
PHYSICAL REVIEW A 107, 032428 (2023)

Quantum kernel methods for solving regression problems and differential equations

Annie E. Paine ,1,2 Vincent E. Elfving ,1 and Oleksandr Kyriienko 1,2

1PASQAL SAS, 2 av. Augustin Fresnel, 91120 Palaiseau, France
2Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, United Kingdom

(Received 4 November 2022; revised 28 February 2023; accepted 7 March 2023; published 31 March 2023)

We propose several approaches for solving regression problems and differential equations (DEs) with quantum
kernel methods. We compose quantum models as weighted sums of kernel functions, where variables are
encoded using feature maps and model derivatives are represented using automatic differentiation of quantum
circuits. While previously quantum kernel methods primarily targeted classification tasks, here we consider
their applicability to regression tasks, based on available data and differential constraints. We use two strategies
to approach these problems. First, we devise a mixed model regression with a trial solution represented by
kernel-based functions, which is trained to minimize a loss for specific differential constraints or datasets.
Second, we use support vector regression that accounts for the structure of differential equations. The developed
methods are capable of solving both linear and nonlinear systems. Contrary to prevailing hybrid variational
approaches for parametrized quantum circuits, we perform training of the weights of the model classically.
Under certain conditions this corresponds to a convex optimization problem, which can be solved with provable
convergence to global optimum of the model. The proposed approaches also favor hardware implementations,
as optimization only uses evaluated Gram matrices, but require a quadratic number of function evaluations.
We highlight trade-offs when comparing our methods to those based on variational quantum circuits such as
the recently proposed differentiable quantum circuits approach. The proposed methods offer potential quantum
enhancement through the rich kernel representations using the power of quantum feature maps, and start the
quest towards provably trainable quantum DE solvers.

DOI: 10.1103/PhysRevA.107.032428

I. INTRODUCTION

Solvers of differential equations (DEs) are essential for all
areas of science [1,2]. These include fluid dynamics, ecology,
finance, medical science, and many more. While some simple
instances of differential equations can be solved analytically,
in majority of cases numerical solvers are required. Existing
numerical methods heavily rely on finite differencing methods
on finely discretized grids [3]. Other classical methods in-
clude global spectral methods which effectively fit a function
basis set to the differential equation problem considered [4].
Classical numerical solvers often suffer from instabilities that
emerge in highly nonlinear systems. Another problem is the
curse of dimensionality caused by an increase of grid for
multidimensional systems. Thus, developing new techniques
to solve DEs remains a hot area of contemporary research
[5] and increasingly requires new computational architectures
[6,7].

Quantum computing offers advantages in performing
certain computational tasks [8–10]. Enabled by quantum prin-
ciples, the use of superposition and entanglement can lead
to fundamentally different scaling for quantum algorithms

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

as compared to classical approaches [11]. One example is
for solving linear systems of equations [9], and quantum
speed-up of matrix-vector multiplication [12]. When us-
ing finite-differencing, this translates directly to associated
systems of DEs [13–18]. However, previously described tech-
niques rely on large-scale implementation of quantum phase
estimation, and require resource overheads that render their
implementation infeasible in foreseeable future [19]. This
prompts the development of different approaches that can po-
tentially help solving nonlinear DEs with near-term devices.

Recently, rapid improvement of quantum computing hard-
ware has called for algorithms that can operate in the noisy
regime [20]. In this case the hybrid quantum-classical work-
flow is often used. One possibility is to formulate a problem
such that solution can be searched variationally [21], where
parameterized quantum circuits play a role similar to deep
neural networks in classical machine learning (ML). This
approach was coined as a quantum machine learning (QML)
[22–24] and has triggered the development of various ML
protocols for quantum hardware [25–34]. Variational ap-
proaches were also used for describing quantum evolution
[35,36] and linear algebra [37–39]. In the field of nonlinear
differential equations variational algorithms were used to-
gether with amplitude encoding [40], where multiple quantum
registers are required for encoding nonlinearity. Alterna-
tively nonlinear systems have been discretized, such that they
are linearized and then solved by matrix inversion methods
[41]. Another approach was proposed in [42], in which a

2469-9926/2023/107(3)/032428(13) 032428-1 Published by the American Physical Society

https://orcid.org/0000-0003-4573-5126
https://orcid.org/0000-0002-5105-5664
https://orcid.org/0000-0002-6259-6570
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.107.032428&domain=pdf&date_stamp=2023-03-31
https://doi.org/10.1103/PhysRevA.107.032428
https://creativecommons.org/licenses/by/4.0/

PAINE, ELFVING, AND KYRIIENKO PHYSICAL REVIEW A 107, 032428 (2023)

QML-type workflow is used. There a DE solution is rep-
resented by a differentiable quantum circuit (DQC), with
nonlinear dependence being introduced via feature map en-
coding [43] and cost function based readout, while function
derivatives are introduced with automatic circuit differentia-
tion [25,44]. Similar solutions were developed for continuous
variable QML [45], stochastic differential equations [46], and
generative modeling [47,48].

Another facet of quantum machine learning was revealed
when formulating models in terms of kernel functions—
similarity functions that define a distance between two data
points [24,49]. The core concept of kernel methods is the so-
called “kernel trick” that maps data into a high-dimensional
space [50]. Kernel methods are frequently used in classi-
cal machine learning, and aim to rewrite the ML task as a
convex optimization problem [51]. In the quantum domain,
kernel functions are conveniently defined as overlaps between
parametrized quantum states that represent data [24,49] or any
similar measure [52]. It was conjectured that many supervised
QML models can be considered as kernel methods that are
well suited to near-term devices [53]. Currently these meth-
ods have mainly been considered for classification purposes
[54,55].

In this paper, we propose to use quantum kernel methods
for regression problems, including solvers of nonlinear differ-
ential equations [56]. In classical ML kernel methods are used
for support vector regression (SVR) [57], where the kernel
trick and convex optimization lead to expressive and provably
trainable models. Kernel methods can also be applied to solve
differential equations [58–60], while being limited by the
expressivity of classical kernels. We describe two approaches
that express solutions of DEs as quantum kernel-based mod-
els, and describe the rules for their automatic differentiation.
We refer to the two as mixed model regression (MMR) and
support vector regression (SVR) protocols. The protocols are
applied to test problems of regression on quantum data, linear
DEs, and nonlinear DEs in the form of the Duffing equa-
tion [61]. We discuss the cases where the proposed workflow
for DEs may provide advantage over existing methods.

II. QUANTUM KERNEL METHODS

We start by introducing the concept of a quantum kernel
function. A kernel function is a conjugate-symmetric posi-
tive definite function κ mapping two variables x, y ∈ X to
the complex space, κ:X × X → C. Quantum kernel function
refers to a function which fulfils the requirements of a kernel
function and can be evaluated by a quantum computer. An
important result concerning kernel functions is known as the
kernel trick. The kernel trick relies on the fact that any kernel
function can be written as an inner product in a potentially
high-dimensional feature space, κ (x, y) = ϕ†(x)ϕ(y). Con-
versely ϕ†(x)ϕ(y) always represents a valid kernel function.
This is a consequence of Mercers theorem. Informally, it
corresponds to the statement that for any symmetric posi-
tive definite function f (s, t) there exists a countable set of
functions {φi}i such that f (s, t) can be expressed as f (s, t) =∑

i φi(s)φi(t) [62]. An example of a quantum kernel function
is an overlap κ (x, y) = 〈ψ (x)|ψ (y)〉 where |ψ (x)〉 denotes a
state encoded by the variable x. This is an inner product which

fulfils the requirements of a kernel function. Later we will
consider other forms of the quantum kernel function, showing
how to encode the variable into the state and how to evaluate
the kernel.

Our goal is to use the quantum kernel functions to solve
regression problems and differential equations. We consider
two main methods—mixed model regression (MMR) and
support vector regression (SVR). Let us first consider using
these methods to solve data-driven regression problems. This
is a simpler case than solving differential equations yet still
requires representing a solution function via quantum kernel
functions, and can be built upon to solve differential equa-
tions. For this regression problem we have a set of values
{xi, fi}i and we want to find a function f (x) that fits these
points such that fi = f (xi). We consider how both MMR and
SVR approach the described problem.

A. MMR

When using the mixed model regression we represent a
trial function as

fα (x) = b +
|y|∑
i=1

αiκ (x, yi), (1)

where y = {yi}i is a set of evaluation points, |y| denotes
the size of set y, and α = {αi}i and b are tunable, classical
coefficients. We then choose a loss function corresponding
to the problem such as L(α) = ∑|x|

i=1[fα (xi) − fi]2. The loss
function is chosen such that when optimized with respect to
α and b the corresponding fα solves the problem. There are
multiple different valid loss functions for a given problem;
we have used mean square error (MSE) for our loss function.
The loss function requires the evaluation of { fα (xi)}i, which in
turn requires the evaluation of {κ (xi, y j)}i, j . These evaluations
are independent of α—the variable which is adjusted during
optimization. This means that the kernel function will only
need to be evaluated once for each point in {xi, y j}i, j at the
start of the optimization procedure. Any suitable optimization
method may be used to optimize L(α). We can also see that
the considered loss function is convex.

