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Abstract

Uncertainty in environmental modeling predictions, stemming from parameter estimation, is a crucial challenge 
that must be addressed to ensure effective decision-making. Limited field measurements, high computational 
costs, and a lack of guidance in estimating measurement uncertainty further compound this challenge, particularly 
for highly parameterized complex models. In this study, we propose a novel and computationally efficient 
framework for quantifying predictive uncertainty that can be applied to a range of environmental modeling 
contexts. The novel components of the framework include efficient parameter space sampling using an Optimized 
Latin hypercube sampling strategy, and applying the Null Space Monte Carlo method (NSMC) along with a 
developed filtering technique. The NSMC generates sample sets to calibrate the model while exploring the null 
space. This space contains parameter combinations that are not sufficiently supported by observations. The 
filtering technique omits low-potential parameter sets from undergoing model calibration. The framework was 
tested on the seawater intrusion (SWI) model of Wadi Ham aquifer in the United Arab Emirates (UAE) to 
investigate aquifer sustainability in 2050. Our results demonstrate the importance of incorporating direct and 
indirect measurements of heads, salinity, and geophysical survey data into the calibration dataset to reduce 
uncertainty in salinity predictions. The extent of SWI for multiple calibrated parameter sets varied by 4.5% to 
11% relative to their means at two main pumping fields. We conclude, with a moderate to a high degree of 
certainty, that SWI is a serious threat to these fields, and actions are needed to protect the aquifer from salinization. 
Additionally, variations in SWI length under different geological conditions illustrate regions of high uncertainty 
that require further data collection. Our framework effectively reduced and quantified prediction uncertainty and 
provides decision-makers with critical information to inform risk management strategies.
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Seawater intrusion, Parameter estimation, Data worth, Parameter identifiability, Optimized Latin hypercube 
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1. Introduction

Groundwater is a vital source of freshwater for over two-thirds of the world's population living in coastal 
regions (Singh, 2014). However, this resource is threatened by seawater intrusion (SWI) (Werner et al., 2013). 
To mitigate, the negative impacts of SWI, numerical models are used to develop effective management strategies. 
However, these models are only as reliable as the input. Some data such as aquifer geometry, hydraulic properties, 
and boundary conditions, are often uncertain due to a lack of field measurements, aquifer heterogeneity, regional 
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flow systems, and forecasted salinization drivers. This uncertainty leads to uncertain predictions (Doherty, 2016), 
making it imperative for stakeholders and decision-makers to quantify the prediction uncertainty (Doherty and 
Moore, 2020) in order to make informed decisions. 

To address this issue, predictive uncertainty analysis is required to characterize the potential variability in a 
prediction (model output) through the identification of multiple parameter sets (input variables) that can be used 
by the model (Dausman et al., 2010). Table 1 summarizes the main methods for quantifying the prediction 
uncertainty in SWI. The three methods for predictive uncertainty analysis include: Monte Carlo simulations, 
Conditional Monte Carlo simulations, and Linear uncertainty analysis. Monte Carlo simulations method, which 
has been used in both conceptual (e.g., Ketabchi and Jahangir, 2021; Rajabi and Ataie-Ashtiani, 2014; Zhao et 
al., 2016) and real-world studies (e.g., Miao et al., 2019; Mostafaei-Avandari and Ketabchi, 2020). It repeatedly 
runs the model with different sets of parameters to generate multiple realizations of the model output. The 
conditional Monte Carlo simulations method, on the other hand, conditions the input variables to observed data. 
The approach has two perspectives. The first perspective considers the non-uniqueness of the parameter sets 
through the model calibration in a stochastic inverse modeling framework, such as Markov Chain Monte Carlo 
(MCMC) (Rajabi and Ataie-Ashtiani, 2016; Zeng et al., 2016), self-calibrating (Pool et al., 2015), gradual 
conditioning (Llopis-Albert et al., 2016), and iterative ensemble smoother (iES) (Hugman and Doherty, 2022) 
methods. The second perspective seeks uniqueness by implementing regularization to incorporate prior 
information on parameters within model calibration. Depending on the inferred single-calibrated parameter set, 
the Null space Monte Carlo (NSMC) (Tonkin and Doherty, 2009) method generates multiple realizations to 
estimate the prediction uncertainty (e.g., Herckenrath et al., 2011). Linear uncertainty analysis assumes linear 
model behavior and represents the relationship between parameters and predictions with a matrix that is 
independent of parameter values (e.g., Coulon et al., 2021). 

Table 1 also highlights two other key features; the considered number of uncertain parameters and the adopted 
ways to alleviate the computational burden associated with the prediction uncertainty analysis.  Although most of 
the previous investigations have limited the model parameters to a small number (Ketabchi and Jahangir, 2021; 
Miao et al., 2019; Mostafaei-Avandari and Ketabchi, 2020; Pool et al., 2015; Rajabi and Ataie-Ashtiani, 2014; 
Rajabi and Ataie-Ashtiani, 2016; Yang et al., 2021; Zhao et al., 2016) to reduce the computational cost (Rajabi et 
al., 2018), highly parameterized models are necessary to reduce predictive uncertainty by incorporating 
parameters that are salient to the model predictions (Doherty and Moore, 2021) and to recognize the small-scale 
variability of the hydraulic property that greatly influences the hydrodynamic process. For instance, the degree of 
the aquifer heterogeneity has a considerable effect on the SWI wedge length and seawater volume (Ketabchi and 
Jahangir, 2021). Among the methods used, NSMC and iES can reduce the computational burden and handle 
nonlinear highly parameterized models. Despite the computational efficiency of iES, its success is highly 
dependent on the quality and size of the ensemble of realizations that are sampled from the prior parameter 
distributions. Thus its prior parameter distribution needs special considerations (Delottier et al., 2022). 
Additionally for highly non-linear problems, the ensemble-based method may produce instability and run failures 
(Omagbon et al., 2021). 

Previous studies have shown the effectiveness of the NSMC method in a highly parameterized SWI model, and 
its efficiency in reducing the computational burden. Keating et al. (2010) compared the performance of the NSMC 
method to the MCMC (a statistically rigorous and computationally demanding method) in terms of model 
calibration, estimating parameters, and prediction uncertainties on a high dimensional parameter estimation 
groundwater problem. The outcomes had a high degree of similarity, however, NSMC obtained the results with 
much less computational time. Herckenrath et al. (2011) proved the efficiency of the NSMC method in quantifying 
the uncertainty in the prediction of the location of the SWI interface due to the inflow reduction using a synthetic 
SWI model based on Henry problem. Safi et al. (2019) designed a monitoring network in Beirut aquifer, Lebanon 
to capture the SWI behavior through the optimization of the best potential locations of the observation wells to 
reduce the uncertainty in the prediction of the interface location using the realizations generated by NSMC 
method. 

However, further improvement in computational efficiency is needed. Three promising ways are found in the 
literature to address this issue (Table1) including: 1) parallelization and grid computing (e.g., Mostafaei-Avandari 
and Ketabchi, 2020), 2) efficient sampling strategies that decrease the required number of simulation runs to 
obtain a stable statistical mean and variance for the prediction probability distribution (Janssen, 2013) with an 
acceptable accuracy (e.g., Rajabi and Ataie-Ashtiani, 2016; Zhao et al., 2016), and 3) development of a surrogate 
model to act as a simplification to the complex model. Lower-fidelity models were used in highly parameterized 
models (Burrows and Doherty, 2015; Hugman and Doherty, 2022). Although data-driven surrogate models have 
been used to handle models with a limited number of parameters (e.g., Miao et al., 2019; Rajabi and Ataie-



3

Ashtiani, 2014), they have limitations for highly parameterized models where the number of samples required to 
capture the behavior grows prohibitively fast with the number of parameters (Asher et al., 2015) and can increase 
prediction uncertainty especially for large-scale, and complex models (Mostafaei-Avandari and Ketabchi, 2020). 

Decreasing the unnecessary simulation runs in Monte Carlo-based methods, via implementing more efficient 
sampling strategies that combine the innovative space-filling criteria and optimization schemes, is not widely used 
in the literature (Rajabi et al., 2015), despite its popularity in limiting the required number of evaluation points to 
represent the design space (Wang et al., 2020). While simple random sampling (SRS) is the standard method (e.g., 
Herckenrath et al., 2011; Pool et al., 2015), it does not ensure space-filling , which means that one element may 
be chosen more than once. Conversely, Latin hypercube sampling (LHS) approach (McKay et al., 1979) divides 
the range of each input variable into equally probable intervals, the number of which is equal to the sample size. 
Within each interval, a random sample is selected for each variable, then the drawn samples are paired with each 
other randomly. Therefore, LHS requires a smaller sample size than SRS for space-filling. Applying space-filling 
optimality criterion to LHS will: (i) enhance its performance, especially in large dimensions, (ii) ensure the filling 
of the input space properly avoiding close points (Damblin et al., 2013), and (iii) minimize the number of the 
Monte Carlo simulation runs to reach the target accuracy (Janssen, 2013). Rajabi and Ataie-Ashtiani (2014) 
showed that using optimized Latin hypercube sampling (OLHS) based on the enhanced stochastic evolutionary 
(ESE) optimization and employing the uniformity criterion was the most efficient approach in terms of the 
consumed time for Monte Carlo simulations. This was concluded based on a comparison of this strategy to  SRS, 
LHS, and eight other OLHS strategies (differ in the optimization method and/or the space-filling criterion) on two 
test cases involving SWI models. Mostafaei-Avandari and Ketabchi (2020) employed OLHS based on ESE 
optimization and the uniformity criterion in Monte Carlo simulations to study the uncertainty in permeability and 
assess its impact on SWI of Ajabshir coastal aquifer, Iran. 

Uncertainty quantification is critical for accurately predicting seawater intrusion (SWI) in coastal aquifers but 
often hindered (Herrera et al., 2022) by the limitations of traditional methods, particularly in terms of 
computational efficiency. A critical research gap in previous studies (Table 1) that needs to be explored is how to 
efficiently quantify uncertainty in highly parameterized, strongly nonlinear SWI models caused by uncertain 
aquifer parameters. This study presents a novel and efficient framework for quantifying uncertainty in SWI 
prediction by combining the benefits of the Optimized Latin Hypercube Sampling (OLHS) and Null Space Monte 
Carlo (NSMC) methods. The framework is applied to the coastal aquifer of Wadi Ham in UAE, which is facing 
severe SWI due to over-exploitation.

To the best of the authors' knowledge, this study is the first to consider the combined advantages of OLHS and 
NSMC for efficient uncertainty quantification in highly parameterized nonlinear SWI models, particularly in 
heterogeneous coastal aquifers. The proposed framework includes: (i) Calibrating a highly parameterized model 
using regularized inversion, (ii) Defining the calibration solution space using matrix decomposition techniques, 
(iii) Sampling the parameter space efficiently using OLHS, (iv) Applying the NSMC method to generate 
parameter sets with the same calibration space, (v) Filtering less likely parameter sets from the recalibration using 
a proposed rejection sampling algorithm, (vi) Generating posterior parameter and predictive probability 
distributions using the ensemble of the calibration-constrained parameter sets.

