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ABSTRACT
cruciferous vegetables and oilseeds are rich in glucosinolates that can transform into isothiocyanates 
upon enzymic hydrolysis during post-harvest handling, food preparation and/or digestion. vegetables 
contain glucosinolates that have beneficial bioactivities, while glucosinolates in oilseeds might 
have anti-nutritional properties. it is therefore important to monitor and assess glucosinolates and 
isothiocyanates content through the food value chain as well as for optimized crop production. 
vibrational spectroscopy methods, such as infrared (iR) spectroscopy, are used as a nondestructive, 
rapid and low-cost alternative to the current and common costly, destructive, and time-consuming 
techniques. this systematic review discusses and evaluates the recent literature available on the 
use of iR spectroscopy to determine glucosinolates and isothiocyanates in vegetables and oilseeds. 
NiR spectroscopy was used to predict glucosinolates in broccoli, kale, rocket, cabbage, Brussels 
sprouts, brown mustard, rapeseed, pennycress, and a combination of Brassicaceae family seeds. 
Only one study reported the use of NiR spectroscopy to predict broccoli isothiocyanates. the 
major limitations of these studies were the absence of the critical evaluation of errors associated 
with the reference method used to develop the calibration models and the lack of interpretation 
of loadings or regression coefficients used to predict glucosinolates.

1.  Introduction

Cruciferous vegetables, including the Brassicaceae, 
Capparaceae, and Caricaceae families, such as broccoli, 
Brussels sprouts, rocket, cabbage, bok choy, cauliflower, 
kale, and radish contain high levels of glucosinolates 
(Connolly et  al. 2021; Miao et  al. 2021). Glucosinolates 
have been reported for having significant antioxidant 
(Cabello-Hurtado, Gicquel, and Esnault 2012), anti- 
inflammatory (Ruiz-Alcaraz et  al. 2022), and anticancer 
(Cuellar-Núñez et  al. 2020) activities. These compounds 
have also been reported for their positive effects in treating 
cardiometabolic (Esteve 2020; Chen et  al. 2018) and mus-
culoskeletal disorders (Connolly et  al. 2021; Blekkenhorst 
et  al. 2017), and more recently in the immune response to 
SARS-COV-2 based on in vitro findings (Bahoosh, 
Shokoohinia, and Eftekhari 2022).

Glucosinolates are phytochemicals and secondary sulfur 
compounds that are synthesized from glucose and amino acids 
(Figure 1). Glucosinolates comprise a β-D-thioglucoside group 
and an N-hydroximinosulphate ester with a varying side chain 
(Aghajanzadeh et al. 2018). These compounds can be classified 

as aliphatic, indolic or aromatic based on the precursor amino 
acid (methionine, tryptophan, or an aromatic amino acid 
respectively) (Supplementary File, Figure A) (Halkier and 
Gershenzon 2006; Aghajanzadeh, Prajapati, and Burow 2020). 
Some of the key glucosinolates are progoitrin, sinigrin, gluco-
raphanin, gluconapin, 4-hydroxyglucobrassicin, glucobrassicin, 
4-methoxyglucobrassicin, and neoglucobrassicin (Zhou 
et  al. 2022).

Glucosinolates are considered relatively stable compounds 
but can undergo hydrolysis to isothiocyanates once the plant 
tissue is damaged during food processing, preparation, stor-
age or chewing due to the release of a β-thioglucosidase 
enzyme called myrosinase (Barba et  al. 2016). These com-
pounds might be also broken down in the human gut by 
plant and bacterial myrosinases to yield isothiocyanates 
(Narbad and Rossiter 2018).

Isothiocyanates are organic compounds with an isocy-
anate group in which oxygen is substituted by a sulfur 
atom to give a functional group of –N=C=S (Figure 1). 
The most significant isothiocyanates are sulforaphane and 
indole-3-carbinol which are derived from glucoraphanin 
and glucobrassicin, respectively. Sulforaphane has shown 
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remarkable antioxidant (Akbari and Namazian 2020), anti-
cancer (Kiani et  al. 2018), anti-inflammation, antineoplas-
tic, and anti-allergic potentials (Shahrajabian, Sun, and 
Cheng 2019). Indole-3-carbinol has been reported for its 
anti-inflammatory (Mohammadi et  al. 2018), anticancer 
(Karimabad et  al. 2019), antileukemic (Mohammadi et  al. 
2017; Safa et  al. 2017), antioxidant, antihypertensive, antiar-
rhythmic (Prado et  al. 2022), and wound healing potentials 
(Eghbalpour et  al. 2020). Yet, high levels of some isothio-
cyanates derived from glucosinolates can be anti-nutritive 
such as goitrin (derived from progoitrin) that can interfere 
with iodine uptake (Chartoumpekis et  al. 2019).

Post-harvest and food processing conditions of these veg-
etables (e.g. storage time, temperature, type of packaging, 
as well as other treatments) can influence the concentration 
and bioavailability of glucosinolates, and thus isothiocyanate 
content (Barba et  al. 2016). Monitoring the quantities of 
glucosinolates and isothiocyanates during different stages of 
food processing is therefore important to inform not only 
about the optimal processing conditions but also about the 
availability of these compounds in the end product in order 
to predict their potential health and nutritional benefits.

The structure of the side chain is highly important in 
determining the stability of glucosinolates (Barba et  al. 
2016). Glucosinolates that are structurally similar, such as 
the alkenyl glucosinolates gluconapin and sinigrin or sulfinyl 
glucosinolates glucoraphanin and glucoiberin (differing with 
each other by a single CH2 group in their side chain), are 
highly correlated in their degradation (Hennig et  al. 2013). 
Indole glucosinolates (e.g., 4-methoxyglucobrassicin, 
4-hydroxyglucobrassicin, neoglucobrassicin, and glucobras-
sicin) are more sensitive to post-harvest conditions than 
aliphatic glucosinolates (e.g., sinigrin, glucoraphanin, glu-
coiberin, and glucoerucin) (Oerlemans et  al. 2006). 
Throughout the storage of vegetables, glucosinolates are 
relatively stable, with total glucosinolate content reducing 
only by 11–27% after 7 days of storage at 4–8 °C (Song and 
Thornalley 2007).

It has been reported that regardless of the compound 
species, a substantial amount of glucosinolates can be lost 
through leaching into surrounding water when Brassica 
vegetables are boiled or steamed. This reaction can be exac-
erbated by higher temperatures and longer processing times 
(Oliviero, Verkerk, and Dekker 2018). However, the stability 

of individual glucosinolates varies depending on the plant 
species or vegetable, due to differences in myrosinase activ-
ity, innate stress responses, diffusivity of the compounds, 
pH, and cellular composition (Luo et  al. 2022; Sarvan 
et  al. 2014).

Unless the vegetable or plant part is blanched to denature 
degradative enzymes, mechanical forces applied during food 
processing will likely result in cell rupture, releasing myros-
inase and resulting in the enzymatic degradation of gluco-
sinolates (Barba et  al. 2016). This interaction facilitates the 
production of the desired isothiocyanates or other products, 
such as, nitriles, epithionitriles, thiocyanates, or indoles 
depending on the pH and presence of specific proteins 
(Oliviero, Verkerk, and Dekker 2018). The initial stage of 
the reaction between the glucosinolate and myrosinase is 
the formation of an unstable thiohydroximate-O-sulphate 
aglycone (Barba et  al. 2016). The presence of epithiospecifier 
(ESP), thiocyanate-forming, or nitrile-specifier proteins can 
favor the conversion of the aglycone to nitriles, epithioni-
triles or thiocyanates (Oliviero, Verkerk, and Dekker 2018). 
However, at neutral or slightly alkaline pH, with ESP inac-
tivated, isothiocyanate production is increased. Allyl, benzyl, 
and phenethyl isothiocyanates are produced from the glu-
cosinolate precursors sinigrin, glucotropaeolin, and gluco-
nasturtiin respectively, along with sulforaphane from 
glucoraphanin. Unlike the stability of glucosinolates in the 
whole plant, isothiocyanates are less stable and have been 
shown to be particularly temperature labile, degrading rap-
idly at temperatures over 60 °C (Van Eylen et  al. 2007). 
Therefore, moderate food processing that would inactivate 
ESP, but not myrosinase, would likely generate the greatest 
quantity of bioavailable isothiocyanates.

In addition to cruciferous plants, oilseeds are also a rich 
source of glucosinolates (Wang et  al. 2019; Chen et  al. 
2019). The concentration and profile of glucosinolates have 
been considered an important trait to be included in breed-
ing programs of these species (Tan et  al. 2022). Although 
conserving high levels of glucosinolates in vegetables is 
significant due to their health-promoting benefits, the a 
high level of glucosinolates in oilseeds is not favorable 
(Yang et  al. 2021). From a nutritional perspective, it is 
more desirable for oilseeds to contain high levels of poly-
unsaturated fatty acids and low levels of erucic acid and 
glucosinolates. Glucoraphanin and glucobrassicin, which are 

Figure 1. General structure of glucosinolates and isothiocyanates and their conversion. the r group is a varying aglycone amino acid-deriving side chain. 
Glucosinolates can be classified as aliphatic, indolic or aromatic glucosinolates based on the r group.
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known for their health promoting benefits, are either absent 
or present in very low concentrations in oilseeds (Yasumoto 
et  al. 2010). Instead, oilseeds contain aliphatic glucosinolates 
(e.g. progoitrin and sinigrin) that are considered 
anti-nutritive and decrease the quality of oilseeds (Nambiar 
et  al. 2021). Thus, levels of glucosinolates in oilseeds need 
to be monitored. Seeds are assessed for quality to optimize 
the value of crop production (Dolatparast et  al. 2021). This 
helps the agriculture sector determine the best quality for 
planting, identify any problems associated with seed quality, 
optimize the drying processes, and ensure that the seed 
quality meets standards and labeling specifications (Pedrini 
and Dixon 2020; ElMasry et  al. 2019).

