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We study the impact of spatial distribution of heterogeneity on collective
dynamics in gap-junction coupled beta-cell networks comprised on cells from
two populations that differ in their intrinsic excitability. Initially, these populations
are uniformly and randomly distributed throughout the networks. We develop and
apply an iterative algorithm for perturbing the arrangement of the network such
that cells from the same population are increasingly likely to be adjacent to one
another. We find that the global input strength, or network drive, necessary to
transition the network from a state of quiescence to a state of synchronised and
oscillatory activity decreases as network sortedness increases. Moreover, for weak
coupling, we find that regimes of partial synchronisation and wave propagation
arise, which depend both on network drive and network sortedness. We then
demonstrate the utility of this algorithm for studying the distribution of
heterogeneity in general networks, for which we use Watts–Strogatz networks
as a case study. This work highlights the importance of heterogeneity in node
dynamics in establishing collective rhythms in complex, excitable networks and
has implications for a wide range of real-world systems that exhibit such
heterogeneity.
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1 Introduction

Many non-linear systems exhibit excitable behaviour, whereby they exhibit large-
amplitude oscillations in response to small-amplitude, transient perturbations. One
prominent example in biology is electrical excitability in cells, which underlies the
function of neurons (Izhikevich, 2000; De Maesschalck and Wechselberger, 2015;
Wedgwood et al., 2021), cardiac cells (Majumder et al., 2018; Barrio et al., 2020),
pituitary cells (Sanchez-Cardenas et al., 2010; Hodson et al., 2012) and pancreatic beta
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cells (Bertram et al., 2007; McKenna et al., 2016). Moreover, the
study of these systems is broadly applicable, and such excitable
dynamics are also observed in semiconductor lasers (Terrien et al.,
2020; Terrien et al., 2021), social media networks (Mathiesen et al.,
2013), epidemiology (Vannucchi and Boccaletti, 2004), and wildfires
(Punckt et al., 2015). When excitable units are combined into
networks, they can generate complex rhythms (Bittihn et al.,
2017; Fretter et al., 2017; Hörning et al., 2017). Interestingly,
such networks may also generate dynamics that occur over low-
dimensional manifolds of the full system (Ashwin and Swift, 1992;
Watanabe and Strogatz, 1993; Ott and Antonsen, 2009; Bick et al.,
2020). For example, neurons in the pre-Bötzinger complex fire
synchronously to induce the inspiratory and expiratory phases
during breathing (Wittmeier et al., 2008; Gaiteri and Rubin, 2011).

Heterogeneity is ubiquitous in natural systems. Whilst often
portrayed as a undesirable attribute, it can play an important role in
governing network dynamics (Manchanda et al., 2017; Delgado
et al., 2018; Lambert and Vanni, 2018). For example, neurons
may coarsely be stratified into excitatory and inhibitory groups,
with the former promoting firing behaviour in other neurons and
the latter suppressing it. When coupled, these neuronal subtypes
give rise to a variety of behaviours, including synchronisation, and
enable the network to respond differentially to incoming inputs
(Börgers and Kopell, 2003; Börgers et al., 2005; Kopell et al., 2010).
The classification of neuronal subtypes is becoming ever finer
(Gouwens et al., 2019; Lipovsek et al., 2021) and it remains an
open question as to how this heterogeneity governs overall brain
dynamics. Even when networks comprise only a single unit type,
heterogeneity may still impact the global dynamics. For example, if
the natural frequencies of nodes in a coupled oscillator network are
too far apart, the network will be unable to synchronise and will
instead display more complex rhythms (Ottino-Löffler and Strogatz,
2016). In pancreatic islets, heterogeneity has increasingly been
acknowledged as crucial for healthy glucose metabolism
(Nasteska et al., 2021), and classification of beta-cell populations
in particular is an area of active investigation. Heterogeneity in cell-
intrinsic properties (i.e., excitability, metabolic activity, and genetic
profiles), network properties, and functional properties have all been
demonstrated (Johnston et al., 2016; Westacott et al., 2017; Nasteska
et al., 2021; Kravets et al., 2022; Šterk et al., 2023).

Here, we explore transitions between quiescent states and
collective oscillations in coupled networks of heterogeneous,
excitable nodes. For the node dynamics, we treat two types of
system, the first being the FitzHugh–Nagumo (FHN) model,
which is a prototypical model of electrical excitability in
biological cells (Fitzhugh, 1961; Nagumo, 1962), is often used to
investigate collective network dynamics, and has been used as a
model for beta cells (Scialla et al., 2021; Pedersen et al., 2022). For the
second, we consider a conductance-based model of pancreatic beta
cells designed to more closely reproduce the signalling dynamics in
these cells (Sherman et al., 1988). These cells remain at rest until they
receive a significantly large electrical impulse or, in the case of beta
cells, the extracellular concentration of glucose surpasses a threshold
value (Ashcroft Frances M and Rorsman, 1989; Braun et al., 2008).

For the past 40 years, based on empirical evidence from rodent
islets, it has generally been assumed that beta cells form a syncticium,
in which activity of an entire islet of Langerhans can be described by
considering the dynamics of a single cell (Dolenšek et al., 2013;

Podobnik et al., 2020; Satin et al., 2020). A number of studies have
challenged this perspective in recent years, in particular highlighting
that some ‘leader cells’ disproportionately influence the activity of
the entire network which is made up primarily of ‘follower cells’
(Johnston et al., 2016; Westacott et al., 2017; Salem et al., 2019;
Benninger and Kravets, 2021). In particular, one hypothesis suggests
that beta cells can be grouped into two overarching classes based on
their degree of excitability. This then suggests that islets are
composed of a small number (~10%) of highly excitable cells,
with the remainder being less excitable (Benninger and Hodson,
2018).

To this end, we diffusively couple cells having two different degrees
of excitability according to two different network architecture classes.
The first of these comes from the Watts–Strogatz model, which allows
for the generation of connected graphs, with consistent mean degree,
and a parameter for adjusting the balance between local and long-range
connections. This form of coupling allows one to explore architectures
ranging from regular to small world graphs and, as such, is well-suited
to investigations of the general types of graphs that occur in the natural
world (Watts and Strogatz, 1998). While these graphs are not directly
relevant to the electrical coupling architecture of pancreatic beta-cell
networks, there is potential that the dynamics of beta-cell networks
share common features with small-world networks. For example, small-
worldness has be observed in the functional connectivity of pancreatic
beta-cell Ca2+ signals (Stožer et al., 2013), and long-range connections
have been proposed in mathematical modelling studies (Barua and
Goel, 2016). The second model architecture was designed to mimic the
spatial configuration of electrical coupling (i.e., connexin36 gap
junctions) within beta-cell networks. Cells are locally coupled via
gap junctions (Benninger et al., 2011; Rorsman and Braun, 2013)
and spatially arranged in a three-dimensonal lattice embedded
within a sphere.

