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Abstract 

Active tuned mass damper (ATMD) devices are recommended in various structures to reduce 

vibrations.  The performance of the ATMD system is closely tied to the control design utilized, 

according to research in the literature. The designed control input will take into account as much 

system dynamics as possible, making it possible to use it as a generalized controller in all similar 

systems. Nonlinear behavior is the natural behavior of engineering structures and in order to 

obtain a more realistic and high-performance ATMD system, it can be considered as an 

appropriate approach to design the controller by considering the structural nonlinearities. In 

addition, unexpected external influences and parameter uncertainties must be taken into account 

during control design to ensure that control systems perform successfully in similar systems in 

all conditions. Therefore, in this study, the nonlinear model of the multi-story building was 

reconstructed by adding nonlinear disturbance to represent unknown external effects. Band 

limited white noise is used as a disturbance function and gaussian white noise is added to 

measured states in this study. To obtain a robust controller, unknown structural parameters are 

compensated for by using adaptive compensation terms. With the controller design supported 

by Lyapunov-based stability analysis, the stability of the vibrating structure featuring ATMD 

is theoretically guaranteed while achieving the main control goal. Performance analyses of the 

designed controllers are carried out with simulation studies. The efficiency of the developed 
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Lyapunov-based controller in dampening the unwanted vibrations that occurred on the building 

is seen in simulation results.  

Keywords: ATMD, Robust Adaptive Backstepping Control, Lyapunov-Based Control, 

Nonlinear Control, Vibration Control 
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1. Introduction 

The structural vibrations created by earthquakes pose a serious hazard to both structures and 

people. Many control studies have been carried out under the topic of vibration control in order 

to counteract this threat. This subject has maintained its place and relevance on the agenda in 

recent years. Studies to reduce earthquake-induced vibrations may be divided into two 

categories: passive and active vibration control approaches. 

 

Tuned mass damper (TMD) systems are one of the most widely used passive vibration damping 

methods. The main purpose of such vibration control studies is to dampen the unwanted 

vibrations of the building during an earthquake by producing a reverse vibration response. The 

working principle of TMD systems is based on core knowledge. This principle consists of a 

mostly single degree of freedom mass spring damper system that transfers and absorbs the 

kinetic energy of the structure onto itself (Preumont et al., 2014). By incorporating the actuator 

in the traditional TMD system, an active tuned mass damper (ATMD) is created. The fact that 

ATMD provides better outcomes than TMD and requires a lower control mass is seen as the 

active form of traditional TMD systems, which makes it beneficial when it comes to utilize 

ATMD over the passive approach. Usually located on the top floor, the ATMD acts via the 

specified control signal, creating a vibration response and reducing the overall response of the 

building's vibration (Yu & Thenozhi, 2016). Because multi-degree-of-freedom systems vibrate 

in many vibrational modes, ATMD systems work extremely well to dampen the vibrations of 

such structures (Collette & Chesné, 2016). Controller design is a very important process in 

systems where active controllers are used for vibration control. Reducing the control effort 

required, especially during vibration reduction, is the main point of most studies. ATMD 

systems and different control approaches are used together to mitigate the earthquake-related 
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vibrations in the structures. Adhikari et al. studied on sliding mode controller (SMC) design for 

ATMD systems that dampen the vibration of a high buildings (Adhikari et al., 1998). The most 

extensively utilized controller for ATMD systems is the proportional integral derivative (PID) 

controller. (Etedali et al., 2018; Etedali & Tavakoli, 2017; Kayabekir et al., 2020). The PID 

controller was widely preferred when there was a need for performance comparison with other 

controllers in the developed control studies (Guclu, 2006; Kayabekir et al., 2020; Ümütlü et al., 

2021). Guclu & Yazici, (2008) used both active base isolator and ATMD in the study. They 

used a fuzzy logic controller to dampen the vibrations of a 15-story structure and compared the 

performance of the controller with that of the PID controller. Li & Cao, (2019) for the design 

of an ATMD system, combined dynamic magnification factors of the structure with particle 

swarm optimization.  

 

In the structural control studies carried out in the literature, building structures have been 

modeled linearly, which is a very common approach. But physical system models typically 

incorporate various kinds of uncertainty. These uncertainties generally arise from material and 

geometric nonlinearities, but also from possible uncertain external effects like measurement 

noise, unmodeled dynamics and etc. Nonlinear behavior is the natural behavior of multi-story 

buildings with ATMD systems. Therefore, studying nonlinearity in structural systems has been 

a necessary area of research in recent years. Along with these studies, vibration reduction and 

performance improvement of nonlinear systems under major earthquakes has recently attracted 

the attention of researchers (Aghabalaei Baghaei et al., 2019). For this reason, a large number 

of controllers have been designed to be used with various vibration dampening systems in 

models containing various nonlinearities. However, in buildings where nonlinear models are 

used, which have increased in recent years, linear building models placed on a nonlinear base 

isolator are often preferred instead of using a completely nonlinear structure.  