The most common analytical techniques utilized for the 
determination and quantification of these compounds are 
chromatographic and/or hyphenated spectrometry techniques 
including high-pressure liquid chromatography (HPLC) 
(Theunis et  al. 2022), liquid chromatography–mass spec-
trometry (LC-MS) (Wu et  al. 2021), and gas chromatogra-
phy–mass spectrometry (GC-MS) (Zeng et  al. 2021). These 
analytical techniques provide direct and accurate quantifi-
cation of the different phytochemicals in the sample matrix 
after extraction and dilution (Hooshmand and Fomsgaard 
2021) provided pure standards are available. However, these 
methods are destructive, require different sample preparation 
steps (e.g. grinding, extraction), high volumes of solvents, 
are time-consuming and expensive and thus not suitable for 
large scale analysis. On the other hand, vibrational spec-
troscpy (e.g. infrared (IR) and Raman) techiques are rela-
tively quick, inexpensive, nondestructive, and do not require 
complex sample preparation or solvents, making it attractive 
for large-scale analysis and industry conditions (Zare, Zandi 
Esfahan, and Ghorbani 2019). These techniques could be 
applied and implemented for in field (e.g. farm), on site 
(e.g. factory), and/or processing analysis and monitoring. 
Vibrational spectrosocpy techniques have been used in food 
sciences and analytical chemistry as techniques to measure 
the proximate composition of foods and agricultural prod-
ucts (e.g. protein, fat, moisture), and more recently to pre-
dict levels of specific biaoctive molecules such as phenolics 
and volatile compounds in several food matrices (Su and 
Sun 2018). In recent years the use of IR spectroscopy has 
been explored to predict phytochemicals such as glucosino-
lates in glucosinolate-rich vegetables and oilseeds. However, 
no studies have been reported on the use of Raman spec-
troscopy for the determination of glucosinolates or isothio-
cynates in plants.

In any given application of IR spectroscopy to analyze 
food ingredients and products (e.g. natural products), chal-
lenges associated with the interpretation of the spectra as 
well as the development of a calibration used to determine 
the amount of a phytochemical in a given sample can be 
encountered. The IR spectrum obtained contains complex 
information related not only with the chemical composition 
but also with other physicochemical properties of the sam-
ple. In addition, data mining techniques and chemometric 
analysis are required to interpret the spectra and to develop 
a calibration model (Parrini et  al. 2019; Haghi, 
Pérez-Fernández, and Robertson 2021).

This systematic review aims to provide researchers in the 
field with the current and latest developments in determi-
nation of glucosinolates and isothiocyanates using IR spec-
troscopy. In addition, it provides an overview of calibration 
development, key wavelengths, limitations on the use of IR, 
and practical considerations in using this technique to deter-
mine glucosinolates and isothiocyanates.

2.  Systematic review search methodology

This systematic review focuses on IR spectroscopy methods 
that have been used to determine the glucosinolate and 
isothiocyanate content in different natural sources (e.g. veg-
etables and oilseeds). The search strategy was based on three 
main concepts. Concept 1 focuses on the type of bioactive 
compounds: glucosinolates and isothiocyanates, concept 2 
considers the use of IR spectroscopy as the analytical tech-
nique for method development, and concept 3 examines the 
goal of the analytical method that must be quantitative. The 
search was conducted using three different databases 
(Scopus, PubMed, and Web of Science) using a search strat-
egy considering (glucosinolate* OR isothiocyanate* OR glu-
cobrassicin OR glucocapparin OR glucoraphanin OR 
gluconasturtiin OR glucotropaeolin OR progoitrin OR sin-
igrin OR sinalbin OR sulforaphane OR sulphoraphane OR 
raphanin OR “allyl isothiocyanate” OR “methyl isothiocya-
nate” OR “benzyl isothiocyanate” OR “fluorescein isothio-
cyanate” OR “phenyl isothiocyanate” OR “phenethyl 
isothiocyanate” OR “6-(methylsulfinyl) hexyl isothiocyanate”) 
AND (infrared OR “infrared spectroscopy” OR “IR spec-
troscopy” OR “near infrared” OR “NIR spectroscopy” OR 
NIR OR “Fourier transform-infrared” OR FTIR) AND 
(determine* OR analys* OR predict* OR monitor* OR 
investing* OR quanti*) as the topic of the research article. 
Mesh terms (“glucosinolates”[Mesh], “isothiocyanates”[Mesh], 
and “Spectrophotometry, Infrared”[Mesh]) were also included 
in the search strategy when using PubMed. Google Scholar 
was also used for finding research articles manually (no 
new records were identified). No similar systematic literature 
reviews were found for reference screening. The original 
research articles considered were those published between 
1st January 2012 and 11th January 2023 and in the English 
language. The inclusion and exclusion criteria, along with 
flow chart of the systematic methodology (Figure B), can 
be found in the Supplementary File.

3.  Infrared and chemometrics

The most common IR techniques reported by different 
authors to analyze glucosinolates and isothiocyanates are 
near infrared (NIR) spectroscopy, the combination of visible 
(VIS) and NIR, and the use of attenuated total reflectance 
(ATR) combined with Fourier transform mid infrared 
(ATR-FTMIR) spectroscopy. The IR region covers the region 
between 750 nm and 1 mm of the electromagnetic spectrum 
(Segneanu et  al. 2012). The IR region is divided into three 
ranges namely the near infrared (NIR) region between 750 
and 2500 nm; the mid infrared (MIR) region between 4000 
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and 400 cm−1 (2500–25,000 nm); and the far infrared (FIR) 
region between 400 and 10 cm−1. In short, IR spectroscopy 
measures the relationship between light and the molecules 
present in a sample. NIR spectroscopy is based on the mea-
surement of molecular overtones and a combination of 
vibrational modes (Bec, Grabska, and Huck 2022), while 
MIR spectroscopy measures the fundamental vibrations that 
are associated with the functional groups present in the 
sample that can help in determining the chemical compo-
sition and other functional properties of the sample, as well 
as identify samples using the MIR fingerprint region 
(Campanella, Palleschi, and Legnaioli 2021).

A common initial step after obtaining the IR data is to 
preprocess the spectra using techniques such as baseline 
and slope correction, smoothing, normalization, derivatives 
(first and second), multiplicative scatter correction (MSC), 
standard normal variate (SNV), and de-trending (Rohman 
et  al. 2019). After preprocessing the spectra, the IR data is 
inspected to visualize trends, patterns, and outliers in the 
data set. The most commonly used method in this step is 
principal component analysis (PCA), a method that decreases 
the dimensionality of the data by introducing two new set 
of values called scores and loadings (Bro and Smilde 2014). 
This technique is applied to distinguish spectrally similar 
samples (e.g. trends and patterns), it can be used to select 
a representative or similar subset of samples without any 
data loss, as well as in identifying spectral outliers from the 
raw data (Bro and Smilde 2014).

After inspecting the IR spectra, either a quantitative or 
qualitative method can be developed. To develop a quanti-
tative method or calibration model, a regression analysis is 
performed using the absorbance at different wavelengths 
(obtained from IR data) and the reference values obtained 
from a validated laboratory method (reference method). 
Different regression methods are used to develop a calibra-
tion model, those include partial least squares regression 
(PLS), modified partial least squares regression (MPLS), 
principal component regression (PCR), multiple linear 
regression (MLR) and stepwise multiple linear regression 
(SML) (Rohman et  al. 2019). After a calibration model is 
developed, it needs to be validated (Williams, Dardenne, 
and Flinn 2017). A frequently used validation method 
during calibration development is cross-validation (internal 
validation); however, a proper validation method must 
include an external or independent data set (Williams, 
Dardenne, and Flinn 2017).

Several statistical parameters are used to evaluate the 
performance of a calibration model (Williams, Dardenne, 
and Flinn 2017). The coefficient of determination (R2) can 
be used to evaluate the model in terms of the correlation 
between the reference values and IR predicted values. Models 
with R2 > 0.90 have excellent correlation, 0.82 < R2 < 0.90 have 
good correlation, 0.65 < R2 < 0.81 could give estimated pre-
dictions, 0.50 < R2 < 0.64 can only be used for qualitative 
analysis, while 0.26 < R2 < 0.49 have poor correlation (Williams 
and Norris 2001). In addition to the R2, the standard error 
in cross validation (SECV) and prediction (SEP) are import-
ant statistical parameters to assess the error associated with 
the model. The SECV and SEP are a measure of the 

precision of prediction and refer to the difference between 
the repeated measurements of the same target compound 
(Golic and Walsh 2006). The root mean square of the stan-
dard errors can also be used for statistical evaluation of 
models, such as root mean square error of prediction 
(RMSEP) and root mean standard error of cross-validation 
(RMSECV) (Williams and Norris 2001).