With these network structures in mind, we explore how the
spatial organisation of the two subpopulations affects the
propensity of the whole network to oscillate in a synchronous
fashion. The work of Westacott et al. (2017) recently
demonstrated that β-cells with similar electrical excitability are
spatially correlated within pancreatic islets. Motivated by this
finding, we develop a metric for evaluating the degree of this
spatial non-uniformity in β-cell networks and an algorithm for
generating non-uniform networks with a specified value of this
metric. We demonstrate that spatial correlation in heterogeneity,
or network sortedness, plays a critical role in modulating
collective dynamics in these networks. Moreover, we show
that these metrics and algorithms can be applied to networks
that do not have an explicit notion of space (e.g., Watts–Strogatz
networks) and that network sortedness is similarly important in
defining collective dynamics on these general network
architectures. This work aims to demonstrate the importance
of cellular organisation when studying heterogeneity in
pancreatic β-cell networks (and in networks more generally)
through a case study in heterogeneous excitability.
Furthermore, it provides a set of tools for introducing
correlated heterogeneities in arbitrary networks and studying
their impact on dynamics. This spatial organisation is likely to be
of particular relevance to the study of human islets, since these
have been shown possess a highly non-trivial architecture,
particularly when compared with rodent islets, on which most
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of our knowledge of beta cell function is based (Cabrera et al.,
2006).

The remainder of the manuscript is arranged as follows: In
Section 2, we describe the single cell dynamics and graph structures,
introduce a metric that captures how sorted a network is with
respect to its heterogeneity, and present an algorithm that can
generate networks with arbitrary sortedness. In Section 3, we
investigate how dynamic transitions to synchronous activity
depend on the degree of sortedness in the network and end in
Section 4 with concluding remarks.

2 Methods

2.1 Mathematical model

2.1.1 Fitzhugh-Nagumo model (FHN)
The Fitzhugh-Nagumo model is a minimal model of an

excitable unit. It exhibits relaxation oscillations when the
external stimulus parameter, I, exceeds a critical value,
where a Hopf bifurcation occurs. Here, we consider a
network of N diffusively-coupled excitable nodes, which
may, for example, be cells, each of which is described by the
following model.

dVi

dt
� Vi − V3

i

3
−Wi + GI − Icoup,i, i � 1, . . .N, (1)

τ
dWi

dt
� Vi + a − bWi. (2)

Here, V models the fast upstroke characteristic of excitability whilst
Wmodels the slow recovery (i.e., negative feedback). We replace the
regular stimulus current term, I, with GI, where I is now the
maximum stimulus current to a node, and thus defines the
excitability of the node, whereas G ∈ [0, 1] is the degree of drive
to the network. This allows us to consider a heterogeneous network
model based on the excitability of nodes, but whilst including a
network-wide drive parameter. A list of parameters is included in
Supplementary Table S1.

2.1.2 Sherman-Rinzel-Keizer model (SRK)
The electrical activity of pancreatic beta cells is proportional to

the extracellular concentration of glucose. For sufficiently high
extracellular glucose, the cells exhibit bursting dynamics, in which
their voltage periodically switches between high frequency
oscillations and quiescence. The high frequency oscillations in
voltage are correlated with the secretion of insulin from these
cells, so that these bursting dynamics are tightly coupled to the
cells’ functional role. Here, we consider a network of N diffusively-
coupled excitable cells, each of which is described by the three-
variable model.

Cm
dVi

dt
� −IK Vi, ni( ) − ICa Vi( ) − IK−Ca Vi, ci( ) − IL Vi( ) − Icoup,i,

i � 1, . . .N, (3)
dni
dt

� n∞ Vi( ) − ni
τn Vi( ) , (4)

dci
dt

� −f αICa Vi( ) + kCaci( ). (5)

The variable V represents the membrane voltage of a β-cell, n is the
activation variable for K+ ion channels, and c is the cytosolic Ca2+.
This system was adapted from the Sherman–Rinzel–Keizer model,
which describes the dynamics of electrical activity in pancreatic β-
cells in the presence of glucose (Sherman et al., 1988). The intrinsic
dynamics of the voltage, V given by Eq. 3 are driven by K+ (IK), Ca

2+

(ICa), and Ca2+-activated K+ (IK−Ca) ionic currents, with a rate
governed by the whole cell capacitance given by Cm. These
currents are described via.

IK V, n( ) � �gKn V − Vk( ), (6)
ICa V( ) � �gCam∞ V( )h∞ V( ) V − VCa( ), (7)
IK−Ca V, c( ) � �gK−Ca

c

Kd + c
V − Vk( ), (8)

IL V( ) � �gL 1 − G( ) V − VK( ). (9)
In Eqs 6–9, �gX denotes the maximal conductance of the channel X
where X ∈ {K, Ca, K − Ca, L} where L signifies a leak channel; VX are
the reversal potentials of the respective channels, m and n are the
proportion of open activating gates for the Ca2+ and K+ channels,
respectively; h is the proportion of open inactivating Ca2+ channels; c
is the cytosolic concentration of Ca2+; and G is the extracellular
concentration of glucose, which provides a global drive to promote
activity and is taken to be homogeneous across the network. The
activation of IK−Ca is a function of free intracellular Ca2+

concentration and is defined by a Hill-type function with
disassociation constant Kd. The current Icoup,i captures the
influence of the coupling between cells and will be discussed in
Section 2.2.4.

The dynamics for n, m, and h follow exponential decay to their
state values given by

x∞ V( ) � 1
1 + exp Vx − V( )/Sx[ ], x ∈ h,m, n{ }, (10)

at a rate given by the voltage-dependent time constant.

τn V( ) � �τ

exp V − �V( )/κ1[ ] + exp − V − �V( )/κ2[ ] (11)

for n. In Eq. 10, Vx represents the activation (inactivation)
thresholds for m and n (h) and Sx represents the sensitivity of
the channels around this point. Finally, Eq. 5 describes the evolution
of the concentration of cytosolic Ca2+, which decays and is pumped
out of the cell following a combined linear process with rate kCa and
enters the cell via the Ca2+ ion channel at a rate given by the scale
factor α. The parameter f specifies the fraction of free to bound Ca2+

in the cell, where bound Ca2+ plays no role in the relevant dynamics
in our model.

To expose the dependence of our system on glucose, we
introduced a hyperpolarising leak current given by Eq. 9 that
explicitly depends on the glucose concentration G. For an
isolated cell (i.e., without coupling) with the parameters specified
in Supplementary Table S2, the system describing each node exhibits
steady state behaviour for low G and passes through a bifurcation as
G ∈ [0, 1] is increased, as shown in Figure 1.

The bursting dynamics in our model are of the fold-homoclinic
type under the classification specified in (Izhikevich, 2000). This
classification is based on separation of the full system into a fast
subsystem (Eqs 3, 4) and a slow subsystem (Eq. 5), treating the slow
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subsystem variables (in this case, c) as parameters in the fast
subsystem. During each bursting cycle, the slow evolution of c
pushes the fast subsystem through bifurcations that initiate and
terminate oscillatory behaviour. In particular, when c decreases to a
small enough value, the fast subsystem passes through a fold
bifurcation in which a stable steady state and a saddle steady
state collide and annihilate one another. Following this, the
system exhibits stable periodic activity, during which c increases
according to Eq. 5. When c increases to a sufficiently large value, the
fast subsystem passes through a homoclinic bifurcation that destroys
the periodic orbit and the system returns to the original stable steady
state. Following this, c decreases until it once again reaches the fold
point and the cycle repeats.