 

Nonlinear systems have complex behavior when compared to linear systems. Numerous 

nonlinear models have been developed by researchers to model these complex behaviors. The 

Duffing oscillator, which is a second-order differential equation with nonlinear cubic stiffness, 

is often preferred in nonlinear problems (Alexander & Schilder, 2009; Chang & Poon, 2010; 

Eason et al., 2013; Ghandchi Tehrani & Elliott, 2014; Mañosa et al., 2005). One of the 

characteristic features of a Duffing oscillator is its chaotic behavior tendency when forced by a 

periodic force (Fang et al., 2001; Ghandchi-Tehrani et al., 2015; Novak & Frehlich, 1982). In 

addition to the difficulty of dealing mathematically with typical nonlinear systems, these types 
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of systems are equally challenging to control. To overcome this difficulty, various linearization 

approaches such as feedback linearization, linearization around equilibrium points and etc. have 

been used in vibration control studies for nonlinear modeled structures(Anh & Nguyen, 2012; 

Ghaffarzadeh et al., 2020; Socha & Blachuta, 2000). To improve the performance of nonlinear 

duffing systems exposed to nonstationary random excitations, Aghabalaei Baghaei et al., (2019) 

applied equivalent linearization (EL) and SMC techniques. As a result of this linearization, 

linear control strategies are used for ATMD systems. However, while designing controllers for 

a structure with nonlinear dynamics, it is seen as a more realistic approach to design a nonlinear 

controller. 

 

In controller design for ATMD systems, it is a critical strategy to create a controller that just 

requires system states. Because a controller design based on the assumption that the system 

parameters are completely or partially known is not a practical approach when it comes to a 

construction system. ATMD systems, which are used for damping structural vibrations, are 

very useful systems not only for new structures but also for existing structures. In particular, it 

is not possible to estimate the system parameters of existing structures with absolute accuracy. 

A controller design that includes system parameters is very inefficient when these values cannot 

be used correctly. It even has the potential to be dangerous by increasing vibration and 

producing control responses that can cause resonance. In addition, a control design free from 

system parameters will be in a generalized form that can be used not only for a single structure, 

but also for all structures with the same mathematical model. Considering the aforementioned 

cases, it seems that system parameters free control design is appropriate for this type of system. 

 

A vital point that should not be neglected in the design of the controller for ATMD systems is 

to support the controller with a stability analysis that guarantees the stability of the system. 

When controller designs whose stability is not mathematically guaranteed are used in such 

ATMD systems, the system may be unstable due to the control input effect. This situation can 

be more harmful for the structure than an earthquake. In this case, it should theoretically be 

assured that the proposed controller can achieve zero convergence of all structural states and 

ensure the overall system's stability during the control process.  

 

The major aim of this research is to develop a controller that can dampen earthquake-induced 

vibrations in a nonlinear structure using ATMD systems without relying on system 

characteristics. It is aimed to eliminate parametric uncertainties by employing compensation 
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terms that are recommended based on the existing system circumstances. Another motivation 

for this approach is that controllers equipped with such compensation rules require much less 

control effort than traditional robust controller designs for nonlinear structures, as evidenced 

many times in the control literature to control various linear systems. Considering its 

appropriateness for these types of vibration control work, a backstepping control method was 

used in the controller design. It is theoretically supported by Lyapunov-based arguments to 

show that the developed controller can achieve zero convergence of all fundamental 

displacements and maintain system stability throughout the control process. A nonlinear nine-

story building model that was subjected to a severe earthquake was utilized for the simulation 

studies of the proposed controller. Some full-scale implementations of ATMD systems used in 

buildings can be given an example Kyobashi Center (11-story), Shimizu Tech Lab (7-story), 

and Ando Nishikicho Building (14-story) (Gutierrez Soto & Adeli, 2013). Band-limited white 

noise has been added to the system equation of the structure as a disturbance function. 

Matlab/Simulink was used to conduct the simulation studies required for this research. 