We consider the general case L(α) = ∑|x|
i=1 L(xi; α)2 with

L being a linear function of α, and represents a measure of
how well the current trial function solves the problem at a
training point. A sufficient condition for convexity of the loss
function is ∂2L/∂α2

j � 0 everywhere for all α j ∈ α. We can
write the second-order derivatives as

∂2L
∂α2

j

=
|x|∑
i=1

[
2

(
∂L

∂α j

)2

+ L
∂2L

∂α2
j

]
(2)

=
|x|∑
i=1

2

(
∂L

∂α j

)2

� 0, (3)

where passing from Eq. (2) to Eq. (3) we use the linearity of
L in α. When a loss function is convex its minimum is global,
and there are bounds on convergence for various optimization
methods [63].

The workflow to solve an MMR problem is as follows:
(1) Choose setup for training, including the kernel function,

optimizer, x, y.
(2) Identify the loss function for problem considered.

032428-2

QUANTUM KERNEL METHODS FOR SOLVING REGRESSION … PHYSICAL REVIEW A 107, 032428 (2023)

(3) Calculate set of kernel function evaluated over x ⊗ y.
(4) Optimize the loss function.
Once the model is trained, we can also evaluate it at a grid

of points different from the training grid, learning the solution
in the full domain of x.

B. SVR

For support vector regression we represent a trial function
as f (x) = w†ϕ(x) + b, where w and b are tunable parameters,
and ϕ(x) is a set of functions we later use the kernel trick
upon. The first step is to write the problem as a primal (origi-
nal) optimization model. This reads

minw,b{wT w + γ eT e}, (4)

subject to fi = wT ϕ(xi) + b + ei, i = 1:N, (5)

where e is the set of error variables which relax the constraints
fi = wT ϕ(xi) + b + ei, and γ is a tunable hyperparameter that
changes the emphasis on minimizing the error.

The process that follows is to write the model in its La-
grangian form, introducing a set of variables (known as dual
variables) to implement each constraint. The Karush-Kuhn-
Tucker (KKT) optimality conditions are then found, which
emerge from equating the first derivative of the Lagrangian
with respect to each of the primal and dual variables to zero
[64]. These conditions are then used to eliminate a subset
of the primal variables. This can intuitively be understood as
turning the variable into a constraint. This leads to a system of
equations which have terms of ϕ(xi)T ϕ(x j), and by using the
kernel trick these terms can be changed to κ (xi, x j). Now the
problem is written in a dual form as a system of equations to
solve with coefficients involving kernel evaluations. Similar to
the MMR method these have to be evaluated once at the start.
The resulting system of equations is[

	̂ + Î/γ 1
1T 0

][
α

b

]
=

[
f
0

]
, (6)

where 	i, j = κ (xi, x j), 	̂ = {	i, j}i, j , and α are a set of in-
troduced dual variables. The system of equations can now be
solved with any available method to solve such a problem.
Once solved the relevant KKT conditions can be substituted
into the expression f (x; α) = w†ϕ(x) + b, and the kernel trick
applied to get an expression for f (x) in terms of the dual
variables, which have been solved for, and kernel evaluations.
We thus write our model as

f (x; α) =
|x|∑
i=1

αiκ (x, xi) + b. (7)

Although we started considering ϕ as our fitting functions,
the resulting function of this process is based on kernel eval-
uations, and we never need knowledge of what ϕ are or to
directly evaluate them.

The workflow to prepare an SVR problem is as follows:
(1) Write model with minimization function and con-

straints.
(2) Write out the Lagrangian.
(3) Find the KKT optimality conditions.
(4) Eliminate subset of original optimization variables.

(5) Use the kernel trick to realize problem in terms of
kernel functions.

(6) Write out remaining relationships as a system of equa-
tions.

(7) Use KKT conditions and kernel trick to express func-
tion in terms of kernel functions.

In Appendix A this process is worked through in more
detail for a specific (DE) example. The prepared SVR model
can then be used for any problem of the form assumed in
preparing the original model. The workflow for solving an
SVR problem is as follows:

(1) Choose setup for training, including the kernel func-
tion, system of equations solver, x, γ .

(2) Identify suitable SVR model for the problem consid-
ered.

(3) Calculate set of kernel function evaluated over x ⊗ x.
(4) Solve system of equations.
We also note that the SVR method results in a form of prob-

lem that can still be considered as an optimization problem to
be solved with an optimizer. The system of equations Ax = b
can be translated into the loss function L(x) = ∑

i[(Ax)i −
bi]2. Here we use MSE loss but other forms can be employed.
This formulation can be especially useful when considering
problems resulting in nonlinear systems of equations.

Comparing the MMR and the SVR methods we note that
the solving workflows for the two are similar. Namely, we
choose a setup, identify what to solve based on method and
problem, calculate the set of kernel function evaluations, and
solve the model identified in step two. However, identifying
the model for the SVR method is a more involved process.

Both MMR and SVR result in a function approximation
to the solution of the problem considered. For regression this
is Eq. (1) and Eq. (7), respectively. These two functions look
very similar with the difference being the kernel evaluation
at yi for MMR versus xi for SVR. This is a consequence
of using the kernel trick when formulating the SVR model,
which necessarily results in y = x. Also to be highlighted
is that the form of Eq. (7) depends on the problem consid-
ered. For example, later we see that when solving differential
equations, evaluations of the kernel derivative are involved in
the function expression. However, for MMR the form of the
model remains the same no matter what problem considered.

One benefit of using the MMR model is the simpler identi-
fying of the model to solve. Another is the convexity when
considering certain problems. The benefit of SVR is that
when linear the resulting system of equations to solve is also
linear and thus has deterministic solution. Furthermore, the
initial trial function is in terms of ϕ which can be of higher
dimensionality than the kernel function yet never needs to be
evaluated directly.

III. QUANTUM KERNEL FUNCTION EVALUATION

We now look further into the specifics of quantum kernel
functions. In particular, we consider their structure, where
feature maps encode dependence on a variable into a state.
We also consider how to evaluate them and their derivatives.
Earlier we mentioned a quantum kernel function of the form
κ (x, y) = 〈ψ (x)|ψ (y)〉, being an inner product that is gener-
ally complex for quantum states. In the following, we consider

032428-3

PAINE, ELFVING, AND KYRIIENKO PHYSICAL REVIEW A 107, 032428 (2023)

FIG. 1. Circuit diagram showing a general form of function
encoding circuit U (x) used to implement quantum kernel. This is
formed by layers of static circuits Vi and data re-uploading circuits
Uφi (x) parametrized by x.

κ (x, y) = |〈ψ (x)|ψ (y)〉|2 as an absolute value squared of the
overlap. This also corresponds to a valid kernel function [53].
We consider this kernel function as it is real valued—an ad-
vantage when expressing real-valued functions.

A. Encoding

The kernel functions we consider contain states |x〉, which
are encoded by a classical variable x. To create such states we
use feature map encoding, where x is embedded into the state
by parametrizing gates preparing the state, |ψ (x)〉 = U (x)|0〉.
A simple example of U (x) is the product feature map Uφ (x) =⊗N

j=1 Rα, j[φ(x)], where Rα, j[φ(x)] is rotation on qubit j of
angle φ(x) about a Pauli operator α. Other more complicated
feature map encodings can be considered. The generalization
may include the re-uploading technique [65] where action of
feature maps can be layered with (nonvariational) entangling
circuits, U (x) = UφM (x)VM · · ·V2Uφ1 (x)V1 (see Fig. 1). This
layered form terminates with a circuit encoded by a variable
as a final entangling circuit cancels out for kernels based on
U†(x)U (y). As with many variational algorithms, when choos-
ing feature maps it is important to have a map expressible
enough to represent the solution to the problem while also
being trainable [66].

B. Evaluation

We now discuss how to implement the quantum kernel
function κ (x, y) = |〈ψ (x)|ψ (y)〉|2. One way is to use the co-
herent SWAP test [67,68]. This test requires 2N + 1 qubits,
where N is the number of qubits used to express |ψ (x)〉.
|ψ (x)〉 and |ψ (y)〉 are both prepared on separate registers.
Using Hadamards gates and controlled operations an ancillary
qubit can then be measured to read |〈ψ (x)|ψ (y)〉|2. The circuit
diagram is shown in Fig. 2(b).

We can also employ other methods. For this, we use the
fact that the kernel evaluation can be written as

|〈ψ (x)|ψ (y)〉|2 = 〈0|U†(y)U (x)|0〉〈0|U†(x)U (y)|0〉. (8)

The measurement in Eq. (8) can be implemented naively by
the circuit in Fig. 2(a). The circuit is initialized in the zero
state. Then U (y) is applied, followed by U†(x). The probabil-
ity of remaining in the zero state and consequently the kernel
function value is then calculated by measuring all qubits and
finding the ratio of times |0〉 is measured.