2.2 Model simulations

Simulations were conducted using Matlab 2019B. The
dynamical systems were solved using ode15s, the relative
tolerance set to 10–5, and explicit Jacobians were provided. The
code was run on the University of Birmingham BlueBEAR HPC
running RedHat 8.3 (x86_64) (see http://www.birmingham.ac.uk/
bear for more details). Each set of simulations ran over 16 cores
using a maximum of 128 GB RAM (32 GB was sufficient in most
cases). All code used in the project is freely available for download
from: github.com/dgalvis/network_spatial.

2.2.1 Initial conditions
For the FHN model, the initial conditions yi(0) �

(Vi(0),Wi(0)) for node i = 1, . . . , N were sampled
independently from the distributions.

Vi 0( ) ~ N −1, 1/6( )2( ), Wi 0( ) � 0. (12)

For the SRK model, the initial conditions yi(0) �
(Vi(0), ni(0), ci(0)) for node i = 1, . . . , N were sampled
independently from the distributions

Vi 0( ) ~ N −68, 68/6( )2( ),
ni 0( ) � 0, ci 0( ) ~ N 0.57, 0.57/6( )2( ). (13)

The term N (μ, σ2) represents a normal distribution with mean μ

and variance σ2. Throughout, we use Y (0) to denote the set of initial
conditions across the whole network model,
i.e., Y(0) � (y1(0), . . . , yN(0)).

2.2.2 Excitability and drive in the single-cell FHN
model

The term GI is used to represent node excitability (I) and
network drive (G). A Hopf bifurcation occurs at GI = 0.33.
During the study, we partition the nodes into two sub-
populations based on their excitability, with one population being
highly excitable and the other being significantly less so.

2.2.3 Excitability and drive in the single-cell SRK
model

The ionic current IL (Eq. 9) is a hyperpolarising current that can
be used to adjust the excitability of each cell and to determine the
activation level of the network model. In particular, the maximum
conductance �gL determines the excitability of a cell. As this value
increases, the cell becomes less excitable, that is, for a given value of
G, cells with higher �gL are less likely to burst. This behaviour is
summarised in Figure 1, which shows a two parameter bifurcation
diagram showing the transition from quiescent to bursting
behaviour under simultaneous variation of (�gL, G), which occurs
via a Hopf bifurcation of the full system (Eqs 3–5). For G = 0, this
Hopf bifurcation occurs at �gL � 45.21 pS. For non-zero values of G,

FIGURE 1
Excitability of single SRK cells. The voltage traces from 3 cells with varying levels of intrinsic excitability (�gL), but the same level of drive (G = 0.7). The
red, blue, and black traces show decreasing levels of excitability with values of �gL � 60, 120, and 180, respectively. More excitable cells have a shorter
interburst interval. The solid black line represents a Hopf bifurcation as a function of bothG and gL. At the lowest drive (G= 0), the Hopf bifurcation occurs
for �gL � 45.21 pS. The dotted lines represent “level sets” of the (�gL ,G) parameter space, along which the behaviour of the single cell is identical. Data
for the bifurcation diagram was computed using XPP 8.0 (Ermentrout, 2002).
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the bifurcation curve is defined via (1 − G)�gL � 45.21 pS, as can be
seen by examining the form of the Eqs 3, 9. Note that when G = 1,
system (Eqs 3–5) matches that of (Sherman et al., 1988). We use the
observations about the link between �gL and excitability to partition
the network into two sub-populations, one being highly excitable,
the other being significantly less excitable.

2.2.4 Graph structure and coupling
In this work, we consider two types of graph structure. The first

is the Watts-Strogatz model of graph generation to create small-
world graphs (WS graphs). We useN = 1000 nodes, a mean degree of
D = 12, and unless stated, we use a rewiring probability of β = 0.2.
The second type is motivated by pancreatic β-cell networks, which
are arranged into roughly spherical clusters called islets of
Langerhans (which also encompass other cell types that are
disregarded in our model), which each contain ~ 1,000 β-cells.
To capture this, we arrange N = 1, 018 nodes on a hexagonal close
packed (hcp) lattice embedded within a sphere (βC graph). Each
node is connected to all of its nearest-neighbours so that the number
of connections of nodes away from the boundary of the sphere is
equal to the coordination number 12 whilst nodes on the boundary
have fewer connections. This type of connectivity scheme is
commonly employed in β-cell network modelling studies
(Benninger et al., 2014; Westacott et al., 2017; Dwulet et al.,
2019, 2021), as it qualitatively captures the network architecture.
In reality, pancreatic islet architecture is more complex in terms of
islet shape, cell shape, and the layout of cells in the tissue (Stožer
et al., 2013; Šterk et al., 2023); all of which could be considered as
additional sources of heterogeneity. Moreover, there may be
heterogeneity in the number of connections that β-cells form
amongst each other (Cabrera et al., 2006). We choose to employ
this homogeneous lattice structure so that we could consider
heterogeneity in cell-intrinsic excitability alone without
introducing additional sources of heterogeneity due to the graph
structure.

The dominant form of coupling between beta cells in the islets is
through gap junctions, which allow small molecules, including
charged ions to pass directly from a cell to its adjacent
neighbours. Mathematically, this is represented through the
inclusion of the diffusive term Icoup,i in Eq. 1 or Eq. 3 (we use
the same coupling for both FHN and SRK models) given by

Icoup,i � �gcoup ∑
j∈Ji

Vi − Vj( ), (14)

where Ji is the set of all nodes to which node i is coupled.
Together, the two models for node dynamics (FHN and SRK

models) and the two types of graph structure (WS and βC graphs)
give rise to four combinations of network models, which we denote
by WS-FHN, WS-SRK, βC-FHN, and βC-SRK. Note that
throughout this work, we use the term graph to refer specifically
to the set of links between nodes. We use the term network or
network model to refer to the entirety of the model including choice
of dynamics on the node (FHN or SRK), connectivity structure, and
choice of parameters.

2.2.5 Heterogeneity
For the FHN model, we consider networks consisting of two

sub-populations of nodes distinguished by their excitability (i.e., by

their I values). Population 1 is highly excitable (I = 2) and population
2 is less excitable (I = 1). Similarly for the SRK model, we consider
networks consisting of two sub-populations of nodes distinguished
by their excitability (i.e., by their �gL values). Population 1 is highly
excitable (�gL � 60 pS) and population 2 is less excitable (�gL � 100
pS). We then consider the range over G for which population
1 nodes are intrinsically active (i.e., G such that population 1 is
active when �gcoup � 0). We then consider the effects of degree of
sortedness between the two subpopulations (see Section 2.3.1),
graph structure (WS or βC), global network drive (G), and global
coupling strength (�gcoup) on the collective dynamics of the network.