This study provides a further improvement in computational efficiency for the NSMC method and makes a 
valuable contribution to the field by providing a practical, and computationally efficient framework for 
quantifying uncertainty in SWI prediction..

2. Methodology

A six-step general framework has been developed to quantify the prediction uncertainty. A flowchart showing the 
overall methodology is presented in Figure 1. Each step is described below. 

Step 1: Uncertainties of the calibration dataset

The uncertainty values reflect the noise in the measurements. Their values are assigned based on the used 
equipment to collect the data, expert knowledge, and/or from other studies with similar site conditions. The 
sources of the uncertainty in the calibration dataset of groundwater head and salinity concentration at each 
observation well, and the earth resistivity imaging data were estimated as follows:

- Groundwater head observations
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The piezometric heads were collected as the measured depths to the water table at the observation wells (Data 
were extracted from available sources as discussed in Section 3). The depths were taken manually using a 
calibrated measuring tape, while satellite mapping was used to identify the elevation of the top of each well 
casing. This was done to obtain the head of the fluid within each well, with the obtained heads being related 
to the actual fluid density. To compare with simulated heads, a conversion to equivalent freshwater heads 
was carried out using Eq.1.

ℎ𝑓 =
𝜌
𝜌0

ℎ ―  α 𝑧
1

α =
𝜌 ― 𝜌0

𝜌0

2

where,  is piezometric head of the equivalent freshwater head (m), which is given by , ℎ𝑓 ℎ𝑓 = (𝑃
𝜌0𝑔) + 𝑧 

 is the fluid pressure (N/m2),  is the measured head (m),   is the density ratio,  are the actual fluid 𝑃 ℎ α 𝜌, 𝜌0
density, and freshwater density respectively (kg/m3),  z  is the elevation at the midpoint of the screen length 
inside the observation well (m). The datum of the hydraulic heads is the mean sea level. 

The total uncertainty of the equivalent freshwater heads was calculated (Eq. 3) based on Eq. 1 assuming that 
 is constant and the errors in the measurements are random and uncorrelated (Post et al., 2018): 𝜌0
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where, the first and second terms represent the uncertainties propagated from the first and second terms of Eq.1, 
and the third term considers the modeled to measured misfit at the observation well, which is near a pumping 
field. Symbols used in Eq.3 are defined in Table 2.

-  Salinity concentration observations
The measured electrical conductivity for the water samples collected from the observation wells was converted to 
salinity concentration data. The uncertainty associated with the measurements is shown in Table 2.  

- Earth resistivity tomography (ERT) data
The average length of SWI was estimated from ERT transects data, measured from the coastline to the start of the 
freshwater zone (total dissolved solids of 1000 mg/l), and was used to constrain the coupled flow and transport 
model as indirect observations for the salinity distribution. The uncertainty associated with the ERT intrusion 
length ( observations is presented in Table 2. A custom Python script was used to include the indirect 𝜎𝐸𝑅𝑇 ) 
observation of the intrusion length in FePEST during the parameter estimation. FePEST links PEST, and 
FEFLOW (Diersch, 2013). PEST is a model-independent non-linear parameter estimation software (Doherty, 
2016). FEFLOW solves the system of partial differential equations for groundwater flow and for variable-density 
flow coupled with the mass transport equation.

Table 2 shows the standard deviation values for the above-mentioned sources of uncertainty associated with the 
field measurements. The measurement noise is assumed to show no spatial or temporal correlation and is 
characterized by a multiGaussian distribution. This distribution is defined by mean function (observed values of 
the calibration dataset) and covariance function (diagonal elements of the covariance matrix are the weights 
assigned to the various field measurements, and are the inverse of the standard deviation values). 

Since, the calibration dataset, which included observations of heads, salinity, and ERT survey data was used in 
the parameter estimation problem, a multi-component objective function resulted (Eq.4). Due to the wide range 
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of values in the heads and concentration measurements, they were partitioned internally, with each hydrograph or 
salinity concentration forming a separate group that represented a component. To filter out structural noise in 
groundwater models, a strategy proposed by Doherty and Welter (2010) was adopted. The model-to-measurement 
misfit is dominated by structural noise (Doherty and Welter, 2010).  The strategy gives equal recognition to each 
component in the objective function, by assigning different weights to each group. The weights were estimated as 

the squared inverse of the standard deviation  (Table 2) multiplied by a coefficient that differed between (
1

𝐬𝐭𝐝𝐞𝐯)
2

groups to ensure equality.

Step 2: Data worth assessment

A prior step to the parameter estimation is to evaluate the worth of the information in the calibration dataset to 
reduce the prediction uncertainty. To examine the worthiness of the data, each observation group from the 
calibration dataset was removed successively, and the incurred increase in the uncertainty of the predictions was 
calculated (Doherty et al., 2011). The data worth was assessed using linear uncertainty analysis (first-order, 
second-moment-based analysis) as an approximate and low computational cost analysis tool. Detailed descriptions 
of the used equations and their derivations can be found in (Dausman et al., 2010). The assessment of the data 
worth of each observation group in all observation types was done by processing PEST files, and implementing 
them in Python using the PyEMU (Python framework for Environmental Modeling Uncertainty analyses) library 
(White et al., 2016). 

Step 3: Model calibration using regularized pilot points method

The mass transport process in the saltwater wedge is influenced by heterogeneities in the aquifer, leading to 
preferential flow pathways and spatial variations in transport velocity. To account for small-scale variability, the 
pilot point method was used by distributing predefined points in the model domain on a pseudo-regular grid, with 
a minimum of five points per correlation range (Alcolea et al., 2006). The parameters were estimated at these 
points, and then spatially interpolated using a selected geostatistical model (variogram function) to obtain aquifer 
properties at all model elements. The pilot point method was then incorporated with Tikhonov regularization to 
penalize the model parameters' deviation from their prior estimates only to an extent that provided an acceptable 
fit to field measurements (Doherty, 2016). These prior estimates were derived from pumping test results, prior 
geological knowledge, and previous studies.

The regularized inversion (i.e., model calibration) attempted to minimize the global objective function  (Doherty, 𝛷
2016), which was defined as:

𝛷 =  𝛷𝑚 +  𝜇 𝛷𝑟 4

𝛷𝑚 = (𝑐 ― 𝑋 𝑝)𝑡 𝑄𝑚 (𝑐 ― 𝑋 𝑝) 5

𝛷𝑟 = (𝑑 ― 𝑅 𝑝)𝑡 𝑄𝑟 (𝑑 ― 𝑅 𝑝) 6

where;  is the measurement objective function.  is the regularization objective function.  is the vector of 𝛷𝑚 𝛷𝑟 𝑐
the measurement observations.  is the vector of the parameters requiring estimation. X is the calibration 𝑝
sensitivity matrix  (Jacobian matrix) of size (m×n), where m and n are the numbers of field observations used in 
the calibration dataset and the model parameters respectively. Each element of the matrix expresses the sensitivity 
of each model output (corresponding to the field observations) to each parameter.  is the matrix of the weights 𝑄𝑚
assigned to the different observations. It represents the noise associated with the measurements and induced by 
model imperfection (structural noise).  is the inverse of the pilot point covariance matrix, whose elements were 𝑄𝑟
calculated based on the selected geostatistical model. t denotes the transpose operation. d is the vector of the 
regularization observations, which expresses a preferred condition. R is the matrix that encapsulates the 
regularization equations. It represents constraints on parameter values. In the present study, R is the identity matrix 
for preferred values constraints.  is the Tikhonov regularization parameter.𝜇
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Model calibration was conducted using FePEST. BeoPEST was used to achieve further computational efficiency 
by running a model simultaneously on different cores of the same computer. The sensitivity matrix was filled 
based on finite differences with a 1.5% parameter perturbation. The Tikhonov regularization parameter  was (𝜇)
calculated in every optimization iteration during the inversion process by PEST to achieve a target level of model-
to-measurement fit. PEST viewed the problem as a constrained optimization problem, where the objective was to 
minimize   subject to the constraint that  should be less than the maximum acceptable misfit between model 𝛷𝑟 𝛷𝑚
outputs and the field data.

Truncated Singular Value Decomposition (SVD) and Tikhonov regularization were combined using hybrid 
regularization to address their weaknesses and benefit from their strengths (Tonkin and Doherty, 2005). SVD 
separated inestimable parameter combinations (zero and low singular values) residing them in the calibration null 
space and created a super parameter set of estimable parameters residing them in the calibration solution space. 
This reduced dimensionality, stabilized the inversion process, and reduced computation time.  

The model calibration performance was evaluated using statistical indices, including Root Mean Square Error 
(RMSE), Coefficient of determination (RSQ), and The Nash-Sutcliffe Model Efficiency (NSE). These indices 
provided measures of the difference, similarity, and fit between the observed and simulated datasets, respectively.

Step 4: Parameter identifiability

To reduce the computational time, the parameter estimation was performed in two phases. In phase 1, head data 
were used and in phase 2 the salinity concentrations and geophysics survey data were used. In phase 1 the 
parameters which had a high identifiability value (parId >0.75) were identified as adequately estimated. By 
considering these parameter values as fixed parameters in the next phase, a reduction in the computational burden 
was achieved.

The parameter identifiability (parId) was estimated to provide insight into how much information was extracted 
from the observations to inform the model parameters during the calibration using Eq.7 (Doherty and Hunt, 2009). 

ParId has a moderate computational burden, considers the parameter correlation, and approximates the 
relationship between the model outputs and the parameters as linear (Doherty et al., 2010).  ParId value varies 
between zero and 1. Zero indicates completely non–identified parameters and one indicates that they lie in the 
calibration solution space and are fully identified. The weighted sensitivity matrix (  ) was computed based 𝑄1/2

𝑚 𝑋
on calibrated parameter values and the inverse of the measurements noise. It was subjected to SVD employing 
GENLINPRED utility (Doherty, 2016). SVD divides the parameter space into solution subspace (V1) and null 
subspace (V2).  The threshold of truncation between the solution and null subspaces was calculated using the 
SUPCALC utility (Doherty, 2016).

The identifiability of a parameter is calculated as the sum of the squared components of all the Eigenvectors 
spanning the solution subspace (V1) corresponding to that parameter as follows:

ParId =  ∑(𝑉1
2) 7

Step 5: Model validation

The calibrated parameter set was assigned. A different observation dataset than that used in model calibration was 
considered for the validation. The performance of the model validation was evaluated using the above-mentioned 
statistical indices of  RMSE, RSQ, and NSE. 

Step 6: Prediction uncertainty analysis

The NSMC method developed by Tonkin and Doherty (2009) was used for prediction uncertainty analysis. A 
brief description of the method’s steps is presented in the supplementary material S(A). The method is based on 
generating random fields ) from the prior parameter probability distributions, using a stochastic parameter (𝑝
generator. SRS is commonly used, however in this study, Optimized Latin hypercube sampling (OLHS) was used 
to improve the sampling efficiency. The difference between the stochastic parameters ) and the calibrated (𝑝
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parameters ) was projected onto the calibration null-space (V2). The projected difference field was then added (𝑝
to the calibrated parameters. The new set of parameters (  did not produce exactly the calibrated parameter 𝑝𝑛𝑒𝑤)
set due to model nonlinearity and the considered truncation threshold between the solution and null subspaces. 
The model was then executed using  and re-calibrated if the mismatch exceeded an acceptable level. The 𝑝𝑛𝑒𝑤
existing sensitivities (estimated using the calibrated parameter set) were used in the first optimization iteration to 
save computational time. If additional iterations were required for the recalibration, the sensitivities were 
recalculated based on the newly obtained parameter set. The objective function threshold was considered 10% 
higher than the achieved objective function during the calibration. In the present work, a maximum of two 
iterations were conducted for each realization. The prediction uncertainty was assessed using the resulting 
parameter sets after the recalibration. A flowchart of the NSMC method is shown in Figure 1.