Another possible implementation is two evaluations of the
Hadamard test with N + 1 qubits as shown in Fig. 2(c) [69].
This can be used to evaluate the real and imaginary parts of
〈0|U†(x)U (y)|0〉 which can then be used to evaluate the kernel
as Re(〈0|U†(x)U (y)|0〉)2 + Im(〈0|U†(x)U (y)|0〉)2.

FIG. 2. Circuit diagrams for evaluating the kernel κ (x, y) =
|〈ψ (x)|ψ (y)〉|2, where in all circuits U and H represent the ker-
nel feature map and the Hadamard gate, respectively. (a) Naive
kernel evaluation based on consecutive application of U circuits,
followed by measuring each qubit. The kernel value is inferred
from a probability of returning to the initial state. (b) SWAP test
measuring |〈ψ (x)|ψ (y)〉|2. The controlled SWAP onto the size 2N
register is composed of qubitwise controlled SWAP on the nth
qubit pair, repeated for n ∈ 1 : N . (c) Hadamard test measuring
Re(〈0|U†(x)U (y)|0〉) and Im(〈0|U†(x)U (y)|0〉) for b = 0 and b = 1,
respectively. S denotes the phase gate, exp(−IπZ/4).

C. Derivatives

As our goal is to solve differential equations, we need
to be able to evaluate derivatives of the kernel function. We
introduce notation for the derivatives as follows:

∇m
n κ (x, y) = ∂m+nκ (x, y)

∂xn∂ym
. (9)

To implement derivative evaluation, one way is to consider
the kernel as written in Eq. (8) and the parameter shift rule
[25,44]. While different variations of the parameter shift rule
exist, in a simple form quantum model and its derivative can
be written as

f (x) = 〈0|U†(x)CU (x)|0〉, (10)

∂x f (x) =
n∑

j=1

[f (x + π/2 j) − f (x − π/2 j)]/2, (11)

where C is a measurement operator, n is the number of x-
dependent gates in U (x), and f (x ± π/2 j) denotes f (x) being
evaluated with the jth gate parametrized by x shifted by

032428-4

QUANTUM KERNEL METHODS FOR SOLVING REGRESSION … PHYSICAL REVIEW A 107, 032428 (2023)

FIG. 3. Circuit diagrams used for evaluation of derivatives.
(a) Generic circuit for differentiating kernels shown in
Fig. 2(a) where a parameter shift rule is used. Depending on
which derivative is calculated, gates parametrized by x and/or y
have their parameters shifted up and down (shown by hj and hk).
Contributions from all parametrized gates are then summed for
overall derivative. (b) Using the Hadamard test for evaluation of the
overlap 〈0|dn/dxnU†

k (x)dm/dymU j (y)|0〉, where k and j index over
which gates with x and/or y as parameters are differentiated. When
b = 0 and b = 1 are used the real and imaginary part is evaluated. By
summing over j, k the full overlap 〈0|dn/dxnU†(x)dm/dymU (y)|0〉
can be evaluated. These overlaps can then be used to evaluate kernel
derivatives.

±π/2. The parameter shift rule can be implemented multiple
times to calculate higher order derivatives.

With this method we take the kernel evaluation method
as in Fig. 2(a) but shift x and y up and down depending
on what derivative is being calculated in each gate that they
parametrize. For example, for the first-order derivative with
respect to x the number of evaluations of Fig. 3(a) is 2n.
Using the parameter shift rule means we calculate the analytic
derivative though it does place some requirements on the gates
parametrized by x and y such as being involutory. Generalized
parameter shift rules are possible, where such requirements
are relaxed [70–74].

We can also implement derivatives via the Hadamard test.
First, we note the form of the first-order derivative of the
kernel in x by using the product rule in Eq. (8) as

∂

∂x
κ (x, y) = 〈0|U†(y)d/dx[U (x)]|0〉〈0|U†(x)U (y)|0〉

+ 〈0|U†(y)U (x)|0〉〈0|d/dx[U†(x)]U (y)|0〉,
(12)

and thus we can evaluate this derivative by evaluating
〈0|U†(y)d/dx[U (x)]|0〉 and 〈0|U†(x)U (y)|0〉 (real and imagi-
nary parts). The second term can be evaluated the same as for
evaluating the kernel shown in Fig. 2(b), and calculations can
be reused because the derivatives are evaluated over the same
set of points as the kernel itself. To calculate the first term a
modified Hadamard test can be used.

For such a modification we consider the gen-
eralized layered form of kernel encoding U (x) =
UφM (x)VM · · ·V2Uφ1 (x)V1 with each feature map being
Uφ j (x) = exp[−iG jφ j (x)]. For this case the derivative
reads U ′(x) = ∑M

j=1 UM: j+1Uφ j (−iG j)φ′
j (x)V jU j−1:1 with

U j:k = Uφ j (x)V jUφ j−1 (x) · · ·Uφk (x)Vk . We can now assume
that the generators G j are unitary. When G j are unitary we
can calculate each overlap term in the derivative expansion
with two Hadamard tests. However, if this is not the case, one
can decompose them into sums of unitary terms and evaluate
them separately with increased number of Hadamard tests
[44].

Once the procedure for evaluating derivatives has been es-
tablished, we generalize to higher-order derivatives. By using
the product rule in Eq. (8) whatever derivative is required,
one can express it as sums of products of overlaps with U (x)
and U (y) differentiated to different orders. These overlaps can
be calculated with two (when generators are unitary) overlap
tests for each gate with x and/or y as a parameter (see Fig. 3).
These overlap evaluations can be reused for calculating differ-
ent derivatives where the same overlap occurs.

IV. SOLVING DIFFERENTIAL EQUATIONS

In the following section, we collect the described tools for
model and derivative evaluations, and apply them to solve
differential equations. While there are many possible choices,
we start by considering a simple class given by the differential
constraint

DE(x, f , df /dx) = df

dx
− g(x, f) = 0, (13)

with initial condition f (x0) = f0, and g a smooth function of
x and f which in general can be nonlinear in either of those
arguments. We now use both MMR and SVR to solve this type
of DEs in the following subsections.

A. MMR

When solving DEs of the type (13) via MMR,
we choose a loss function of the form L(α) =∑|x|

i=1{DE[xi, fα (xi), dfα/dx(xi)]}2 + (fα (x0) − f0)2. We re-
mind that the trial function reads fα (x) = b + ∑|y|

i=1 αiκ (x, yi).
Therefore, kernels κ and their derivatives ∇0

1κ are evaluated
over {xi, y j}i, j , leading to corresponding fα and dfα/dx
evaluations. These values are independent of α, and need to be
evaluated only once at the start, then being reused throughout
optimization. The loss function can then be optimized via
any appropriate optimizer for getting optimal weights αopt.
The resulting function is then a suitable approximation to the
solution of the differential equation, mainly being limited by
expressivity of the model and generalization bounds.

When the differential equation is linear [i.e., g is linear in
f in Eq. (13)] the considered loss function is convex. This
is true when the differential equation is linear and fα (and
consequently f ′

α) is linear in α, meaning we are in the situation
as described by Eq. (3). When the differential equation is
nonlinear this is not necessarily the case. In order to determine
that one needs to check for the convexity of the loss function.
One possibility is a numerical check by sampling the second
derivatives of the loss with respect to the optimizable param-
eters at many locations. If this value is ever negative then the
problem is nonconvex.

032428-5

PAINE, ELFVING, AND KYRIIENKO PHYSICAL REVIEW A 107, 032428 (2023)

B. SVR

When considering solving DEs with support vector re-
gression, the formulation of the problem changes depending
on the form of differential equation considered [58–60]. The
steps for the problem formulation, however, remain the same:
state a model, write out the Lagrangian, find KKT optimality
conditions, eliminate the subset of prime variables by using
the KKT conditions, use the kernel trick, and finally write out
remaining equations in matrix form.

We follow the SVR formulation procedure for problems
of the form DE(x, f , df /dx) = df /dx − g(x, f) = 0 with
initial condition f (x0) = f0. We provide further details in
Appendix A, and here provide the resulting set of equations in
the matrix form:⎡

⎢⎢⎢⎢⎢⎣

	̃1
1 	1

0 h1
0 0 0̂

	0
1 	̃0

0 h0
0 1 −Î

hT 0
1 hT 0

0 h̃ 1 0T

0T 1T 1 0 0T

D̂ Î 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

α

η

β

b
y

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

g̃
0
f0

0
0̂

⎤
⎥⎥⎥⎥⎦. (14)

Here we introduced dummy variables yi. η and β are dual vari-
ables introduced along with α corresponding to the dummy
variable constraint and the initial variable constraint, respec-
tively. The remaining notation is as follows:[

	m
n

]
i, j

= ∇m
n κ (x j, xi), (15)

	̃m
n = 	m

n + Î/γ , (16)[
hm

n

]
i
= ∇m

n κ (x0, xi), (17)

h̃ = κ (x0, x0), (18)

D̂ = diag

({
∂g

∂ f
(xi, yi)

}
i

)
, (19)

[g̃]i = g(xi, yi). (20)

We now have a set of generally nonlinear equations, which
can be solved for finding a vector of optimized weights.
By substituting the relevant KKT optimality conditions into
f (x; α) = w†ϕ(x) + b and employing the kernel trick, we get
an expression for f in terms of kernel functions

f (x) =
|x|∑
i=1

αi∇0
1κ (xi, x) +

|x|∑
i=1

ηiκ (xi, x) + βκ (x0, x) + b,

(21)

where optimized variables (weights) are used. Note that if the
differential equation is linear, the dummy variable constraints
of yi are not required. This leads to a system of linear equa-
tions with lower dimension.