2.3 Measuring sortedness

2.3.1 Definition
To track the degree of sortedness in the network, we define a

node sortedness measure that, for a given node, measures the
proportion of neighbours that are of the same population type.
For a general network with nodes attributed to K ∈ N populations,
the node sortedness, Ai, is defined as

Ai � 1
|Ji| ∑j∈Ji χij, χij � ∑K

k�1
μ k( )
i μ k( )

j , i � 1, . . . , N,

μ k( )
i � 1, i ∈ Pk

0, otherwise
{ , (15)

where the population sets Pk contain the indices of the nodes within
population k = 1, . . . , K and form a partition over the node indices
{1, 2, . . . , N}, Ji is the set of indices of nodes that are coupled to node
i, μ(k)i is an indicator function that takes value 1 if i belongs to
population k and value 0 otherwise, and χij is an indicator function
that takes value 1 when node i and j belong to the same population
and value 0 otherwise. For each population, the average node
sortedness is defined via.

�Ak � 1
|Pk| ∑

n∈Pk

An, k � 1, 2, . . .K. (16)

Finally, the network sortedness is defined as

A � 1
K − 1

−1 +∑K
k�1

�Ak
⎛⎝ ⎞⎠. (17)

where A ∈ [−1/(K − 1), 1] and, for the present case with K = 2,
A ∈ [−1, 1]. For a network in which populations are assigned to
nodes following a uniformly random distribution, A ≈ 0 since �Ak is
approximately equal to Nk/N where Nk, k = 1, 2 is the number of
nodes in population k. And therefore ∑k

�Ak ≈ 1. An illustration of
the computation of the sortedness metrics (Eqs 15–17) is shown in
Supplementary Figure S1A.

2.3.2 Modified network sortedness for beta cell
networks

For a βC lattice network, �Ak (as defined in Eq. 16) is maximised
when population 1 nodes are arranged in a single cluster with a
minimal number of connections to population 2 nodes. This
naturally occurs at the edges of the domain, since any cluster of
population 1 nodes in the domain interior must be surrounded by
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FIGURE 2
Dynamics on networks defined by the sorting algorithm. (A) Top Row: Five iterations of the sorting algorithmon aWS graph (with β=0.2,D= 12). The
majority of connections in this graph (≈ 80%) are between a node and itsD/2 = 6 closest neighbours in each direction along the ring. The other ≈ 20% of
connections are randomly selected for rewiring. In each panel, only the connections within population 1 (blue lines) are shown, and only the rewiring
connections are visible. As A increases, the population 1 nodes (blue points) begin to form clusters with many connections between clusters. The
black boxes are shown zoomed in on Supplementary Figure S1C. Bottom Row: The dynamics of V (WS-FHN) averaged across population 1 (blue) and 2
(black) are shown for a fixed value of G = 0.253, for strong coupling �gcoup � 0.1, and on each of the five iterations of the sorting algorithm. A phase
transition from quiescence to global, synchronised activity occurs with respect to A. (B) Top Row: Five iterations of the sorting algorithm on the β-cell
graph. Initially, the population 1 cells (blue) are spread uniform randomly throughout the lattice. As A increases, they begin to form localised clusters

(Continued )
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population 2 nodes. We are interested in the dynamics that arise as
the small population of highly excitable nodes forms clusters within
the lattice, hence, we wish to remove this tendency for clusters to
form at the domain boundary. To overcome this, we use a modified
definition of the node sortedness (Eq. 15).

~Ai � 1
J
∑
j∈Ji

χij +
μ 2( )
i J − |Ji|( )

J
, i � 1, . . .N, (18)

where J = 12 is the number of connections that interior lattice nodes
possess. For nodes with |Ji| < J (i.e., nodes on the domain boundary)
the additional term in Eq. 18 compared to Eq. 15 incorporates a
further J − |Ji| connections to population 2 nodes for the purposes of
calculating node sortedness values. This procedure is equivalent to
assuming that the lattice defining our domain is embedded within a
larger lattice of population 2 nodes.

2.4 Modifying network sortedness

2.4.1 The sorting algorithm
Here, we describe our approach for generating networks with

different network sortedness. The algorithm works by exchanging
the population type of nodes from different populations randomly to
increase (or decrease) A. The algorithm begins by randomly
permuting the order of the N indices. The first N1 indices of the
permuted sequence are attributed to P1, with the remaining N2

indices attributed to P2, yielding a distribution of population 1 nodes
that is uniformly random in space.

On each iteration, a, of the algorithm, pairs of nodes (from
different populations) are sampled without replacement from a joint
probability density function (pdf) P(X = i, Y = j) = f (i, j), i ∈ P1, j ∈ P2,
where X and Y are random integer variables indicating the node
selected from population 1 and 2, respectively. The population types
of these nodes are then exchanged, that is, if i ∈ P1 and j ∈ P2, then i is
added to P2 and removed from P1 and vice versa for j. The network
sortedness (Eq. 17) is then recomputed for the adjusted population
sets. If the exchange leads to an increase (decrease) in A, the
exchange is accepted and the algorithm proceeds to iteration a +
1. If the exchange does not lead to an increase (decrease) in A, the
exchange is rejected and indices i and j are placed back in P1 and P2,
respectively. In this case, a new pair of nodes is drawn from f and the
process is repeated until either: a pair whose exchange leads to an
increase (decrease) in A is found and the algorithm proceeds to the
next iteration; or it is determined that no such pair exists, at which
point the algorithm terminates. An example of one iteration of this
algorithm is depicted in Supplementary Figure S1B. We refer to the
algorithm in which swaps are accepted only if they lead to an
increase (decrease) in A as the forward (backward) algorithm. We
defineAa to be the evaluation ofA of the network after a iterations,

where a ∈ {0 . . . afinal}. Running the algorithm to convergence (afinal)
produces the sets Pk � {Pa

k}afinala�0 containing the population sets after
each iteration.

Figure 2 depicts a WS network (Figure 2A, top row) and a βC
network (Figure 2B, top row) at five iterations of the sorting
algorithm. The WS network can be described by a set of nodes
equispaced along a ring, and when the rewiring probability is small,
the majority of connections are between nodes that are close to one
another on the ring. For our choice of D = 12 (and β = 0.2), the
majority of connections will occur between an arbitrary node and
the D/2 = 6 closest nodes in either direction. Figure 2A shows that as
A increases, the population 1 nodes (blue points) begin to form
clusters along the ring due to the high interconnectivity amongst
near neighbours. They do not necessarily form a single cluster at
convergence (a = 314 in this example), but due to the rewirings,
many connections between clusters exist (blue lines). In the case of a
βC network (Figure 2B), we see the emergence of localised
population 1 clusters culminating in a single cluster at
convergence (a = 239 in this example).

2.4.2 Node selection probabilities
In this section, we formulate the node selection pdf used in the

network sortedness adjustment algorithm. We assume that the
selection of node from P1 is independent of the selection of node
from P2:

f i, j( ) � fP1 i( )fP2 j( ), i ∈ P1, j ∈ P2. (19)
One choice would set f1 and f2 to be uniform over P1 and P2,
respectively. This is the choice we take for the WS networks.