Drawing samples from a prior parameter probability distribution which is too wide, may lead to few potential 
parameter sets that can be accepted while reducing the span of the prior parameter space can sacrifice the integrity 
of the process (Doherty et al., 2011). In this study, a straightforward filtering technique was proposed to screen 
out from recalibration the parameter sets that were less likely to reach the acceptable objective function in the 
second iteration without reducing the parameter space. A flow chart for the filtering process is presented in Figure 
2. The details are described below:

1. The achieved objective functions of the parameter sets, that need to undertake additional iterations 
after the first iteration, are sorted in descending order to form a ranked list.

2. The second iteration is carried out first using the parameter set that corresponded to the objective 
function in the middle of the list (in this way the whole list is split into upper and lower lists).

3. After the second iteration, if the achieved objective function is acceptable,  step 2 is repeated using 
the parameter set, which was associated with the objective function in the middle of the upper list. 
Otherwise, this parameter set and the others associated with higher objective functions are excluded 
from the list. Step 2 is repeated using the parameter set in the middle of the lower list, and so on. 
This procedure is stopped when reaching the top of the list which had undergone the second iteration 
and succeeded in satisfying the threshold objective function.

4. The second iteration is performed on all the remaining parameter sets.

Step 6 is divided into six substeps (Figure 1). Further descriptions of substeps 6-iii and 6-vii are shown as follows:

Optimized Latin hypercube sampling (Step 6-iii)

The efficiency of Monte Carlo methods is highly dependent on the space-filling characteristics of the sampling 
strategy (Janssen, 2013; Rajabi and Ataie-Ashtiani, 2014). Latin hypercube sampling aims to ensure that each of 
the input variables, has its range well scanned based on a probability distribution. The quality of filling can be 
further improved by optimizing the distribution of the sample points. The selected space-filling criterion was a 
point-distance criterion (φp criterion) which controlled the distance between the design points themselves or the 
input domain and the points (Damblin et al., 2013). In order to optimize the selected criterion, the enhanced 
stochastic evolutionary (ESE) technique was employed. 

 criterion was proposed by Morris and Mitchell (1995) and is calculated as follows:𝜑𝑝

𝜑𝑝 =  [∑𝑠

𝑖 = 1
𝐽𝑖𝑑 ―𝑝

𝑖 ]1/𝑝 8

By sorting all the inter-sited distances  for a given LHS design, a distance list  𝑑𝑖𝑗(1 ≤ 𝑖,𝑗 ≤ 𝑛,𝑖 ≠ 𝑗) (𝑑1,𝑑2,…𝑑𝑠) 
and an index list  are obtained.  is the Euclidean distance between two sample points , n is the (𝐽1,𝐽2,…𝐽𝑠)  𝑑𝑖𝑗 𝑖,𝑗
number of sample points, each sample point represents the parameters vector, represents the distinct distance 𝑑𝑖 
value, the elements in the distance list are sorted in ascending order ( , represents the number of pairs 𝑑1 < 𝑑𝑠) 𝐽𝑖 
of sites separated by  in the design, and s is the number of the distinct distance values. p was taken as 10.𝑑𝑖

The enhanced stochastic evolutionary (ESE) algorithm was used to generate an LHS design satisfying the  𝜑𝑝
criterion. The method began with an initial design and tried to find better designs by iteratively changing the 
current design. The method consisted of an inner loop and an outer loop. In the inner loop, the new designs were 
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explored, while the outer loop controlled the acceptance of the new design using a threshold-based acceptance 
criterion. The acceptance criterion was as follows:

∆𝑓 ≤  𝑇ℎ × 𝑟𝑎𝑛𝑑𝑜𝑚(0,1) 9

where  is the amount of improvement made by the new design compared to the current design,  ∆𝑓 𝑟𝑎𝑛𝑑𝑜𝑚(0,1)
is a function that generates uniform random numbers between 0 and 1, and  is the threshold.𝑇ℎ

The threshold value was controlled by the outer loop, in such a way that if the improvement made in the inner 
loop was less than a certain level, the threshold value was first increased sharply to initiate the exploration process, 
avoid local optimum, and then decreased slowly to discover better designs. On the other hand, if the improvement 
made was above a certain level, the improvement process was initiated attempting to find a local optimum quickly. 
Detailed descriptions of the ESE algorithm can be found in Jin et al. (2005).

The parameters of the algorithm were assigned with the values suggested in Jin et al. (2005). The OLHS was 
implemented in SMT- surrogate modeling toolbox, an open-source Python package (Bouhlel et al., 2019). The 
run batch file in the PEST software suite was edited to read the sample sets generated by OLHS and to implement 
the NSMC method (Doherty, 2016).

Generation of posterior parameter uncertainty (Step 6 –vii)

After recalibration, an ensemble of the calibration-constrained parameter sets was obtained. The values of each 
parameter were used to determine the best-fit probability distribution (pd) that this data followed. After selecting 
the pd, its distribution parameters (mean and standard deviation) were estimated. Consequently, the posterior pd 
of each parameter was defined. The magnitude of the distribution parameters was used to 1) assess the degree to 
which the posterior pd became narrower than its prior pd, and 2) provide some evidence on characterizing the 
parameter and predictive uncertainty, despite the sample size (number of calibrated parameter sets) being 
generally small to derive a true posterior parameter pd. Sampling the true posterior parameter pd in the context of 
highly parameterized, nonlinear, and underdetermined inverse problems is not guaranteed, even by using full-
Bayesian approaches and generating thousands of parameter sets (Keating et al., 2010). Bayesian approaches 
formulate the parameter estimation problem in a probabilistic framework, considering model inputs and outputs 
as random variables and including prior information and regularization terms in the inference process (Rajabi et 
al., 2018). 

The Anderson-Darling hypothesis test was used to select the best-fit pd. The test compared the fit of the cumulative 
distribution function of the observed data to the expected cumulative distribution function. Ten probability 
distributions (Normal, Lognormal, Exponential, 2-parameter exponential, Weibull, Gumbel maximum, Gumbel 
minimum, Gamma, Logistic, and LogLogistic) were tested as the expected distributions. The distribution test that 
had p-values less than 0.005 indicated that it was statistically significant to reject the null hypothesis. The null 
hypothesis stated that the observed data followed this hypothesized distribution. Among the distributions that had 
strong evidence to be retained, the distribution of the highest p-value was chosen to be the best-fit distribution. 
Minitab statistical package was used to perform the distribution tests (Arend, 1993).

3. Application of the proposed framework to a real-world case study

3.1. Study site and numerical modeling

Wadi Ham aquifer, a coastal aquifer in an arid region, is located in the northeastern part of the UAE. Limited 
surface water resources, the prevalence of drought conditions for successive years, and excessive abstractions 
have placed tremendous pressure on the aquifer and have resulted in severe seawater intrusion problems (Sherif 
et al., 2014; Sowe et al., 2020). The total area of the aquifer system is 61 km2. To simulate the groundwater flow 
and solute transport in the Wadi Ham aquifer, FEFLOW (Diersch, 2013) was employed. The set of governing 
equations and boundary conditions of density-dependent fluid flow and solute transport in soils is briefly presented 
in supplementary material S(B2). Table 3 shows the considered hydraulic and transport parameters, 
hydrogeological and geological information, and the aquifer model discretization details. Table 4 presents the 
values of the imposed flow and transport boundary conditions in the simulation model. The 3D view of the coastal 
aquifer model showing the assigned initial and boundary conditions is presented in Figures 3b&c. 
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3.2. Available observation dataset and estimation of parameters using regularized pilot points method 

The available data include transient heads, salinity concentrations, and geophysical survey data. Table 5 presents 
the available observation dataset for model calibration and validation.

Following the data worth assessment, a decision was taken to conduct the model calibration in two phases (will 
be discussed in Section 4.1): December 1988 to September 1994 using hydraulic head values with a single fluid 
constant density model, and October 1994 to March 2005 using salinity concentration and intrusion length 
estimated from ERT survey data. A coupled flow and solute transport model was used in phase 2. The final 
parameter set was from phase 2 and adequately estimated parameters with ParId ≥ 0.75 from phase 1 (their values 
in the second phase of calibration were fixed). The model was validated from October 1994 to April 2005 against 
the hydraulic heads. Computational time for one run was 10 and 27 minutes for phases 1 and 2, respectively, on 
a desktop PC with 3.4 GHz Intel(R) Xeon(R) CPU and 192 GB RAM using 10 cores via BeoPEST.

The target objective functions for phase 1 and phase 2 were estimated to be 18236 and 197, respectively, using 
the assigned weights described in the supplementary materials S(C3), which consider measurement uncertainty 
and ensure equal visibility for each observation group, and Eq 10.

𝑇𝑎𝑟𝑔𝑒𝑡 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =  
𝑛

∑
𝑖 = 1

 
𝑚

∑
𝑖 = 1

(𝑠𝑡𝑑𝑒𝑣 × 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑤𝑒𝑖𝑔ℎ𝑡)2 10

where   is the uncertainty in measurements listed in Table 2, n is the number of the observation groups, and 𝑠𝑡𝑑𝑒𝑣
m is the number of readings per group. The standard deviation of the head measurements noise varies slightly 
between different readings of the same observation group. Average values were considered, while a global 
standard deviation for the salinity concentration measurements at the observation well was used (𝜎𝑠𝑎𝑙 =

, since the salinity observation group consisted of readings from two different (𝜎𝑠𝑎𝑙_𝑠𝑎𝑚𝑝𝑙𝑒𝑠)2 +  (𝜎𝑠𝑎𝑙_𝑟𝑎𝑠𝑡𝑒𝑟)2)
sources.

The pilot points method was used to describe the spatial characterization of the hydrogeological properties, 
horizontal hydraulic conductivity (Khz) and the specific yield (Sy) (Table 5). In order to generate spatially 
correlated fields for them, geostatistical models were initially fitted to the measurement data for both hydraulic 
conductivity and specific yield (prior information). The geostatistical parameters (sill and range) were optimized 
so that the interpolated field minimized the misfit between the model outputs and the observation measurements 
(residuals). The ordinary Kriging interpolation method was used to obtain the parameters values. Table 5 shows 
the selected geostatistical models and their initial parameters. 

The regularization constraints, which were imposed on the parameters were the preferred values deduced from 
the prior information. The singular value truncation threshold was at a singular value that exhibited the ratio 
between the lowest to the highest eigenvalue of greater than 1.0 × . The mean and the standard deviation 10 ―6

describing the prior parameter distributions are listed in Table 5. Figure 4 displays the mean of the prior parameter 
distributions at the pilot point locations as interpolated fields.