 

2. MDOF Duffing Structure System 

 

The mathematical model of N story shear type duffing structure is given below, 

 𝐌�̈�(𝑡) + 𝐂�̇�(𝑡) + 𝐊𝐲(𝑡) + 𝐆(𝑡) + 𝛙𝑓𝑑 = 0 (1) 

where 𝐌 ∈ ℝ𝑛×𝑛, 𝐂 ∈ ℝ𝑛×𝑛 and 𝐊 ∈ ℝ𝑛×𝑛 represent mass, damping and stiffness coefficient 

matrixes, respectively. 𝑓𝑑 is the nonlinear disturbance term and 𝛙 = [𝟎 𝟎 . . . 𝟎 𝟏]𝑻 is the (nxn) 

orientation vector for the nonlinear disturbance. 𝐆(𝑡) ∈ ℝ𝑛×𝑛 is the nonlinear term vector.  

𝐲(𝑡) = [𝒚𝟎 𝒚𝟏 . . .  𝒚𝒏−𝟏 𝒚𝒏]𝑻  is the displacement vector and each element of this vector 

represent the related floor displacement. �̇�(𝑡) and �̈�(𝑡) are first and second-time derivatives of 

the displacement vector. They represent the velocity vector and acceleration vector, 

respectively. The earthquake-induced ground motion is indicated by 𝑦0 ∈ ℝ, and its first time 

derivative is the velocity of the ground motion is represented by �̇�0 ∈ ℝ.  

 

 

𝐆(𝑡) =

[
 
 
 
 
 
 

𝛼1𝑘1𝑥1
3 − 𝛼2𝑘2𝑥2

3

𝛼2𝑘2𝑥2
3 − 𝛼3𝑘3𝑥3

3

𝛼3𝑘3𝑥3
3 − 𝛼4𝑘4𝑥4

3

⋮
𝛼𝑛−1𝑘𝑛−1𝑥𝑛−1

3 − 𝛼𝑛𝑘𝑛𝑥𝑛
3

𝛼𝑛𝑘𝑛𝑥𝑛
3 ]

 
 
 
 
 
 

;   

[
 
 
 
 
 

𝑥1

𝑥2

𝑥3

⋮
𝑥𝑛−1

𝑥𝑛 ]
 
 
 
 
 

=

[
 
 
 
 
 

𝑦1 − 𝑦0

𝑦2 − 𝑦1

𝑦
3
− 𝑦2

⋮
𝑦𝑛−1 − 𝑦𝑛−2

𝑦𝑛 − 𝑦𝑛−1 ]
 
 
 
 
 

 (2) 
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The extended mathematical model of the top floor and control mass when a nonlinear optimum 

ATMD is installed on the top floor of the NDOF shear nonlinear building structure, described 

in Eq. 1 and Eq. 2, for vibration control purposes is as follows. 

 

𝑚𝑛�̈�𝑛 + 𝑏𝑛(�̇�𝑛 − �̇�𝑛−1) − 𝑏𝑑(�̇�𝑑 − �̇�𝑛) + 𝑘𝑛𝛼𝑛(𝑦𝑛 − 𝑦𝑛−1)

+ 𝑘𝑛(1 − 𝛼𝑛)(𝑦𝑛 − 𝑦𝑛−1)
3 − 𝑘𝑑𝛼𝑑(𝑦𝑑 − 𝑦𝑛)

− 𝑘𝑑(1 − 𝛼𝑑)(𝑦𝑑 − 𝑦𝑛)3 + 𝑓𝑑 = 𝑢𝑓 

(3) 

 

𝑚𝑑�̈�𝑑 + 𝑏𝑑(�̇�𝑑 − �̇�𝑛) + 𝑘𝑑𝛼𝑑(𝑦𝑑 − 𝑦𝑛) + 𝑘𝑑(1 − 𝛼𝑑)(𝑦𝑑 − 𝑦𝑛)3 = −𝑢𝑓 (4) 

where 𝑚𝑑 ∈ ℝ represents mass coefficient, 𝑘𝑑 ∈ ℝ represents stiffness coefficient and 𝑏𝑑 ∈ ℝ 

represents the damping coefficient for the ATMD system. 

 

 

Figure 1. Model of nonlinear structure with nonlinear ATMD 
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In Eq. (3) and Eq. (4)  𝑚𝑛 ∈ ℝ represents mass coefficient, 𝑘𝑛 ∈ ℝ represents stiffness 

coefficient, 𝑏𝑛 ∈ ℝ represents damping coefficient, and 𝛼𝑛 ∈ ℝ represents nonlinearity 

coefficient for the last floor. 𝑦𝑗 ∈ ℝ and first and second-time derivatives of the displacement 

represent the related floor’s velocity and acceleration. As shown in the Figure 1, the ATMD 

system features a tuned moveable mass whose movement is controlled by force input denoted 

by 𝑢𝑓 ∈ ℝ. The specified controller mass moves in the horizontal axis as a consequence of the 

common action of spring and damping components and the applied force, and this movement 

is represented by displacement denoted by 𝑦𝑑 ∈ ℝ.  

