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Resonance fluorescence of two asymmetrically pumped and coupled two-level systems
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We study a driven-dissipative duo of two-level systems in an open quantum systems approach, modeling a
pair of atoms or (more generally) meta-atoms. Allowing for complex-valued couplings in the setup, which are of
both a coherent and incoherent character, gives rise to a diverse coupling landscape. We consider several points
on this landscape, for example where the coupling between the two coupled two-level systems is dominated by
coherent, incoherent, unsymmetrical, and even unidirectional interactions. Traversing the coupling terrain leads
to remarkable features in the populations of the pair, correlations, and optical spectra. Most notably, the famous
Mollow triplet spectrum for a single atom may be superseded for a pair by a Mollow quintuplet (or even by a
spectral singlet) and the setup allows for population trapping to arise, all depending upon the precise nature of
the coupling between the two-level systems.
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I. INTRODUCTION

The theory of resonance fluorescence, which describes
the emission of an atom driven resonantly by an external
field, has fascinated quantum opticians since the 1960s [1–6].
Strikingly, the resulting resonance fluorescence spectrum is
a so-called Mollow triplet: a central peak at resonance, with
two smaller satellite peaks either side [3]. This captivating
structure was first seen experimentally in the 1970s [7–10],
before being later observed in single dye molecules [11] and
semiconductor quantum dots [12–17]. More recently, artificial
atoms in superconducting circuits [18–20] and hybrid spin-
nanomechanical systems [21] have been shown to display
some remarkable aspects of Mollow physics.

Resonance fluorescence in two-atom [22–37] and indeed
many-atom [38–41] systems was inevitably studied theoret-
ically soon afterwards in order to elucidate the influence of
cooperative effects, including the emergence of additional
sidebands in the optical spectrum. More recently, modern ex-
periments with two artificial atoms in superconducting circuits
have offered the control and tunability required to study the
properties of quantum dimers under coherent excitation [42].

Here we investigate theoretically a pair of two-level sys-
tems (2LSs) as sketched in Fig. 1(a), and in particular the
interplay between cooperative resonance fluorescence and the
concept of chirality [43,44]. By chirality, we mean to refer to
an asymmetry in the coupling between the two 2LSs, which
arises from the competition between the considered coher-
ent and incoherent (or dissipative) coupling [45–47]. In an
important limiting case, we treat the extreme asymmetry of
unidirectional (or one-way) coupling in the pair, where all
backaction is excluded by design [48–50]. In this way, we
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explore the full gamut of Mollow and chiral physics within
perhaps the simplest possible coupled system, with a view to
building intuition about larger collections of qubits and quan-
tum networks. In particular, chiral quantum networks could
transmit information highly efficiently and without informa-
tion back-flow, while ultracompact chiral devices (acting like
circulators and isolators) are necessary to build nanoscale
circuits [43].

Our simple model considers the two coupled 2LSs in an
open quantum systems approach. We study how the mean
populations in the pair, as well as the correlations [51–54]
and the optical spectra, evolve as one navigates the complex
coupling landscape. Most interestingly, the famous Mollow
triplet spectrum for a single atom may be superseded for a
pair of 2LSs by a range of spectra, from a Mollow quintuplet
to a standard Lorentzian singlet, all depending upon the exact
nature of the coupling between the pair. We also discover an
example of a population trapping effect, where the system
is essentially protected from the dissipative environment in a
specific part of the coupling landscape.

The remainder of this paper is assembled in the following
manner. We expound the driven-dissipative theory in Sec. II,
before focusing on the populations, correlations, and spectra
of the system in the coherent (Sec. III), dissipative (Sec. IV),
and unidirectional (Sec. V) coupling regimes. Section VI con-
tains a discussion of the most important conclusions. Some
supporting results for a single 2LS (Appendix A), extra cal-
culational details for the 2LS pair (Appendix B), and a brief
survey of asymmetric coupling regime (Appendix C) are pro-
vided in the three appendices.

II. MODEL

Our model is composed of a Hamiltonian contribution
which describes the coherent coupling and coherent driving
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(as introduced in Sec. II A) and dissipation which is intro-
duced via a quantum master equation (as defined in Sec. II B).
The theoretical framework is somewhat analogous to the se-
ries of works given by Refs. [55–60] on celebrated models of
open quantum systems.