3.3. Future prediction of seawater intrusion

The model predictive uncertainty was quantified for the average seawater intrusion length (L5% ). The length is 
measured from the coastline to the 5% isochlor (The contour line of 2000 mg/l) at the Quaternary aquifer bottom, 
along the aquifer width. The 5% ischlor was selected as the upper acceptable salinity limit for irrigation, according 
to the Food and Agriculture Organization of the United Nations (Ayers et al., 1985).

The NSMC method was applied to the SWI model from December 1988 to September 1994 using the transient 
hydraulic heads (from 1988 to 1994) and the salinity concentrations measurements (in 1994) to construct the 
calibration dataset. The objective function was estimated at 2455 considering the achieved residuals using the 
obtained calibrated parameter set, and the assigned weights for each observation group ( , Table 2). However, 

1
𝐬𝐭𝐝𝐞𝐯

for equal visibility for each observation group, salinity weights were multiplied by 20, since the magnitudes of 
salinity and hydraulic heads were vastly different. A threshold of 2700 was set for the target objective function. 
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Prior parameters' probability distributions were centered on the calibrated set with standard deviation, bounds, 
and type as listed in Table 5. 250 stochastic parameter sets were generated. The samples in the OLHS design were 
drawn from a uniform distribution on [0,1] and then mapped onto the prior distributions respecting the assigned 
parameters bounds. The chosen number of generated parameter sets was based on computation time, and is 
comparable to other studies (Pollicino et al., 2021; Rajabi et al., 2015).

The ensemble was used to estimate the uncertainty range in L5% prediction for 2050. Current abstraction was 
assumed to persist due to groundwater deterioration and terminated pumping wells (Sowe et al., 2020). Recharge 
and storage depth at the dam site followed the same trend, while inflow across the boundaries was maintained 
constant over the prediction period.

4. Results 

4.1. Data worth analysis

The data worth analysis was performed on the period of 1988 to 1994 considering prior information on parameter 
values, the observations data of transient heads from 1988 to 1994 (546 monthly head measurements), salinity 
measurements in 1994 (11 salinity observations), and the length of intrusion retrieved from ERT survey data. 
Figure 5 shows the results of this assessment for salinity concentration prediction at 121 uniformly distributed 
points. The maximum percentage of increase in the prediction uncertainty variance which was incurred by 
successive removal of each observation group was contoured (Figure 5a). The analysis showed that despite the 
small number of salinity observations, they had high information content (the predictive uncertainty of 56 points 
was increased by the maximum compared to the removal of the other observation types), affecting the prediction 
uncertainty the most in the eastern part of the aquifer (near the coast). The hydraulic head observations had a 
greater impact on reducing the uncertainty in salinity predictions upstream of the seawater wedge. Generally, 
across the aquifer domain, the uncertainty in the prediction increased the most near the observation points that 
were omitted, except near the salinity observations at S15, S16, and S20, and head observations at BHF9A, BHF4, 
and BHF17. Thus, they did not have information that was relevant to the prediction and/or not repeated in other 
groups. 

It is evident that even though the concentration observations are scarce, it is worth including them in the calibration 
dataset. This requires combining groundwater equations with salt transport equations by using the variable-density 
flow and solute transport models. The low values of scaled RMSE (RMSE divided by the range in the simulated 
heads) between the simulated hydraulic heads using constant-density and variable-density models, ranged from 
0.86% to 6.4% for all the observation wells. This suggests that the groundwater flow model could be used in phase 
1 for parameter estimation benefitting from its fast run time, with the consideration of the variable density effect 
in phase 2 using the salinity concentration and ERT survey data.

The standard deviation of the post-calibration predictive uncertainty was reduced compared to its pre-calibration 
uncertainty (Figure 5b&c), However, the salinity prediction uncertainty was still high, indicating the need for 
acquiring more complementary data. 

4.2. Parameter identifiability of the hydrogeological parameters at different phases

The ability of the calibration dataset to constrain the model parameters in phases 1 and 2, was expressed by the 
parameter identifiability (ParId). Out of 242 parameters, 86 were adequately identified with a ParId cut-off value 
of 0.75 (38 were adequately identified in phase 1 and assumed fixed, and an additional 48 were adequately 
identified in phase 2). Figure 6 shows the ParId of 121 pilot points used to estimate hydraulic conductivity and 
specific yield in phases 1 and 2. 

The transient heads in phase 1, constrained the hydraulic conductivity at the pilot points close to the observation 
measurements with higher identifiability. 9 out of 121 pilot points were considered adequately identified. The 
specific yield parameters are more influenced by soil texture. In fine sediments of the western part, 29 out of 121 
pilot points were considered adequately identified in phase 1. However, in coarser sediments (east), the hydraulic 
heads in the calibration dataset could not identify specific yield in phase 1.

The salinity observations and ERT survey data significantly increased the number of identified hydraulic 
conductivities to 47 (38 in phase 2 and 9 in phase 1). The specific yield was less constrained by salinity 
observations with a slight increase of 10 parameters, resulting in 39 adequately identified parameters in total (29 
in phase 1 and 10 in phase 2).
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4.3. Model calibration and validation

The model performance was evaluated using the calibrated parameter dataset after the model calibration. The 
goodness of fit of the transient head and salinity measurements evaluated using RMSE, NSH, and RSQ showed 
overall satisfactory results for the model calibration and validation. The error statistics of the model calibration 
and validation are shown in Figure 7 and Table 6. 

The mismatch of all the simulated heads and salinity concentrations, represented by RMSE was located within 
the estimated 95% confidence interval (CI) of the measurements, except for two observations wells BHF1 under 
the validation, and BHF15 under the calibration and validation. A high correlation was identified between the 
observed and simulated measurements at different observation groups (≥ 0.7), indicating a significant and positive 
relationship. However, for BHF10, the correlation value was 0.12, indicating no similarity in the pattern of 
variation between the two datasets. Considering NSE coefficients (a value of 1 corresponds to a perfect match, 
values between 0  and 1 are viewed as acceptable performance, while negative values represent unacceptable 
performance), good model performance can be seen. The lower values (approaching zero) were reported in the 
salinity measurements. This is due to the small number of measurements (2 measurements) in each observation 
group. Approaching zero means that the average value of the observed dataset is better than the predictions 
simulated by the model.

The performance criteria proved that the extracted information from the calibration datasets and the additional 
information in the form of the prior information imposed on the parameters were able to efficiently constrain the 
parameters to achieve an acceptable reproduction for the observations. The estimated parameter values for the 
horizontal hydraulic conductivity and the specific yield are presented in Figure 4 together with their initial values 
estimated from the site data. The heterogeneity in the hydraulic conductivity was captured, and the values were 
reliable with small departures from their initial values. The values of the specific yield varied from their initial 
values, which was expected due to the high uncertainty in their estimates.

4.4. Analysis of posterior parameter uncertainty

The NSMC method was combined with the OLHS and filtering (rejection sampling) techniques to perform a two-
step re-calibration of the SWI model. The first iteration was performed after generating 250 stochastic parameter 
sets, with 31 sets having an objective function value below the threshold of 2700. These 31 sets were added to the 
ensemble of calibration-constrained parameter sets, and 120 sets passed the filtering process to proceed to the 
second iteration. The second iteration resulted in 78 parameter sets that satisfied the objective function threshold, 
bringing the total number of well-calibrated parameter sets to 110 (1 calibrated set and 31 and 78 sets from the 
first and second iterations, respectively).

The average value of the multi-component objective function for these 110 sets was reduced from 27000 to 2560, 
demonstrating the effectiveness of the proposed method. A calculated objective function higher than 50000 was 
found to be unsatisfactory and was discarded.

The probabilistic coverage of input space of each parameter provided by OLHS strategy was calculated using Eq 
11 and compared to that generated by SRS strategy. The probabilistic coverage can be used as guidance 
(Hardyanto and Merkel, 2007) to choose which strategy is preferable. Eq.11 was used to calculate the probabilistic 
coverage for each strategy and considered each parameter as a lognormal distributed independent variable. The 
mean and standard deviation were calculated from drawn samples of size 250.

𝑃(𝐿(𝑋𝑖) ≤  𝑋𝑖 ≤ 𝑈(𝑋𝑖)) 11

In Eq.11, L( ) and U( )  are the minimum and maximum values for each parameter (Xi). The probabilistic 𝑋𝑖 𝑋𝑖
coverage for each parameter generated by the OLHS strategy was approximately 92% and ranged from 71% to 
91% for the SRS strategy. OLHS strategy provided better probabilistic coverage compared to the SRS strategy.

The application of the NSMC method resulted in an ensemble of calibration-constrained parameter sets, obtained 
by exploring the null space where the parameters were not well-constrained by observations, and adjusting the 
solution-space parameters. The results indicate that the method was effective in constraining the parameters of 
Khz and Sy in regions near observation measurements, with a reduced ability to constrain in coarse sediments for 



12

Sy. The posterior parameter values were found to be significantly different from their prior values generated by 
OLHS, particularly in specific regions near the southeast boundary and northwestern part of the aquifer. The 
highest hydraulic conductivity values were observed near the southeast boundary (ranging from 167 to 209 
m/day), while lower values were found in the northwestern part (ranging from 10 to 48 m/day) near the Shaarah 
pumping field, which represented fine-grained soil. The inversion process also constrained a small number of Sy 
parameters near observation measurements in fine-grained soil, but with reduced ability to constraint in coarse 
sediments. Away from the regions with constrained parameters, the parameters were allowed to take different 
values in order to achieve an acceptable level of misfit. These results emphasize the significance of defining the 
null space for the integrity of the prediction uncertainty analysis and considering both prior knowledge and 
observation data in the parameter calibration process. The findings are presented in Figure 8, with five randomly 
selected posterior realizations assumed to represent samples drawn from the posterior parameter distribution.

The values taken by each parameter in the 110 calibration-constrained parameter sets were used to identify the 
probability distribution (pd) that this data followed. The posterior parameter pd of the logarithm of the hydraulic 
conductivity was found to fit a normal distribution with an average p-value of 0.05 (considering 121 pilot points), 
while the specific yield was fitted best by the Gumbel maximum probability distribution with an average value of 
0.082. The maximum likelihood estimates of the parameters describing each distribution (location and scale are 
equivalent to the mean (  and the standard deviation ( ) of the parameter variability) were calculated and the μ) σ
coefficient of variation (Cv) was utilized to represent the posterior variance of the parameters. The Cv was 
calculated for Lognormal and Gumbel maximum distributions using Eq. 12 and 13, respectively. 