 

In the aforementioned model, the mass coefficient 𝑚𝑑 ∈ ℝ, stiffness coefficient 𝑘𝑑 ∈ ℝ,  

damping coefficient 𝑏𝑑 ∈ ℝ, and nonlinearity coefficient 𝛼𝑑 ∈ ℝ  are used to represent this 

movement mathematically. The ground motion caused by an earthquake is indicated by 𝑦0 ∈

ℝ, and the velocity is represented by its first time derivative.   

 

3. Controller Design for ATMD systems Using in Nonlinear Structures 

 

The control design and Lyapunov based stability analysis of closed loop system proposed in 

this section are based on the representation of multi-story nonlinear buildings controlled by the 

ATMD system against seismic vibrations with a generalized model similar to the system model.  

 �̇� = �̇�𝑛 (5) 

 𝑝1�̈�𝑛 = 𝑓(𝜉𝑛−1, 𝜉𝑛, 𝜉𝑛+1, 𝜉𝑛−1
3 , 𝜉𝑛

3, 𝜉𝑛+1
3 , �̇�𝑛−1, �̇�𝑛, �̇�𝑛+1) + 𝑓𝑑 − 𝑢𝑓 (6) 

where 𝑥, 𝜉𝑛+1, 𝜉𝑛, 𝜉𝑛−1 ∈ ℝ and their first and second time derivatives denote the system states, 

𝑛 denotes degree-of-freedom of the system, 𝑓 is a function that contains nonlinear arguments 

of system states effective on system dynamics, 𝑓𝑑 is the nonlinear disturbance term, 𝑢𝑓 

represents the control force, and 𝑝1 ∈ ℝ denotes the constant system parameters. 

 

Property 1. The term 𝑓 can be linearly parametrized as  

 𝑓 = 𝑌𝑑𝜙 (7) 

where, 𝑌𝑑(𝜉𝑛−1, 𝜉𝑛, 𝜉𝑛+1, �̇�𝑛−1, �̇�𝑛, �̇�𝑛+1) ∈ ℝ1𝑥𝑙 is the system state vector and 𝜙 ∈ ℝ𝑙𝑥1  is the 

represents uncertain constant parameter vector of system. All elements of vector 𝑌𝑑 are 

available. 
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The adaptive compensation term represented by �̂� ∈ ℝ  ensure the robustness of the designed 

controller. A Compensation error term is needed to show the difference between the system 

parameters and the adaptive compensation term. The compensation error is defined as follows 

 �̃� ≜ �̂� − 𝜙  (8) 

The auxiliary error defined as  

 𝑒 ≜ 𝑢𝑣 − �̇�𝑛 (9) 

Virtual controller designed as 

 𝑢𝑣 ≜ −𝐺1𝑥 (10) 

where G1 ∈ ℝ+ represents constant positive definite gain of virtual controller. The first close 

loop system is completed by the virtual controller substituting for the system state to be 

controlled in Eq. (5). 

 ẋ = −𝐺1𝑥 (11) 

The time derivative of Eq. 9 is multiplied by 𝑝1. Substituting Eq. 6 and Eq. 10 in the obtained 

equation, the following equation is obtained. 

 𝑝1�̇� = −𝑝1𝐺1�̇�𝑛 + 𝑌𝑑𝜙 + 𝑓𝑑 − 𝑢𝑓 (12) 

Adaptive compensations of uncertain system parameters are used to deal with parametric 

uncertainty. The adaptive compensation errors 𝑝1 and �̃� show the errors between adaptive 

compensation terms �̂�1and �̂� uncertain system parameters 𝑝1and 𝜙. 

 𝑝1 = �̂�1 − 𝑝1 (13) 

 �̃�  = �̂�  − 𝜙 (14) 

Eq. 13 and Eq. 14 are substituted in Eq. 12. 

 𝑝1�̇� = (�̃�1 − �̂�1)𝐺1�̇�𝑛 + 𝑌𝑑(�̂� − �̃�) + 𝑓𝑑 − 𝑢𝑓 (15) 

The control function is designed according to Eq. 15. 

 𝑢𝑓 = −�̂�1𝐺1�̇�𝑛 + 𝑌𝑑�̂� + 𝜌𝑒𝑡𝑎𝑛 ℎ(𝑒) + 𝐺2𝑒 (16) 

where G2 ∈ ℝ+ is constant positive definite control gain. Eq. 16 are substituted in Eq. 15. 