Empirical observations of the algorithm applied to the βC
networks, however, demonstrate that clusters of population
1 nodes tend to form at the edge of the domain. As discussed in
Section 2.3.2, we wish to avoid this scenario. The tendency for
clusters to form near the edge occurs because of the spherical nature
of our lattice domain. In particular, a uniform choice for f1 and f2
means that nodes at the centre of the domain are less likely to be
selected under a uniformly random sampling of indices than those at
the edge because the number of nodes in the network increases
superlinearly with respect to the domain radius. Therefore, we derive
choices for fPk that equalise the probability of a node being selected
on the basis of its radial coordinate. The heuristic for generating fP1

will be the same as that for generating fP2 up to the population
identity.

Denote the radial distance from the origin of node i ∈ NN by
ri � (x2

i + y2
i + z2i )1/2 ∈ R≥0 where (xi, yi, zi) ∈ R3 are the Cartesian

coordinates of the location of the node. We define a sequence of
intervals, In � [(n − 1)δr, nδr], for n = 1, . . . 8 with δr = rmax/8
where rmax = maxi{ri} so that each node is assigned to exactly one
interval. The set of nodes from Pk belonging to a given interval In is

FIGURE 2 (Continued)
culminating in a single cluster at convergence (a = 239). Bottom Row: The dynamics of V (βC-FHN) averaged across population 1 (blue) and 2 (black)
are shown for a fixed value ofG= 0.253, for strong coupling �gcoup � 0.1, and on each of the five iterations of the sorting algorithm. A phase transition from
quiescence to global, synchronised activity again occurs with respect toA. (C) The average number of peaks �P as a function of (G,A) for one run of the
sorting algorithm on a WS-FHN network (left) and one run on the βC-FHN network (right) and for 20 equispaced values of G ∈ [0.15, 0.345]. As
sortedness increases, the drive necessary for global, synchronised activation of the network decreases.
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given by Rn,Pk � {i ∈ NN | ri ∈ In, i ∈ Pk}. Using these set
definitions, the pdf fPk may be defined as

fPk
i( ) � 1

Q|Rni,Pk
|, i ∈ NN. (20)

where Rni,Pk is such that ri ∈ Ini and Q is a normalisation factor
ensuring that ∑i∈Pk

fPk(i) � 1. This choice for fPk reweights the
probability of a given node being selected by a factor proportional to
the number of nodes from the same population within a spherical
annulus with inner and outer radii specified by the boundaries of the
intervals In. This reweighting favours selecting nodes closer to the
centre of the domain over those more distal.

Pseudocode for the βC network generation and network
sortedness manipulation algorithm is provided in the
Supplementary Section S2.

2.5 Evaluation of collective dynamics

To characterise the network dynamics, we consider two
features based on the Ca2+ trajectories across all nodes,
namely, the mean number of peaks (�P) and the time-averaged
degree of phase synchronisation (�R) calculated as the average
magnitude of the Kuramoto order parameter (see Supplementary
Section S3). The mean number of Ca2+ peaks across all nodes is
proportional to the network participation, that is, the fraction of
nodes that undergo oscillation. The value of �R captures the
network coordination, tracking how closely the phases of the
Ca2+ trajectories stay to one another across the simulation
duration. We additionally define �Pk and �Rk where k ∈ {1, 2} to
be the mean number of peaks in Ca2+ and the time-averaged
degree of phase synchronisation across nodes in population k,
respectively.

3 Results

3.1 For strong coupling, increasing
sortedness decreases the necessary drive for
a phase transition from quiescence into
global and synchronised activity

We ran the sorting algorithm to convergence once on a
typical WS network and again on the βC network to produce
the sets Pk for both network types (denote them WS-Pk and βC-
Pk for k ∈ {1, 2}). For the WS network, this means specifically that
we ran the Watts-Strogatz model of graph generation once to
create a single small-world graph defining the connectivity
structure of the network. We then uniform-randomly selected
10% of the nodes to be in population 1, thus defining the
population sets P0

k. These were used as the initial
configuration for the sorting algorithm, which was run to
convergence (Figure 2A, top row) producing WS-Pk. For the
βC network, the connectivity structure is fixed. We defined P0

k as
above and ran the sorting algorithm to convergence (Figure 2B,
top row) producing βC-Pk. For both network structures (WS and
βC), we then simulated the FHN dynamics on the network
models defined by Pa

k for all a ∈ [0, afinal] over 20 equispaced

values of G ∈ [0.15, 0.345] with strong coupling
(�gcoup � 0.1). In this case, we used the same set of initial
conditions across runs.

Figure 2C shows the average number of peaks �P as a function of
(G,A). We found that as sortedness increases, the drive necessary to
activate the networks decreases. Moreover, we found that for strong
coupling, this phase transition results in a transition from
quiescence to global, synchronised activity (�R not shown but
takes a value �R ≈ 1 when �P ≠ 0). This was the case for both the
WS-FHN (left panel) and βC-FHN networks (right panel). Figures
2A, B (bottom rows) shows the dynamics of V (for WS-FHN and
βC-FHN resp.) averaged over population 1 and 2 using a fixed value
of G. This illustrates the strong synchronisation between
populations (for strong coupling) as well as the phase transition
as a function of A alone.

We next verified that this observed relationship is robust to
changes in Pk and Y (0). To do this, we first calculated a Latin
hypercube of pairs (G, a). For each point, we used a different seed
network P0

k and ran the sorting algorithm to find Pa
k. We then ran

dynamics on the network model using a different set of initial
conditions Y (0). Note that for the WS models, each seed network
was based both on a different WS graph and a different initial choice
of indices for the population 1 nodes. For the SRK model, we used
G ∈ [0.2, 0.6], �gcoup � 10 (strong coupling), and 5000 (G, a) pairs.
For the FHN model, we used G ∈ [0.15, 0.34], �gcoup � 0.1, and
10,000 (G, a) pairs. We then calculated the features (�P and �R) for all
the points (G,A) (whereA is calculated from Pa

k for each point) and
used them to train a Gaussian process regression (GP) model (using
the fitrgp function in MATLAB). We then estimated the features on
a regular grid of points (G,A) and used that to generate heatmaps
for the features. Supplementary Figure S2 shows the process of
generating these heatmaps for �P in the case of theWS-FHN network
models.

We found that for each of the four combinations of network
models, increasing A results in a decreased G required for a phase
transition from quiescence to global, synchronised activity.
Figure 3A shows �P for the WS networks and Figure 3B shows
the same for the βC networks. The synchronisation parameter �R is
again not shown but takes values �R ≈ 1 when �P ≠ 0. For the
heatmaps in Figures 3A, B, the �P half-maximum value is shown
as a black curve.