A. Hamiltonian

The Hamiltonian H of a coherently driven pair of coupled
2LSs reads

H = H0 + Hc + Hd , (1)

where the excitation, coupling, and driving Hamiltonians re-
spectively are given by [61]

H0 = ω0(σ †
1 σ1 + σ

†
2 σ2), (2a)

Hc = geiθσ
†
1 σ2 + ge−iθσ

†
2 σ1, (2b)

Hd = �(eiωd tσ1 + e−iωd tσ
†
1 ), (2c)

where σ †
n (σn) is the raising (lowering) operator of the nth

2LS, with n = {1, 2}. These operators satisfy the algebra of
two distinguishable systems, with the anticommutator relation
{σn, σ

†
n } = 1, and commutator relations [σn, σ

†
m] = [σn, σm] =

0, n �= m. In the excitation Hamiltonian H0, the common
resonance frequency of both 2LSs is ω0, and the four bare
states arising from H0 are simply {|0, 0〉, |1, 0〉, |0, 1〉, |1, 1〉},
which are associated with the ascending eigenfrequencies
{0, ω0, ω0, 2ω0}. In the coupling Hamiltonian Hc, the coher-
ent 2LS-2LS coupling is of magnitude g � 0 and complex
argument θ ∈ [0, 2π ] in order to capture possible interference
effects [54]. Within the driving Hamiltonian Hd , the driving
amplitude is � and its frequency is ωd . Notably, we have writ-
ten down Eq. (2) in the rotating-wave approximation, which
is valid when g � ω0 and � � ω0, such that the counter-
rotating terms have been dropped [62].

Moving Eq. (1) into a rotating frame H̃ = UHU † +
i(∂tU )U †, with the aid of the operator U = eiωd t (σ †

1 σ1+σ
†
2 σ2 ),

yields the transformed Hamiltonian H̃ , as defined by

H̃ = �(σ †
1 σ1 + σ

†
2 σ2) + g(eiθσ

†
1 σ2 + e−iθσ

†
2 σ1)

+ �(σ1 + σ
†
1 ), (3)

where the detuning frequency � = ω0 − ωd . In the basis of
bare states {|0, 0〉, |1, 0〉, |0, 1〉, |1, 1〉}, the 4 × 4 matrix rep-
resentation of the transformed Hamiltonian H̃ of Eq. (3) is

H̃ =

⎛
⎜⎜⎝

0 � 0 0
� � geiθ 0
0 ge−iθ � �

0 0 � 2�

⎞
⎟⎟⎠. (4)

The eigenvalues of Eq. (4) are the four eigenfrequencies of
the system, due to its four-dimensional Hilbert space. In the
weak driving limit (� → 0), we find the eigenfrequencies
{0,� − g,� + g, 2�}, which are associated with the weak
driving eigenstates {|G〉, |−〉, |+〉, |X 〉}. Here |±〉 = (|1, 0〉 ±
eiθ |0, 1〉)/

√
2 are the usual symmetric and antisymmetric in-

termediate states, while the ground state |G〉 = |0, 0〉 and the
doubly excited state |X 〉 = |1, 1〉. In the strong driving limit,
with the eigenfrequencies {ωα, ωβ, ωγ , ωδ}, the interlevel sep-
arations increase with increased drivings, and the eigenstates

{||α〉〉, ||β〉〉, ||γ 〉〉, ||δ〉〉} become superpositions of all four
bare states (throughout this paper, we denote the eigenstates
in the weak driving regime by |i〉, and in the strong driving
regime by ||i〉〉). In particular, at resonance (� = 0) which is
the case we mostly consider in this paper, the eigenfrequencies
of H̃ may be described by the compact expression

ε±,± = ± f

2
± g

2
, (5)

where we have introduced the driving-dependent frequency

f =
√

g2 + 4�2. (6)

We plot the energy levels ε±,± in Fig. 1(b) as a function of the
driving strength �. Notably, the weak driving energy levels
±g and zero (twice) reflect the formed hybridized modes,
which tend towards ±g/2 ± � with strong driving. The differ-
ences between the energy levels of Eq. (5), that is f , g, f + g
and f − g, are related to the transition frequencies between the
dressed states and are hence important for the optical spectrum
of the system, as will be shown later on. The introduction
of dissipation necessarily changes the behavior of the energy
levels shown in Fig. 1(b) as we now consider.