 𝑝1�̇� = 𝑝1𝐺1�̇�𝑛 − 𝑌𝑑�̃� + 𝑓𝑑 − 𝜌𝑒𝑡𝑎𝑛ℎ (𝑒) − 𝐺2𝑒 (17) 

Lyapunov-based stability analysis is performed to obtain semi-global asymptotic convergence 

of the error terms defined in the closed-loop system. The nonnegative Lyapunov function  

𝑉(𝑥, 𝑒, 𝑝1, �̃� ) is defined as 

 
𝑉 ≜

1

2
𝑥2 +

1

2
𝑝1𝑒

2 +
1

2
�̃�𝑇�̃� +

1

2
𝑝1

2 
(18) 

Time derivative of Eq. (15) is obtained in the following form when Eq. (4), Eq. (9), and Eq. 

(14) are utilized 
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�̇� = −𝐺1𝑥

2−𝐺2𝑒
2 + �̃�𝑇 (�̇̂� − 𝑌𝑑

𝑇𝑒) + 𝑝1(�̇̂�1 + 𝑒𝐺1�̇�𝑛)

+ 𝑒(𝑓𝑑 − 𝜌𝑒𝑡𝑎𝑛ℎ (𝑒)) 

(19) 

If adaptive compensations of uncertain parameters are made according to the following rules, 

the Lyapunov stability criterion in Eq. (19) is guaranteed. 

 �̇̂� = 𝑌𝑑
𝑇𝑒 (20) 

 �̇̂�1 = −𝑒𝐺1�̇�𝑛 (21) 

 𝜌𝑒 ≥ 𝑚𝑎𝑥(𝑓𝑑) (22) 

Using Eq. (20), Eq. (21) and Eq. (22), the time derivative of Lyapunov function in Eq. (19) can 

be rearranged  

 �̇� = −𝐺1𝑥
2−𝐺2𝑒

2 (23) 

From the Eq. (23), it can be demonstrated that time derivative of the Lyapunov function can be 

upper bounded as 

 �̇� ≤ −𝛽‖𝐳‖2 (24) 

where 𝐳 ∈ ℝ2 is a vector defined as 

 𝐳 ≜ [𝑥 𝑒]𝑇 (25) 

and 𝛽 ∈ ℝ+ denotes a positive constant selected as 

 𝛽 = min {𝑔1, 𝑔2} (26) 

Lyapunov function Eq. (18) and the bound of time derivative of Lyapunov function Eq. (24) it 

is seen that 𝐳(𝑡) ∈ ℒ∞. Boundedness of this term guarantees the boundedness of 𝑥 and 𝑒. From 

virtual controller design in Eq. (10), it is seen that boundedness of 𝑥 guarantees the boundedness 

of 𝑢𝑣. The virtual control input's boundedness, as well as the boundedness of e and its definition 

in Eq. (9), can be used together to show that �̇�𝑛 ∈ ℒ∞. When boundedness of �̇�𝑛 is utilized along 

with Eq (5) and the time derivative of  Eq (11) to show that �̈�𝑛 ∈ ℒ∞ and can be utilized with 

the time derivative of Eq (10) to show that �̇�𝑣 ∈ ℒ∞. Boundedness of time derivative of virtual 

controller and boundedness of �̈�𝑛 can be used along with the time derivative of error function 

to show that �̇� ∈ ℒ∞. Boundedness of �̇�𝑛 and �̇� ensures that ż(𝑡) is also bounded.  

 ∫ ‖𝐳(σ)‖2𝑑𝜎 ≤
𝑉(0)

𝛽

∞

0
 . (27) 
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The boundedness of the �̇�(𝑡)  ∈ ℒ∞, together with 𝐳(𝑡) ∈ ℒ2 ∩ ℒ∞  and Barbalat's Lemma 

(Krstic et al., 1995), can be used to show semi-global asymptotic stability of z(t), which assures 

the main aim of the control design defined as 

 𝑥, 𝑒 → 0 as 𝑡 → ∞ (28) 

 

4. Numerical Studies 

 

The numerical parameters of the nine-story building model used in the simulation studies were 

taken from a translational type linear structure used in the literature. This structure is 

nonlinearized according to the duffing nonlinearity rules, and this nonlinearity is explained in 

Eq. 1 to Eq. 4. In the non-linear structure, instead of the TMD damper used in the literature, 

Optimal TMD with the same mass as the original TMD (Hacioglu & Yagiz, 2012; Ümütlü et 

al., 2022) and much better performance is used. Calculations for optimal TMD are taken from 

Krenk, (2005). The original TMD and optimal TMD results are compared in Figure 3. Optimal 

TMD, which has a much better performance than the original TMD, was activated and used as 

ATMD in the study. 

