis. As a result we believe that this is the area

on which any future work should be focussed.

Our first attempts at learning high-level goal types were successful, with the

types learned being used properly by Metagol in learned strategy definitions. As

we progressed to look at more detailed and complex goal types, however, it became

apparent that we were limited by the way in which we were representing them.

As discussed above and in previous chapters, increasing the complexity of the goal

type greatly increases the search space and therefore the time taken to learn a

definition. Experiments using a minimal set of rules proved unsuccessful, even when

incorporating dependent learning, as the solutions were too large for Metagol to

process.

However, we still believe that this has been an important contribution. Previous

attempts at learning about proof have not been able to capture the reasoning behind

tactic application while the PSGraph strategy language relies on manual definition of

the goal types it depends on. By using Metagol to find definitions of these goal types

(albeit in a limited way) we have demonstrated that it is possible to bridge the gap

between the two. Going forward this will have the biggest impact on the outcome

of any attempt to automate the translation of a strategy into a proof, regardless

of the prover. Even our straightforward representation using only a symbol and

comparing hypotheses and conclusions offers significantly more for a third-party to
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utilise than the basic notation used in chapters 4 and 5 and being able to learn

definitions utilising this information helps distinguish this work from others and do

more than invent new tactics.

9.3 Future Work

We have already mentioned in §7.3 some potential future work, namely integration

of higher-order metarules in order to better facilitate learning complex strategies

such as one to describe rippling. However, the most obvious area for future work,

based on the experiments carried out so far, is in goal type learning. Going forward

we would like to continue with the minimal set of metarules. The alternative is to

provided metarules for every possible goal type definition before starting learning,

which leaves the results hugely dependent on the user’s interpretation of the data.

We explained in Chapter 6 how typing is unnecessary when using the minimal set,

but we may revisit this in an attempt to address the problem of solution size.

Alternatively, we could introduce an additional rule to the set which captures some

common patterns in the clauses they produce. Although this would mean it was

no longer strictly speaking a “minimal” set, eliminating some of the steps from

the process would lead to smaller definitions and thus perhaps mean Metagol can

find them. In conjunction with dependent learning, Metagol may then be able to

find strategy definitions. However, given the number of dependent learning steps

required, this would still be a long process.

Assuming success in learning goal types, there is also potential for case study

work in further areas. Proof strategies are designed to capture proofs at an abstract

level without being overly-burdened by technical details, meaning there is potential

for a strategy learned from a proof in one field to be applied to a problem in a

completely different field. Although it would require a high level of abstraction and

the target goal would obviously still have to satisfy the conditions for the strategy

to be applied, this sort of reuse is one of the more interesting potential applications

for a learned strategy.

In order to better test any strategies in the future, and indeed those discussed

earlier in this thesis, work must be done in order to complete the integration of

Metagol into the theorem prover. Currently we can automatically translate a proof

into Prolog before running Metagol and finding a strategy, but we cannot automat-

ically test the strategy. Instead we must manually asses it by following the steps of

a proof and deciding if the strategy could have generated the corresponding proof

tree. Completing this integration would make it much more practical to increase

the size of our example set, as the time taken to assess each strategy found against

all of the available examples is considerable. Furthermore, such manual checking is

open to human error.
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Further integration could be achieved by making the whole process a closed loop.

After the translation step in the process Metagol must be started manually, before

the results are interpreted by hand as described above. In addition to translating

the strategies back, we would like the whole process to be run from the theorem

prover via a minimal number of commands. The downside to this, however, is that

it would require further integration with a single theorem prover. While our work

so far has been restricted to proofs constructed in Isabelle, ideally we would like

to learn strategies from proofs built using other provers. If we were to automate

the process further, our translator would need to become a stand-alone tool which

could work with the output from any prover rather than an extension to Isabelle as

it currently is. This would make strategies obtained by meta-interpretive learning

much more accessible, greatly increasing their potential uses.
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Proofs of the Propositional Logic