B. Quantum master equation

Assuming the Born, Markov, and rotating wave approx-
imations allows for the quantum master equation of the
system’s density matrix ρ to be written in the standard Lind-
blad form [63–65]

∂tρ = i[ρ, H̃ ] + γ0

2
(2σ1ρσ

†
1 − σ

†
1 σ1ρ − ρσ

†
1 σ1)

+ γ0

2
(2σ2ρσ

†
2 − σ

†
2 σ2ρ − ρσ

†
2 σ2)

+ γ

2
eiφ (2σ2ρσ

†
1 − σ

†
1 σ2ρ − ρσ

†
1 σ2)

+ γ

2
e−iφ (2σ1ρσ

†
2 − σ

†
2 σ1ρ − ρσ

†
2 σ1), (7)

where the rotated Hamiltonian H̃ is given by Eq. (3), and γ0

is the decay rate of each individual 2LS. The dissipative (or
incoherent) coupling is of magnitude 0 � γ � γ0 and phase
φ ∈ [0, 2π ], in a similar manner to the complex coherent cou-
pling geiθ introduced in Eq. (2b). In any observables resulting
from Eq. (7), it is the relative phase θ − φ between the coher-
ent and incoherent couplings which is important, and not the
absolute phases θ or φ on their own. All parameters entering
our open quantum systems model described by Eq. (7), along
with Eq. (3), are represented in Fig. 1(a).

With regard to specific examples where a relative phase
arises between the coherent and incoherent coupling parame-
ters, consider the following. Within the macroscopic quantum
electrodynamical theory of a pair of qubits with dipole-dipole
interactions [66], the aforementioned coupling parameters
(ge±iθ , γ e±iφ) are defined in terms of the real and imaginary
parts of the classical Green’s tensor for the electromagnetic
environment and the dipole moments of the qubits. In the
setup of Ref. [67] where this theory is applied to qubits above
a metallic plane sustaining plasmons (see also Ref. [45]),
circular polarization of the qubits gives rise to complex phases
associated with the coupling parameters (so that, for example,
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FIG. 1. A pair of coupled two-level systems. (a) An illustration of the system under investigation: a pair of 2LSs labeled 1 and 2, each of
transition frequency ω0 and inverse lifetime γ0 (dark green arrows), with both coherent coupling ge±iθ (red arrows) and dissipative coupling
γ e±iφ (light green arrows) connecting them [see Eq. (7)]. The first 2LS is driven coherently (orange arrow) with the amplitude �. (b) Energy
levels ε±,± at resonance and in the rotating frame as a function of the drive �, both in units of the coherent coupling strength g [see Eq. (5)].
Dashed lines: Energy levels ±g in the absence of any driving and in the rotating frame.

changing the relative positions of the qubits allows one to
sweep through the coupling landscape).

The interplay between the coherent and dissipative cou-
pling strengths, via the ratio of magnitudes g/γ as well as
their relative phase θ − φ, allows one to navigate a rich cou-
pling landscape. In particular, the quantum master equation of
Eq. (7) exactly maps onto the celebrated cascaded master
equation introduced by Gardiner [48] and Carmichael [49] in
the early 1990s, and this mapping occurs when

g

γ
= 1

2
, (8a)

θ =
{

φ + π
2 , 1 → 2, (situation I)

φ + 3π
2 , 1 ← 2, (situation II)

. (8b)

This formal mapping implies completely unidirectional (or
one-way) effective interactions amongst the duo of 2LSs
[45,47,51].