 

 

Figure 2. Acceleration, velocity and displacement data of Kocaeli Earthquake 
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The nonlinear structure and the nonlinear optimal TMD parameters are given in Table 1 . The 

determined structure was exposed to the 17 August 1999 Kocaeli earthquake in Turkey. The 

acceleration, velocity, and displacement of the ground motion are shown in Figure 2. 

 

Table 1. Parameters of the nonlinear building model and the nonlinear ATMD (Hacioglu & 

Yagiz, 2012) 

Parameter Value 310

(kg) 

Parameter Value 610  

(N/m) 

Parameter Value 310  

(Ns/m) 

Parameter Value 

𝑚1 450 𝑘1 18.05 𝑏1 26.17 𝛼1 0.6 

𝑚2 345 𝑘2 340 𝑏2 490 𝛼2 0.5 

𝑚3 345 𝑘3 326 𝑏3 467 𝛼3 0.5 

𝑚4 345 𝑘4 285 𝑏4 410 𝛼4 0.5 

𝑚5 345 𝑘5 269 𝑏5 386 𝛼5 0.5 

𝑚6 345 𝑘6 243 𝑏6 348 𝛼6 0.5 

𝑚7 345 𝑘7 207 𝑏7 298 𝛼7 0.5 

𝑚8 345 𝑘8 169 𝑏8 243 𝛼8 0.5 

𝑚9 345 𝑘9 137 𝑏9 196 𝛼9 0.5 

𝑚𝑑 69 𝑘𝑑 0.31954 𝑏𝑑 33.553 𝛼𝑑 0.5 

 

 

Figure 3. Comparison of original TMD and optimal TMD against the Kocaeli earthquake 
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The optimal TMD design with the same mass as the original TMD design showed a great 

performance improvement as shown in Figure 3. The passive controller, to which the robust 

adaptive controller designed within the scope of this study will be compared, has reached the 

best point it can be reached with the optimal TMD design. The point that should not be forgotten 

here is that due to the structure of optimal TMD design, gives these types of successful results 

only for the proposed structure. When the structural parameters are changed, its performance 

will be adversely affected. However, it would be more accurate to compare the controller 

designed to reduce vibration in nonlinear structures with the optimal TMD, in order to ensure 

adequate comparison. 

 

In this study, a signal-to-noise ratio of 50 dB is chosen for the band-limited white noise used 

for the white noise added to the sensors. The gains are selected as follows via trial and error 

method and the designed controller in Eq. (16) is applied from the actuator input of ATMD 

system 

 

 𝐺1 = 100, 𝐺2 = 6000, 𝜌𝑒 = 5 (24) 

 

It should be mentioned at this time that as the control gains values are increased while 

determining the gains, the ATMD performance improves, but the control effort and stroke of 

the control mass also increased. In light of this, the control gain adjustment procedure was 

stopped at the final position when ATMD performance greatly improved, and the control gains 

were acquired as shown in Eq. (24). Following this point, the control effort and displacement 

of the control mass increased as the control gains increased, while the ATMD performance 

remained similar. It has been demonstrated that the suggested controller may be used in such 

structures if the control gains are chosen to be positive definite in order to meet the main control 

goal. 

 

Figure 4 shows the displacement of the last floor of a nine-story nonlinear structure for three 

different control situations during the Kocaeli earthquake. These situations are referred 

uncontrolled, optimal TMD control and ATMD control situations. Optimal TMD is used in the 

ATMD system by activating it with an actuator. As can be easily understood from the figure, it 

has been observed that better results can be obtained in the final floor displacements of the 

building compared to an uncontrolled situation by using the TMD system. However, the 

amplitude of the displacement in each period during the earthquake and the time it takes to 
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reduce the residual vibrations are considerably lower when the ATMD system is used with the 

designed adaptive backstepping controller compared to the case when TMD is used. It is seen 

that the designed controller, a nonlinear ATMD system, significantly reduces earthquake-

induced oscillations occurring on the top floor of a nonlinear structure. 

 

 

Figure 4. Displacement of the last floor of the structure for three different situations 

 

The designed controller's performance was compared to that of its robust counterpart. For 

purposes of comparison, PID controllers were selected. The key justification for this choice was 

that the PID controller is frequently used in systems of this kind. Until the highest vibration 

damping performance was attained, the proportional (P), integral (I), and derivative (D) control 

gains of the PID controller were selected as follows via the trial-and-error method until the best 

vibration damping performance was obtained 

 

 𝑃 = 1000000, 𝐼 = 1000, 𝐷 = 950  (33) 
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Figure 5. Displacements of the top floor for backstepping controller and PID controller 

 

Figure 5 shows the top floor displacement, which is one of the most important performance 

outputs when comparing backstepping and PID controllers.   