The ratio of the standard deviation of the reference data 
(SD), to the SECV or SEP, also referred to as the residual 
prediction deviation (RPD = SD/SECV or SEP), should be 
included to estimate the prediction ability of the developed 
calibration model (Williams, Dardenne, and Flinn 2017). 
RPD values can be used to classify and identify the appli-
cation of the developed model, such that, an RPD value of 
0.0–2.3 suggests that the model is very poor and has no 
practical applications, a model with an RPD value of 2.4–3.0 
is poor and can be only used for rough screening (e.g., in 
breeding programmes), RPD values in the range of 3.1–4.9 
suggest that the model is fair and can be used for screening 
purposes, a good model has an RPD value of 5.0–6.4 and 
can be used for quality control, very good models are those 
that have an RPD value of 6.5–8.0 and are efficient for 
process control, while models with an RPD value higher 
than 8.1 are excellent and can be used for any application 
(Williams 2014). In addition, the precision and quality 
thresholds for model performance can be evaluated based 
on the range error ratio (RER) value which is calculated by 
determining the ratio of the range of the original data to 
the SEP or SECV (RER = range/SEP or SECV). An RER 
value above 15 suggests that the calibration is good for 
quantification with high precision, a value between 10 and 
15 suggests that the calibration is appropriate for quality 
control, while a value between 4 and 10 suggests that the 
model is useful for sample screening only (Williams and 
Norris 2001). The bias, slope and number of latent variables 
or number of components (factors) of the developed model 
have to be reported as well (Williams, Dardenne, and 
Flinn 2017).

Although the above-mentioned statistical parameters are 
commonly used in assessing the robustness of a calibration 
model, yet they are controversies associated with their use. 
For example, R2 is dependent on the data set range (e.g. 
concentration of analyte), having a direct effect on the pre-
dictive capacity of the calibration model to predict new 
samples (Fearn 2014). Thus, when R2 values from different 
experiments are compared, it is important to interpret this 
parameter very carefully, considering among different factors 
the range in composition of the samples used during the 
development of the calibration model. This also applies to 
the interpretation of the RDP value (Fearn 2014). One of 
the controversies associated with the interpretation of the 
RDP value is related to the fact that this parameter can be 
easily alter by the inclusion of extreme sample (e.g. very 
low or high analyte concentration) (Esbensen, Geladi, and 
Larsen 2014).

In addition to the R2 and RPD, other parameters should 
be considered while assessing the developed models. For 
example, it is also important to report the standard error 
of the performed reference method such as the standard 
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error of the laboratory (SEL), or the standard error of the 
test (SET) (Williams, Dardenne, and Flinn 2017). This error 
should be compared with the SECV and SEP. Additionally, 
it is helpful to report the limit of detection (LOD) and limit 
of quantitation (LOQ) of the reference method from the 
calibration curve. These details provide information about 
the accuracy and efficiency of the reference method 
(Williams, Dardenne, and Flinn 2017). Other information 
about the samples such as the intrinsic characteristics of 
the sample (e.g. origin, type of variety), processing and/or 
presentation should be also evaluated and considered along 
with the quantitative information (e.g. analyte concentration) 
during the assessment of the calibration model (Cozzolino 
2020). For example, in terms of sample presentation, the 
position from which the infrared measurement is collected 
from a sample can affect the performance of the model 
(Cozzolino 2020).

A flow chart summarizing the development of calibration 
models between the reference data and the spectra is shown 
in Figure 2.

4.  Summary of systematic search findings

A total of 14 research articles fulfilled the inclusion criteria 
defined in the previous section. Out of these articles, 13 
reported the development of NIR spectroscopy-based cali-
bration models for the determination of glucosinolates 
whereas only one article targeted isothiocyanates. Out of 
the 13 articles that included the analysis of glucosinolates, 
eight considered vegetables such as broccoli (n = 3), kale 

(n = 2), rocket (n = 1), cabbage and Brussels sprouts (n = 1), 
and cabbage only (n = 1). Five reported the analysis of one 
or more oilseeds such as brown mustard (n = 2), rapeseed 
(n = 2), pennycress (n = 1), and combined Brassicaceae seeds 
(n = 1). One article focused on the prediction of isothiocy-
anates in broccoli. A summary of the different types of 
vegetables and seeds and the information about the calibra-
tions developed are presented in Table 1.

5.  Prediction of glucosinolates using infrared 
spectroscopy

As shown in Figure 1, glucosinolates are characterized by 
a thioglucose group conjugated to a core sulfonated isothio-
cyanate group with an R-group side chain which is deter-
mined by the species. Key features of the glucosinolate core 
structure can be identified using IR spectroscopy, which 
include O-H stretching and deformation, S-H or C-H stretch 
first overtones of methyl groups, and C-H stretching by 
methylene groups (Toledo-Martin et  al. 2017). The absor-
bance bands at specific wavenumbers in the IR region 
reported during the analysis of leaves from rape (Brassica 
napus ssp. pabularia) and rocket (Eruca vesicaria) are 
described in Table 2. Glucosinolates show an intricate spec-
tral detail in the region 2000–2500 nm owing to the stretches 
between bonds N-H, O-H, and C-C. This region therefore 
has shown to be an effective range for the quantification 
of glucoraphanin, glucobrassicin, 4-methoxyglucobrassicin, 
neoglucobrassicin, and total glucosinolates in freeze-dried 
broccoli (Hernández-Hierro et  al. 2012). Alternatively, the 

Figure 2. development of infrared spectroscopy-based calibration models for determination of compounds as glucosinolates and isothiocyanates. the images 
used in this figure are copyright free or have been downloaded from Biorender.com.

https://www.BioRender.com


6 a. aLi ReDHa et aL.

Ta
bl

e 
1.

 s
um

m
ar

y 
of

 t
he

 n
ir

 c
al

ib
ra

tio
n 

m
od

el
s 

us
ed

 t
o 

de
te

rm
in

e 
gl

uc
os

in
ol

at
e 

co
nt

en
t 

in
 v

eg
et

ab
le

s 
an

d 
oi

ls
ee

ds
.

so
ur

ce
M

et
ho

d
w

av
el

en
gt

h 
ra

ng
e 

(n
m

)
re

fe
re

nc
e 

te
ch

ni
qu

e
Co

m
po

un
ds

n
um

be
r 

of
 

sa
m

pl
es

 
us

ed
 f

or
 

ca
lib

ra
tio

n 
(w

ith
ou

t 
ou

tli
er

s)

sp
ec

tr
a 

pr
ep

ro
ce

ss
in

g 
m

et
ho

d
re

gr
es

si
on

 
m

et
ho

d

M
in

 
(μ

m
ol

/g
 

d
w

)

M
ax

 
(μ

m
ol

/g
 

d
w

)

av
er

ag
e 

(μ
m

ol
/g

 
d

w
)

sd
 r

ef
 

(μ
m

ol
/g

 
d

w
)

Ca
lib

ra
tio

n

va
lid

at
io

n

re
fe

re
nc

e

in
te

rn
al

 v
al

id
at

io
n

ex
te

rn
al

 
va

lid
at

io
n

r2
r2

se
Cv

rP
d

r2
rP

d

Ve
ge

ta
bl

es
Br

as
si

ca
 

ol
er

ac
ea

 
(b

ro
cc

ol
i)

n
ir

40
0 

-2
50

0
H

Pl
C

Gl
uc

oi
be

rin
62

–
M

Pl
s

0.
02

0.
36

0.
12

0.
13

0.
38

0.
31

0.
20

0.
67

(s
ah

am
is

hi
ra

zi
 

et
 a

l. 
20

17
)

Gl
uc

os
in

ig
rin

64
0.

36
0.

37
0.

37
0.

00
4

0.
44

0.
05

0.
01

0.
62

Gl
uc

or
ap

ha
ni

n
67

0.
03

2.
87

1.
10

0.
70

0.
71

0.
66

0.
54

1.
63

Gl
uc

ob
ra

ss
ic

in
64

0.
21

0.
73

0.
55

0.
24

0.
24

0.
11

0.
30

0.
81

4-
m

et
ho

xy
gl

uc
pb

ra
ss

ic
in

67
0.

41
0.

45
0.

43
0.

01
0.

34
0.

21
0.

01
1.

11
1-

m
et

ho
xy

gl
uc

ob
ra

ss
ic

in
63

0.
02

0.
72

0.
40

0.
39

0.
25

0.
03

0.
68

0.
56

in
do

lic
 g

lu
co

si
no

la
te

s
66

0.
19

3.
16

1.
56

0.
80

0.
50

0.
26

0.
85

0.
95

al
ip

ha
tic

 g
lu

co
si

no
la

te
s

67
0.

21
4.

00
1.

59
0.

90
0.

76
0.

64
0.

58
1.

65
to

ta
l g

lu
co

si
no

la
te

s
66

0.
43

6.
00

3.
27

1.
50

0.
69

0.
55

1.
17

1.
36

Br
as

si
ca

 
ol

er
ac

ea
 

(b
ro

cc
ol

i)

vi
s/

n
ir

20
00

 −
 2

50
0

M
eC

C
Gl

uc
ob

ra
ss

ic
in

46
d

e-
tr

en
di

ng
 1

, 4
, 4

, 
1

M
Pl

s
1.

60
6.

83
3.

93
1.

09
0.

89
(H

er
ná

nd
ez

- 
H

ie
rr

o 
et

 a
l. 

20
12

)
Gl

uc
or

ap
ha

ni
n

47
d

e-
tr

en
di

ng
 1

, 4
, 4

, 
1

1.
09

4.
82

2.
86

0.
87

0.
40

4-
m

et
ho

xy
gl

uc
ob

ra
ss

ic
in

48
sn

v 
1,

 4
, 4

, 1
0.

09
0.

55
0.

28
0.

11
0.

