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Abstract—This paper uses the Bayesian optimization for 

fitting Ensemble regression models for tuning the machine 

learning model hyperparameters with reduced computation. 

We use the Pune Smart City air quality monitoring dataset with 

temporal variation of hazardous chemical pollutants in the air. 

The aim here is to reliably predict the suspended particulates as 

the air quality metrics using other environmental variables, 

considering linear models and nonlinear ensemble of tree 

models. To achieve good predictive accuracy a computationally 

expensive optimization method is required which has been 

achieved using the Gaussian Process surrogate assisted 

Bayesian optimization. We also show the diagnostics plots of the 

residuals from the nonlinear models to explain model quality.    
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I. INTRODUCTION 

With the advent of cheap sensors and internet of things 
(IoTs), the smart city concept is gradually being built up even 
in large metropolitan areas of the developing nations. Smart 
city sensors monitor a wide urban area with different 
objectives amongst which waste or pollutants released to the 
environment is of a major concern. Degradation of the air 
quality in densely populated urban areas and the presence of 
large number of industrial and commercial cohabitation has 
put the public health at high risk. In order to develop modern 
smart cities, data driven artificial intelligence (AI) and 
machine learning (ML) based health exposure models, 
decision support systems, along with wide variety of sensing 
and computing technologies are being used e.g. geographic 
information system (GIS), satellite images, cloud computing 
to social media, crowd sourcing, mobile phones, wearable 
devices and low cost sensors (LCS) [1].  

Air quality monitoring in smart cities is an important area 
of recent research using internet of things (IoTs) with big data 
analytics tools. For example, air quality index was developed 
in [2] using wide variety of sensors like carbon monoxide 
(CO), methane (CH4), and volatile organic compounds 
(VOCs) utilizing modern technologies like wireless sensor 
networks (WSNs), IoTs, global positioning system (GPS), 
androids, and cloud services. Correlation analysis among 
different air pollutants have been previously tackled using 
association rules, semantics and taxonomy in [3]. A wide 
range of machine learning and statistical models were 
reviewed in [4] e.g. neural networks and deep learning 
models, spatio-temporal prediction of particulates using 
regression, ensemble and hybrid models using many standard 
performance metrics. Air quality prediction in smart cities 
using long short term memory (LSTM) and support vector 
regression (SVR) have been compared in [5] using predefined 
hyper-parameters which may be computationally expensive to 
fine tune for the optimal performance of the machine learning 

pipeline. A cloud based machine learning model comparison 
for Chinese city’s air quality dataset has been reported in [6] 
with the comparison of decision tree, random forest, gradient 
boosting and multilayer perceptron neural networks, although 
the metrics used like root mean square error (RMSE), 
normalized RMSE, mean absolute error (MAE) may vary 
depending on the choice of target variable. Therefore, in this 
paper, we report the comparisons using a generalized metric 
adjusted R2 (coefficient of determination) which is easy to 
interpret in a scale of 0-1. A spatial regression model with 
hypothesis testing for pollutant variable selection was reported 
in [7] for several smart cities in China.  