 

The displacement of the oscillating controller mass due to the force applied by the earthquake 

and the actuator is given in Figure 6. The control mass moves at a range of 2 meters for both 

controllers, which are acceptable strokes for such systems. However, the controller mass 

displacement of the backstepping controller is lower than that of the PID controller.  



15 
 

 

Figure 6. Displacement of controller mass while reaching the control aim for backstepping 

controller and PID controller 

 

Figure 7. Change of control force needed while reaching control objective for backstepping 

controller and PID controller 

 

The control force applied to reduce earthquake-induced vibrations in the building is shown in 

Figure 7. The PID controller required significantly greater control force than the backstepping 
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controller in order to exhibit comparable performance in terms of vibration damping, as seen in 

Figure 7. This outcome is critical because it plays a big role in actuator choice. It demonstrates 

that the control goal may be achieved by employing a reduced-capacity actuator in the context 

of measurement noise and potential sensor accuracy issues. 

 

 

Figure 8. Adaptive compensations of uncertain parameters for Kocaeli Earthquake 

 

Figure 8(a), 8(b), 8(c), 8(d), 8(e), 8(f) and 8(g) show adaptive compensations for uncertain 

parameters �̂�1, �̂�2, �̂�3, �̂�4, �̂�5, �̂�6 and �̂�1, respectively. Compensation terms are used to achieve 

the overall control purpose. The numerical values that these terms have in the process are 

unimportant, provided they change within a limited range. As shown in Figure 8, while the 

structural vibrations caused by an earthquake are reduced by using the designed controller in 

ATMD system, the variation of compensation parameters in a limited range is observed. 

 

The performance results of the adaptive robust backstepping controller compared with the PID 

controller were tested with performance criteria that have proven itself in the literature to test 
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the performance of the controllers designed for such structures. Twelve performance criteria 

were defined to evaluate for designed control systems for building structures with ATMD 

systems by Yang et al., (2001). These evaluation criteria were used in many pioneering studies 

in the literature to test the performance of ATMD systems (Nagarajaiah & Varadarajan, 2005; 

Varadarajan & Nagarajaiah, 2004). In this study, these evaluation criteria based on both the 

peak and root mean square (RMS) responses of the building were adapted for nine-story 

building. Definitions of these criteria denoted by 𝐽1 − 𝐽12 are given in Table 2. 

 

Table 2. Evaluation criteria  

𝐽1 =
max (𝜎�̈�𝑛)

𝜎�̈�9𝑜
 

for n=1 to 9 

𝐽5 =
𝜎𝑦𝑑

𝜎𝑦9𝑜
 𝐽9 =

𝑦𝑝9

𝑦𝑝9𝑜
 

𝐽2 =
1

6
∑(𝜎�̈�𝑛/𝜎�̈�𝑛𝑜)

𝑛

 

for n=4,5,6,7,8 and 9 

𝐽6 = {
1

𝑇
∫ [�̇�𝑑(𝑡)𝑢𝑓(𝑡)]

2
𝑑𝑡

𝑇

0

} 
𝐽10 =

1

7
∑(𝑦𝑝𝑛/𝑦𝑝𝑛𝑜)

𝑛

 

for n=3,4,5,6,7,8 and 9 

𝐽3 =
𝜎𝑦9

𝜎𝑦9𝑜
 𝐽7 =

max (�̈�𝑝𝑛)

�̈�𝑝9𝑜
 

for n=1 to 9 

𝐽11 =
𝑦𝑝𝑑

𝑦𝑝9𝑜
 

𝐽4 =
1

7
∑(𝜎𝑦𝑛/𝜎𝑦𝑛𝑜)

𝑛

 

for n=3,4,5,6,7,8 and 9 

𝐽8 =
1

6
∑(�̈�𝑝𝑛/�̈�𝑝𝑛𝑜)

𝑛

 

for n=4,5,6,7,8 and 9 

𝐽12 = max
𝑡

|�̇�𝑑(𝑡)𝑢𝑓(𝑡)| 

 