Lemmas

Below are the proofs of the lemmas used in the examples in §4-6, listed in Fig. 4.8.
The proofs are written for the Isabelle prover using its procedural style. The tactics
used in the proofs are defined as follows:

notI : (A =⇒ False) =⇒ ¬A
notE : [[¬A;A]] =⇒ B
conjI : [[A;B]] =⇒ A ∧B
conjE : [[A ∧B; [[A;B]] =⇒ C]] =⇒ C
disjI1 : A =⇒ A ∨B
disjI2 : A =⇒ B ∨ A
disjE : [[A ∨B;A =⇒ C;B =⇒ C]] =⇒ C
impI : (A =⇒ B) =⇒ A −→ B
impE : [[A −→ B;A;B =⇒ C]] =⇒ C

modusponens : [[A −→ B;A]] =⇒ B
iffI : [[A =⇒ B;B =⇒ A]] =⇒ A = B
iffE : [[A = B; [[A −→ B;B −→ A]] =⇒ C]] =⇒ C

classical : (¬A =⇒ A) =⇒ A

For completeness we re-list the lemmas here:
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A : A −→ B −→ A
B : A ∨B −→ B ∨ A
C : A −→ ¬¬A
D : (A ∨ A) = (A ∧ A)
E : A −→ A
F : A ∨ ¬A
G : ¬¬A −→ A
H : A ∧B −→ B ∧ A
I : (A −→ B −→ C) −→ (A −→ B) −→ A −→ C
J : ((A −→ B) −→ A) −→ A
K : (A ∧B) −→ (A ∨B)
L : (A −→ B) −→ (B −→ C) −→ A −→ C
M : (¬A −→ B) −→ (¬B −→ A)
N : (¬(A ∧B)) = (¬A ∨ ¬B)
O : ((A ∨B) ∨ C) −→ A ∨ (B ∨ C)

The proofs are as follows31:

lemma A:

lemma A −→ B −→ A
apply (rule impI)+
apply assumption

done

lemma B:

lemma A ∨B −→ B ∨ A
apply (rule impI)
apply (erule disjE)
apply (rule disjI2)
apply assumption
apply (rule disjI1)
apply assumption

done

lemma C:

lemma A −→ ¬¬A
apply (rule impI)
apply (rule notI)
apply (erule notE)
apply assumption

done

31A “+” following a tactic indicates that the tactic should be applied repeatedly for as long as
there is a valid subgoal to apply it to. When this follows multiple tactics in parentheses the tactics
should be repeatedly applied in that order. Note that without visual inspection of open subgoals
and an understanding of how the tactic interacts with them, it is not obvious how many times the
tactic should be repeated. This is one of the issues addressed by using PSGraph in this work.
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lemma D:

lemma (A ∨ A) = (A ∧ A)
apply (rule iffI)
apply (erule disjE)
apply (rule conjI)
apply assumption+
apply (rule conjI)
apply assumption+
apply (erule conjE)
apply (rule disjI1)
apply assumption

done

lemma E:

lemma A −→ A
apply (rule impI)
apply assumption

done

lemma F:

lemma A ∨ ¬A
apply (rule classical)
apply (rule disjI2)
apply (rule notI)
apply (erule notE)
apply (rule disjI1)
apply assumption

done

lemma G:

lemma ¬¬A −→ A
apply (rule impI)
apply (rule classical)
apply (erule notE)
apply assumption

done

lemma H:

lemma A ∧B −→ B ∧ A
apply (rule impI)
apply (erule conjE)
apply (rule conjI)
apply assumption
apply assumption

done
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lemma I:

lemma (A −→ B −→ C) −→ (A −→ B) −→ A −→ C
apply (rule impI)+
apply (erule impE)
apply assumption
apply (erule impE)
apply assumption
apply (erule impE)
apply assumption+

done

lemma J:

lemma ((A −→ B) −→ A) −→ A
apply (rule impI)+
apply (rule classical)
apply (erule impE)
apply (rule impI)
apply (erule notE, assumption)+

done

lemma K:

lemma (A ∧B) −→ (A ∨B)
apply (rule impI)
apply (erule conjE)
apply (rule disjI1)
apply assumption

done

lemma L:

lemma (A −→ B) −→ (B −→ C) −→ A −→ C
apply (rule impI)
apply (rule impI)
apply (rule impI)
apply (erule impE)
apply assumption
apply (erule impE)
apply assumption
apply assumption

done

lemma M:
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lemma (¬A −→ B) −→ (¬B −→ A)
apply (rule impI)+
apply (rule classical)
apply (erule impE)
apply assumption
apply (erule notE)
apply assumption

done

lemma N:

lemma (¬(A ∧B)) = (¬A ∨ ¬B)
apply (rule iffI)
apply (rule classical)
apply (erule notE)
apply (rule conjI)
apply (rule classical)
apply (erule notE)
apply (rule disjI1)
apply assumption
apply (rule classical)
apply (erule notE)
apply (rule disjI2)
apply assumption
apply (rule notI)
apply (erule conjE)
apply (erule disjE)
apply (erule notE, assumption)+

done

lemma O:

lemma ((A ∨B) ∨ C) −→ A ∨ (B ∨ C)
apply (rule impI)
apply (erule disjE)
apply (erule disjE)
apply (rule disjI1)
apply assumption
apply (rule disjI2)
apply (rule disjI1)
apply assumption
apply (rule disjI2)
apply (rule disjI2)
apply assumption

done
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Proofs of the Group Theory