C. Other forms of DEs

Many practical problems are not of the form
DE(x, f , df /dx) = df /dx − g(x, f) = 0 as considered
above. For instance, they may include terms of higher
order, higher dimension, or indeed many other different
variations. When considering the MMR method, one
can readily generalize to any other form of DE simply

relying on generalized optimization. For this, a suitable loss
function needs to be formulated for the chosen equation.
Additionally, we shall be able to evaluate each term of the
differential equation. For systems of DEs the overall loss
becomes the sum of the loss of each individual differential
equation within the system. For PDEs with domains of more
than one dimension, the kernel function can be considered as
κ (x, y) = |〈0|U†(x)U (y)|0〉|2, where the feature maps now
encode a vector of domain variables. The simplest form is
U (x) = U (x1)U (x2) · · ·U (xM) with M = |x|.

When the SVR method is used, the considered problem
needs to be formulated into the SVR form, resulting in a
different form of matrix equation. Higher order derivative
SVRs [58,60] and SVRs for PDEs [59] are possible, as well
as their generalizations for systems of differential equations.
An example of solving a second-order differential equation is
presented within the following results section.

V. RESULTS

Having established quantum kernel approaches for solving
DEs and learning from data, we apply them to specific prob-
lems and show the results.

A. Regression on quantum data

We start by considering the case of regression. We generate
a quantum dataset that corresponds to dynamics of total mag-
netization of a biased honeycomb Kitaev model [75,76]. The
Hamiltonian of the system reads

H = J

⎛
⎝ ∑

〈i, j〉∈X
XiXj +

∑
〈i, j〉∈Y

YiYj +
∑

〈i, j〉∈Z
ZiZ j

⎞
⎠

+ hz

N∑
j=1

Zj, (22)

where X , Y , Z are sets of bonds. We choose antiferromag-
netic coupling and set hz/J = 0.2. Specifically, we simulate
nonequilibrium effects by performing time evolution of Mz =∑

j Z j/N for N = 12 qubits on a lattice with periodic bound-
ary conditions [77], starting from the uniform initial state. The
choice of a quantum dataset with strong magnetic correlations
may be especially suitable for kernel-based regression, given
recent advances in learning from experiments [78]. Choosing
a subset of evolved magnetization values labeled by x values
(here corresponding to time), we proceed to perform MMR.

When implementing the MMR method we consider x with
51 values of x between 1 and 10, associated to the data,
and y = x. We use and compare the results from a classical
kernel and a quantum kernel. The classical kernel used is a
commonly used radial basis function (RBF) kernel κ (x, y) =
exp [−(x − y)2/(2σ 2)], with σ being a hyperparameter that
describes a width of the kernel. In calculations we choose σ =
0.2 as that shows favorable performance. For the quantum
kernel, we use layers of depth-five hardware-efficient ansatz
(HEA) and feature maps based on parametrized X rotations,
Rx[φ(x)], acting on each qubit. We set φ(x) = qx/2, where
q is the qubit index, and consider a register of eight qubits.
For the loss function MSE is used with a pinned boundary

032428-6

QUANTUM KERNEL METHODS FOR SOLVING REGRESSION … PHYSICAL REVIEW A 107, 032428 (2023)

FIG. 4. MMR and SVR used to solve a regression problem. Data
to fit are for time-evolved magnetization of a biased honeycomb
Kitaev model. (a) Solution via SVR method for quantum kernel with
two layers and N = 8 shown by dashed purple line. Data plotted as
solid light blue curve with points used for training highlighted with
green circles. (b) Error between results and underlying data plotted
over x as [f (x) − fdata (x)], and we normalize data by the range of
magnetization values. Error plotted for result shown in (a) and SVR
method with classical RBF kernel with σ = 0.2. Also plotted results
from MMR method with same kernels considered. Newton optimizer
with just three epochs is used for MMR method. (c) Loss value over
epoch number plotted for MMR results shown in (a) and (b).

formulation (see [42] for the details of boundary handling).
The loss function for data regression is convex and is opti-
mized via Newton’s method. In this case just three epochs
is enough for converging to low loss values. We model the
system with full state simulation using the Julia’s package
Yao.jl [79]. The error of the results of this are shown in
Fig. 4(b) with associated loss in Fig. 4(c). As can be seen, both
kernel types are able to closely approximate the considered
function. Moreover, we note that for complicated quantum
data coming from spin-spin correlation one can benefit from
specifically designed quantum kernels that account for the
structure of the problem.

When implementing the SVR method, we use the same
points x, kernel functions and simulation package. The result-
ing SVR system of equations to solve for this form of problem
is as shown in Eq. (6). The results of this with the quantum
kernel are shown in Fig. 4(a). The error of the results is shown
in Fig. 4(b). It can be seen that both kernel types are able to

closely approximate the considered function, and that SVR
outperforms the MMR method.

B. Linear DEs

Next, we consider solvers of linear differential equations.
In particular, we solve the equation

df

dx
= −λκ f − λexp(−λκx)sin(λx), (23)

where parameters are chosen as λ = 20 and κ = 0.1, along
with initial condition f (0) = 1. The analytic solution to the
differential equation (23) is fsol(x) = exp(−λκx)cos(λx), a
fading oscillatory function.

When implementing the MMR method we consider x and y
of 21 points uniformly spaced over [0,1]. We use and compare
the results from a classical RBF kernel with σ = 0.2 and a
quantum kernel with two layers of HEA circuits (depth equal
to five) followed by feature map of Rx[φ(x)] on each qubit
with φ(x) = qx/2, where q is the qubit index. We consider
eight qubits in the register. For the loss function MSE is used
with a pinned boundary. This loss function is convex, as the
DE is linear, and is optimized via Newton’s method. The error
of the results is shown in Fig. 5(b) with corresponding loss
in Fig. 5(c). As can be seen both kernel types are able to
closely approximate the considered function with the error
less than 0.002 in magnitude, the quantum kernel slightly
outperforms the classical kernel although we did not further
explore hyperparameter optimization.

When implementing the SVR method, we use the same x
and kernel functions. The corresponding SVR system of equa-
tions to solve for a problem of form df /dx + g(x) f + r(x) =
0 reads⎡

⎣ M̂ h0
1 − D̂h0

0 g
(h0

1 − D̂h0
0)T h̃0

0 1
gT 1 0

⎤
⎦

⎡
⎣α

β

b

⎤
⎦ =

⎡
⎣ r̃

f0

0

⎤
⎦, (24)

where the notation is as follows:[
	m

n

]
i, j = ∇m

n κ (x j, xi), (25)

	̃m
n = 	m

n + I/γ , (26)[
hm

n

]
i = ∇m

n κ (x0, xi), (27)

h̃m
n = κ (x0, x0)m

n , (28)

D̂ = diag[{g(xi)}i], (29)

[g̃]i = g(xi), (30)

[r̃]i = r(xi), (31)

M̂ = 	1
1 − 	0

1D̂ − D̂	1
0 + D̂	̃0

0D̂. (32)

We choose γ = 105 and this system is then solved with
Julia’s built-in matrix-defined linear equation solver. The
error of these results is shown in Fig. 5(b), with the result
from using the quantum kernel shown explicitly in Fig. 5(a).
Again it can be seen that both kernel types are able to closely
approximate the considered function, though not as closely as

032428-7

PAINE, ELFVING, AND KYRIIENKO PHYSICAL REVIEW A 107, 032428 (2023)

FIG. 5. MMR and SVR used to solve a linear differential equa-
tion (23). λ = 20, κ = 0.1, and f (0) = 1. (a) Solution via SVR
method for quantum kernel with two layers and N = 8 shown by a
dashed purple line. Known analytic solution plotted with a solid light
blue line. (b) Error between results and analytic solution plotted over
x as [f (x) − fsol (x)]/range(fsol). Error plotted for result shown in
(a) and SVR method with classical RBF kernel with σ = 0.2. Plotted
results from MMR method with same kernels are also considered.
Newton optimizer with 100 epochs used for MMR method. (c) Loss
value over epoch number plotted for MMR results shown in (a) and
(b).

the MMR method, with the quantum kernel outperforming the
classical kernel. In Appendix B we present the comparison
of the results of solving this equation with a set of different
kernel functions.