In first criterion 𝐽1, 𝜎�̈�𝑛 and 𝜎�̈�9𝑜 represent RMS acceleration of the nth floor and RMS 

acceleration of the 9th floor for uncontrolled situation, respectively. In 𝐽2, 𝜎�̈�𝑛𝑜denotes RMS 

acceleration of nth floor for uncontrolled situation. In 𝐽4, 𝜎𝑦𝑛 and 𝜎𝑦𝑛𝑜 represent RMS 

displacements of nth floor and RMS displacements of nth floor for uncontrolled situation, 

receptively. In criterion five 𝜎𝑦𝑑 specify the RMS displacement of controller mass. In 𝐽6, �̇�𝑑(𝑡) 

denotes actuator velocity and 𝑢𝑓(𝑡) denotes actuator force. Criteria 𝐽7 to 𝐽11 are calculated 

similarly to the first five criteria, but peak values are used instead of RMS values. For each 

criteria of performance values, less than 1.0 implies an improvement in control response 

compared with the uncontrolled scenario, except for the 𝐽5, 𝐽6, 𝐽11, and 𝐽12 performance indices 

(Ümütlü et al., 2022; Varadarajan & Nagarajaiah, 2004).  

 

Table 3 shows the calculated performance criteria of the backstepping controller and the PID 

controller for the Kocaeli earthquake. Also, RMS and max values of  𝑢𝑓 and 𝑦𝑑 are given to 

evaluate the performance of the controllers. 
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Table 3. Evaluation criteria results of Backstepping and PID controllers for the Kocaeli 

Earthquake. 

 
𝐵𝑎𝑐𝑘𝑠𝑡𝑒𝑝𝑝𝑖𝑛𝑔 

Controller 
𝑃𝐼𝐷  

𝐵𝑎𝑐𝑘𝑠𝑡𝑒𝑝𝑝𝑖𝑛𝑔 

Controller 
𝑃𝐼𝐷 

𝐽1 0.275 0.296 𝐽7 0.634 0.681 

𝐽2 0.257 0.277 𝐽8 0.643 0.691 

𝐽3 0.262 0.293 𝐽9 0.666 0.702 

𝐽4 0.263 0.291 𝐽10 0.659 0.701 

𝐽5 2.551 3.223 𝐽11 5.936 7.183 

𝐽6  
(𝑘𝑁 𝑚/𝑠) 

6.482 15.961 
𝐽12  

(𝑘𝑁 𝑚/𝑠) 
61.619 465.743 

𝜎𝑢𝑓 (𝑘𝑁)  10.420 38.027 𝑚𝑎𝑥|𝑢𝑓 | (𝑘𝑁) 52.523 316.144 

𝜎𝑦𝑑  (𝑐𝑚)  16.549 20.905 𝑚𝑎𝑥|𝑦
𝑑
 | (𝑐𝑚)  79.463 103.897 

 

In Table 3, the results of two different controllers tested for the nine-story structure are given 

for the Kocaeli earthquake. When the results are examined, it is seen that the adaptive 

backstepping controller gives the better results for the all performance criteria, which are the 

building acceleration-based (𝐽1, 𝐽2, 𝐽7, and  𝐽8), displacement based(𝐽3, 𝐽4, 𝐽5, 𝐽9, 𝐽10 and  𝐽11) and 

control force based (𝐽6 and  𝐽12) criteria. Especially, as can be seen from the 𝜎𝑢𝑓  and 𝑚𝑎𝑥|𝑢𝑓| 

results as well as the 𝐽6 and 𝐽12 parameters that measure the performance in terms of control 

forces, the backstepping controller has a great advantage.  

 

5. Conclusions 

 

In this study, a controller is designed to mitigate earthquake-induced vibrations of a non-linear 

multi-story building using ATMD. In addition to structural nonlinearities, band-limited white 

noise has been applied as a disturbance input on the last floor of the building to represent 

unknown nonlinear situations such as measurement noise and uncertain dynamics. Adaptive 

compensation terms are used to design a robust controller independent of structural parameters. 

Stability of the structure while reaching the control target is guaranteed by a Lyapunov-based 

stability criterion that handles all nonlinear and unknown situations. With the Lyapunov-based 

stability analysis described in the paper, it is theoretically guaranteed that the proposed 
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controller will keep the system stable while attaining the main control goal, as long as the 

constant control gains are chosen as positive numerical values. Owing to the robust structure of 

the designed controller and the adaptive compensation rules proposed in the study, a general 

controller structure that can be used in all systems with a similar mathematical model aiming at 

vibration damping with ATMD systems has been obtained. Simulation experiments in 

Matlab/Simulink were used to verify the performance of the developed controller. In addition, 

comparative simulation studies were also carried out. From these results, it is seen that the 

robust adaptive backstepping controller, which is designed, has achieved its control purpose by 

requiring much less control effort compared to the widely preferred robust counterpart, PID. 

The simulation results were evaluated with the evaluation criteria commonly used in the 

literature. Especially in terms of control force, the designed backstepping controller has a great 

advantage compared to PID. 
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