69
n

eo
gl

uc
ob

ra
ss

ic
in

48
M

ul
tip

lic
at

iv
e 

sc
at

te
r 

co
rr

ec
tio

n 
2,

 8
, 

6,
 1

0.
74

4.
45

1.
93

0.
86

0.
68

to
ta

l g
lu

co
si

no
la

te
s

45
n

on
e 

2,
 1

0,
 1

0,
 1

4.
74

15
.1

0
9.

40
1.

87
0.

73
Br

as
si

ca
 

al
bo

gr
ab

ra
 

Ba
ie

ly
 

(C
hi

ne
se

 
ka

le
)

n
ir

40
0-

25
00

H
Pl

C
to

ta
l g

lu
co

si
no

la
te

s
14

1
sn

v,
 d

e-
tr

en
di

ng
, 

an
d 

al
go

rit
hm

s 
(2

,5
,5

,2
)

M
Pl

s
1.

42
0.

84
0.

91
0.

92
2.

96
3.

59
(C

he
n 

et
 a

l. 
20

14
)

Pr
og

oi
tr

in
13

7
1.

89
1.

36
0.

34
0.

69
0.

36
2.

32
si

ni
gr

in
14

1
2.

30
1.

97
0.

86
0.

83
0.

55
2.

46
Gl

uc
or

ap
ha

ni
n

14
2

10
.8

8
5.

19
0.

67
0.

84
0.

62
3.

18
Gl

uc
on

ap
in

14
2

0.
12

0.
12

0.
82

0.
87

1.
87

2.
78

4-
hy

dr
ox

yg
lu

co
br

as
si

ci
n

14
2

2.
30

4.
68

0.
64

0.
82

0.
05

2.
70

Gl
uc

ob
ra

ss
ic

in
14

5
0.

14
0.

08
0.

93
0.

93
1.

22
3.

84
4-

m
et

ho
xy

gl
uc

ob
ra

ss
ic

in
14

2
0.

80
1.

62
0.

58
0.

71
0.

04
1.

96
n

eo
gl

uc
ob

ra
ss

ic
in

14
1

19
.8

3
10

.6
3

0.
90

0.
86

0.
44

3.
70

Er
uc

a ve
si

ca
ria

 
(ro

ck
et

) 
le

av
es

vi
s/

n
ir

40
0-

25
00

lC
-u

v
to

ta
l g

lu
co

si
no

la
te

s
30

se
co

nd
 d

er
iv

at
iv

e 
tr

ea
tm

en
t 

(2
,5

,5
,2

) 
w

ith
 

sn
v-

dt

M
Pl

s
4.

86
44

.6
5

23
.5

6
7.

32
0.

79
0.

70
4.

02
1.

83
0.

61
1.

59
(t

ol
ed

o-
 

M
ar

tin
 e

t 
al

. 
20

17
)

Gl
uc

or
ap

ha
ni

n
30

0.
13

27
.8

5
9.

11
6.

41
0.

94
0.

82
2.

72
2.

37
0.

79
2.

48
Gl

uc
os

at
iv

in
30

0.
25

18
.6

1
9.

66
3.

92
0.

86
0.

64
2.

42
1.

62
0.

60
1.

92
Gl

uc
oe

ru
ci

n
30

0.
14

8.
01

1.
45

1.
60

0.
97

0.
93

0.
41

3.
99

0.
59

1.
56

Ca
bb

ag
e 

an
d 

Br
us

se
ls 

sp
ro

ut
 le

af
 

tis
su

es
 

(fr
es

h)

n
ir

/r
eF

95
0-

16
50

H
Pl

C
Gl

uc
ob

ra
ss

ic
in

92
Fi

rs
t 

de
riv

at
iv

e 
tr

ea
tm

en
t

Pl
s

3.
69

37
9.

16
65

.1
6

80
.0

1
0.

89
0.

76
2.

6
(r

en
ne

r 
an

d 
 

Fr
itz

 2
02

0)

Ca
bb

ag
e 

an
d 

Br
us

se
ls 

sp
ro

ut
 le

af
 

tis
su

es
 

(d
ry

)

n
ir

/r
eF

95
0-

16
50

H
Pl

C
Gl

uc
ob

ra
ss

ic
in

92
Fi

rs
t 

de
riv

at
iv

e 
tr

ea
tm

en
t

Pl
s

0.
41

22
.2

5
5.

33
4.

95
0.

90
0.

79
2.

4
(r

en
ne

r 
an

d 
 

Fr
itz

 2
02

0)



cRiticaL ReviewS iN FOOD ScieNce aND NutRitiON 7

O
ils

ee
ds

Br
as

si
ca

 
ju

nc
ea

 
(b

ro
w

n 
m

us
ta

rd
)

vi
s/

n
ir

40
0-

25
00

H
Pl

C
si

ng
rin

37
7

n
or

ris
 m

et
ho

d,
 

de
riv

at
iv

e 
m

et
ho

d 
(2

,5
,5

,2
), 

an
d 

sn
v-

dt

M
Pl

s
0.

00
13

2.
44

30
.9

0
33

.8
5

0.
99

0.
97

6.
33

5.
35

(G
oh

ai
n 

et
 a

l. 
20

21
)

Gl
uc

on
ap

in
37

9
0.

00
17

1.
47

70
.7

3
33

.5
8

0.
95

0.
91

9.
96

3.
37

Gl
uc

ob
ra

ss
ic

an
ap

in
37

8
0.

00
2.

49
0.

76
0.

58
0.

65
0.

91
0.

47
1.

24
Gl

uc
oi

be
rin

39
0

0.
00

13
.1

8
3.

30
3.

29
0.

98
0.

34
1.

36
2.

42
Gl

uc
or

ap
ha

ni
n

37
7

0.
00

36
.5

4
3.

87
10

.8
9

0.
88

0.
84

5.
49

1.
98

Gl
uc

oa
ly

ss
in

39
0

0.
00

2.
87

1.
04

0.
61

0.
92

0.
74

0.
35

1.
74

Gl
uc

ob
ra

ss
ic

in
38

0
0.

00
5.

17
0.

71
1.

49
0.

75
0.

67
0.

98
1.

51
4-

hy
dr

ox
y 

gl
uc

ob
ra

ss
ic

in
38

7
0.

00
23

.5
8

5.
85

5.
91

0.
96

0.
56

1.
81

3.
27

4-
m

et
ho

xy
-g

lu
co

br
as

si
ci

n
38

6
0.

00
0.

93
0.

19
0.

25
0.

67
0.

91
0.

18
1.

38
to

ta
l g

lu
co

si
no

la
te

s
38

5
15

.8
5

21
9.

00
11

7.
43

33
.8

6
0.

87
0.

47
13

.1
2

2.
58

al
ip

ha
tic

 g
lu

co
si

no
la

te
s

37
4

0.
00

22
0.

94
10

9.
89

37
.0

2
0.

90
0.

85
13

.0
2

2.
84

to
ta

l i
nd

ol
ic

 
gl

uc
os

in
ol

at
es

38
3

0.
00

30
.8

3
6.

90
7.

97
0.

97
0.

88
2.

30
3.

47

Br
as

si
ca

 
ju

nc
ea

 
(b

ro
w

n 
m

us
ta

rd
)

n
ir

/r
eF

40
0-

25
00

Ch
em

ic
al

 
as

sa
y 

fo
llo

w
ed

 
by

 
el

is
a

to
ta

l g
lu

co
si

no
la

te
s

24
0

d
er

iv
at

iv
es

 (
1,

4,
4,

1)
, 

m
ul

tip
le

 s
ca

tt
er

 
co

rr
ec

tio
n,

 a
nd

 
sm

oo
th

in
g

M
Pl

s
28

.1
0

11
4.

04
73

.3
1

6.
55

0.
93

9
0.

86
5

0.
95

1
(s

en
 e

t 
al

. 2
01

8)

Br
as

si
ca

 
na

pu
s 

(ra
pe

se
ed

)

n
ir

90
0-

16
80

H
Pl

C
to

ta
l g

lu
co

si
no

la
te

s
77

sn
v 

an
d 

sG
 s

ec
on

d 
de

riv
at

iv
e 

tr
an

sf
or

m
at

io
n

KP
ls

4.
9

23
.7

11
.3

3.
6

0.
94

8
0.

53
3

2.
4

(B
ar

th
et

, P
et

ry
k,

 
an

d 
si

em
en

s 
20

20
)

Br
as

si
ca

 
na

pu
s 

(ra
pe

se
ed

)

n
ir

/r
eF

40
0-

25
00

Ch
em

ic
al

 
as

sa
y 

fo
llo

w
ed

 
by

 
el

is
a

to
ta

l g
lu

co
si

no
la

te
s

24
0

d
er

iv
at

iv
es

 (
1,

4,
4,

1)
, 

m
ul

tip
le

 s
ca

tt
er

 
co

rr
ec

tio
n,

 a
nd

 
sm

oo
th

in
g

M
Pl

s
15

.4
9

13
9.

09
70

.2
6

18
.8

6
0.

86
5

0.
86

6
0.

98
6

(s
en

 e
t 

al
. 2

01
8)

Br
as

si
ca

ce
ae

 
se

ed
s

n
ir

40
0-

25
00

H
Pl

C
to

ta
l g

lu
co

si
no

la
te

s
12

4
d

er
iv

at
iv

es
 (

1,
4,

4,
1)

 
an

d 
sn

v/
de

-t
re

nd
 s

ca
tt

er
 

co
rr

ec
tio

n

M
Pl

s
5.