C. Solving nonlinear DEs

We now move on to consider solving nonlinear differential
equations. As an example we choose the Duffing equation in
the absence of damping term given by [61]

d2 f (x)

dx2
= c cos(ex) − a f − b f 3, (33)

where f (x) is a solution in one dimension, a, b, c and e
are constants. We note that as the problem in Eq. (33) is
nonlinear, it is not guaranteed that the MMR method stated
as an optimization problem is going lead to a convex problem.
This may affect the ease of convergence for the MMR method.
Furthermore the SVR method does not result in a determin-
istic linear problem; instead it results in a nonlinear problem,
which can be solved with optimization methods. First, we con-
sider a = 0.5, c = 3, e = 3π and have b, which controls the

FIG. 6. Convergence behavior of learning solution to the un-
damped Duffing equation problem, d2 f

dx2 = 3 cos(3πx) − 0.5 f − b f 3,
with increasing nonlinearity controlled by b. In (a) we plot of per-
centage of runs which result in convergence (loss less than 10−10)
as a function of b. In (b) we show an average number of iterations of
the runs that converged in (a) vs value of b. Mean is shown with solid
dark blue line; the interquartile range (IQR) is shown with light blue
shading.

nonlinear contribution, increasing from 0 to 0.15. This allows
testing the convergence for optimization as the nonlinearity of
the problem increases. We increase b in increments of 0.001.
For each value we use an SVR method repeated 100 times
to solve the problem with a different random set of initial
variables.

We detail the hyperparameters and setup of the simulation
as follows. A quantum kernel over five qubits is used of form
of two layers of HEA depth five followed by feature map
based on Rx(φ(x)) on each qubit with φ(x) = qx/2, where q is
the qubit index. Training occurs over 13 uniformly separated
points between zero and one with initial value condition of
y = 1 and dy/dx = 1 at x = 0. The Newton method is chosen
for optimization and γ is set as 105. The simulation is imple-
mented the same as for the linear case.

These results are shown in Fig. 6, where we label a trial
as converged if the error for the kernel-based solution is close
to machine precision (loss less than 10−10). For each value
b we plot the percentage of convergence as 100Nconv/Ntot

with Nconv the number of converged trials and Ntot the total
number of trials. We observe that as the degree of nonlinearity
increases, the percentage of initialization states which result
in convergence decreases, changing from 100% at b = 0 to
around 45% at b = 0.15. Furthermore the number of epochs
required for convergence also increases as b increases from a
mean of 5 to around 9000. We stress that the cost here is on
classical optimization, and that additional training does not
require extra quantum resources.

Figure 6 demonstrates one particular situation, and the
convergence may be specific to the choice of setup. However,
we find that the observed behavior of gradually decreasing
convergence and increasing number of epochs at increasing
nonlinearity is the general trend. Unless specific optimization
routines are developed, kernel methods shall be more suited
for problems with limited nonlinearity. We also stress that

032428-8

QUANTUM KERNEL METHODS FOR SOLVING REGRESSION … PHYSICAL REVIEW A 107, 032428 (2023)

FIG. 7. Kernel-based solution and error for solving the instance
of nonlinear Duffing equation [Eq. (33)]. We set a = 0.5, b =
0.15, c = 3, e = 3π . (a) Solution via SVR method for quantum ker-
nel with two layers, φ(x) = qx/2 and N = 5 shown by a dashed
purple line. Known analytic solution plotted with a solid light blue
line. (b) Error between results and analytic solution plotted over x as
[f (x) − fsol (x)]/range(fsol). Error plotted for result shown in (a) and
SVR method with classical RBF kernel with σ = 0.8. Also plotted
results from MMR method with same form of kernels considered
with σ = 0.8, φ(x) = 2qx/5 and N = 8. Newton optimizer used for
MMR and SVR methods.

the procedure does lead to a close to perfect solution (we see
abrupt decrease of loss), justifying the cost for rerunning the
optimization. In the future we plan to investigate optimizers
and kernel forms that may exploit this feature.

We also show the results from applying SVR and MMR
with both quantum kernel and classical RBF kernel with b =
0.15 in Fig. 7. The quantum kernel used is as used in Fig. 6,
though with an alteration to φ(x) = 2qx/5 and eight qubits for
the MMR case. The classical kernel used is RBF with σ = 0.2
for MMR and σ = 0.8 for SVR. For all methods training oc-
curs over 13 uniformly separated points between zero and one
with initial value condition of y = 1 and dy/dx = 1 at x = 0.
Newton’s method is used for optimization. The solution for
the SVR method is shown in Fig. 7(a), closely matching the
exact f (x). We can also see that for the nonlinear Duffing
equation example for all methods the error is minimal at x = 0
[see Fig. 7(b)] where the initial value is set. The magnitude
of error increases with x. We see that the combination of
a quantum kernel with classical SVR processing shows the
best performance. However, we note that this required the
most iterations for convergence, and one to one comparison
of budgets is not straightforward. To have optimal behavior,
we consider that further work for optimal choice of kernel
functions and hyperparameters is required.

VI. DISCUSSION AND CONCLUSION

In this work, we proposed quantum protocols for solv-
ing differential equation with kernel methods. We represent
potential solutions as quantum models that are based on

weighted sums of kernel functions, corresponding to overlaps
of quantum states. The adjustable weights are optimized such
that for many problems the optimization is convex, leading
to fast convergence to the potential solution. Specifically, we
propose two approaches, mixed model regression (MMR) and
support vector regression (SVR), where optimization work-
flow is different. An important element of our approach is
the automatic differentiation of quantum kernels with re-
spect to encoded feature variables using quantum circuit
differentiation. We applied both MMR and SVR for several
toy problems. First, we presented regression for a quantum
dataset, corresponding to nonequilibrium dynamics of quan-
tum spin liquids. In this case, the use of quantum kernels
may offer advantage, as native quantum operations are used.
Second, we solve linear DEs, showing that nontrivial solutions
can be routinely found with few epochs. Finally, applying
our approaches to some nonlinear problems, the optimization
becomes nonconvex, thus requiring largely increased number
of epochs. At the same time, we note that by kernelizing
quantum models we modify the landscape of optimization.
This raises the question of convergence difference between
parameterized quantum circuits [80,81] and kernel models.

While this work presents a first step towards quantum
kernel-based differential equation solving, many aspects are
left unexplored. We have observed that as expected the choice
of kernel function is important to receive accurate results but
is not unique. Thus quantum feature map design is one such
aspect, covering how to choose kernel functions appropriately
and could potentially be problem-motivated for each specific
case. Finding conditions for which nonlinear equations are
guaranteed to result in a convex loss landscape is another open
question. Making use of a high-dimensional feature space
without full tomography of the quantum wave function allows
quantum kernel methods to potentially provide tangible ad-
vantage beyond classification.

We note that errors may limit the performance of near-
term devices, often requiring an increase of the number of
evaluations of kernel functions and therefore the circuit mea-
surement budget. In particular we consider the recent work
on the topic of exponential concentration of quantum kernel
methods and its effect on trainability [82]. This work high-
lights that quantum kernels do have to be chosen and used
carefully. If care is not taken the chosen quantum kernel can
concentrate around a specific value leading to a model which
cannot be efficiently evaluated due to an exponential number
of measurements being required. The authors in Ref. [82]
propose guidelines on how to avoid such issues, and further
work in the field is likely to build upon this in the future due
to the effect this has on all kernel function based methods.

Finally, let us discuss the comparison of quantum kernel-
based approaches to solving DEs as compared to those based
on differentiable quantum circuits [42], which in many ways
reflect the difference between classical kernel methods and
deep learning [53]. When considering the training landscape,
kernel methods for regression and linear differential equa-
tion problems have a convex landscape and therefore the
associated training guarantees, differentiable quantum circuit
based methods do not have this feature. When considering
the training stage, kernel methods require evaluating a Gram
matrix of kernels with O(|x|2) points, increasing measurement

032428-9

PAINE, ELFVING, AND KYRIIENKO PHYSICAL REVIEW A 107, 032428 (2023)

budget with the grid size |x| as compared to O(|x|) scaling
of DQC evaluations for the loss function. At the same time,
kernel methods do not rely on additional function evalua-
tions, and optimization is straightforward for both linear and
nonlinear problems. Deep learning instead needs to evaluate
gradients at each iteration, leading to large overhead if the
convergence is slow (for instance, when dealing with barren
plateaus). This is a known trade-off for variational vs non-
variational methods for ground state search [83]. However,
for trainable QML circuits it may be beneficial to do the
iterative training, if the number of points in a dataset |x| is
large. When considering model evaluation (reading out solu-
tion of DEs), kernel methods in principle require evaluating
Gram matrix once again for a different grid, adding another
O(|x|2) computational steps. At the same time, deep learning
and DQC only require evaluating the trained model at points
of interest. Finding the optimum strategy between the two
methods thus becomes crucially dependent on the problem
and available quantum hardware. We expect that future studies
will shed light on cases where one or another is preferred, both
contributing to the emergent field of quantum DE solvers.