II. SMART CITY DATASET DESCRIPTION AND 

EXPLORATORY DATA ANALYSIS 

A. Pune Smart City Dataset Description 

In a densely populated country like in India, the urban 
areas in metropolitan cities are crowded with railways, 
vehicles, industrial and residential buildings, giving rise to the 
higher health risk for the public. Previous studies around Pune 
city have found that there are many causes of air pollution like 
use of cookstoves [8], Diwali festival firecrackers [9] and 
some researchers also used optical and acoustic radars for data 
collection [10]. The dataset was collected during April to 
September 2019 in the Pune Smart City Development 
Corporation Limited (PSCDCL) at 10 different sample sights. 
The following variables are used to predict the air quality 
index (AQI) for railway stations, bus stop, information 
technology (IT) hubs etc. From the environmental chemical 
sensors, in the original dataset [11] the following variables 
were recorded with a sampling time of 15 mins viz. X1 = 
humidity, X2 = light, X3 = Nitrogen Dioxide (NO2) max/min, 
X4 = Ozone (O3) max/min, X5 = particulates <10 microns 
(PM10) max/min, X6 = particulates<2.5 microns (PM2) 
max/min, X7 = Sulphur Dioxide (SO2) max/min, X8 = Carbon 
Monoxide (CO) max/min, X9 = Carbon Dioxide (CO2) 
max/min, X10 = sound (noise in db), X11 = temperature 
max/min, X12 = ultraviolet max/min, X13 = air pressure in bar, 
X14 = latitude and X15 = longitude. Here, the maximum and 
minimum both values for the same variables were recorded 
within a 15 mins window, only the maximum were considered 
in our data analytics pipeline optimization. Most of these 
pollutants were monitored using both fixed and mobile 
sensors, CCTV camera [12]. Some studies have focussed on 
comparing these variables in indoor vs. outdoor setting [13]. 
Other studies have investigated the relationship between noise 
and air pollution for environmental intelligence (EI) using 
crowdsensing and crowdsourcing methods [14]. Amongst 
these only the first 13 variables were chosen which are related 
to serious health hazards in a crowded city. Due to the spatial 
sparsity, the latitude and longitude variables were not 
considered in our optimized machine learning pipeline.  
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B. Correlation Analysis and Spatio-Temporal Patterns 

Now, the correlation matrix between these 13 variables 
have been shown as heatmap in Figure 1 where the Pearson 
correlation coefficient of each pair has been calculated as: 
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Figure 1. Correlation heatmap of 13 hazardous variables in smart city data. 

 

Figure 2: Timeseries plots of the three positively correlated variables – PM10 

max, PM2 max, temperature max and one negatively correlated varaible – 
humidity in the months of April to September 2019 in Pune smart city.  

 

It is observed that the PM10 max and PM2 max two 
variables are highly positively correlated (ρ5,6 = 0.95). Also, 
these two levels of particulates are highly correlated to the 
ambient temperature (X11) with correlation coefficient ρ5,11 = 
0.71 and ρ6,11 = 0.79. This indicates that the presence of a 
greater number of particulate matters resists the atmosphere 
from natural cooling during the night-time giving rise to 
higher air temperature. Only significantly large negative 
correlations have been found between humidity with PM2 and 
temperature with ρ1,6 = -0.73 and ρ1,11 = -0.77. This indicates 
that higher humidity helps the smaller suspended particulates 
to coagulate and get removed from the air and help reduce the 
ambient temperature. The three positively correlated variables 
in Figure 1 i.e. X5 = PM10 max, X6 = PM2 max, X11 = 
temperature max and the negatively correlated variable i.e. X1 
= humidity have been shown in Figure 2. The time series plots 
in Figure 2 indicate that some of these variables go 
dangerously upwards together in the months of late-May, mid-
July, mid-August. Especially during hot and humid days of the 
Indian subcontinent, both the PM concentrations rapidly 
fluctuates although the maximum ambient temperature 
gradually decreases. Next, we explore the three negatively 
correlated variables in the bottom most subplot of Figure 2 
which shows that the humid days help in reducing the 

suspended particulates of both size from the air, during July to 
September months. A closer look at the correlation structure 
of these four variables in Figure 3 reveal that they are sparse 
in some areas. Figure 3 also shows that the PM10 max, PM2 
max, temperature max variables are either left or right skewed 
and not symmetric in their univariate distributions whereas the 
temperature shows a bimodal distribution with two peaks.        

 
Figure 3: Univariate/bivariate structures of the top four correlated variables. 

 
Figure 4: Pune air-quality measurement sites location latitude/longitudes.  
 

The measurement sites are shown in Figure 4 as a function 
of latitude and longitude and due their sparsity, spatial 
variations have not been considered in our data analysis. From 
the previous literature it has been shown that amongst the 13 
variables, the particulates PM10 and PM2 create greater health 
risk. Hence, other environmental variables are considered as 
the explanatory variables to help predict these two target 
variables within a cross-validation based regression modelling 
framework using both linear and nonlinear family of models.   