Cv𝑙𝑜𝑔𝑚𝑜𝑟𝑚𝑎𝑙 =  𝑒𝜎2
― 1 12

Cv𝐺𝑢𝑚𝑏𝑒𝑙 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 =  
σ

μ + (0.5772 × (𝜎 6
𝜋 ))

13

Figure 9 depicts the posterior mean and Cv of the Khz and specific yield. The mean posterior conductivity values 
(Figure 9a&c) agreed well with the results of the pumping tests and the aquifer geology (Figure 4).  The Cv of the 
logarithm of the conductivity field ranged from 7 to 76% (Figure 9b), while its prior Cv was 112%.  A lower 
dispersion around the mean was shown near the observation data, but higher uncertainty near the Southern 
boundary and the uncertainty due to the lack of available observations. For the specific yield parameters, the 
parameter estimation reduced the prior Cv from an average of 315% to 85%. The area of higher certainty was 
found near the observation data within the fine-grained soil of the western part of the aquifer. The mean of the 
specific yield posterior pd at each pilot point was significantly different than its value in the parameter set of the 
minimum error variance obtained by the model calibration. This was due to the large prior uncertainty considered 
to account for the lack of data. The prior parameter pd at 242 pilot points describing the logarithm of Khz and Sy 
was assumed normal distribution, and their distribution parameters are shown in Table 5.

The correlation between the identifiability (ParID) and the reduction in the standard deviation of the probability 
distribution ( ) was calculated to investigate the extent to which the parameter identifiability is valid for 𝜎𝑟𝑒𝑑
nonlinear model behavior. It was found to be moderate and negative, with correlation coefficients of -0.56 for 
Khz and -0.68 for Sy. The identifiability and the reduction in standard deviation are approximately consistent. 
Figure 10 demonstrates the reduction in uncertainty for 8 parameters from different identifiability categories (0–
0.25, 0.25-0.5, 0.5-0.75, and 0.75-1). The reduction in uncertainty is visualized by comparing the height of the 
posterior and prior distributions at the median. The ratio between posterior and prior values indicates the amount 
of additional knowledge gained from the inversion. The results showed that the identifiability and the reduction 
in standard deviation are approximately consistent. 

4.5.  Quantifying the Risk of Seawater Intrusion at Pumping Fields

The 110 calibration-constrained parameter sets were used to delineate the uncertainty range in the prediction of 
L5% (2000 mg/l isoline) for the year 2050. The dispersion of the posterior prediction distributions was quantified, 
with values less than 10% representing high certainty and values between 10-20% representing moderate 
certainty. High certainty was found near Kalba pumping field (  while moderate certainty was found 

𝜎
µ = 4.5%)
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near Fujyarh pumping field  ( Figure 11a). The wider distribution is the direct outcome of the ill-(
𝜎
µ = 11%)

informed parameters by the measurements of the system state as depicted in Figure 9. The posterior predictive 
uncertainty distributions of the intrusion length, measured from the coastline, at the two pumping fields are shown 
in  Figures 11 b&c. The 95 percentiles of the two distributions showed that it was possible to advance the L5% to 
the centers of the two pumping fields. However, the maximum prediction of L5% completely encompassed the 
Kalba pumping field and reached a portion of the Fujayrah field, leading to salinity levels exceeding the acceptable 
limit for irrigation purposes.

5. Discussion

5.1. Data worth and their impact on prediction uncertainty

The useful feature of analyzing the data worth of the observation data, following the method described by 
(Dausman et al., 2010), is that the predictive uncertainty is independent of the actual values of both the 
measurements in the calibration dataset and the model parameters. However, it depends on the stochastic 
characterization of parameter variability, measurement noise, and model output sensitivity to parameters. 
Accordingly, the worthiness of ERT survey data was assessed, although the data were not available during the 
analysis period. The findings highlight the importance of including salinity observations in the calibration dataset 
to better constrain the predictions, which is consistent with Refsgaard et al. (2012). They argued that the salinity 
predictions made by a constant-density model are associated with high uncertainty as the predictions are not 
constrained by the calibration dataset. 

The hydraulic head observations had a greater impact on reducing the uncertainty upstream of the seawater wedge, 
where freshwater inflows (Hald stream and Wadi Ham stream, and the infiltration from the dam reservoir) mainly 
governed the salinity. The uncertainty in the salinity predictions increased by losing these data by an average of 
70%. On the other hand, in the region near the coast, enclosed by the contour line of 5000 mg/l (Figure 5a), the 
salinity observation data had the higher influence, where the effect of freshwater inflow from the western part of 
the aquifer decreased and the effect of the inland lateral flow from the sea increased.

The post-calibration uncertainty was reduced indicating the effectiveness of the available information. However, 
the salinity prediction uncertainty was still high in the eastern part of the aquifer, with an average value of 1000 
mg/l and exceeding 8000 mg/l, near Hyal stream, suggesting a need for acquiring more complementary data. 
Hence, all the available data for the salinity concentrations were used in the model calibration. This analysis 
suggests areas for further investigation to improve the understanding of the aquifer system, making it an essential 
prior step to the parameter estimation process.

The groundwater model was used to provide reliable initial parameter estimates to reduce the computational 
demand of the model calibration in phase 2 using variable density and solute transport model including the salinity 
observations. The accuracy of its usage was evaluated by obtaining the low values of the scale RMSE between 
using constant and variable density hydraulic heads. These values can be attributed to the aquifer being shallow 
and the western part being governed by the freshwater inflow over the calibration period. This study adopts 
simpler models to reduce computational cost without sacrificing accuracy. Other techniques such as combining 
fast-running model based on non-physical parameters, and a complex model to estimate equivalent values for the 
non-physical parameters (Hugman and Doherty, 2022), increasing grid size (Burrows and Doherty, 2015), using 
2D models (Sherif et al., 2012b), or assuming a sharp interface (Coulon et al., 2021) have also been used. 
However, caution should be exercised as these techniques are site-specific and may not be universally applicable.

5.2. Evaluation of the parameter estimability under the linear assumption

Parameter identifiability was used to evaluate the parameter estimability. The analysis showed that 86 out of 242 
parameters were adequately identified. The transient heads in the calibration dataset identified the hydraulic 
conductivities near the observation locations, while soil texture had a larger impact on specific yield. In the 
western part of the aquifer with fine sediments and steep water level gradients, which was indicated from the field 
measurements at the observation wells of average fluctuation in the water levels of 18m (Sherif et al., 2014), the 
specific yield was better identified. In coarser sediments (east), the mild hydraulic head gradient (the average 
fluctuation in the water levels was 1m) made the model outputs insensitive to specific yield. The salinity and ERT 
survey data improved the identification of hydraulic conductivities. This can be attributed to the key role of 
hydraulic conductivity in controlling the extent of the SWI (Ketabchi and Jahangir, 2021), where the model 
outputs of salinity concentrations were sensitive to those parameters, accordingly they displayed high 
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identifiability (Figure 6). However, the specific yield was less constrained by the salinity observations. This 
finding agrees with other studies (Delsman et al., 2017; Zhang et al., 2020).

Previous studies on SWI models have employed a phased approach to parameter estimation to mitigate 
computational complexity (Abd-Elaty et al., 2021; Sanford and Pope, 2010). In this study, we utilized fixed, 
adequately-identified parameters in the second phase of the model calibration process, resulting in a further 
reduction in computational effort. The linearity assumption made by the ParID method was assessed in light of 
potential nonlinearities in the model. Our results indicate that the ParID methodology provides valuable insights 
into the informativeness of the calibration data and the extent to which prediction uncertainty is reduced, as shown 
in Figure 10. 

5.3. Model calibration, validation, and parameterization

The model calibration was performed using the observations of transient heads, salinity, and ERT survey data. 
The Tikhonov regularization method was used to incorporate prior information and SVD to simplify the 
calibration process by reducing the number of parameters to those that were sensitive to the observations. The 
results showed an overall reduction in the objective function for head and salinity measurements by 84% and 58%, 
respectively (Table C3.1, supplementary material).

However, it should be noted that the limited number of salinity measurements in each observation group led to an 
approach of zero in the NSE coefficients, indicating that further measurements are needed to improve the accuracy 
of the model. Additionally, the observed misfit in head measurements in two observation wells near the Shaarah 
pumping field (BHF1 under validation and BHF15 under calibration and validation) may be attributed to the 
significant fluctuation in pumping schedules than the assigned average values. The proximity of BHF10 to Wadi 
Hyal stream resulted in a model structural error due to the assigned fixed boundary condition, which did not 
account for the seasonal fluctuations in the stream water level.

Minimization of the objective function alone is not a sufficient criterion to evaluate the efficiency of the 
calibration. The reliability of the parameter estimates must also be considered to ensure the geological plausibility 
of the results. The spatial variability of the hydraulic conductivity was found to be geologically realistic and 
preserved the aquifer heterogeneity, while the specific yield values varied from their initial estimates but were 
still acceptable in the geological context. Specific yield values in similar alluvial aquifers have been measured to 
range from 0.05 to 0.15 (Chen et al., 2010), and in ophiolite formations, the values have ranged from near zero to 
0.01 (Lachassagne et al., 2021). The results contribute to the understanding of the geological formation of the 
system and highlight the importance of considering both the minimization of the objective function and the 
reliability of the parameter estimates in model calibration.

5.4. Calibration-constrained parameter sets ensemble

The implementation of the NSMC method linked with OLHS and the filtering technique has successfully 
generated multiple hydrologically reasonable parameter sets that are in agreement with the available head and 
salinity observations. The filtering technique removed 40% of the generated parameter sets during the 
recalibration, which greatly reduced the computational time of the optimization process. This novel approach 
offers a promising solution for the calibration of SWI models and could be applied to other hydrological models.

The complex nature of SWI modeling in heterogeneous aquifers can pose challenges in accurately estimating 
uncertainty. In cases where the calibration dataset does not provide enough information to estimate model 
complexity, such as seen in Figure 9 where hydraulic conductivities were only constrained in two regions and a 
limited number of Sy parameters near observation measurements in fine-grained soil, it is still important to include 
this complexity in the uncertainty analysis to accurately reflect the uncertainty in the predictions. This study 
highlights the efficiency of NSMC in exploring the null space, which is where the insetimated parameters reside 
and hence is the primary source of uncertainty in the predictions (Moore and Doherty, 2005). Exploring the null 
space is based on the prior realization that spans the entirety of parameter space. The generated prior realizations 
by OLHS were substantially different from each other (Figure 9), resulting in a more comprehensive probabilistic 
coverage than the traditionally used sampling strategy (SRS).

A 110 calibration-constrained parameter set has resulted from the application of the NSMC method and was used 
to derive the posterior parameter probability distribution of log(Khz) and Sy at each of 121 pilot points. The 
posterior probability distributions of log(Khz) and Sy were found to fit normal and Gumbel maximum 
distributions, respectively. The derived parameter probability distributions can be used to identify areas of high 
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uncertainty in predictions and guide the expansion of the calibration dataset. The coefficient of variation was used 
to compare different types of probability distributions and magnitudes, with lower values indicating lower 
dispersion around the mean and higher certainty (Figure 10). In general, the lower Cv values were obtained close 
to the observation data, indicating that the information content in the observations is sufficient to inform/constrain 
the model parameters. The certainty in parameter estimation is high, and consequently, the uncertainty in the 
predictions that are sensitive to those parameters is low. On the other hand, the parameters that were not informed 
by the observation data were constrained by prior information.