APPENDIX A: FORMULATING AN SVR PROBLEM

Here we show how to formulate an SVR problem, pro-
viding more details for the specific example. We consider
the case DE(x, f , df /dx) = df /dx − g(x, f) = 0 with initial
condition f (x0) = f0. We use the model formulated as f (x) =
w†ϕ(x) + b.

As a first step, the problem needs to be written in primal
SVR model form,

minw,bw†w + γ eT e + γ ξT ξ, (A1)

subject to wT ϕ′(xi) − g(xi, yi) = ei i = 1:N, (A2)

wT φ(x0) + b = f0, (A3)

yi = wT ϕ(xi) + b + ξi i = 1:N. (A4)

Here the minimization function is such that the magnitude of
w, e, and ξ are minimized, with w being the set of fitting
coefficients. e and ξ are the errors in the constraints. Mini-
mizing this function one finds the smallest w that fulfils the
constraints with smallest possible error. Finding the smallest
possible w is a form of regularisation helping prevent overfit-
ting. γ is a tunable hyperparameter which dictates how much
emphasis is placed on error reduction.

The constraints correspond to the differential equation at
each point xi, the initial condition and introduced dummy
variables yi = f (xi) + ξi, respectively. The dummy variables
are introduced to reflect the nonlinearity of the problem.

The second step is to find the Lagrangian of the model.
This corresponds to the minimization function minus each of
the constraints, preceded by a variable coefficient:

L =1

2
wT w + γ

2
eT e + γ

2
ξT ξ (A5)

−
N∑

i=1

αi[wT ϕ′(xi) − g(xi, yi) − ei] (A6)

− β[wT ϕ(x0) + b − f0] (A7)

−
N∑

i=1

ηi[wT ϕ(xi) + b + ξi − yi]. (A8)

The introduced variables α, ν, and β are referred to as dual
variables.

The next step is to calculate the KKT conditions. These are
found by equating to zero the derivatives of the Lagrangian
with respect to each of its variables, both primal and dual,
(w, b, e, ξ, y,α, β, η). The derivatives read

∂L
∂w

= w −
∑

i

[αiϕ
′(xi) + ηiϕ(xi)] − βϕ(x0) = 0, (A9)

∂L
∂b

= −β −
∑

i

ηi = 0, (A10)

∂L
∂ei

= γ ei + αi = 0, (A11)

∂L
∂ξi

= γ ξi − ηi = 0, (A12)

∂L
∂yi

= αi
∂g

∂y
(xi, yi) + ηi = 0, (A13)

∂L
∂αi

= −[w†ϕ′(xi) − g(xi, yi) − ei] = 0, (A14)

∂L
∂β

= −[w†ϕ(x0) + b − f0] = 0, (A15)

∂L
∂νi

= −[yi − w†ϕ(xi) − b − ξi] = 0. (A16)

These are a set of 6|x| + 2 equations which necessarily need
to be satisfied for optimality.

These conditions are now used to eliminate a subset of the
primal variables w, e, ξ leaving 3|x| + 2 equations:⎛

⎝∑
j

[α jϕ
′(x j) + ν jϕ(x j)] + βϕ(x0)

⎞
⎠

†

ϕ′(xi) (A17)

−g(xi, yi) + αi/γ = 0, (A18)⎛
⎝∑

j

[α jϕ
′(x j) + ν jϕ(x j)] + βϕ(x0)

⎞
⎠

†

ϕ(x0) (A19)

+b − f0 = 0, (A20)

−
⎛
⎝∑

j

[α jϕ
′(x j) + ν jϕ(x j)] + βϕ(x0)

⎞
⎠

†

ϕ(xi) (A21)

+yi − b − ηi/γ = 0, (A22)∑
i

ηi + β = 0, (A23)

αi
∂g

∂y
(xi, yi) + ηi = 0. (A24)

For these equations we then expand out the brackets and
use the kernel trick, introducing the kernel function κ as
κ (x, y) = ϕ†(x)ϕ(y) and corresponding derivatives. We re-

032428-10

QUANTUM KERNEL METHODS FOR SOLVING REGRESSION … PHYSICAL REVIEW A 107, 032428 (2023)

member that this is a consequence of Mercer’s theorem, given
that ϕ†(x)ϕ(y) is a kernel for any ϕ. Now we are able to write
the resulting equations in matrix form as⎡

⎢⎢⎢⎢⎢⎣

	̃1
1 	1

0 h1
0 0 0̂

	0
1 	̃0

0 h0
0 1 −Î

hT 0
1 hT 0

0 h̃ 1 0T

0T 1T 1 0 0T

D̂ Î 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

α

η

β

b
y

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

g̃
0
f0

0
0̂

⎤
⎥⎥⎥⎥⎦, (A25)

where the notation is as follows:[
	m

n

]
i, j = ∇m

n κ (x j, xi), (A26)

	̃m
n = 	m

n + Î/γ , (A27)[
hm

n

]
i = ∇m

n κ (x0, xi), (A28)

h̃ = κ (x0, x0), (A29)

D̂ = diag

({
∂g

∂ f
(xi, yi)

}
i

)
, (A30)

[g̃]i = g(xi, yi). (A31)

We now have a set of nonlinear equations that can be solved
for a set of variables, representing solution to the original
stated problem. These equations are written in terms of κ ,
and not ϕ. Also note that these equations are true for any
valid kernel function, and we can choose our kernel function
freely. We need not know what the corresponding ϕ are, we
simply know from Mercer’s theorem that such functions exist.
Therefore the formulation of these equations (in particular the
use of the kernel trick to introduce the kernel) is valid.

The remaining step is to write f (x) = w†ϕ(x) + b in a
form that is instead dependent on the variables solved for. We
find it to be

f (x) =
|x|∑
i=1

αi∇0
1κ (xi, x) +

|x|∑
i=1

ηiκ (xi, x) + βκ (x0, x) + b,

(A32)

by using the w KKT condition and then the kernel trick. We
have now formulated an SVR method for the form of problem
considered.

APPENDIX B: KERNEL COMPARISON

We show how different quantum kernel functions perform
in comparison to one another when solving the same problem
with the same hyperparameters. We solve the linear differen-
tial equation presented in Eq. (23). Below we list the kernel
functions we compare by label. The kernel functions are de-
fined over N = 8 qubits with varying generators that include
the following:

(1) 1L-prod: A single layered product feature map with
|ψ (x)〉 = U (x)V|0〉 where V is a HEA of depth five with
randomized parameters which are set throughout training and
U (x) = �N

j=1R j
X (x).

(2) 1L-tower: A single layered tower feature map with
|ψ (x)〉 = U (x)V|0〉 where V is a HEA of depth five with

FIG. 8. Comparison of the results of solving (23) with different
kernel functions (kernel functions described in above list). MMR
method is used with N = 8, 21 training and evaluation points uni-
formly distributed between 0 and 0.99 and the Newton method is
used for optimization. (a) Solutions from two layered kernels plotted
with dashed lines. The known analytic solution is shown with a
solid line. (b) The absolute normalized error of the solutions from
different kernel functions plotted against x. The error is calculated as
abs{[f (x) − fsol (x)]/range(fsol)}.

randomized parameters which are set throughout training and
U (x) = �N

j=1R j
X (jx).

(3) 1L-cheb: A single layered Chebyshev feature map with
|ψ (x)〉 = U (x)V|0〉 where V is a HEA of depth five with
randomized parameters which are set throughout training and
U (x) = �N

j=1R j
X [jarccos(x)].

(4) 2L-prod: A two-layer product feature map with
|ψ (x)〉 = U (x)V2U (x)V1|0〉 where V1,2 are HEAs of depth
five with randomized parameters which are set throughout
training and U (x) = �N

j=1R j
X (x).

(5) 2L-tower: A two-layer tower feature map with
|ψ (x)〉 = U (x)V2U (x)V1|0〉 where V1,2 are HEAs of depth
five with randomized parameters which are set throughout
training and U (x) = �N

j=1R j
X (jx).

(6) 2L-cheb: A two-layer Chebyshev feature map with
|ψ (x)〉 = U (x)V2U (x)V1|0〉 where V1/2 are HEAs of depth
five with randomized parameters which are set throughout
training and U (x) = �N

j=1R j
X [jarccos(x)].

For describing the feature maps, we use terminology as is
introduced in Ref. [42], with a product feature map referring
to one where the same gate is applied to each qubit for the gen-
erator, and a tower where rotational gates have a dependence
on qubit number.