III. HYPERPARAMETER TUNING OF REGRESSION MODELS 

USING BAYESIAN OPTIMIZATION  

A. Bayesian Optimization of Linear Regression Models 

For the current regression modelling problem, initially we 
employ the simpler linear regression methods and then moved 
to more complex nonlinear ensemble regression models for 
better accuracy and performance. The linear regression model 
employs two different family of learners – least squares (LS) 
and support vector machine (SVM) as categorical variables 
and the regularization term strength (λ) as real variable [15]. 
The same hyperparameter optimization technique has been 
applied for both the particulate levels and the comparative 
performances are reported in Table 1 which shows slightly 
better results for predicting PM2. However, we observe that 
using linear models the 5-fold cross-validated accuracy is not 
very great which motivates us to compare more complex and 
computationally expensive nonlinear regression models. 
Figure 5 shows that the optimization landscape based on the 
two search variables where Gaussian Process (GP) surrogate 
models have been used to search for new datapoints in the 
hyperparameter space to reduce the computation as opposed 



to an extensive grid-search method [16]. In the Bayesian 
optimization, from a set of initial seed points, a GP surrogate 
model is fitted to search for new evaluations of the function. 
Iterations were stopped after 30 steps of the Bayesian 
optimization which is sufficient for the steady convergence of 
the machine learning model hyperparameter search. For 
numerical comparison, the best-found points from the 
hyperparameter optimization of linear regression models are 
reported in Table 1. From the corresponding linear fit between 
the ground truth and predicted values, the adjusted R2 values 
of the two target variables or particulate levels, it is evident 
that none of them can be modelled adequately (R2 ~ 0.01) with 
the linear family of ML models (SVM) even after employing 
Bayesian optimization for hyper-parameter tuning. 

 

Figure 5: Sampled points and fitted surface by the Bayesian optimizer for 

hyperparameter tuning of linear regression models for both particulates. 

 
Figure 6: Hyper-parameter optimized prediction performance of linear 

regression models for the prediction of X5 = PM10 max and X6 = PM2 max. 

TABLE 1: OPTIMIZED HYPERPARAMETERS OF THE LINEAR REGRESSION 

Target 

Variables 

Lambda 

(λ) Learner 

Optimization 

Time (sec) 

Objective 

Function 

Minima 

X5 = PM10 4.37×10-6 SVM 29.2063 5.0056 

X6 = PM2 2.39×10-5 SVM 25.4746 4.4027 

B. Bayesian Optimization of Ensemble Regression Models 

Due to inadequacy of the linear models, we now employ 
more complex nonlinear ensemble regression models. The 
ensemble model trains 100 regression trees based on 
arbitrarily set of hyperparameters and such models are 
computationally more expensive as compared to the linear 
regression models [17]. This justifies the use of Bayesian 
optimization method which fits a GP surrogate model to 
decide the expected minima of the optimization landscape 
while optimizing over variables in both the categorical and 
real space. It is evident from Table 2 that unlike the linear 
regression model optimization, the ensemble models take 
~20-75 mins even in a parallel computing mode to complete 
the hyperparameter optimization task. The hyperparameter 

optimization tuning for ensemble regression models were run 
for 30 iterations which are sufficient to reach convergence 
where no better solutions can be found over last few sets of 
function evaluations as shown in Figure 7. However, the 
obtained objective function minima are much smaller than the 
linear models. Also, improved performance of the Bayesian 
optimization based optimal hyperparameter tuning for the 
ensemble model can be confirmed from the prediction results 
shown in Figure 8 with R2>0.96 for both PM10 and PM2. 

 

Figure 7: Hyper-parameter optimization characteristics of ensemble 
regression model for predicting X5 = PM10 max and X6 = PM2 max. 

 

Figure 8: Hyper-parameter optimized prediction performance of ensemble 
regression model for X5 = PM10 max and X6 = PM2 max. 