5
11

7.
4

44
.2

29
.2

0.
92

2.
3

(o
bl

at
h 

et
 a

l. 
20

16
)

ab
br

ev
ia

tio
ns

: 
in

fra
re

d 
te

ch
ni

qu
es

—
n

ir
, 

ne
ar

-in
fra

re
d 

sp
ec

tr
os

co
py

; v
is

/n
ir

, 
vi

si
bl

e/
ne

ar
-in

fra
re

d 
sp

ec
tr

os
co

py
; 

n
ir

/r
eF

, 
ne

ar
-in

fra
re

d 
re

fle
ct

an
ce

 s
pe

ct
ro

sc
op

y.
 r

ef
er

en
ce

 t
ec

hn
iq

ue
s—

H
Pl

C,
 h

ig
h 

pe
rf

or
m

an
ce

 l
iq

ui
d 

ch
ro

m
at

og
ra

ph
y;

 M
eC

C,
 m

ic
el

la
r 

el
ec

tr
ok

in
et

ic
 c

ap
ill

ar
y 

ch
ro

m
at

og
ra

ph
y;

 l
C-

u
v,

 l
iq

ui
d 

ch
ro

m
at

og
ra

ph
y 

w
ith

 u
ltr

av
io

le
t 

ab
so

rb
an

ce
 d

et
ec

tio
n;

 e
li

sa
, 

en
zy

m
e-

lin
ke

d 
im

m
un

oa
ss

ay
 r

ea
de

r. 
Pr

et
re

at
m

en
ts

: 
sn

v,
 s

ta
nd

ar
d 

no
rm

al
 v

ar
ia

te
; 

sn
v-

dt
, 

st
an

da
rd

 n
or

m
al

 v
ar

ia
te

-d
et

re
nd

; 
sG

, 
sa

vi
tz

ky
-G

ol
ay

. r
eg

re
ss

io
n 

m
et

ho
ds

: P
ls

, p
ar

tia
l l

ea
st

 s
qu

ar
e;

 M
Pl

s,
 m

od
ifi

ed
 p

ar
tia

l l
ea

st
 s

qu
ar

e;
 K

Pl
s,

 K
er

ne
l p

ar
tia

l l
ea

st
 s

qu
ar

e.
 s

ta
tis

tic
al

 a
na

ly
si

s: 
r2 , c

oe
ffi

ci
en

t 
of

 d
et

er
m

in
at

io
n;

 s
eC

v,
 r

at
io

 o
f 

th
e 

st
an

da
rd

 e
rr

or
 o

f 
cr

os
s-

va
lid

at
io

n;
 r

Pd
, r

es
id

ua
l 

pr
ed

ic
tio

n 
de

vi
at

io
n;

 r
er

, r
an

ge
 e

rr
or

 r
at

io
, s

d
 r

ef
: s

ta
nd

ar
d 

de
vi

at
io

n 
re

fe
re

nc
e,

 M
ax

; m
ax

im
um

 v
al

ue
; M

in
; m

in
im

um
 v

al
ue

; w
v;

 w
av

el
en

gt
h.



8 a. aLi ReDHa et aL.

region between 950–1650 nm has also been used to success-
fully quantify glucobrassicin, from the first overtone of the 
O-H stretching (1420 and 1425 nm) and the first overtone 
of the indole N-H asymmetric stretch (1450 nm) (Renner 
and Fritz 2020).

Hydrolysis of a glucosinolate catalyzed by the enzyme 
myrosinase yields a β-D-glucose and an unstable 
thiohydroximate-O-sulfonate intermediate which under the 
right conditions is rearranged into an isothiocyanate com-
pound. This general structure is also shown in Figure 1, 
with a R-group, dependant on the glucosinolate precursor, 
attached to the isothiocyanate group -N=C=S. Their char-
acteristic stretching modes have been obtained through IR 
and Raman spectroscopy particularly in the MIR region 
between 1990–2280 cm−1, including a distinctive asymmetric 
doublet at approximately 1990–2150 cm−1 from the asym-
metric stretching of the NCS group (Yenagi, Nandurkar, 
and Tonannavar 2012). This doublet is accompanied by an 
overtone band at ≈990–1090 cm−1, assigned to the sym-
metric stretching of the NCS group. The observed fre-
quency of the -NCS stretching bands can be displaced by 
temperature (Campbell et  al. 1995), isothiocyanate R-group, 
solvent/phase (Kniseley, Hirschmann, and Fassel 1967) of 
the compound amongst other factors. At lower frequencies, 
≈400–600 cm−1, -NCS deformation vibrations (in-plane 
bending and out-of-plane bending) can be observed. The 
key features that are related to the isothiocyanate group 
are recorded in Table 3 and characteristic bands for some 
pure glucosinolates and isothiocyanates are reported in 
Table 4.

5.1.  Prediction of glucosinolates in vegetables

5.1.1.  Broccoli (Brassica oleracea var. italica)
Broccoli (Brassica oleracea var. italica) is considered one 
of the richest sources of glucosinolates (Bahadoran et  al. 
2012) as it can contain 47 to 806 mg/100 g fresh weight 
of total glucosinolates (Possenti et  al. 2016). These com-
pounds could represent about 0.2–2% of the dry weight 
of the broccoli head (Ilahy et  al. 2020). The quality and 
glucosinolate content of broccoli is significantly affected 
by postharvest treatments including storage temperature, 
relative humidity, and processing conditions (Jones, 
Faragher, and Winkler 2006). It has been reported that 
55% of broccoli glucoraphanin was lost after three days 
of storage at 20 °C in open boxes (Rangkadilok et  al. 
2002). A robust and rapid method that determines the 
glucosinolate content of broccoli can be useful to contin-
uously monitor the glucosinolate content of broccoli 
during storage as defined by different authors. This will 
ensure that the highest possible glucosinolate content of 
broccoli is conserved for consumers.

A NIR calibration model was developed (Sahamishirazi 
et  al. 2017) to determine the amount of individual, indolic, 
aliphatic, and total glucosinolates in open pollinating gen-
otypes of broccoli (Brassica oleracea convar. botrytis var. 
italica). The individual glucosinolates analyzed using 
freeze-dried broccoli samples were glucoiberin, glucosini-
grin, glucoraphanin, glucobrassicin, 4-methoxy glucobras-
sicin, and 1-methoxy glucobrassicin and were determined 
using HPLC (glucotropaeolin as an internal standard). The 
NIR spectra were collected between 400–2498 nm and 

Table 2. specific wavelengths in the nir region reported to measure total glucosinolates in leaves and plants as reported by different authors.

Bond

wavelengths (nm)

rocket leaves (Eruca vesicaria) 
(toledo-Martin et  al. 2017)

leaf rape (Brassica 
napus  ssp.  pabularia) (Font 

et  al. 2005)

Cabbage (Brassica oleracea var. capitata 
f. alba) and brussel sprouts (Brassica 

oleracea var. gemmifera)
(renner and Fritz 2020)

o–H stretching 1432 1434 1440-1470
n–H asymmetric stretching of indole 1450
s–H stretch first overtone or C–H 

stretch first overtone of
CH3  groups

1696 1694

C–H stretching by methylene groups 1730 1728, 1764
o-H stretch plus o-H deformation of 

water
1920 1922

n-H stretch of amides 2054 2056
o-H plus C-C stretch groups of 

cellulose
2270 2270

Table 3. specific wavenumbers in the Mir region used to measure isothiocyanate (i.e., nCs group) as reported by different authors.

Bond

wavenumbers (cm-1)

Methyl isothiocyanate 
(Zheng et  al. 2007)

Germyl isothioc yanate 
(Zheng et  al. 2007)

2-Methoxyphenyl isothiocyanate 
(Yenagi, nandurkar, and 

tonannavar 2012)

asymmetric stretching of -n=C=s group 1990 − 2150 2083 2047 2034, 2112
symmetric n-C-s stretch 925 - 1250 680 959 931
deformation nodes perpendicular to -nCs 

plane (out-of-plane)
520 - 570 417 464 539

deformation nodes parallel to -nCs plane 
(in-plane)

425 - 440 535 464 472
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calibration models were developed using MPLS. The R2 
values reported for the calibration and validation ranged 
between 0.25–0.76 and 0.03–0.55, respectively (Sahamishirazi 
et  al. 2017). The low R2 values suggested a poor correlation 
between the HPLC reference method and NIR data in both 
calibration and validation. The poor results could be due 
to the wide variation between the samples because of the 
lower number of samples (n = 100) from 12 new bred open 
pollinating genotypes of broccoli (Sahamishirazi et  al. 
2017). The RPD values of all the developed models were 
lower than 2.3, indicating that the models are not appli-
cable for any purpose (Sahamishirazi et  al. 2017). This 
study did not apply any treatments to the spectra and only 
used the NIR raw spectra.

The amount of total glucosinolates, glucobrassicin, glu-
coraphanin, 4-methoxy glucobrassicin, and neoglucobras-
sicin in freeze-dried broccoli has been determined using 
VIS/NIR spectroscopy (400–2500 nm) (Hernández-Hierro 
et  al. 2012). The reference method used in this study was 
micellar electrokinetic capillary chromatography (Clarke 
2010). The spectra were preprocessed and compared using 
different methods such as MSC, SNV, and de-trending. The 
calibration models were developed using MPLS. The best 
calibration model for determination of glucobrassicin, glu-
coraphanin, 4-methoxy glucobrassicin, and neoglucobras-
sicin, and total glucosinolates were based on the use of 
detrend 1,4,4,1, detrend 1,4,4,1, SNV 1,4,4,1, MSC 2,8,6,1, 
and none 2,10,10,1; respectively. The calibration and vali-
dation statistics are summarized in Table 1. The best model 
was identified based on the highest R2 and lowest SECV 
and SEP values. The R2 values of the calibration models 
suggested that the model for glucobrassicin showed good 
correlation (0.89) which is promising, while the models for 
4-methoxy glucobrassicin, and neoglucobrassicin, and total 
glucosinolates had an R2 value in the range of 0.65–0.81 
suggesting that the models may be used for quantitative 
analysis. However, the model of glucoraphanin showed very 
poor correlation (R2 = 0.40).