For the WS networks, the rewiring parameter β is related to the
small-worldness of the network and inversely related to the
regularity of the graph. Moreover, the maximum possible value
of A will occur for β = 0, when population 1 nodes form a single
cluster. We found that, in general, the sorting algorithm converges to
larger values ofA for smaller values of β. Figure 3C shows the �P half-
maximum value (using the Latin hypercube protocol described
above for WS-FHN) for β ∈ {0.1, 0.2, 0.4}. We found that for a
given value of A, the G value at the phase transition is smaller for
smaller values of β. This supports the hypothesis that the networks
with more localised connectivity, such as the WS graphs when β ≈ 0
and the βC graph, tend to have a lower activation threshold than
networks with increased small-worldness (also compare Figures 3A,
B). This is perhaps unsurprising because in the networks with
localised connectivity, clusters of excitable nodes only interact
with the less excitable nodes along some boundary. For example,
in the βC network, the nodes in the centre of a population 1 cluster

Frontiers in Network Physiology frontiersin.org08

Galvis et al. 10.3389/fnetp.2023.1170930

https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2023.1170930


will be completely separate from population two nodes. Whereas in
the networks with small-world properties (WS, β ≠ 0), very few
population 1 nodes (if any) will have a node sortedness of 1.

3.2Weak coupling and high sortedness leads
to wave propagation in the FHN networks

Next, we studied the influence of coupling strength on the
relationship between A, G, and the features of collective
dynamics (�P and �R). To do this, we calculated a Latin hypercube
of triplets (�gcoup, G, a). As before, we used different seed networks to
identify Pa

k and ran the dynamics using different initial conditions Y
(0). For the FHNmodel, we used G ∈ [0.15, 0.34], �gcoup ∈ [0.02, 0.1],
and 20,000 (�gcoup, G, a) triplets. For the SRK model, we used G ∈
[0.2, 0.6], �gcoup ∈ [2, 10], and 10,000 triplets. We again calculated
the features (�P and �R) for all the points (�gcoup, G,A) (where A is
calculated from Pa

k for each point) and used them train a GP model.
We used these to draw isosurfaces (level sets) of �P and �R as functions
of (�gcoup, G,A).

For the WS-FHN networks, we found that the intra-population
isosurfaces (e.g., �P1 and �P2) corresponding to the phase transition
between quiescence and activity separate for weak coupling and high
A. Figure 4A (left) shows the isosurfaces {(�gcoup, G, a) | �Pk �
0.5pmax �Pk} for k = 1 (blue, population 1) and k = 2 (black,
population 2). For population 1, the phase transition threshold
(G) decreases as A increases for all values of �gcoup ∈ [0.02, 0.1].
However, for population 2, this relationship was only observed for
strong coupling. For weak coupling and high sortedness, �P2 is an
increasing function ofA. Figure 4B (left) shows the heatmap of �P for
�gcoup � 0.02 as well as the contour curves {(�gcoup � 0.02, G, a) |
�Pk � 0.5pmax �Pk} for k = 1 (blue, population 1) and k = 2 (black,
population 2). In the region between these contours, we found a
region where all of population 1 activates, but many population
2 nodes do not. Figure 4B (diamond) shows a raster plot of all nodes
(population 1 in blue) arranged so that neighbours on the raster plot
correspond to neighbours on the ring (see Figure 2A). Population
1 clusters become active and activate the population 2 nodes
neighbouring the cluster boundaries. The population 2 nodes
then display wave-like propagation (i.e., time-delayed) that

FIGURE 3
Phase transitions with respect toA for strong coupling. (A) The phase transition from quiescence to global, synchronised activity requires lower drive
as sortedness increases inWS networks and for bothmodels (FHN and SRK) when coupling is strong (�gcoup � 0.1 for FHN and �gcoup � 10 for SRK). (B) This is
likewise the case for the βC-FHN and βC-SRK model for strong coupling. (C) As β for the Watts-Strogatz model increases, the model transitions from a
regular model with no rewiring to a random network. Here, we show the phase transition for three values of the rewiring probability. We found that
the more regular a network, the lower the threshold G for the phase transition across the range of A.
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FIGURE 4
Weak coupling in the FHN networks. (A) Left panel: The isosurfaces for the �P1 (blue) and �P2 (black) half-maxima in the WS-FHN networks. Above
these surfaces, population 1 and 2, respectively transition to population-wide activity. These surfaces separate for weak coupling and high sortedness,
bounding a regime where population 1 is active but population 2 is only partially active. Right panel: The isosurfaces for �R illustrate the boundary between
low and high synchrony in the WS-FHN networks. For weak coupling and high sortedness, a region of low synchrony emerges. This region
encompasses the region where population 1 is active and population 2 is partially active. (B) Heatmaps for �P (left panel) and �R (right panel) when
�gcoup � 0.02 (weak). The intersection of each isosurface in Awith the plane �gcoup � 0.02 is drawn as a contour line. Raster plots illustrate typical activity in
the different regions bounded by these contours and nodes are arranged according to location along the ring. Square shows the synchronised activity
when sortedness is low. Diamond shows the terminating waves that occur when sortedness is high but drive is low. Circle shows the non-terminating
waves that occur for high sortedness and intermediate drive. (C) Left panel: The isosurfaces for the �P1 (blue) and �P2 (black) half-maxima in the βC-FHN

(Continued )
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terminates before all the nodes have become active. The waves occur
because in the region, sortedness is sufficiently high that the primary
signal activating many population 2 nodes comes via local
connections from previously activated population 2 nodes.
Moreover, the long-range connections from population 1 nodes
are weak and insufficient to activate population 2 in a synchronous
manner [as in Figure 4B (square)]. To show this, we reran the
experiment using β = 0 (no rewirings), which is shown in
Supplementary Figure S3. We found that regardless of choice of
coupling strength and sortedness, if the network activates, it
produces waves emanating from one or more clusters of
population 1 nodes. Moreover, we did not observe wave
termination when β = 0, implying that it is the rewiring of
connections that leads to the wave termination. Since the
activation of a population 2 node is dependent on the strength of
local connections in the chain and rewiring decreases the number of
local connections, there exist some population 2 nodes (or clusters)
that do not activate, thus terminating the wave.

Figure 4A (right) shows the isosurfaces {(�gcoup, G, a) | �R � �r} for
values between �r � 0.5 (red) and �r � 0.7 (yellow). These isosurfaces
illustrate the boundary between low and high phase synchrony for
the network as a whole. We found that for weak coupling and high
A, a region of low synchrony emerges. Figure 4B (right) shows the
heatmap of �R for �gcoup � 0.02 and the contour curves corresponding
to Figure 4A isosurfaces. This low synchrony is a result of the wave
propagation that occurs in the region. Note that the region of low
synchrony encapsulates the population 2 phase transition. There
exists a region where population 2 is fully activated, but the
synchrony is still low. Figure 4B (circle) shows an example where
waves emit from the population 1 clusters, but the drive G to
population 2 nodes is high enough to prevent rewiring-based
termination of the waves. If G is increased further, synchrony re-
emerges due to the fact that even weak (and few) long-range
connections from population 1 can synchronise the primed
population 2 nodes.