First, we solve this differential equation with the MMR
method with 21 training and evaluation points uniformly dis-
tributed between 0 and 0.99. An MSE loss function is used
with a boundary loss term, and the kernel functions used are
described as above. The Newton method is used for opti-
mization. The results are shown in Fig. 8. In Fig. 8(a) we
can see that of the 2L kernel functions the Chebyshev kernel
function performed the best over the majority of the region
but oscillated near the boundary with one. This is a known

032428-11

PAINE, ELFVING, AND KYRIIENKO PHYSICAL REVIEW A 107, 032428 (2023)

FIG. 9. Comparison of the results of solving (23) with different
kernel functions (kernel functions described in above list). MVR
method is used with N = 8, 21 training points uniformly distributed
between 0 and 0.99 and γ = 109. (a) Solutions from two layered
kernels plotted with dashed lines. The known analytic solution is
shown with a solid line. (b) The absolute normalized error of the
solutions from different kernel functions plotted against x. The error
is calculated as abs{[f (x) − fsol (x)]/range(fsol)}.

behavior of Chebyshev functions and can be ameliorated by
transforming the training region to avoid the boundary or with

use of Chebyshev training nodes. 2L-tower performs well
throughout whilst 2L-prod captures the general shape but does
not quite match the peaks and troughs. This potentially cor-
responds to the reduced expressivity, in comparison to other
feature maps. In Fig. 8(b) we see the normalized absolute
error of the results. We can see that the 1L kernel functions
contain the best and worst performing of the set with 1L-tower
and 1L-prod respectively. At the same time, the 2L kernel
functions show a comparatively similar behavior.

We then solve the same problem with the same set of
kernel functions with the SVR method. The training points
are uniformly distributed between 0 and 0.99, and we use
γ = 109. The results are shown in Fig. 9. In Fig. 9(a) we can
see that both 2L-tower and 2L-cheb performed well and again
2L-prod captured the overall shape but does not exactly match
the known solution. Similarly to the MMR case, Fig. 9(b)
shows that the 2L kernels again contain the best and worst
performing kernel functions and that Chebyshev kernel again
exhibits strong oscillations near the boundary with one.

We highlight that these results are one example of the
methods being applied to one problem with a particular set
up, and therefore guaranteed conclusions cannot be drawn
from them. However, in general we observe that the choice
of kernel functions is important to receive good results and
that methods to find kernel functions suitable for a chosen
problem will be important for the future of kernel methods.
We also observe that many kernel functions are likely to
have similar performance—sufficiently good results can be
obtained without having to find the “perfect” kernel function.

[1] G. F. Simmons, Differential Equations with Applications and
Historical Notes (CRC Press, New York, 2016).

[2] E. C. Zachmanoglou and D. W. Thoe, Introduction to Partial
Differential Equations with Applications (Courier Corporation,
University of Michigan, 1986).

[3] G. D. Smith, Numerical Solution of Partial Differential Equa-
tions: Finite Difference Methods (Oxford University Press,
Oxford, 1985).

[4] J. P. Boyd, Chebyshev and Fourier Spectral Methods (Courier
Corporation, Heidelberg, 2001).

[5] C. Rackauckas and Q. Nie, J. Open Res. Softw. 5, 15 (2017).
[6] C. Rackauckas, M. Innes, Y. Ma, J. Bettencourt, L. White, and

V. Dixit, arXiv:1902.02376.
[7] S. Cai, Z. Mao, Z. Wang, M. Yin, and G. E. Karniadakis, Acta

Mech. Sinica 37, 1727 (2021).
[8] P. W. Shor, in Proceedings 35th Annual Symposium on Founda-

tions of Computer Science (IEEE, 1994), pp. 124–134.
[9] A. W. Harrow, A. Hassidim, and S. Lloyd, Phys. Rev. Lett. 103,

150502 (2009).
[10] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R.

Barends, R. Biswas, S. Boixo, F. G. S. L. Brandao, D. A. Buell
et al., Nature (London) 574, 505 (2019).

[11] M. A. Nielsen and I. L. Chuang, Quantum Computation
and Quantum Information (Cambridge University Press, Cam-
bridge, 2000).

[12] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe,
and S. Lloyd, Nature (London) 549, 195 (2017).

[13] S. K. Leyton and T. J. Osborne, arXiv:0812.4423.
[14] D. W. Berry, A. M. Childs, A. Ostrander, and G. Wang,

Commun. Math. Phys. 356, 1057 (2017).
[15] S. Lloyd, G. D. Palma, C. Gokler, B. Kiani, Z.-W. Liu, M.

Marvian, F. Tennie, and T. Palmer, arXiv:2011.06571.
[16] J.-P. Liu, H. Øie Kolden, H. K. Krovi, N. F. Loureiro, K.

Trivisa, and A. M. Childs, Proc. Natl. Acad. Sci. USA 118,
e2026805118 (2021).

[17] S. Jin and N. Liu, arXiv:2202.07834.
[18] N. Linden, A. Montanaro, and C. Shao, Commun. Math. Phys.

395, 601 (2022).
[19] A. Scherer, B. Valiron, S.-C. Mau, S. Alexander, E. van den

Berg, and T. E. Chapuran, Quant. Info. Proc. 16, 60 (2017).
[20] K. Bharti, A. Cervera-Lierta, T. H. Kyaw, T. Haug, S. Alperin-

Lea, A. Anand, M. Degroote, H. Heimonen, J. S. Kottmann, T.
Menke et al., Rev. Mod. Phys. 94, 015004 (2022).

[21] M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo,
K. Fujii, J. R. McClean, K. Mitarai, X. Yuan, L. Cincio et al.,
Nat. Rev. Phys. 3, 625 (2021).

[22] M. Benedetti, E. Lloyd, S. Sack, and M. Fiorentini, Quantum
Sci. Technol. 4, 043001 (2019).

[23] A. Perdomo-Ortiz, M. Benedetti, J. Realpe-Gómez, and R.
Biswas, Quantum Sci. Technol. 3, 030502 (2018).

[24] M. Schuld and N. Killoran, Phys. Rev. Lett. 122, 040504
(2019).

[25] K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii, Phys. Rev.
A 98, 032309 (2018).

032428-12

https://doi.org/10.5334/jors.151
http://arxiv.org/abs/arXiv:1902.02376
https://doi.org/10.1007/s10409-021-01148-1
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/nature23474
http://arxiv.org/abs/arXiv:0812.4423
https://doi.org/10.1007/s00220-017-3002-y
http://arxiv.org/abs/arXiv:2011.06571
https://doi.org/10.1073/pnas.2026805118
http://arxiv.org/abs/arXiv:2202.07834
https://doi.org/10.1007/s00220-022-04442-6
https://doi.org/10.1007/s11128-016-1495-5
https://doi.org/10.1103/RevModPhys.94.015004
https://doi.org/10.1038/s42254-021-00348-9
https://doi.org/10.1088/2058-9565/ab4eb5
https://doi.org/10.1088/2058-9565/aab859
https://doi.org/10.1103/PhysRevLett.122.040504
https://doi.org/10.1103/PhysRevA.98.032309

QUANTUM KERNEL METHODS FOR SOLVING REGRESSION … PHYSICAL REVIEW A 107, 032428 (2023)

[26] J.-G. Liu and L. Wang, Phys. Rev. A 98, 062324 (2018).
[27] C. Zoufal, A. Lucchi, and S. Woerner, npj Quantum Inf. 5, 103

(2019).
[28] B. Coyle, D. Mills, V. Danos, and E. Kashefi, npj Quantum Inf.

6, 60 (2020).
[29] A. Abbas, D. Sutter, C. Zoufal, A. Lucchi, A. Figalli, and S.

Woerner, Nat. Comput. Sci. 1, 403 (2021).
[30] Y. Du, M.-H. Hsieh, T. Liu, S. You, and D. Tao, PRX Quantum

2, 040337 (2021).
[31] H.-L. Huang, Y. Du, M. Gong, Y. Zhao, Y. Wu, C. Wang, S.

Li, F. Liang, J. Lin, Y. Xu et al., Phys. Rev. Appl. 16, 024051
(2021).

[32] S. Y.-C. Chen, C.-H. H. Yang, J. Qi, P.-Y. Chen, X. Ma, and
H.-S. Goan, IEEE Access 8, 141007 (2020).

[33] S. L. Wu, J. Chan, W. Guan, S. Sun, A. Wang, C. Zhou, M.
Livny, F. Carminati, A. D. Meglio, A. C. Y. Li et al., J. Phys. G:
Nucl. Part. Phys. 48, 125003 (2021).

[34] S. Y.-C. Chen and S. Yoo, Entropy 23, 460 (2021).
[35] S. Endo, J. Sun, Y. Li, S. C. Benjamin, and X. Yuan, Phys. Rev.

Lett. 125, 010501 (2020).
[36] C. Cîrstoiu, Z. Holmes, J. Iosue, L. Cincio, P. J. Coles, and A.

Sornborger, npj Quantum Inf. 6, 82 (2020).
[37] X. Xu, J. Sun, S. Endo, Y. Li, S. C. Benjamin, and X. Yuan, Sci.