We sketch the four principle coupling regimes under con-
sideration in Fig. 2, namely, coherent coupling, dissipative
coupling, unidirectional coupling [see Eq. (8)], and asymmet-
ric coupling. In the remainder of this paper, we investigate
how various quantum optical phenomena change with the un-
dulations of the coupling landscape, discussing each regime in

(a) (b) (c) (d)

I

II2LS−1 2LS−2

coherent dissipative unidirectional asymmetric

FIG. 2. The coupling landscape. Illustrations of the open quan-
tum system under consideration, showcasing some of most important
coupling regimes which form part of the overall coupling landscape.
The red arrows are associated with coherent coupling, while the
green arrows suggest incoherent (dissipative) coupling, which arises
due to the heat bath (green rectangle) which is shared by other
2LSs (marked as 1 and 2). (a) Coherent coupling regime of Sec. III.
(b) Incoherent (dissipative) coupling regime of Sec. IV. (c) Unidirec-
tional coupling regime of Sec. V. (d) Asymmetric coupling regime
of Appendix C.

turn. The simplest regime, that of coherent coupling, is treated
in Sec. III and lays the groundwork of the most intuitive
cooperative Mollow physics. It includes a detailed analysis of
the spectral Mollow quintuplet which can arise with stronger
couplings. The dissipative coupling regime of Sec. IV is most
notable for allowing for an interesting population trapping ef-
fect, whereby a state of the system is effectively immune from
decay. Finally, the unidirectional coupling regime of Sec. V
shows how an ostensibly coupled system can behave like an
uncoupled system, due to the interference of the coherent
and incoherent couplings. We consider the system to be at
resonance (� = 0) throughout the remainder of this paper.

III. THE REGIME OF COHERENT COUPLING

Here we focus on the purely coherent (co) coupling regime
as sketched in Fig. 2(a), where the dissipative coupling is
entirely absent (that is, the incoherent coupling parameter is
set to γ = 0). We discuss the average 2LS populations (in
Sec. III A), the correlations (in Sec. III B), and the power
spectrum (in Sec. III C), and in particular how these quanti-
ties change as both the coherent coupling strength g and the
driving strength � are modulated.

This coupling regime has perhaps the widest applicability
to current and the most readily tunable experimental plat-
forms, including for example with semiconductor quantum
dots [68], solid state spin qubits [69], laser-driven cold atomic
clouds [70], and photonic ring cavities [71].

A. Populations

In what follows, we compare our results for the coupled
pair of 2LSs to the average population n0 of a solitary, uncou-
pled 2LS in the steady state (SS) (please see Appendix B for
details):

n0 = �2

2�2 + (
γ0

2

)2 , (9)

where the single 2LS is of decay rate γ0 and is driven co-
herently with the amplitude �. Notably, population inversion
is prevented with purely coherent driving, since n0 → 1/2 in
the limit of strong driving � 	 γ0 [72,73]. The analogous
average populations of the full system of the 2LS duo in the
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FIG. 3. Populations in the coherent coupling regime. Average populations of the 2LS duo when the coherent coupling dominates, plotted
against the drive amplitude � [see Eq. (10)]. The single 2LS population is shown as the dashed gray line [see Eq. (9)]. The coherent coupling
strength g = γ0/4 in panel (a), while g = γ0 in panel (b). The legend inside panel (a) marks the result for the state |n, m〉.

coherent coupling regime ρco
n,m, referring to the four bare states |n, m〉, are (please see Appendix B for the supporting theory)

ρco
0,0 =

(
4g2 + 9γ 2

0

)(
8γ 4

0 �2 + [
4g2γ0 + γ 3

0

]2) + 16�4
(
4g4 + 13g2γ 2

0 + 11γ 4
0

) + 64�6
(
g2 + 2γ 2

0

)
(
4g2 + 9γ 2

0

)(
4g2γ0 + γ 3

0

)2 + 4γ 2
0 �2

(
16g4 + 48g2γ 2

0 + 27γ 4
0

) + 64�4
(
4g4 + 11g2γ 2

0 + 5γ 4
0

) + 256�6
(
g2 + γ 2

0

) ,

(10a)