5.5. Analysis of the future prediction of SWI 

The model's performance in predicting SWI was compared to Hussain et al. (2015), who predicted the inland 
encroachment of 50% ischlor in 2015 under similar abstraction and recharge conditions. 81% of their prediction 
fell within the minimum and maximum prediction range (Figure 11d), indicating the model was calibrated 
correctly and provides reasonable uncertainty estimates. The model was then used to predict SWI in 2050, and 
further deterioration of water quality was revealed due to limited water availability and continued abstraction. 
Protective measures must be taken to protect the aquifer's resilience and sustainability despite the associated costs 
and challenges. This finding is crucial for decision-makers, especially considering the potential exacerbation of 
future threats from sea level rise and reduced recharge due to rainfall scarcity under the conditions of climate 
change (Bolleter et al., 2021).

This study offers new insights into the parameter estimation and uncertainty analysis of SWI models, building 
upon previous studies that have used computationally expensive methods with limited parameters (e.g., Llopis-
Albert et al., 2016; Miao et al., 2019; Zeng et al., 2016) and assumed linear model behavior (e.g., Coulon et al., 
2021; Dausman et al., 2010). The findings of this study are site-specific and model-dependent, as the results 
indicate that the parameter uncertainty is influenced by various factors such as the uncertainty in the observations, 
their number and locations relative to the predictions of interest, and the aquifer geological and hydrogeological 
parameters. Despite this, some of the findings can be generalized, and the proposed method applies to other cases.

5.6. Limitations of the model and future directions 

Uncertainty in SWI models is caused by factors such as tidal effects, recharge variability, geology, solute 
dispersivity, and anthropogenic influences. This study aimed to quantify uncertainty in two main parameters that 
impact SWI progression, namely, hydraulic conductivity and specific yield. The results indicate high uncertainty 
in specific yield estimation due to limited head measurement data in fine-grained soils. Further data collection of 
head measurements in fine-grained soil or laboratory tests for coarse-grained soil could reduce uncertainty. 
Uncertainty intervals and prediction distributions were estimated highlighting regions of high uncertainty but may 
be overestimated due to the small sample size (Zhang and Shields, 2018).

In high-dimensional and nonlinear models, optimization algorithms can get stuck in local minima, which reduces 
the efficacy of the NSMC method. Using multiple random initial parameters in the calibration process can help 
overcome this challenge. Another cause of efficacy reduction is fixing calibrated parameters in some cases, which 
adds uncertainty to the prediction but reduces computational effort. 

The NSMC method is preferred for its computational efficiency in highly parametrized SWI models, however, it 
may not accurately represent Bayesian posterior probabilities and may not accurately estimate uncertainty 
(Keating et al., 2010). To improve accuracy in both model calibration and uncertainty analysis, a high 
computational effort is needed. In future studies, the use of surrogate models can be considered as approximations 
to highly parametrized models reducing the computational effort. One such surrogate model is Gaussian process 
regression (GPR), which has been demonstrated to accurately capture SWI behavior and estimate approximations 
and their uncertainty (Saad et al., 2022). Although GPR has been recently adapted to handle high dimensional 
problems, its application to highly parametrized SWI models has not yet been tested.

6. Conclusions

A novel model-independent framework was successfully developed to quantify the uncertainty associated with 
the estimation of model parameters and their propagation to the predictions of seawater intrusion (SWI) in the 
Wadi Ham aquifer, UAE. The parameter estimation process considered the aquifer heterogeneity in terms of 
horizontal hydraulic conductivity and specific yield, using measurements of transient heads, salinity 
concentrations, and geophysical survey data, along with prior knowledge of the geological formation. To 
maximize the computational efficiency, parameter estimation was conducted in two phases using constant and 
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variable density models. Adequately identified parameters were considered fixed in the second phase. The OLHS 
was incorporated in the NSMC method and with the aid of the filtering technique, an ensemble of constrained 
calibrated parameter sets was attained to derive the predictive probability distribution of SWI length.

The following conclusions can be drawn from the findings of this research:

1) Data worth analysis provided a basis for the model calibration phasing and emphasized the importance 
of including salinity observations and geophysical surveys in the parameter estimation process, to reduce 
predictive uncertainties, despite their limited number compared to head observations. This analysis is an 
essential prior step to the parameter estimation process.

2) The transient heads only were able to identify some of the hydraulic conductivities in their proximity 
(9%). When the salinity observations and the geophysical surveys were included, the adequately 
identified parameters increased to 39% of the total parameters. 

3) For the specific yield, the adequately identified parameters were found within the fine-grained soil and 
near observation locations. Head observations contained more information to constrain them relative to 
salinity observations. 

4) The significant decrease in parameter and predictive uncertainty in any subregion of the model domain 
was strongly controlled by the density of the observations located within that subregion. However, 
constraining the specific yield using head data was more affected by the soil texture.

5) The non-redundant information contained in the calibration dataset constrained the highly identifiable 
parameters, while the remaining parameters were more strongly constrained by prior knowledge. 
Reasonable a priori bounds were essential for obtaining acceptable parameter values in the geological 
context. SVD combined with Tikhonov regularization helped to stabilize and constrain the inversion 
process to yield a plausible geological distribution.

6) Even though the uncertainties in the seawater intrusion length inferred from the geophysical surveys 
were considerably high, nonredundant information was encapsulated in them. On their removal, the 
uncertainty in the salinity prediction increased. Geophysical observations are valuable for their wide 
spatial coverage and low cost.

7) The space-filling scheme of OLHS based on ESE optimization was more efficient in terms of 
probabilistic coverage compared to the SRS scheme.

8) The proposed filtering technique is a straightforward procedure to save computational time within the 
recalibration process and is favored over narrowing the possible parameter space intervals which may 
lead to the NSMC calibrated parameter sets being significantly constrained to the parameter set obtained 
through model calibration. 40% of the generated parameter sets were omitted from the recalibration.

9) A moderate correlation was observed between the ParID, which assumed model linearity, and the 
reduction in the standard deviation of the prior parameter distribution to its posterior that was estimated 
considering model nonlinearity. ParID can give useful insights into the extracted information from the 
calibration dataset and reduce parameter uncertainty.

10) The posterior predictive probability distribution determined the maximum and minimum predictions of 
the 5% isochlor position. The resulting uncertainty intervals near Kalba and Fujyarh pumping fields 
varied by 4.5% and 11% from their means respectively, which indicates, with a high to moderate 
certainty, that the aquifer would be vulnerable to salinization, and the water quality at these pumping 
fields would be unsuitable for irrigation. 

The framework presented in this study for probabilistic assessment of seawater intrusion (SWI) due to input 
uncertainties has broad applicability beyond the site and model studied, where it could be applied to other 
hydrological models improving predictions of water levels, quantities, and quality. It can help identify data gaps 
and improve prediction certainty allowing for more accurate assessments of SWI and the impact of management 
strategies on the aquifer system. The resulting probability distribution can be used to estimate prediction intervals, 
assess the reliability of management strategies, and evaluate the probability of exceeding critical SWI thresholds. 
Future research should address uncertain inputs beyond hydraulic conductivity and specific yield, including 
boundary conditions such as sea level rise, recharge variations, and abstractions. This is crucial for assessing 
future SWI under climate change conditions. Integrating the proposed framework with simulation-optimization-
based groundwater management models will help mitigate SWI under uncertainty and propose a sustainable 
coastal management strategy.

In summary, the highly parameterized regularized inversion allowed the extraction of information from the 
historical field measurements achieving reliable parameter estimates and a sufficient level of heterogeneity. The 
NSMC method linked with OLHS and filtering techniques was computationally efficient and succeeded in 
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quantifying the prediction uncertainty of 5% isochlor intrusion length. The framework proposed in this study can 
be generally applied in different coastal areas. 
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Figure 1 Flowchart of the proposed framework to quantify the prediction uncertainty. Numbers in circles represent 
the framework steps, and rectangles for the NSMC method based on OLHS, and a filtering technique.

Figure 2 Flow chart of the filtering technique to screen out less likely parameter sets from undergoing the 
recalibration process.

Figure 3 (a) Study area and the aquifer geological map, (b) Initial concentration distribution in 1988, (c) Initial 
hydraulic head in the main aquifer in 1988. Vertical exaggeration is 5.

Figure 4 Spatial distribution of hydrogeological parameters:(a,b) horizontal hydraulic conductivity and (c,d) specific 
yield for pre-calibration and post-calibration respectively. Circles represent the pumping test locations.

Figure 5 (a) Maximum increase in the predictive uncertainty variance of the salinity distribution, incurred by the 
removal of each observation group successively. The locations of predicted salinity concentrations are shown in circles, 
their labels indicate the observation group, which increased the prediction uncertainty the most when was left out. (b) 
& (c) Pre- calibration & post-calibration total predictive uncertainty for the salinity concentration respectively.

Figure 6 ParID of the hydraulic conductivity and the specific yield at the pilot points in phases 1&2 (a,b) for the 
hydraulic conductivity and (c,d) for the specific yield. 
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Figure 7 Goodness of fit of model outputs and their measured counterparts. Calibration results of (a) heads in phase1, 
(b) Salinity in phase2. (c) Validation results of heads in phase2.

Figure 8 Prior and posterior fields of the logarithm of hydraulic conductivity and specific yield fields. Prior fields were 
generated using OLHS. 1st and 3rd columns are for log Khz and Sy priors, 2nd and 4th columns are for their posteriors. 
Kriging interpolation method was used to generate the spatial distribution of the fields.

Figure 9  (a) mean and (b) Cv% of the Khz posterior distribution, (c) mean and (d) Cv% of the Sy posterior distribution. 
+ represents the pilot points locations. The larger symbol size shows the location of randomly selected parameters to 
display their distributions.

Figure 10 Prior and posterior parameter probability distributions of eight randomly selected parameters, where 
dashed lines are for the priors and solid lines for the posteriors. The left and right columns are for Log Khz and Sy 
respectively. The plots were arranged in ascending order of their corresponding ParID values. The locations of those 
parameters were shown in Figure 9.

Figure 11 (a) Isochlor distribution at the end of 2050 using the calibrated parameter set of the minimum error variance, 
(b & c)Posterior predictive uncertainty distributions of L5% isochlor (2000 mg/l isoline) near Fujayrah (Y-Y sec) and 
Kalba (X-X sec) respectively, thick solid lines represent 95% percentile of L5% extent, and dashed lines indicate the 
distance from coastline to the center of the pumping field, (d) 50% Ischlor at the end of 2015 compared to other study 
results, dashed lines represent uncertainty intervals.