Bull. 66, 2181 (2021).
[38] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio,

and P. J. Coles, arXiv:1909.05820.
[39] C.-C. Chen, S.-Y. Shiau, M.-F. Wu, and Y.-R. Wu, Sci. Rep. 9,

16251 (2019).
[40] M. Lubasch, J. Joo, P. Moinier, M. Kiffner, and D. Jaksch, Phys.

Rev. A 101, 010301(R) (2020).
[41] H.-L. Liu, Y.-S. Wu, L.-C. Wan, S.-J. Pan, S.-J. Qin, F. Gao, and

Q.-Y. Wen, Phys. Rev. A 104, 022418 (2021).
[42] O. Kyriienko, A. E. Paine, and V. E. Elfving, Phys. Rev. A 103,

052416 (2021).
[43] M. Schuld, R. Sweke, and J. J. Meyer, Phys. Rev. A 103, 032430

(2021).
[44] M. Schuld, V. Bergholm, C. Gogolin, J. Izaac, and N. Killoran,

Phys. Rev. A 99, 032331 (2019).
[45] M. Knudsen and C. B. Mendl, arXiv:2012.12220.
[46] A. E. Paine, V. E. Elfving, and O. Kyriienko, arXiv:2108.03190.
[47] J. Romero and A. Aspuru-Guzik, Adv. Quantum Technol. 4,

2000003 (2021).
[48] O. Kyriienko, A. E. Paine, and V. E. Elfving, arXiv:2202.08253.
[49] V. Havlíček, A. D. Córcoles, K. Temme, A. W. Harrow, A.

Kandala, J. M. Chow, and J. M. Gambetta, Nature (London)
567, 209 (2019).

[50] N. Ardeshir, C. Sanford, and D. J. Hsu, Adv. Neural Info. Proc.
Syst. 34, 4907 (2021).

[51] S. Y. Kung, Kernel Methods and Machine Learning (Cambridge
University Press, Cambridge, 2014).

[52] H.-Y. Huang, M. Broughton, M. Mohseni, R. Babbush, S.
Boixo, H. Neven, and J. R. McClean, Nat. Commun. 12, 2631
(2021).

[53] M. Schuld, arXiv:2101.11020.
[54] R. Mengoni and A. Di Pierro, Quantum Mach. Intel. 1, 65

(2019).

[55] Z. Li, X. Liu, N. Xu, and J. Du, Phys. Rev. Lett. 114, 140504
(2015).

[56] A patent application for the method described in this paper has
been submitted by PASQAL.

[57] L. Wang, Support Vector Machines: Theory and Applications,
Vol. 177, Studies in Fuzziness and Soft Computing (Springer
Science & Business Media, 2005).

[58] S. Mehrkanoon, T. Falck, and J. A. Suykens, IEEE Trans.
Neural Netw. Learn. Syst. 23, 1356 (2012).

[59] S. Mehrkanoon and J. A. Suykens, Neurocomputing 159, 105
(2015).

[60] Y. Lu, Q. Yin, H. Li, H. Sun, Y. Yang, and M. Hou, J. Ind.
Manage. Optimiz. 16, 1481 (2020).

[61] J. M. T. Thompson and H. B. Stewart, Nonlinear Dynamics and
Chaos, 2nd ed. (Wiley, 2002).

[62] J. Mercer, Phil. Trans. R. Soc. Lond. A 209, 415 (1909).
[63] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex Optimization

(Cambridge University Press, Cambridge, 2004).
[64] H. W. Kuhn and A. W. Tucker, in Traces and Emergence of

Nonlinear Programming (Springer, 2014), pp. 247–258.
[65] A. Pérez-Salinas, A. Cervera-Lierta, E. Gil-Fuster, and J. I.

Latorre, Quantum 4, 226 (2020).
[66] M. C. Caro, E. Gil-Fuster, J. J. Meyer, J. Eisert, and R. Sweke,

Quantum 5, 582 (2021).
[67] H. Buhrman, R. Cleve, J. Watrous, and R. de Wolf, Phys. Rev.

Lett. 87, 167902 (2001).
[68] O. Higgott, D. Wang, and S. Brierley, Quantum 3, 156

(2019).
[69] K. Mitarai and K. Fujii, Phys. Rev. Res. 1, 013006

(2019).
[70] O. Kyriienko and V. E. Elfving, Phys. Rev. A 104, 052417

(2021).
[71] D. Wierichs, J. Izaac, C. Wang, and C. Y.-Y. Lin, Quantum 6,

677 (2022).
[72] A. F. Izmaylov, R. A. Lang, and T.-C. Yen, Phys. Rev. A 104,

062443 (2021).
[73] J. G. Vidal and D. O. Theis, arXiv:1812.06323.
[74] D. O. Theis, arXiv:2112.14669.
[75] L. Savary and L. Balents, Rep. Prog. Phys. 80, 016502

(2017).
[76] M. Hermanns, I. Kimchi, and J. Knolle, Annu. Rev. Condens.

Matter Phys. 9, 17 (2018).
[77] T. A. Bespalova and O. Kyriienko, arXiv:2109.13883.
[78] H.-Y. Huang, M. Broughton, J. Cotler, S. Chen, J. Li, M.

Mohseni, H. Neven, R. Babbush, R. Kueng, J. Preskill et al.,
Science 376, 1182 (2022).

[79] X.-Z. Luo, J.-G. Liu, P. Zhang, and L. Wang, Quantum 4, 341
(2022).

[80] M. Larocca, N. Ju, D. García-Martín, P. J. Coles, and M.
Cerezo, arXiv:2109.11676.

[81] M. Larocca, P. Czarnik, K. Sharma, G. Muraleedharan, P. J.
Coles, and M. Cerezo, Quantum 6, 824 (2022).

[82] S. Thanasilp, S. Wang, M. Cerezo, and Z. Holmes,
arXiv:2208.11060.

[83] T. A. Bespalova and O. Kyriienko, PRX Quantum 2, 030318
(2021).

032428-13

https://doi.org/10.1103/PhysRevA.98.062324
https://doi.org/10.1038/s41534-019-0223-2
https://doi.org/10.1038/s41534-020-00288-9
https://doi.org/10.1038/s43588-021-00084-1
https://doi.org/10.1103/PRXQuantum.2.040337
https://doi.org/10.1103/PhysRevApplied.16.024051
https://doi.org/10.1109/ACCESS.2020.3010470
https://doi.org/10.1088/1361-6471/ac1391
https://doi.org/10.3390/e23040460
https://doi.org/10.1103/PhysRevLett.125.010501
https://doi.org/10.1038/s41534-020-00302-0
https://doi.org/10.1016/j.scib.2021.06.023
http://arxiv.org/abs/arXiv:1909.05820
https://doi.org/10.1038/s41598-019-52275-6
https://doi.org/10.1103/PhysRevA.101.010301
https://doi.org/10.1103/PhysRevA.104.022418
https://doi.org/10.1103/PhysRevA.103.052416
https://doi.org/10.1103/PhysRevA.103.032430
https://doi.org/10.1103/PhysRevA.99.032331
http://arxiv.org/abs/arXiv:2012.12220
http://arxiv.org/abs/arXiv:2108.03190
https://doi.org/10.1002/qute.202000003
http://arxiv.org/abs/arXiv:2202.08253
https://doi.org/10.1038/s41586-019-0980-2
https://doi.org/10.1038/s41467-021-22539-9
http://arxiv.org/abs/arXiv:2101.11020
https://doi.org/10.1007/s42484-019-00007-4
https://doi.org/10.1103/PhysRevLett.114.140504
https://doi.org/10.1109/TNNLS.2012.2202126
https://doi.org/10.1016/j.neucom.2015.02.013
https://doi.org/10.3934/jimo.2019012
https://doi.org/10.1098/rsta.1909.0016
https://doi.org/10.22331/q-2020-02-06-226
https://doi.org/10.22331/q-2021-11-17-582
https://doi.org/10.1103/PhysRevLett.87.167902
https://doi.org/10.22331/q-2019-07-01-156
https://doi.org/10.1103/PhysRevResearch.1.013006
https://doi.org/10.1103/PhysRevA.104.052417
https://doi.org/10.22331/q-2022-03-30-677
https://doi.org/10.1103/PhysRevA.104.062443
http://arxiv.org/abs/arXiv:1812.06323
http://arxiv.org/abs/arXiv:2112.14669
https://doi.org/10.1088/0034-4885/80/1/016502
https://doi.org/10.1146/annurev-conmatphys-033117-053934
http://arxiv.org/abs/arXiv:2109.13883
https://doi.org/10.1126/science.abn7293
https://doi.org/10.22331/q-2020-10-11-341
http://arxiv.org/abs/arXiv:2109.11676
https://doi.org/10.22331/q-2022-09-29-824
http://arxiv.org/abs/arXiv:2208.11060
https://doi.org/10.1103/PRXQuantum.2.030318