TABLE 2: 3 HYPERPARAMETER BAYESIAN OPTIMIZATION COMPUTING TIME 

Target 

variable 

Computing 

time  

Objective 

Function 

evaluation 

time 

Estimated 

Objective 

function 

value 

Estimated 

Function 

evaluation 

time 

X5 = PM10 
74.46 min 5.75 hours 1.7751 7.8 mins 

X6 = PM2 
19.46 min 1.61 hours 1.458 1.88 mins 

TABLE 3: OPTIMIZED HYPERPARAMETERS OF THE ENSEMBLE REGRESSION  

Target 

variables NumLearningCycles LearnRate MaxNumSplits 

X5 = PM10 
51 0.14162 44252 

X6 = PM2 
13 0.57958 13134 

 

For optimizing the ensemble regression models, we 
employ the GP regression based Bayesian optimization 
method to search for the best combination of method - 
Bagging or least square boost (LSBoost) [18], number of 
learning cycles, learning rate and maximum number of splits 
as the three hyperparameters by minimizing the objective 
function log(1+loss), where loss represent the loss after cross-
validation [19]. This uses a template tree surrogate model to 
search for the optimal combination of the model 



hyperparameters for predicting both the particulate matter 
levels PM10 and PM2. The acquisition function has been 
chosen as the ‘expected improvement plus’ and a parallel 
computation of the objective function on an 8-core CPU has 
been used to carry out the Bayesian optimization. We 
observed that the adjusted R2 value has been improved after 
the hyperparameter tuning for both the target variables as 
compared to their default choice. From the hyperparameter 
optimized regression model, we then calculate the R2 values 
between the ground truth vs. the predicted target variables, 
similar to the linear family of models, shown in Figure 6. For 
the ensemble regression models, the optimized 
hyperparameters have been reported in Table 3 which yield 
satisfactory predictive performance shown in Figure 8. For the 
hyper-parameter optimized ensemble regression models, we 
also show the re-substitution loss with respect to the number 
of learning cycles in Figure 9 for both the pollutant levels. This 
shows that as the number of trained ensemble learners 
increases the cumulative substitution loss decreases. 
However, PM10 takes a greater number of cycles for converges 
as opposed to PM2 for both individual and cumulative loss. 

 

Figure 9: Cumulative and individual resubstition loss of the all three 
hyperparameter optimized ensemble regression models for both pollutants.    

C. Pairwise Hyperparameter Optimization Results 

In the previous section 3 hyperparameters were optimized 
simultaneously for the ensemble learning models which is 
computationally expensive as shown in Table 2-Table 3. Next, 
in order to see the effect of most important pair of 
hyperparameters among these three and the performance 
degradation due to fewer number of hyperparameter 
optimization, we consider pairwise optimization of the three 
hyperparameters i.e. number of learning cycles, learning rate 
and maximum number of splits on a 8-core CPU using similar 
parallel computing method in the previous section. The 
pairwise hyper-parameter optimization also allows us to 
intuitively look at the surface of the estimated objective 
function value as a 2D function of the chosen hyperparameters 
as well as the sampled points used to build the GP based 
surrogate model on the hyperparameter space.  

Next we show the convergence characteristics of the three 
pairs of hyperparameter optimization in Figure 10, Figure 12 
and Figure 14 whereas the corresponding optimization surface 
developed by fitting a GP surrogate model during the 
Bayesian optimization process are shown in Figure 11, Figure 
13 and Figure 15 respectively. All three pairs of 
hyperparameter optimization of ensemble regression models 
converge within 30 iterations although the smoothness of the 
surrogate surface may vary. Moreover, we find from the 
respective prediction performances shown in Figure 16-Figure 
18 we find that that only optimizing pair 1 yields relatively 
inferior results in terms of the R2 metric of both pollutants.      

 

Figure 10: Pair 1-NumLearningCycles/LearnRate optimization convergence. 

 

Figure 11: Pair 1 - NumLearningCycles/LearnRate optimization surface. 

 

Figure 12: Pair 2 - NumLearningCycles/MaxNumSplits optimization 
convergence characteristics.  

 

Figure 13: Pair 2-NumLearningCycles/ MaxNumSplits optimization surface. 