For the βC-FHN networks, we repeated the experiment as
described above. In this case, however, the raster plots are
arranged by radial distance from the centre of the lattice
(Figure 4D rasters). Unlike in the case of WS-FHN networks, �P1

and �P2 did not separate for weak coupling. We found that across the
range of �gcoup, the phase transition threshold is a decreasing
function of A and that it represents a phase transition of the
entire network [Figures 4C, D (left)]. When coupling is weak
(Figure 4D shows �gcoup � 0.02), the synchrony of the network
decreases within the entirety of the active region. This is due to
the propagation of waves from population 1 clusters, similar to the
case of WS-FHN with no rewirings, however, these waves propagate
quickly due to the supralinearity in the number of nodes being
recruited over time. Figure 4D (square and circle) show two

examples where a cluster of population 1 nodes near the centre
of the lattice emit such waves. Finally, we found a region for low A
and low G (in the active region) where asynchronous activity was
observed [Figure 4D (diamond)]. This is the only region where we
observed asynchrony, and it corresponds to the region where a
maximal value of �gcoup is necessary to synchronise the network
(Figure 4C, see the bump in the yellow isosurface).

3.3Weak coupling and high sortedness leads
to resonance in the SRK networks

For the WS-SRK networks, we found that the intra-population
isosurfaces corresponding to the phase transition between
quiescence and activity separate for weak coupling and high A
(Figure 5A left panel). The population 1 phase transition threshold
(G) decreases as A increases for all values of �gcoup ∈ [2, 10]. For
population 2, this relationship is observed for strong coupling, but
for weak coupling and high sortedness, �P2 is an increasing function
ofA. Figure 5B (left) shows the heatmap of �P for �gcoup � 2 as well as
the contour curves {(�gcoup � 2, G, a) | �Pk � 0.5pmax �Pk} for k = 1
(blue, population 1) and k = 2 (black, population 2). Within this
region, we observe a region of 2:1 resonance, wherein population 1 is
active and synchronised, whilst population 2 is active and
synchronised but with half the frequency of population 1
(Figure 5B circle). Nodes in the SRK model produce bursts of
electrical activity resulting in the slow build-up of Ca2+ (i.e., c).
As Ca2+ concentration increases, hyperpolarising K+ channels open
and terminate the burst. During the inactive period, Ca2+

concentration decreases and the cell becomes increasingly
excitable over time. At this level of coupling, the population
2 nodes are still capable of being driven to activity by nodes in
population 1. However, they also require a longer recovery time
(interburst interval) leading to the observed resonance. It is worth
noting that wave-like activity was not generally observed, due to the
fact that our variable of interest, c, is very slow with respect to the
coupled variable, V (see Figure 1). Thus, the time delays in activation
between nodes occur on the order of oscillations in V (i.e., action
potentials), which are very short relative to the oscillation frequency
of c (i.e., bursts). This is illustrated in Supplementary Figure S4,
which shows the behaviour of theWS-SRK networks when β = 0. For
strong coupling, the activity of the network is still nearly
synchronous despite only having local connections. For weak
coupling, we did observe waves (and lowered synchrony),
however, they are fast relative to the period of c dynamics
(compare Supplementary Figure S4B triangle to Supplementary
Figure S3B circle). Interestingly, as in the case of WS-FHN
networks, we did not observe the separation in �P1 and �P2 when
β = 0 and there was no 2:1 resonance region.We conclude, therefore,

FIGURE 4 (Continued)
networks. Right panel: The isosurfaces for �R illustrate the boundary between low and high synchrony in the βC-FHN networks. Low synchrony
emerges across sortedness and drive when coupling is weak. For low sortedness and when drive is very close to the transition between quiescence and
activity [see (D)Diamond], there exists an region of low synchrony that persists for higher values of �gcoup (i.e., yellow bump). (D)Heatmaps for �P (left panel)
and �R (right panel) when �gcoup � 0.02 (weak). For the raster plots, nodes are ordered according to radial distance from the centre of the lattice.
Square shows the fast but wave-like propagation of activity through the lattice for intermediate drive and sortedness. Diamond shows the asynchronous
activity for low sortedness and low drive. Circle shows fast wave-like propagation when sortedness and drive are high.
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FIGURE 5
Weak coupling in the SRK networks. (A) Left panel: The isosurfaces for the �P1 (blue) and �P2 (black) half-maxima in the WS-SRK networks. Above the
surfaces, population 1 and 2, respectively, transition to population-wide activity. These surfaces separate for weak coupling and high sortedness,
revealing a 2:1 resonance regime. Right panel: The isosurfaces for �R illustrate the boundary between low and high synchrony in theWS-SRK networks. For
weak coupling and high sortedness, low synchrony emerges at the transitionwhere population 2 becomes fully active. (B)Heatmaps for �P (left panel)
and �R (right panel) when �gcoup � 2 (weak). The intersection of each isosurface in Awith the plane �gcoup � 2 is drawn as a contour line. Raster plots illustrate
the activity and nodes are arranged according to location along the ring. Diamond shows fully synchronous activity. Circle shows the 2:1 resonance.
Square shows the irregular activity in the low synchrony region. (C) Left panel: The isosurfaces for the �P1 (blue) and �P2 (black) half-maxima in the βC-SRK
networks. Right panel: The isosurfaces for �R show that synchrony is high everywhere the network is active in the βC-SRK networks. (D) Heatmaps for �P
(left panel) and �R (right panel) when �gcoup � 2 (weak). For the raster pots, nodes are ordered according to radial distance from the centre of the lattice.
Square shows fully synchronous activity for low sortedness. Diamond shows fully synchronous activity for intermediate sortedness. Circle shows the 2:
1 resonance.
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that it is the rewiring that leads to the emergence of 2:1 resonance.
The lowered number of local connections in the chain at the
boundaries between population 1 and population 2 clusters do
have the effect of terminating a “wave” (where synchronised
activity is the limit as wave speed tends to infinity), as in the
case of the WS-FHN networks, however, it only occurs half the
time because of the slow recovery dynamics of the SRK model. The
tradeoff is that the increased number of rewiring connections allows
synchronisation in the 2:1 resonance region (compare Figure 5B
circle to Supplementary Figure S4B triangle).

Figure 5A (right) shows the isosurfaces {(�gcoup, G, a)|�R � �r}
for values between �r � 0.5 (red) and �r � 0.7 (yellow). These
isosurfaces show that the region of lowered phase synchrony
does not fully encompass the 2:1 resonance regime. Rather, it
surrounds the �P2 isosurface for weak coupling and high
sortedness. Figure 5B (right) shows the heatmap of �R for �gcoup �
2 and the contour curves corresponding to Figure 5A isosurfaces.
This region of lowered synchrony corresponds to the transition
between the 2:1 resonance region (Figure 5B circle) and the fully
synchronised region (Figure 5B diamond). Within this region, we
found a region with irregular activity (Figure 5B square) with a
mixture of network-wide, synchronous bursts and wave-like
activity. This is due to the variability in local and non-local
connections among the population 2 nodes interacting with the
slow recovery of Ca2+ very near the population 2 phase transition.
Consider the raster plot shown in Figure 5B (square) and note
that the population 1 nodes fire regular, synchronous bursts
(beats). With a 3:1 resonance, the local and global connections
together are strong enough to elicit a (roughly) synchronous
burst. On the other beats, the small number of global connections
are too weak to induce synchrony (as the population 2 Ca2+

concentration is still recovering) and instead wave propagation
or termination occurs.