Table 1. Summary of previous studies on quantifying the prediction uncertainty in SWI  

Ref. Application
Number/name 
of uncertain 

inputs

Prediction 
Uncertainty 

analysis 
method

Alleviate 
computational 

burden
Key features

Rajabi and 
Ataie-
Ashtiani, 
2014; 
Rajabi et 
al., 2015

Two cases: 
Conceptual, 2D, 
Henry problem of 
SWI in coastal 
aquifers, and 
circular island

2 and 6/ hydraulic 
conductivity and 
inflow, and for the 
other case, 
porosity, horizonal 
and vertical 
hydraulic 
conductivities, and 
disperivity in the 
three dimensions

Monte Carlo 
simulations 
(MCS)

Effiicent sampling 
(OLHS)- Data-
driven surrogate 
model

Zhao et al. 
(2016)

Conceptual, 2D. 2/hydraulic 
conductivity and 
longitudianl 
dispersivity

Monte Carlo 
simulations 
(MCS)

Effiicent sampling 
(LHS and 
restricted stratified 
sampling)

Miao et al. 
(2019)

Longkou City, 
China, 3D

2/ hydraulic 
conductivity and 
porosity

Monte Carlo 
simulations 
(MCS)

Data-driven 
surrogate model

Mostafaei-
Avandari 
and 

Coastal aquifer of 
Ajabshir, Iran, 3D

10/hydraulic 
conductivity of 10 
layers

Monte Carlo 
simulations 
(MCS)

Effiicent sampling 
(OLHS) - Parallel 
computing

MCS method 
generates many 
independent 
realizations of 
random 
parameter sets, 
and subsequently 
employing each 
set to run 
simulation 
models to assess 
the prediction 
uncertainty. The 
uncertainty range 
of the parameter 
sets is identified 
based on prior 
knowledge range 
(e.g pumping 
tests, step-
drawdown tests, 
laboratory tests, 
etc.). It is 
straightforward, 
and efficient for 
various 
probability 
distributions, but 
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Ketabchi 
(2020)

Yang et al. 
(2021)

Baldwin County, 
USA,3D

22/hydraulic 
conductivity at 22 
zones

Monte Carlo 
simulations 
(MCS)

N/A

Ketabchi 
and 
Jahangir 
(2021)

Conceptual, 2D. 3/hydraulic 
conductivity, sea 
water level, land 
surface inundation

Monte Carlo 
simulations

N/A

may result in 
significant 
differences 
between real-
world outcomes 
and expected 
results if 
parameter sets 
are not 
conditioned on 
measured state 
variables (e.g. 
piezometric 
heads, 
concentration 
data, etc).

Rajabi and 
Ataie-
Ashtiani 
(2016)

Two cases: 
Conceptual, 2D, 
Henry problem of 
SWI in coastal 
aquifers, and Kish 
Island, Iran, 3D

1 and 2/ hydraulic 
conductivity , and 
for the other case,  
hydraulic 
conductivity, and 
longitudinal 
disperivity 

Conditional 
Monte Carlo 
simulations/ 
Markov Chain 
Monte Carlo 
(MCMC) 
simulation

Effiicent sampling 
(OLHS)- Data-
driven surrogate 
model

Zeng et al. 
(2016)

Laizhou 
Bay,China,3D

7/hydraulic 
conductivities at 
four zones,  inflow 
, recharge ratio, 
and 
longitudinal 
dispersivity 

Conditional 
Monte Carlo 
simulations/ 
Markov Chain 
Monte Carlo 
(MCMC) 
simulation

N/A (30000 
simulations)

MCMC 
propagates the 
prior parameter 
probabilities 
through the 
model to 
generate 
posterior 
parameter and 
prediction 
probabilities 
considering the 
model 
nonlinearity. 
Non-uniqueness 
becomes no 
longer a problem 
but an advantage, 
however it is 
computationally 
expensive and 
unaffordable for 
variable-density 
aquifer models 
(Carrera et al., 
2010; Llopis-
Albert et al., 
2016), especially 
for highly 
parameterized 
models (Jiang et 
al., 2021).

Pool et al. 
(2015)

Mar del Plata, 
Argentina,2D

1/hydraulic 
conductibvity field 
(conductivity 
distribution)

Conditional 
Monte Carlo 
simulations/ 
Stochastic Self-
calibrating 
method 

Sharp interface 
approach 

Llopis-
Albert et al. 
(2016)

Conceptual, 2D. 1/hydraulic 
conductibvity field 
(conductivity 
distribution)

Conditional 
Monte Carlo 
simulations/ 
Gradual 
conditioning 

Sharp interface 
approach 

Self-calibrating 
and gradual 
conditioning 
methods deform 
prior stochastic 
parameter sets to 
achieve a desired 
objective 
function and 
assess prediction 
uncertainty. 
Non-uniqueness 
becomes an 
advantage, but is 



31

stochastic 
inverse model

computationally 
expensive and 
could be 
unaffordable for 
variable-density 
aquifer models 
(Carrera et al., 
2010; Llopis-
Albert et al., 
2016), especially 
for highly 
parameterized 
models (Jiang et 
al., 2021).

Hugman 
and Doherty 
(2022)

Vale do Lobo  
subsystem of the 
Campina de Faro 
aquifer,Portugal,3D

565/hydraulic 
conductivity, 
specific storage 
and conductance 
of the
aquitard which 
separates the deep 
aquifer from the 
upper aquifer

Conditional 
Monte Carlo 
simulations/ 
Iterative 
ensemble 
smoother (iES)

a fast-running 
model based on 
non-physical 
parameters, and a 
complex model to 
estimate 
equivalent values 
for the non-
physical 
parameters

iES is a batch 
form of the 
Ensemble 
Kalman Filter, 
which conditions 
the ensemble of 
realizations 
obtained through 
Monte-Carlo 
simulations and 
assimilates all 
available data at 
once in a single 
analysis step 
(Rajabi et al., 
2018). The 
prediction stage 
involves the 
model simulation 
for each 
realization in the 
ensemble. It is 
computationally 
efficient for 
highly 
parameterized 
models (White, 
2018), but can 
handle only 
modestly 
nonlinear models 
(Rajabi et al., 
2018).

Herckenrath 
et al. (2011)

Conceptual, 2D, 
Henry problem of 
SWI in coastal 
aquifers.

50/hydraulic 
conductivity

Conditional 
Monte Carlo 
simulations/ 
Null space 
Monte Carlo 
(NSMC)

Parallel computing NSMC method 
generates 
multiple 
realizations that 
have the same 
solution space 
projection as the 
calibrated 
parameter set, 
satisfy an 
acceptable 
model-to-
measurement fit 
(Tonkin and 
Doherty, 2009), 
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and assess 
prediction 
uncertainty. It is 
a 
computationally 
efficient method 
for highly 
parameterized 
models (Safi et 
al., 2019; Tonkin 
and Doherty, 
2009), but the 
multiple 
realizations may 
be biased 
towards the 
calibrated 
solution space 
(Yoon et al., 
2013).

Coulon et 
al. (2021)

Magdalen Islands 
(Quebec, Canada), 
3D

52/hydraulic 
conductivity

Linear 
prediction 
uncertainty

Sharp interface 
approximation

Linear analysis 
quantifies the 
prediction 
uncertainty by 
comparing its 
uncertainty 
variance before 
calibration 
(considering the 
prior knowledge 
of parameters 
values) and after 
calibration 
(considering the 
ability of the 
calibration 
dataset to 
constrain the 
parameters). It is 
efficient for 
highly 
parameterized 
models. 
However, it may 
provide 
inaccurate results 
for nonlinear 
models such as 
SWI models 
(Brunner et al., 
2012), and the 
parameter set 
which 
corresponds to a 
prediction at a 
certain 
confidence level 
cannot be 
identified 
(Tonkin et al., 
2007).
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Present 
study

Wadi Ham aquifer, 
3D

242/hydraulic 
conductivity and 
specific yield

Conditional 
Monte Carlo 
simulations/ 
Null space 
Monte Carlo 
(NSMC)

Parallel 
computing, 
Effiicent sampling 
(OLHS)

Combining the 
benefits of 
NSMC and 
OLHS to provide 
a practical, 
computationally 
efficient 
framework for 
quantifying 
uncertainty in 
SWI prediction.

Table 2. Sources of uncertainty in the calibration dataset, and their standard deviation  

Source of 
uncertainty Description

Standard 
deviation 

(stdev)

units
Remarks

Head 
measurement (

)𝝈𝒉𝒎𝒆𝒂𝒔𝒖𝒓𝒆𝒅

Originated from human 
errors in execution, and 
the inaccuracies in the 
water depth measuring 
devices, borehole 
verticality, screen location 
determination, and 
determination of the 
geospatial position of the 
boreholes.

0.57 m

Adapted from Rau et al. 
(2019), Their estimation 
was based on best possible 
estimate or collected from 
the literature.

Ground elevation 
at the 
observation wells 
( )𝜎𝑧

Originated from 
inaccurate determination 
of ground elevations.

5 m

Ground elevation data were 
acquired by SRTM (Version 3) 
(NASA Shuttle Radar 
Topography Mission, 2013). 
The vertical accuracy differed 
according to the land cover. 
Elkhrachy (2018) assessed the 
accuracy in Najran city, KSA, 
which has similar site 
characteristics.

Fluid density of 
the water column 
inside the 
observation well  
(𝜎𝜌)

Errors propagated from 
estimating the fluid 
density of the water 
column inside the 
observation well.

1.5 Kg/m3

Based on the mean of 
values considered in the 
studies (Coulon et al., 2021; 
Post et al., 2018).
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Reproduction of 
the observed 
heads close to 
the pumping 
fields (𝝈𝒑𝒖𝒎𝒑)

Errors in reproducing the 
observed heads near 
pumping wells due to 
inaccurate identification 
of the cyclic operation of 
the pumping well.

0.40 m

The uncertainty was 
assigned by averaging the 
differences between the 
records at the observation 
wells near the pumping 
wells and the smoothed data 
using the moving average 
technique during the dry 
season period when the 
change was considered to 
be minimum due to the 
natural causes.

Salinity 
concentration 
measurement at 
the observation 
wells

(𝝈𝒔𝒂𝒍_𝒔𝒂𝒎𝒑𝒍𝒆𝒔)

The uncertainty in 
hydrochemical data from 
observation wells, 
including errors from the 
conductivity measurement 
device and human errors.

3% -

Adapted from Sherif et al. 
(2011a) by comparing the 
change in two successive 
salinity measurements at 
one observation well within 
a short period of less than 
one month, then the average 
was considered. 

Salinity 
concentration 
measurement 
deduced from a 
calibration raster 
(𝝈𝒔𝒂𝒍_𝒓𝒂𝒔𝒕𝒆𝒓)

The uncertainty stemmed 
from interpolating the 
point salinity 
measurements, in addition 
to the measurement 
uncertainty.

6% - Crude estimate

ERT intrusion 
length 
observation (
𝝈𝑬𝑹𝑻 )

Errors in geophysical and 
hydrochemical 
measurements, 
pertophysical model 
uncertainties (relationship 
between salinity and water 
resistivity), non-
uniqueness in resistivity 
interpretation, geophysical 
inversion approach, and 
inversion parameters.