 

The pairwise hyperparameter optimization results show 
that within ensemble regression models, the MaxNumSplits 
has higher importance as compared to the other two 
hyperparameters – NumLearningCycles and LearnRate. We 
also observe that dropping the less important hyperparameter 
even yields better R2 as compared to when all the three were 
simultaneously optimized which may be an overly complex 
exercise. It is evident from the comparison of the reduction in 
computing time in Table 4 for the pairwise hyperparameter 
optimization as opposed to tuning all three hyperparameters.  



 

Figure 14: Pair 3-LearnRate/ MaxNumSplits optimization convergence.  

 

Figure 15: Pair 3-LearnRate/MaxNumSplits optimization surface. 

 

Figure 16: 1st pair of hyper-parameter optimized prediction performance of 
ensemble regression models for PM10 max and PM2 max. 

 

Figure 17: 2nd pair of hyper-parameter optimized prediction performance of 

ensemble regression models for PM10 max and PM2 max. 

 

Next, we show the re-substitution losses for three pairs of 
hyperparameter optimization in Figure 19-Figure 21. It is 
found that the pair 3 takes a smaller number of cycles/learners 
for the convergence of the re-substitution loss. Moreover, the 
individual losses converges faster than the cumulative loss for 
all the three cases. Also, for pair 2 optimization, non-smooth 
convergence characteristics are observed in Figure 20. 

 

 

Figure 18: 3rd pair of hyper-parameter optimized prediction performance of 

ensemble regression models for PM10 max and PM2 max. 

TABLE 4: 3 HYPERPARAMETER BAYESIAN OPTIMIZATION COMPUTING TIME 

Variable Hyperparameters 

Computing 

time (mins) 

Objective 

Function 

evaluation 

time 

(hours) 

Estimated 

Objective 

function 

value 

Estimated 

Function 

evaluation 

time 

(mins) 

X5 = 

PM10 

Pair 1 23.13 2.45 2.54 11.22 

Pair 2 93.48 9.29  1.61 65.30 

Pair 3 52.50 5.70  1.44 16.58  

X6 = 

PM2 

Pair 1 25.07 2.32  2.15 11.16  

Pair 2 86.32 7.75  1.50 55.08  

Pair 3 56.63 6.54 1.42 18.59  

 

Figure 19: Resubstitution loss for pair 1 hyperparameter optimization. 

 

Figure 20: Resubstitution loss for pair 2 hyperparameter optimization. 

D. Residual Diagnostic Analysis of the Fitted Models 

The regression modelling results after the hyperparameter 
optimization may not perfectly match the target variable. As 
such the discrepancy or error between the actual and predicted 
values of the should be normally distributed. In order to check 
that for both the target variables PM10 and PM2, we show the 
diagnostic analysis results for the 3 and pairwise 
hyperparameter optimized regression models in Figure 22 and 



Figure 23 respectively. A fitted quadratic model through the 
residual vs fitted value plot show almost horizontal pattern 
showing validity of the learnt models in different extents.  

 

Figure 21: Resubstitution loss for pair 3 hyperparameter optimization. 

 

Figure 22: Residual plots for the 3 hyperparameter optimized ensemble 

regresion models for both PM10 and PM2 predictions. 

 

Figure 23: Residual plots for the 3 different pairs of the 2 hyperparameter 
optimized ensemble regresion models for both PM10 and PM2 predictions. 

IV. CONCLUSIONS  

In order to analyze the Pune Smart city air quality dataset, 
we compare the hyperparameter optimized machine learning 
models from the linear regression and ensemble regression 
families. We show a cross-validated regression performance 
comparison between these families as well as computational 
time comparison for the prediction of particulates PM10 and 
PM2 as a function of other environmental variables. We 
compare three vs. pairwise hyperparameter optimization 
results. In the future, we shall explore more families of 
machine learning models for modelling similar smart city 
environmental monitoring datasets in other cities and 
countries. Also, the temporal patterns of this dataset can be 
explored using time-series models in the future.  
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