The use of NIR hyperspectral imaging to quantify and 
map the total glucosinolates content in freeze-dried broccoli 
florets has been reported (Hernández-Hierro et  al. 2014). 
The hyperspectral images of broccoli were obtained using 
the wavelength region of 950–1650 nm. After selecting the 
regions of interest and random 500 pixels, the NIR spectra 
were pretreated by SNV to remove the effects of light scat-
tering, and PCA was used with a T2 Hotelling value to 

remove spectral outliers. The calibration model was devel-
oped using PLS regression with the reference data obtained 
from micellar electrokinetic capillary chromatography. The 
model was only validated using cross-validation with SECV 
of 1.80 μmol/g.

5.1.2.  Kale (Brassica oleracea var. sabellica)
Kale (Brassica oleracea var. sabellica) is another major 
source of glucosinolates, and its total glucosinolate con-
tent can vary between 2 to 100 µmol/g dry weight (Samec, 
Urlic, and Salopek-Sondi 2019) or 17 to 345 mg/100 g 
fresh weight (Possenti et  al. 2016). The glucosinolate con-
tent of kale can be affected by cultivar environment fac-
tors (e.g. temperature, relative humidity, and carbon 
dioxide concentration) (Chowdhury, Kiraga, et  al. 2021), 
phenological stage at harvest, and degree of insect damage 
during the growth stage (Velasco et  al. 2007), as well as 
the cultivar (Hahn et  al. 2016). Ideally, the concentration 
of these compounds should be monitored during 
plant growth.

Total glucosinolates and individual glucosinolates  
(e.g. progoitrin, sinigrin, glucoraphanin, gluconapin, 
4 - h y d r o x y g l u c o b r a s s i c i n ,  g l u c o b r a s s i c i n , 
4-metho xyglucobrassicin, and neoglucobrassicin) were measured 
in freeze-dried Brassica alborgrabra (Chinese kale) samples 
(Chen et  al. 2014) using NIR spectroscopy (400 to 2500 nm) 
and HPLC (glucotropaeolin as an internal standard). The NIR 
spectra were preprocessed using SNV, and de-trending where 
MPLS was used as a regression method (Chen et  al. 2014). 
The statistical parameters obtained in this study are outlined 
in Table 1. The calibration model had a high R2 of prediction 
(0.92) and validation (0.91), low SECV (2.96 μmol/g DW) and 
SEP (2.87 μmol/g DW), and fair RPD (3.59) for determination 
of total glucosinolates. Based on these findings, it can be con-
cluded that NIR spectroscopy is an efficient method to deter-
mine the total glucosinolate content in Chinese kale and can 
be used for determination purposes. Likewise, in terms of 
specific glucosinolates, the model was fair in predicting the 
amount of gluconapin, glucobrassicin, and neoglucobrassicin 
(Table 1). However, the model was not suitable for the quan-
tification of progoitrin and 4-hydroxyglucobrassicin due to high 
standard error values and low RPD value (Table 1). The RPD 
value obtained for the calibration model of sinigrin and 
4-methoxyglucobrassicin indicated that the calibration model 
was not suitable for quantification purposes. On the other 

Table 4. Characteristic bands in the Mir region reported to measure pure glucosinolates and isothiocyanates.

Compound Molecular formula wavenumbers of key absorbance bands (cm−1) reference

Glucosinolates
(R,S)s-Glucoraphanin C12H23no10s3 3316 (oH), 2976, 2868, 1651 (C=n), 1495, 1265, and 1063  (vo et  al. 2013)
α-neoglucobrassicin C17H22n2o10s2 3125, 2936, 1714, 1575, 1453, 1242, and 1060  (vo et  al. 2018)
α-4-Methoxyglucobrassicin C17H22n2o10s2 3454, 3267, 2908, 2842, 1260, and 1060  (vo et  al. 2018)
Glucobretschneiderin C15H20no11s2 3373 (oH), 2915 (CH), 1658 (Cn), 1059 (C–o), 801 (sulphate), and 668 (C–s) (Montaut et  al. 2015)
Isothiocyanates
sulforaphane C6H11nos2 3426 (o-H from H2o adsorbed), 2923, 2867 (C-H), 2179, 2100 (n = C=s), 1451, 

1349 (C-H), 1260 (C-n), 1021 (s = o), 739 (C-H), and 688 (C-s)
(de nicola et  al. 2014)

iberverin C5H9ns2 3054, 2925, 2106, 1264, and 736  (ernst et  al. 2013)
iberin C5H9nos2 2932, 2179, 2087, 1444, 1348, 1013, and 690  (ernst et  al. 2013)
Cheirolin C5H9no2s2 3002, 2923, 2180, 2110, 1442, 1298, 1264, 1131, 1016, and 764  (ernst et  al. 2013)
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hand, the model of glucoraphanin showed a fair RPD (3.18), 
however, the model had a R2 of validation (0.67). One of the 
strengths of this study was that researchers considered collect-
ing kale samples at different stages of maturity. This sampling 
strategy can increase the variability in the chemical and phys-
ical characteristics of the sample set and could potentially have 
a greater effect on the robustness of the calibration (e.g. com-
mercial application), compared to models that may only con-
sider mature samples.

NIR spectroscopy has also been used to estimate the 
amount of sinigrin, glucobrassicin, 4-ethoxyglucobrassicin, 
neoglucobrassicin, and gluconapin in freeze-dried kale leaf 
samples (Chowdhury, Ngo, et  al. 2021). In this study, HPLC 
with sinigrin as an external standard, was used to obtain 
the reference data. The raw spectra (300–1050 nm) were 
subjected to smoothing and first derivative treatment to 
remove outliers and enhance resolution. Different regression 
models were applied and compared: PCR, PLSR, and step-
wise multiple linear regression (SMLR). Key wavelengths in 
the range 740–1000 showed a strong correlation with the 
glucosinolate content in kale leaves. Comparing the regres-
sion methods, SMLR was more effective in developing mod-
els compared to PCR and PLSR. SMLR models showed good 
performance (R2 > 0.82) with different spectral transforma-
tions of the targeted glucosinolates.

5.1.3.  Rocket (Eruca sativa)
Rocket (Eruca sativa), also known as arugula, is another 
vegetable from the Brassicaceae family that has been reported 
to have high glucosinolate content (Signore et  al. 2020). The 
common range of total glucosinolates in rocket is 
2–140 mg/100 g fresh weight (Possenti et  al. 2016). Although 
high amounts of phytochemicals in vegetables and other 
food products are desirable, the increase in the content of 
some compounds may have drawbacks as well. For example, 
high glucosinolate content in rocket leaves has been reported 
to reduce consumer acceptability due to an increase in bit-
terness and pungency (Bell, Lignou, and Wagstaff 2020). 
Thus, to ensure consumer acceptance it will be helpful to 
monitor the amount of glucosinolates in rocket leaves before 
harvesting them or processing them. A quick infrared 
spectroscopy-based method to determine glucosinolates in 
rocket can be useful in ensuring desirable glucosinolate 
levels for consumers.

The amount of total glucosinolates, glucoraphanin, glu-
cosativin, and glucoerucin in freeze-dried rocket leaves was 
predicted using VIS/NIR spectroscopy (400 to 2500 nm) 
(Toledo-Martin et  al. 2017). The calibration models were 
developed using LC coupled with UV detection (sinigrin as 
an external standard). The NIR spectra were preprocessed 
using the first and second derivative, SNV-DT as baseline 
offset correction. The best pretreatment of the NIR spectra 
was the second derivative (2,5,5,2) with SNV-DT. According 
to the external validation, the RPD values were in the range 
of 1.5–2.5 suggesting that the models are only suitable for 
qualitative analysis. The RER values of the external valida-
tion suggest that the models of glucoraphanin and glucoe-
rucin are useful for quality control due to their good 

precision, whereas the models for total glucosinolates and 
glucosativin could be used for screening purposes. 
Interestingly, by interpreting the loadings, it was suggested 
by the authors that proteins and cellulose highly contributed 
to the calibration models developed for the determination 
of glucosinolates.

5.1.4.  Cabbage (Brassica oleracea var. capitata f. alba) 
and Brussel sprouts (Brassica oleracea var. gemmifera)
Cabbage (Brassica oleracea var. capitata f. alba) and Brussel 
sprouts (Brassica oleracea var. gemmifera) contain a wide range 
of glucosinolates. Brussel sprouts can contain 18 to 390 mg/100 g 
fresh weight of total glucosinolates, while white, savoy, and 
red cabbage contain an average glucosinolate content of 148, 
88, and 81 mg/100 g fresh weight, respectively (Possenti et  al. 
2016). Industrial thermal treatments can significantly affect 
their glucosinolate content (Lafarga et  al. 2018). The quality 
of cabbage, including the glucosinolate content, is affected by 
different blanching, freezing, steaming, and microwaving treat-
ments (Chenani Saleh et  al. 2021; Tabart et  al. 2018). Thus, 
this indicates that industrial processes in food production need 
to be optimized and continuously monitored to sustain these 
beneficial compounds.