For the βC-SRK networks, we repeated the experiment and
found that a 2:1 resonance regime emerged in this case as well.
Figures 5C, D (left panel) shows the separation in �P1 and �P2 for
weak coupling and high A, and Figure 5D (circle) shows an
example raster plot. Unlike in the case of the WS-SRK networks,
synchrony is strong everywhere, including the 2:1 resonance
region and the transition to the fully active region (Figures
5C, D right panel). We did find some examples of the
irregular behaviour described above (notice the slight dark
patch in Figure 5D right panel at the transition boundary), but
this is less prominent in the βC-SRK networks, likely due to the
regularity of the graph.

4 Discussion

In this manuscript, we demonstrated how transitions to
globally-coordinated activity are dependent on the degree of
sortedness in population excitability. We used two
prototypical models of cellular excitability where a small
population was highly excitable, whilst a larger population was
less excitable. This scenario has recently been hypothesised to be
relevant in beta cell networks, in particular in the description of
“hubs,” populations displaying high functional connectivity
(Johnston et al., 2016), ‘wave-initiators’ (also known as

“leaders”) (Šterk et al., 2023), and “first-responders” (Kravets
et al., 2022). As the global drive to the network was increased,
activity across the network transitioned from a globally inactive
state to one in which subsets of nodes became active and
synchronised their activity. By perturbing the spatial
distribution of the highly excitable population, we showed that
the drive strength at which such transitions occur is dependent
on the sortedness of the network. Moreover, we highlighted the
presence of other types of network solution, including partially
synchronised states, slow waves, and 2:1 resonant states and
explored how these depended on sortedness. These results have
implications for insulin secretion in the pancreatic islets of
Langerhans, and more general implications regarding
transitions to synchrony and other forms of collective
dynamics in networks of coupled, excitable units.

Pulsatile insulin secretion is a key component of healthy islet
function and is driven by the coordinated electrical activity of β-
cell populations (Bertram et al., 2007). In turn, the coordination
of electrical activity is facilitated by local cell-cell communication
through the gap junctional network (Ravier et al., 2005).
Recently, many studies have demonstrated the existence of β-
cell heterogeneity and its importance in determining network
dynamics (Stožer et al., 2013; Benninger et al., 2014; Johnston
et al., 2016; Westacott et al., 2017; Salem et al., 2019; Benninger
and Kravets, 2021; Nasteska et al., 2021; Kravets et al., 2022; Šterk
et al., 2023). Thus, a key question in this work has been to study
the potential impact of the cytoarchitecture (e.g., spatial layout of
heterogeneity) in modulating these dynamics. Our work suggests
that it may be key to fully understanding the impact of
heterogeneity on collective dynamics. We chose to focus on
one form of heterogeneity, the cell-intrinsic excitability, as a
case study; however, it is likely that cytoarchitecture of β-cell
networks will modulate the impact of heterogeneity more
generally.

We focussed on heterogeneity in cell-intrinsic excitability
because of its critical role in delineating subpopulations of
pancreatic beta cell networks. High excitability is a feature of
both the first-responder cells in the transient phase of glucose-
stimulated insulin secretion (GSIS) (Salem et al., 2019; Benninger
and Kravets, 2021; Kravets et al., 2022) and the wave-initiator
population during the pulsatile phase of GSIS (Benninger et al.,
2014). The existence of these populations has been heavily
implicated as a feature of healthy pancreatic islets, as has their
critical roles in driving the collective dynamics required for GSIS.
However, defining these subpopulations is complex because they
likely arise as an emergent property of the network, relying on an
interplay of both cell-intrinsic properties (i.e., excitability and
metabolism) and network properties (i.e., coupling strength and
non-uniformity of heterogeneity) (Benninger et al., 2014; Westacott
et al., 2017; Salem et al., 2019; Kravets et al., 2022; Šterk et al., 2023).
For example, it appears that both first-responder cells (Kravets et al.,
2022) and wave-initiator cells (Šterk et al., 2023) may have weaker
local connectivity, a property that would isolate them from the
hyperpolarising influence of less-excitable cells and could improve
network responsiveness. Although our model did not include
heterogeneous coupling; we did observe that weaker coupling
lowers the activation threshold of the network (Figures 4A, 5A).
Likewise, we demonstrated that the spatial aggregation of highly-

Frontiers in Network Physiology frontiersin.org13

Galvis et al. 10.3389/fnetp.2023.1170930

https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2023.1170930


excitable nodes, a network property previously demonstrated by
Westacott et al. (2017), can also have this effect. On the other hand,
our work also illustrates potential tradeoffs in these network
features. When coupling is too weak, the network can fail
to synchronise and waves can fail to propagate. When
sortedness is too high, excitable clusters can fail to recruit the
whole network.

A variety of simplifications have been used in modelling studies
to provide insight into the collective dynamics of heterogeneous
coupled oscillators. For example, in specific cases of heterogeneity
under the assumption of isotropic coupling and in the limit of
infinitely many nodes, the network state can be mapped exactly to a
low dimensional description, in which boundaries representing
dynamical transitions can be found in closed form (Watanabe
and Strogatz, 1993; Ott and Antonsen, 2009; Montbrió et al.,
2015). For networks with a large, but not infinite number of
nodes, and with general types of structure and heterogeneity,
such a transformation may not be available, meaning that exact
prediction of transitions between dynamical states is largely
intractable. Our approach was to perform Monte-Carlo sampling
across networks and initial conditions to elucidate common
behaviours and trends regarding such transitions, taking
advantage of the robustness of results across trials. In spite of the
analytical intractability of the system, our results are consistent with
the notion that the dynamics of the full network could be projected
to a low dimensional manifold (e.g., the manifold representing full
synchronisation of the subpopulations). In this regard, there are a
number of approaches under active development, such as
polynomial chaos expansion (Ghanem and Red-Horse, 2017),
dynamic mode decomposition (Kutz et al., 2016), and proper
orthogonal decomposition (Berkooz et al., 1993), that may
facilitate construction of an approximate low dimensional system
that captures the core dynamical features of the full heterogeneous
network, thus allowing for a deeper exploration of network state
transitions in the future.

To perform our study, we developed an algorithm that perturbs
the sortedness of the network in a directed manner. The algorithm
can be adapted to a range of domain geometries and network
architectures, as showcased in our studies of Watts–Strogatz
networks. Although our study focussed on conditions in which
there are only two different populations, Section 2 discusses how our
metrics can be extended to networks with more population types.
Moreover, while we focussed on the case where the cells were
homogeneous within a subpopulation, small changes to the
algorithm could allow for the study of multimodal parameter
distributions. We hope that this work will facilitate further study
into the interplay of node-intrinsic heterogeneity and network
features in driving the function of excitable networks, in
particular beta-cell networks. To this end, future work will focus
on adapting the sortedness algorithm to multiple parameters, which
would allow us to further interrogate the importance of coupling
strength, metabolic activity, electrical excitability, and
neighbourhood on the emergence of functional roles in
heterogeneous, excitable networks.
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