Lemmas

Below are the proofs of the group theory lemmas listed in Fig. 4.12. As in Appendix
A, we use Isabelle’s procedural style. The proofs are based on the three axioms of
group theory: that a group has an identity element e (ax1 ); that the group operation
∗∗ is associative (ax2 ); that each element in the group also has an inverse in the
group such that performing the group operation on both returns the identity (ax3 ).

ax1 : e ∗ ∗a = a
ax2 : (a ∗ ∗b) ∗ ∗c = a ∗ ∗(b ∗ ∗c)
ax3 : a-1 ∗ ∗a = e

Again for completeness we re-state the lemmas:

A : e = (a-1)-1 ∗ ∗a-1
B : a ∗ ∗a-1 = e
C : a ∗ ∗e = a
D : e ∗ ∗a = a ∗ ∗e
E : a ∗ ∗a-1 = a-1 ∗ ∗a
F : g ∗ ∗a = e =⇒ g = a-1

G : en = e
H : gn ∗ ∗gm = g(n + m)

I : g(n + m) = g(m + n)

J : gm
n

= gn
m

K : gn ∗ ∗g = gn + 1

The proofs are as follows32 :

lemma A:

32We denote a-1 as inv a and gn as gexp g n (for “inverse” and “group exponention” respectively)
as this is the notation most suitable for the theorem prover. We also add the sym annotation to
lemmas to which we apply Isabelle’s symmetric modifier to swap the left and right-hand sides of
the expression.
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lemma aux1: e = inv (inv a) ** inv a
apply (subst ax3)
apply (rule refl)

done

lemma B:

lemma inv rev: a ** inv a = e
apply (subst ax3 sym)
apply (subst ax1 sym)
apply (subst aux1)
apply (subst ax2)
apply (subst ax3)
apply (subst ax3)
apply (subst ax2)
apply (subst ax1)
apply (subst ax3)
apply (rule refl)

done

lemma C:

lemma id rev: a ** e = a
apply (subst ax3 sym)
apply (subst ax2 sym)
apply (subst inv rev)
apply (rule ax1)

done

lemma D:

lemma id comm: e ** a = a ** e
apply (subst id rev)
apply (rule ax1)

done

lemma E:

lemma inv comm: a ** inv a = inv a ** a
apply (subst ax3)
apply (subst ax1 sym)
apply (subst ax2)
apply (subst inv rev)
apply (rule ax1)

done

lemma F:

126



Appendix B. Proofs of the Group Theory Lemmas

lemma inv unique: assumes inv1:l ** a = e shows l = inv a
apply (subst id rev sym)
apply (subst inv rev sym)
apply (subst ax2 sym)
apply (metis ax1 ax2 sym ax3 sym inv1)

done

lemma G:

lemma gexp id: gexp e n = e
apply (induct n)
apply (subst gexp.simps)
apply (rule refl)
apply (subst gexp.simps)
apply (metis ax1)

done

lemma H:

lemma gexp order plus: gexp g n ** gexp g m = gexp g (n + m)
apply (induct m)
apply (subst gexp.simps)
apply (subst add 0 right)
apply (metis ax1 ax2 sym ax3 sym)
apply (metis add Suc right ax2 sym gexp.simps(2))

done

lemma I:

lemma gexp order plus comm: gexp g (n + m) = gexp g (m + n)
apply (subst nat add commute)
apply (rule refl)

done

lemma J:

lemma gexp order mult: gexp (gexp g m) n = gexp g (m * n)
apply (induct n)
apply (subst gexp.simps)
apply (subst mult 0 right)
apply (subst gexp.simps)
apply (rule refl)
apply (subst gexp.simps)
apply (subst mult Suc right)
apply (simp only: gexp order plus)
apply (simp only: gexp order plus comm)

done

lemma K:
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lemma gexp order Suc: gexp g n ** g = gexp g (Suc n)
apply (induct n)
apply (subst gexp.simps)
apply (subst gexp.simps)
apply (subst ax1)
apply (subst gexp.simps)
apply (subst ax1)
apply (rule refl)
apply (subst gexp.simps)
apply (subst gexp.simps)
apply (subst gexp.simps)
apply (rule refl)

done
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Metagol Output for the Running