9% m Adapted from Zeynolabedin 
et al. (2021)

Table 3 Characteristics of the study area and its model discretization information

Hydraulic and transport parameters 
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Feature Description

Horizontal Hydraulic 
conductivity (Khz) in X-
direction (m/d)

Varied spatially, their values are based on Short-duration pumping tests (Sherif et 
al., 2012a; Sherif et al., 2014). The pumping test sites are shown in Figure 4

Specific yield (Sy)  Varied spatially, based on  Sherif et al., 2012a study

Anisotropy ratio of Khz 
in X-direction to that in 
Y direction 

1

Anisotropy ratio of 
vertical hydraulic 
conductivity to Khz 

10

Molecular diffusion 
coefficient  (m2/s) (𝑫𝒅) 1×10-9

Longitudianl 
dispersivity (  (m) 𝜷𝒍 )

20

Transverse dispersivity (
 (m)𝜷𝑻 )

2

Porosity (𝜺) 0.3

Fluid dynamic viscosity 
 (kg/m.s)(𝝁𝟎) 0.0011

Based on  Sherif et al., 2012a study

Hydrogeological  & Geological information

Feature Description

Hydrogeological  & 
Geological infromation

The subsystem consists of two primary aquifers: a surficial unconfined alluvial 
shallow aquifer composed of Quaternary sediments ranging from unconsolidated 
sand and gravels to consolidated gravels (Figure 3) with a thickness ranging from 
24 to 100 m from the upstream side of the Wadi Ham dam to the coast. 
Underlying the shallow aquifer is a deep aquifer composed of consolidated rocks 
of Semail formation with a thickness ranging from 10 to 150m. The alluvial 
aquifer serves as the primary source of water for agricultural use (Sherif et al., 
2017; Sherif et al., 2014).
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Model discretization 

Feature Description

Horizontal discretization
Using 17470 linear triangular prisms, which became finer close to the study area 
boundaries, pumping wells, and the dam’s reservoir where the change in the 
hydraulic gradient was abrupt.

Vertical discretization Using three layers, the main aquifer (Wadi gravel) split into two layers, while the 
third layer was for the deep aquifer.

Temporal discretization Using Automatic time-stepping method with predictor-corrector scheme, 
adjusting time step based on convergence behavior with error tolerance of 1×10-3. 

Table 4 Boundary conditions used in the flow and transport model

Flow boundary conditions

Location Type Value Remarks

Sea-side 
boundary along 
Gulf of Oman

Dirichlet
Constant zero level 
above the mean sea 

level (m)

The freshwater and saltwater densities are 1000, and1025 
kg/m3 respectively.

Wadi Ham 
stream Neumann 0.103 m/day Adopted from Sherif et al., 2014.

Wadi Hald 
stream Neumann 0.025 m/day Adopted from Sherif et al., 2014.

Wadi AlHayal 
stream Dirichlet Constant head 10.75 m

The examination of BHF10 hydrograph showed that there 
was no significant change in the water level, with 
seasonal fluctuations ranging from 0.25 m to 0.5 m.

Shaarah 
pumping field Well-type 

5500 m3/day from1988 
to 1994, gradually 
decreased to 3000 
m3/day

Fully penetrating the main aquifer. The abstraction 
reduction was due to the deterioration in the water 
quality. Data adopted from Sherif et al., 2014.  
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Fujayrah 
pumping field Well-type 

1500 m3/day from 1988 
to 1994, then scaled 
down to 750 m3/day

Kalba pumping 
field Well-type 

4000 m3/day from 1988 
to 1994, then 
significantly increased 
to 20000 m3/day

Fully penetrating the main aquifer. Data adopted from 
Sherif et al., 2014.

Dam reservoir 
recharge Cauchy

Varied elevations, 
ranged from 73m 
(considered empty) to 
the maximum water 
level of 88m.

The transfer rate was 
considered 11.7/day

The storage elevation was calculated based on the 
relationship between the rainfall depth and the storage 
volume behind Wadi Ham dam developed by Sherif et al. 
(2011b) study, and the reservoir stage-storage curve. The 
reservoir stage-storage curve was estimated using ArcGIS 
based on the SRTM digital elevation model.

Rainfall 
Recharge (Top 
surface of the 
model)

Neumann
Ranged from 0.2 to 172 
mm/month. The median 

was 12 mm/month

The rainfall data from Dec 1988 till Oct 2004 were 
deduced from Sherif et al. (2006), from Jan 2009 till 
2020, the data were derived from the open-access of 
remotely sensed-derived data, the Water Productivity 
Open Access Portal (WaPOR) database (FAO, 2018). 
The missed and forecasted events followed the same 
trend.

The recharge factor was 20% of the measured rainfall 
(Sherif et al., 2017)

Solute transport boundary conditions

Sea-side 
boundary Dirichlet

constant salinity 
concentration 35,000 

mg/l

Combined with a constraint allowing the salinity BC to 
be active only when saltwater enters, while outflowing 
parts are to be switched to an open BC, allowing the free 
movement of fresh and mixed water through the upper 
part of the boundary.

Sea-side 
boundary

Outflowing 
boundary -

=0, where n corresponds to the normal unit ― (𝐷. ∇C).n
vector. The boundary is impervious for dispersive fluxes, 
while it is convectively pervious.

Wadi Ham, 
Wadi Hald, and 
Wadi AlHayal 
streams

Dirichlet 250 mg/l -

Dam reservoir 
saline mass flux 
(Top surface of 
the dam 
reservoir)

Dirichlet 250 mg/l -
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Rainfall recharge 
saline mass flux 
(Top surface of 
the model)

Neumann
100mg/l multiplied by 
rainfall recharge rate 

(gm/m2/day)

Adopted from Hussain et al. (2015). A dummy layer of 3 
m thickness was assigned on the top of the aquifer to 
reduce the adverse effect of the mass imbalance. The 
imbalance results from applying the convective form of 
the mass transport equation (Saaltink et al., 2004).

Table 5. Observation dataset for calibration and validation, estimated parameters, and their prior 
parameter distributions

Observation data

Type
No. and form of 

available 
measurements

Measure
ments for 
calibrati

on

Measureme
nts for 

validation
Source Remar

ks

Heads

1324 monthly 
measurements of depth 
to water at 9 observation 
wells from December 
1988 to April 2005

Using 
546 
monthly 
head 
measure
ments  
from 
Decembe
r 1988 to 
Septembe
r 1994

778 monthly 
head 
measurement
s from 
October 1994 
to April 2005

21 salinity 
concentrations at 11 
observation wells  
collected  in Jan 2004

Used all 
available 

data
-

The observation 
dataset was extracted 
from previous studies 
(Sherif et al., 2012a; 
Sherif et al., 2006; 
Sherif et al., 2014)

The 
observa
tion 
wells' 
locatio
ns are 
present
ed in 
Figure 
3

Salinity 
concentrations

A salinity calibrated 
raster in Sep 1994

Used all 
available 

data
- Extarcted from Sherif 

et al., 2012a study
-

Geophysical 
survey data 

(ERT survey 
data)

Four profiles of the true 
resistivity,parallel to the 
shoreline, were utilized 
to estimate the average 
SWI length in Jan 2004

Used all 
available 

data
- Produced in  Sherif et 

al. (2006) study

Even 
transect
s run 
perpen
dicular 
transect
s can 
delineat
e the 
seawate



39

r 
interfac
e more 
accurat
ely, 
howeve
r, 
parallel 
transect
s can 
still 
provide 
useful 
informa
tion to 
determi
ne the 
possibl
e 
locatio
n of the 
seawate
r wedge 
(Costall 
et al., 
2018).

Parameters

Hydrogeologic
al property No. of pilot points

Geostatis
tical 

model

Initial sill 
and range Source Remar

ks

Logarithm of 
Khz 121 pilot points

Gaussian 
variogra
m

0.21 & 4825

Sy 121 pilot points
Spherical 
variogra
m

5.82×10-5 & 
4721

The geostatistical 
parameters were 
obtained by cross-
validation using 
ArcGIS 10.1 
Geostatistical Analyst.

- The 
ordinar
y 
Kriging 
interpol
ation 
method 
was 
used to 
obtain 
the 
parame
ters 
value.

- The 
varigor
ams 
describ
e the 
mean 
of the 
prior 
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parame
ter 
distribu
tions at 
the 
pilot 
point 
locatio
ns.

Prior parameter distribution

95% 
Confidence 

interval

Parameter Distribution

Me
an 
ran
ge Lo

wer 
limi

t

Upp
er 

limit

Stand
ard 

deviat
ion

Source Remar
ks

Khz (m/day) Log-normal
2.3 
- 

211

0.0
86 300 0.89

Nine short-duration 
pumping tests found in 
the literature (Sherif et 
al., 2012a; Sherif et al., 
2014)

Sy Normal

0.0
057 
– 

0.0
4

0.0
007 0.3 0.075

Estimated Sy from the 
pumping tests was low 
1.3 ×  10-20 to 0.002. 
These tests give 
unreliable values 
(Nwankwor et al. 
1992). Hence it was 
based on the 
calibration of Sherif et 
al. (2012a)

- The 
95% 
confide
nce 
interval 
was 
large 
due to 
limited 
data, 
post-
process
ed data, 
and to 
account 
for 
model 
structur
al 
noise. 

- The 
standar
d 
deviati
on was 
estimat
ed by 
dividin
g the 
confide
nce 
interval 
by 4.
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Table 6 Statistical descriptors of the residuals after model calibration and model validation

Calibration Validation

O
bs

er
va

tio
n 

w
el

l

N
o.

 o
f 

re
ad

in
gs

RMS
E 

NS
E

RQ
S N

o.
 o

f 
re

ad
in

gs

RMS
E

NS
E

RQ
S

*Stdev

m
ea

su
re

m
en

t n
oi

se
-

95
%

 C
I  

(4
× 

St
de

v)

U
ni

ts

BHF1 64 1.262 0.73 0.74 123 3.695 0.93 0.94 0.699 2.796

BHF9A 62 1.113 0.77 0.78 122 1.020 0.75 0.61 0.571 2.284

BHF18 48 0.832 0.72 0.74 28 1.250 0.94 0.92 0.573 2.292

BHF4 63 0.893 0.37 0.70 121 0.209 0.83 0.83 0.575 2.3

BHF16 64 0.937 0.71 0.71 105 0.852 0.99 0.98 0.576 2.304

BHF12 62 1.181 0.72 0.80 121 0.912 0.71 0.71 0.699 2.796

BHF17 66 0.836 0.26 0.78 112 0.131 0.83 0.84 0.578 2.312

BHF15 66 3.516 0.81 0.81 79 3.250 0.92 0.94 0.700 2.8

BHF10 51 0.438 0.94 0.14 0.577 2.308

BHF20 67 1.208 0.94 0.95 0.633 2.532

m

S20 2 68.99 0.97 1.00 92.83 371.32

S4 1 685.82 352.0 1408

S9A 2 129.46 0.11 1.00 96.75 387

S1 2 168.12 0.23 1.00 120.49 481.96

S12 2 298.40 0.99 1.00 519.40 2077.6

M
g/

l
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S14 2 548.50 0.75 1.00 1183.1
7 4732.68

S15 2 57.14 0.89 1.00 41.00 164

S16 2 48.42 0.70 1.00 76.12 304.48

S17A 2 658.76 0.75 1.00 1025.8
4 4103.36

S19 2 92.23 0.27 1.00 66.83 267.32

S3 2 771.34 0.07 1.00 1044.0
9 4176.3

ERT 1 228.90 227.88 911.52

*Stdev is calculated based on Eq.1, Eq.3, and Table 2, and is equal to the inverse of the weights assigned to the 
various observations (Supplementary materials S(C3)).

Highlights

 Observed heads, salinities, & retrieved SWI length from ERT data used in calibration
 Parameter estimation reduced the uncertainty in salinity predictions 
 Quantifying uncertainty in SWI extent was performed using OLHS linked with NSMC
 Fixing identified parameters, OLHS & filtering technique reduced computational cost
 Identifying pumping fields threatened by SWI in 2050, Wadi Ham aquifer, UAE 
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