A study developed and compared NIR calibration models 
for the determination of glucobrassicin in fresh and 
freeze-dried cabbage and Brussels sprouts was reported 
(Renner and Fritz 2020). The reference method used in this 
study was HPLC using sinigrin as an external standard. The 
authors applied three different combinations of pretreatments 
to the spectra namely SNV and de-trending, first derivative, 
and the combination of first derivative SNV and de-trending. 
The R2 of calibration and cross validation using of 
freeze-dried samples, decreased from 0.90 and 0.80 (using 
raw spectra) to 0.63 and 0.41 (using SNV + de-trending), 
respectively. In addition, the first derivative treatment of 
the NIR spectra did not improve the correlation between 
the variables (R2 remained the same), in comparison to 
using the NIR raw spectra. The calibration models developed 
based using the NIR spectra of fresh samples had high 
RMSEC. For instance, the model developed using the NIR 
raw spectra of fresh samples had a calibration RMSEC of 
40.47, while the model using the raw spectra of the dried 
samples had a calibration RMSEC of 2.17. According to the 
authors, the developed models are suitable for rough screen-
ing of glucobrassicin in cabbage and Brussels sprout fresh 
(RPD = 2.3) and dry (RPD = 2.4) leaf tissues.

Determination of the glucosinolate content of Chinese 
cabbage (Brassica rapa) using UV-VIS-NIR spectroscopy 
(250–1100 nm) has been investigated (Ngo et  al. 2014). The 
amount of glucoraphanin, sinigrin, glucoalyssin, gluconapin, 
glucobrassicanapin, glucobrassicin, 4-methoxyglucobrassicin, 
gluconasturtinn, neoglucobrassicin, and total glucosinolates 
in freeze-dried samples was determined using HPLC as the 
reference method. The obtained spectra were preprocessed 
using the Savitzky-Golay smoothing method, and SML 
regression with different mathematical transformations was 
used to develop the calibration models. Key wavelengths 
in the region between 300–490 nm (visible) and 
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1010–1030 nm (short wavelengths in the NIR region) were 
identified and associated with glucosinolates. The calibration 
model of glucoraphanin showed excellent correlation (R2 = 
0.95) where those for 4-methoxyglucobrassicin (R2 = 0.89) 
and neoglucobrassicin (R2 = 0.89) showed good correlation. 
However, this study was unsuccessful in developing cali-
bration models for other glucosinolates.

5.2.  Prediction of glucosinolates in oilseeds

Oilseeds are considered as energy dense foods due to their 
high oil content. They are mainly grown to produce edible 
oil (Adeleke and Babalola 2020). Oilseeds are commonly 
analyzed for their oil, protein, glucosinolate, chlorophyll, 
specific fatty acids (such as oleic and linoleic acids), and 
total saturated fat content as quality control measurements 
(Barthet, Petryk, and Siemens 2020; Sen et  al. 2018). It is 
essential to monitor the quality parameters to improve 
cultivars and perform effective germplasm screening. The 
glucosinolate content of oilseeds is an important factor 
that can influence the quality and nutritional value of 
oilseeds. Although glucosinolates have remarkable bioac-
tivity, high concentrations of certain glucosinolates can 
negatively impact the oilseed quality due to their 
anti-nutritive activity. For example, the ideal amount of 
glucosinolates in rape oilseeds is <25 μmol/g (Bocianowski, 
Liersch, and Nowosad 2020). High levels of alkenyl glu-
cosinolates (progoitrin and gluconapin) and their respective 
isothiocyanates in rapeseed-based meals can lead to 
palatability-related concerns. Currently, the decrease the 
total glucosinolate content of rape oilseeds to <18 µmol/g 
is a key breeding target (Jhingan et  al. 2023). The amount 
of glucosinolates in oilseeds is mainly affected by their 
genotype. For example, brown mustard can contain 26 to 
354 mg/100 g fresh weight of total glucosinolates (Possenti 
et  al. 2016). The use of IR spectroscopy, as a robust ana-
lytical method, becomes very attractive when dealing with 
the analysis of traits in large groups of oilseeds such as 
glucosinolate analysis that has a significant impact on the 
oilseed quality.

5.2.1.  Brown mustard (Brassica juncea)
The determination of glucosinolates and composition of 
Brassica juncea seeds, commonly known as brown mustard 
seeds, using VIS/NIR spectroscopy has been reported 
(Gohain et  al. 2021). In this study, the authors compre-
hensively profiled the glucosinolate content in several seed 
samples (n = 641) of Brassica juncea chemotypes. They 
considered four genotypes namely core Brassica juncea 
germplasm panel, F1 double haploid mapping population, 
high indolic glucosinolate expressing transgenic lines, and 
high glucoraphanin accumulating transgenic lines which 
all contribute to enhance the variability in the data set 
used to develop the calibration models. These authors 
quantified the amount of sinigrin, gluconapin, glucobras-
sicanapin, glucoiberin, glucoraphanin, glucoalyssin,  
glucobrassicin, 4-hydroxyglucobrassicin, 4-methoxy- 
glucobrassicin, total glucosinolates, aliphatic glucosinolates, 

and indolic glucosinolates using HPLC (with sinalbin as 
an internal standard). The NIR reflectance spectrum (400–
2500 nm) was measured in all the samples where the 
Norris method was used to minimize spectral variability. 
Then, mathematical treatments were applied using differ-
ent derivative combinations. The mathematical treatment 
(2,5,5,2) was found to be the most effective in processing 
the spectra. The calibration models using MPLS were not 
suitable for the quantification of glucobrassicanapin, 
4-methoxy glucobrassicanapin, and glucobrassicin due to 
low R2 values in validation (0.34, 0.47, and 0.56, respec-
tively). According to the RPD values, the model developed 
for sinigrin is the only one that is suitable for quality 
control (RPD = 5.35), while the models of gluconapin, 
4-hydroxy glucobrassicin, and total indolic glucosinolates 
(3.1 < RPD < 4.9) were considered as fair and can be used 
for screening purposes. The model developed for glu-
coiberin, aliphatic glucosinolates and total glucosinolates 
can be used for rough screening (breeding programmes) 
(2.4 < RPD < 3.0), while the other models are not suitable 
for determination purposes. According to the RER values, 
the model developed for sinigrin, gluconapin, and total 
indolic glucosinolates is good for quantification and can 
give values with high precision (RER > 15). The model 
of glucoalyssin, glucobrassicin, aliphatic glucosinolates, 
and total glucosinolates can be useful for quality control 
(10 < RER < 15), while the other models can be used for 
sample screening only. One of the highlights of this study 
is the use of an external validation set. The researchers 
not only assess the validation of their models by using 
Brassica juncea samples, but they also considered other 
Brassica species (Brassica rapa, Brassica nigra, Brassica 
napus, and Brassica carinata) to validate their models as 
well as they investigated the robustness of the models 
upon using other Brassica species. The use of an external 
validation set revealed that the models which were devel-
oped using Brassica juncea could also be suitable to esti-
mate some of the key glucosinolates across other oilseeds 
samples from the same species.

Another study targeted only the total glucosinolates con-
tent, rather than the individual glucosinolates present in 
Brassica juncea seeds (Sen et  al. 2018). This study used a 
reference method based on a chemical assay that produces 
a complex compound of glucosinolates and tetrachloropal-
ladate (II) and the measurements were obtained using an 
enzyme-linked immunoassay (ELISA) reader. The IR spectra 
(400–2500 nm) obtained were pretreated with mathematical 
transformations: derivatives, multiple scatter correction and 
smoothing. The first derivative treatment (1,4,4,1) was used 
for resolving overlapped peaks and removing the baseline 
variations. The prediction model was developed based on 
MPLS. The detailed statistical analysis of calibration and 
validation of this study are outlined in Table 1. The cali-
bration model developed for the determination of total glu-
cosinolate content of Brassica juncea seeds had high R2 of 
calibration (0.939), cross-validation (0.865), and external 
validation (0.951) values suggesting a strong correlation in 
the model. One of the factors that could have potentially 
contributed to this strong correlation is the range in 
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composition (large sample variability). Based on a recent 
study, the amount of glucosinolates in different Brassica 
juncea seeds can vary between 45 and 90 μmol/g (Zhang 
et  al. 2022). The glucosinolate content of the seed samples 
used to develop the calibration model reported by Sen and 
collaborators (2018) ranged between 28 and 114 μmol/g with 
about 200 samples.

5.2.2.  Rapeseed (Brassica napus subsp. napus)
A handheld NIR instrument was used to develop a calibra-
tion model to determine the total glucosinolates, and other 
biomolecules, in rapeseed samples (Barthet, Petryk, and 
Siemens 2020). The seeds samples were obtained from three 
different years/harvest sourced from different regions of 
Canada. The reference method used to obtain the total 
glucosinolates value was HPLC, and the NIR spectra were 
collected in the range between 908–1776 nm. The spectra 
were treated initially with SNV followed by a Savitzky-Golay 
second derivative transformation. Kernel PLS method was 
used as a regression method to develop the calibration 
model. The developed model for the determination of total 
glucosinolates was very poor and not suitable for quantifi-
cation or screening purposes (RPD < 1.5) based on the 
statistical analysis performed. In this study, 13 factors were 
used to develop the calibration model. The use of a high 
number of factors during calibration development can deter-
mine a risk of overfitting (e.g. redundancy) (Dayananda and 
Cozzolino 2022). It has been reported that to obtain a robust 
calibration model few factors should be used (Williams, 
Dardenne, and Flinn 2017). Therefore, the results of this 
study need to be considered carefully.