Example

Throughout this thesis we use the lemma (A −→ B) −→ (B −→ C) −→ A −→ C
as a running example of a lemma for which a proof strategy can be found. In §8.4 we
discuss how we could translate the results of applying Metagol to this problem back
into an Isabelle proof. For completeness the clauses learned by Metagol are provided
here. Dependent learning was used, with Metagol asked to learn a definition for
each possible sub-strategy. Only goal types and tactic applications were provided
as background information.
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step l1 1(A,B) ← impI type(A), rule impI(A,B).
step l1 2(A,B) ← impI type(A), step l1 1(A,B).
step l1 3(A,B) ← impI type(A), step l1 2(A,B).
step l1 4a(A,B) ← impE type(A), erule impE(A,B).
step l1 4b(A,B) ← impE type(A), step l1 4a(A,B).
step l1 5(A,B) ← assm type(A), assumption(A,B).
step l1 6a(A,B) ← impE type(A), step l1 4b(A,B).
step l1 6b(A,B) ← impE type(A), step l1 6a(A,B).
step l1 7(A,B) ← assm type(A), step l1 5(A,B).
step l1 8(A,B) ← assm type(A), step l1 7(A,B).

step l2 1(A,B) ← step l1 3(A,C), step l1 3(C,B).
step l2 2(A,B) ← impI type(A), step l2 1(A,B).
step l2 3a(A,B) ← step l1 3(A,C), step l1 6b(C,B).
step l2 3b(A,B) ← impI type(A), step l2 3a(A,B).
step l2 4a(A,B) ← step l1 6b(A,C), step l1 8(C,B).
step l2 4b(A,B) ← step l1 6b(A,C), step l1 6b(C,B).
step l2 4c(A,B) ← impE type(A), step l2 4b(A,B).
step l2 5a(A,B) ← impE type(A), step l2 4a(A,B).
step l2 5b(A,B) ← impE type(A), step l2 5a(A,B).

step l3 1(A,B) ← step l2 2(A,C), step l1 3(C,B).
step l3 2a(A,B) ← step l2 2(A,C), step l1 6b(C,B).
step l3 2b(A,B) ← impI type(A), step l3 2a(A,B).
step l3 3a(A,B) ← step l2 3b(A,C), step l1 8(C,B).
step l3 3b(A,B) ← step l2 3b(A,C), step l1 6b(C,B).
step l3 3c(A,B) ← impI type(A), step l3 3b(A,B).
step l3 4a(A,B) ← step l2 4c(A,C), step l1 8(C,B).
step l3 4b(A,B) ← impE type(A), step l3 4a(A,B).

step l4 1a(A,B) ← step l3 1(A,C), step l1 6b(C,B).
step l4 1b(A,B) ← impI type(A), step l4 1a(A,B).
step l4 2a(A,B) ← step l3 2b(A,C), step l1 8(C,B).
step l4 2b(A,B) ← step l3 2b(A,C), step l1 6b(C,B).
step l4 2c(A,B) ← impI type(A), step l4 2b(A,B).
step l4 3a(A,B) ← step l3 3c(A,C), step l1 8(C,B).
step l4 3b(A,B) ← impI type(A), step l4 3a(A,B).

step l5 1a(A,B) ← step l4 1b(A,C), step l1 8(C,B).
step l5 1b(A,B) ← step l4 1b(A,C), step l1 6b(C,B).
step l5 1c(A,B) ← impI type(A), step l5 1b(A,B).
step l5 2a(A,B) ← step l4 2c(A,C), step l1 8(C,B).
step l5 2b(A,B) ← impI type(A), step l5 2a(A,B).

step l6 1a(A,B) ← step l5 1c(A,C), step l1 8(C,B).
step l6 1b(A,B) ← impI type(A), step l6 1a(A,B).

strat l(A,B) ← impI type(A), step l5 1a(A,B).
strat l(A,B) ← impI type(A), step l6 1b(A,B).
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Number of Strategies Learned

After Varying Time Periods

In §4.6 we discuss the reasoning behind the time intervals chosen for our exper-
iments. Here we show graphs of the number of strategies learned for the untyped
propositional logic examples for reference and compare them with the results for
both propositional and group theory examples when extended run times are consid-
ered.
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Figure D.1: Number of strategies learned per time interval for untyped propositional
logic experiments
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Figure D.2: Number of strategies learned per time interval for untyped propositional
logic experiments – extended run times
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Figure D.3: Number of strategies learned per time interval for untyped group theory
experiments – extended run times
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