Another study evaluated the use of NIR spectroscopy to 
develop a model for the determination of glucosinolates in 
Brassica napus seeds (rapeseed) (Sen et  al. 2018). The same 
research group developed a calibration model for total glu-
cosinolates in brown mustard discussed earlier (Sen et  al. 
2018). The reference method and spectral treatments were 
the same as the ones used for Brassica juncea seeds. The 
detailed statistical validation results of this study are outlined 
in Table 1. The calibration model developed for the deter-
mination of total glucosinolate content of Brassica napus 
seeds had high R2 of calibration (0.865), cross-validation 
(0.866), and external validation (0.986) values, suggesting a 
strong correlation in the model. The glucosinolate content 
of the seeds sample used to develop the calibration model, 
ranged between 14 to 127 μmol/g, indicating a good range 
in composition (e.g. variability) that have a direct influenced 
in the quality of the results (e.g. calibration statistics).

5.2.3.  Pennycress (Thlaspi arvense)
The seed composition, including total glucosinolates, of a 
pennycress (Thlaspi arvense) population, has been evaluated 
using NIR spectroscopy to aid in rapid domestication and 
utilization of this product in the USA (Chopra et  al. 2019). 
This study increased the sample variability by initially sub-
jecting the seeds to different chemical and irradiation treat-
ments to induce the creation of mutants before planting. The 

harvested seeds were then used for NIR spectroscopy analysis. 
The reference method used for quantification of total gluco-
sinolates was based on the use of UV spectroscopy involving 
extraction with methanol and treatment with sulfatase to 
release desulfoglucosinolates for quantification. The NIR spec-
tra were collected in the wavelength range between 950–
1650 nm. The reported wet lab range for total glucosinolate 
content was 20–180 µmol/g, while the reported range using 
NIR was 24–154 µmol/g. There was a moderate correlation 
(R2 = 0.78) between the reference and NIR predicted values 
of total glucosinolates. The moderate correlation could have 
been influenced by the seed characteristics (e.g. variations in 
seed coating, maturity, and volume), low variability in certain 
seed traits in the model, or errors associated with using the 
mirror cup modules during the collection of the spectra.

5.2.4.  Combined species
A comprehensive study developed an NIR spectroscopy-based 
calibration model for the measurement of quality charac-
teristics, including the total glucosinolate content, of six 
Brassicaceae family seeds (Brassica napus (rapeseed), Brassica 
carinata (Ethiopian mustard), Brassica juncea (brown mus-
tard), Brassica rapa (field mustard), Sinapis alba (white 
mustard), and Camelina sativa (camelina)) (Oblath et  al. 
2016). The reference method in this research was based on 
HPLC. After PCA analysis three different mathematical 
treatments were applied to develop the calibration models 
namely 0,0,1,1 (raw data), 1,4,4,1 (first derivative), and 
2,4,4,1 (second derivative). These treatments were tested 
with and without the combination of SNV, detrend and 
scatter correction. The MPLS regression method was used 
to build the calibration models based only on the data 
treated with 1,4,4,1 and SNV/detrend scatter correction. The 
detailed statistical analysis of the calibration and validation 
results of this study are outlined in Table 1. The calibration 
model of glucosinolates had an R2 of 0.92, SEC of 8.19 μmol/g, 
and an RPD of 2.3. These results suggested that the model 
can only be used for qualitative analysis. The outcomes of 
cross-validation were not reported; thus, the applicability of 
the calibration model is questionable.

6.  Prediction of isothiocyanates using infrared 
spectroscopy

Isothiocyanates can be produced upon the rupture of cell 
structures and the resulting interaction of plant myrosinase 
with glucosinolates during post-harvest and food manufac-
turing/preparation processes. Only one study based on 
ATR-FTMIR spectroscopy has been reported to determine 
the total isothiocyanates in terms of sulforaphane equivalents 
in broccoli (Revelou et  al. 2017). The reference method used 
to determine isothiocyanate content was based on UV-VIS 
spectroscopy, utilizing a cyclo-condensation reaction with 
vicinal dithiols (Zhang et  al. 1992). In this assay, 
five-membered cyclic condensation products are formed 
together with corresponding free amines (λmax = 365 nm). 
The averaged MIR spectra (2150–2020 cm−1) of the standard 
solutions were correlated with the reference data by the 
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leave-one-out cross-validation technique. The selected MIR 
region of sulforaphane showed one of the two doublet peaks 
(≈2120 and ≈2058 cm−1) that is correlated with the asym-
metric stretching of N=C=S, with the peak ≈2120 cm−1 
increasing with the increase of sulforaphane concentration. 
The developed PLS calibration model for the determination 
of broccoli isothiocyanates had an R2 value of 0.99 suggest-
ing a very strong correlation between the MIR and the 
reference method. The root-mean-square error of 
cross-validation (RMSECV) and RMSEP of the performed 
cross validation was 1.74 and 2.17, respectively. Although 
the high R2 value indicated an excellent linear relationship, 
and the small variation between RMSECV and RMSEP sug-
gested the robustness of the model, further parameters (such 
as RPD and RER) were not reported by the authors to 
evaluate the robustness of the developed models for quan-
tification and quality control purposes.

7.  Limitations and future perspectives

The use of NIR and MIR spectroscopy has been reported by 
different authors to measure the content of gluscosinolates 
in different vegetables and oilseed samples. However, there 
are several challenges and limitations associated with the 
determination of glucosinolates using infrared spectroscopy. 
Limitations are associated with the lack of a robust and agreed 
reference method (e.g. HPLC, ELISA, and UV-VIS) used to 
quantify these compounds to develop calibration models. One 
of the challenges is related with the relatively low quantities 
of these compounds. It has been highlighted that low con-
centrations of certain glucosinolates can lead to errors in the 
reference values obtained as well as with the detection of 
these compounds using IR spectroscopy (e.g., LOD and LOQ). 
A common strategy explored and reported to overcome this 
challenge was to combine the glucosinolate content of a spe-
cific class together. For example, some indolic glucosinolates, 
such as 4-hydroxyglucobrassicin, 4-methoxyglucobrassicin, 
and neoglucobrassicin that are usually found in low quantities, 
were added together, where the sum of the amount of these 
glucosinolates and glucobrassicin reported as total indolic 
glucosinolates was used as input during calibration develop-
ment. This has been an effective strategy to improve the 
performance of the calibration models using IR spectroscopy. 
It is important to mention that although some glucosinolates 
are present at low concentrations, and in many cases the use 
of NIR spectroscopy cannot measure them directly, the inter-
actions or the existence of correlations between these com-
pounds and other chemical components make the calibrations 
possible.

None of the current studies evaluated in this review have 
considered assessing the accuracy of the reference method 
used to quantify the glucosinolates. None of these studies 
have reported the SEL SET, LOD, or LOQ. Therefore, the 
accuracy and efficiency of the reference method is unknown 
making the evaluation of the IR calibration model difficult. 
Many factors affect the accuracy of the reference methods. 
This includes the extraction efficiency in which several vari-
ables can affect the amount of extracted glucosinolates from 

the vegetable or plant matrix, such as extraction temperature, 
time, volume of solvent, composition of solvent, ratio of 
amount of dry sample to extracting solvent, and personal 
errors associated with the extraction processes. The reference 
method selected for analyzing the extract (e.g., HPLC and 
UV-VIS spectroscopy) also contributes to the efficiency and 
reliability of the reference method.

All the studies evaluated in this review investigated the 
use of NIR spectroscopy to determine glucosinolates and 
isothiocyanates in different type of samples. NIR spectros-
copy has shown very promising results in the determination 
of total glucosinolates in oilseeds. However, the prediction 
of these compounds in other vegetables is not clear. In 
addition, not reports on the use of other spectroscopies, 
such as MIR or Raman spectroscopy were found.

Another limitation of these studies is related to the lack 
of robust interpretation of the IR spectra as well as loadings 
or regression coefficients used to predict the different 
glucosinolate-rich sources. A wide variation in the selection 
of wavelengths used can be seen in the current studies. 
Comprehensively evaluating and understanding the key fea-
tures of glucosinolate and isothiocyanate related bands in the 
IR spectra of these vegetables and seeds will help in identi-
fying the best ranges of the IR spectrum to use to develop 
the calibration models. It has been reported that since a 
portion of the structure of glucosinolates is derived from 
amino acids, this can result in some indirect correlations 
between the protein and total glucosinolate content, deter-
mining the poor robustness and prediction ability of the 
calibration models developed. Therefore, a careful interpre-
tation of loadings and regression coefficients is of importance.

Furthermore, some of the current studies have not 
reported in addition to the R2 and SECV or SEP, other 
important statistical parameters such as the RPD, RER, 
slope, and bias to evaluate the ability and robustness of the 
developed model to be used as quantitative, quality control 
or screening (qualitative analysis) methods. A comprehensive 
report of these statistics will be required to aid and guide 
users in understanding the applications and limitations of 
the use of NIR spectroscopy. In addition, most of the cal-
ibration models reported in these studies were only based 
on the use of cross-validation and most of the reported 
models were tested without using an independent data set.

Other information about the samples such as sample 
origin, harvest season, genotype, cultivar, preparation, and 
presentation to the instrument have been not reported or 
defined in the scientific papers reviewed. Evaluating this 
information together with the chemical composition will 
provide with a better understanding of the pros and cons 
of the calibration models developed, as well as their poten-
tial commercial applications.

To conclude, further research on the utilization of IR 
spectroscopy should include assessing the reference method 
used to develop a calibration, the evaluation of suitable 
preprocessing and sample presentation method (e.g. reflec-
tance and ATR), the comparison and study of the most 
effective wavelength or wavenumber range (e.g. NIR or 
MIR) and the validation of the calibration model using 
independent samples.
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