ρco
1,0 =

(
4g2 + 9γ 2

0

)(
4γ 4

0 �2 + 16�4
[
g2 + γ 2

0

]) + 64�6
(
g2 + 2γ 2

0

)
(
4g2 + 9γ 2

0

)(
4g2γ0 + γ 3

0

)2 + 4γ 2
0 �2

(
16g4 + 48g2γ 2

0 + 27γ 4
0

) + 64�4
(
4g4 + 11g2γ 2

0 + 5γ 4
0

) + 256�6
(
g2 + γ 2

0

) ,

(10b)

ρco
0,1 = 16g2�2

(
9γ 4

0 + 9γ 2
0 �2 + 4�4 + 4g2

[
γ 2

0 + �2
])

(
4g2 + 9γ 2

0

)(
4g2γ0 + γ 3

0

)2 + 4γ 2
0 �2

(
16g4 + 48g2γ 2

0 + 27γ 4
0

) + 64�4
(
4g4 + 11g2γ 2

0 + 5γ 4
0

) + 256�6
(
g2 + γ 2

0

) ,

(10c)

ρco
1,1 = 16g2�4

(
4g2 + 9γ 2

0 + 4�2
)

(
4g2 + 9γ 2

0

)(
4g2γ0 + γ 3

0

)2 + 4γ 2
0 �2

(
16g4 + 48g2γ 2

0 + 27γ 4
0

) + 64�4
(
4g4 + 11g2γ 2

0 + 5γ 4
0

) + 256�6
(
g2 + γ 2

0

) .

(10d)

In the limit of strong driving (� 	 γ0) we find the much
simpler asymptotic forms of Eq. (10) are

ρco
0,0 = ρco

1,0 = 1

4

g2 + 2γ 2
0

g2 + γ 2
0

, (11)

ρco
0,1 = ρco

1,1 = 1

4

g2

g2 + γ 2
0

, (12)

showcasing an equality in mean population between two pairs
of states. First, the ground state |0, 0〉 and driven state |1, 0〉
become equal in population, and second the undriven state
|0, 1〉 and doubly excited state |1, 1〉 become indistinguishable
in population.

We plot in Fig. 3 the populations of Eq. (10) as a function of
the drive amplitude �, while the dashed gray line represents
the result for a single 2LS [see Eq. (9)]. In panel (a), where
the coherent coupling strength g = γ0/4, one notices how only
the driven 2LS is non-negligibly populated via |1, 0〉 (medium
blue line), being almost equivalent to the single 2LS result.
In the limit of strong driving, this mean population reaches
parity with the ground state |0, 0〉 (thin red line) following

the limit in Eq. (11), while the other states have a negligible
chance of being populated. In Fig. 3(b), with the stronger
coherent coupling strength g = γ0, the nonzero populations
of all four distinct states |n, m〉 are clearly visible for all non-
vanishing driving strengths. Notably, the doubly excited state
|1, 1〉 (thick orange line) plateaus to the mean population of
the nondriven singly excited state |0, 1〉 (medium green line)
with strong driving, in the manner of Eq. (11). The difference
between the driven |1, 0〉 population (medium blue line) and
the single 2LS result (dashed gray line) is most apparent due
to the increased coherent coupling g, which allows for both
2LSs to become meaningfully populated.

B. Correlations

In this section, we are concerned with Glauber’s (normal-
ized) second-order cross-correlator g(2)

12 (τ ) at zero delay (that
is, τ = 0), as defined by the expression [74,75]

g(2)
12 (0) = 〈σ †

1 σ1σ
†
2 σ2〉SS

〈σ †
1 σ1〉SS〈σ †

2 σ2〉SS
, (13)
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as calculated in the SS. The cross-correlator measures the
chance for simultaneous emissions from both 2LSs. When
g(2)

12 (0) = 1 the system is uncorrelated, when g(2)
12 (0) < 1 the

system is displaying anticorrelations, and when g(2)
12 (0) > 1

the system is exhibiting correlations. The exact expression for
the cross-correlator g(2)

12,co(0) in the coherent coupling regime
reads (see Appendix B for the theory)

g(2)
12,co(0) = 1 + g2

(
4g2 + 3γ 2

0

)(
4g2 + 9γ 2

0 + 4�2
)

4g2γ 4
0 + 9γ 6

0 + 4�2
(
8g4 + 22g2γ 2

0 + 9γ 4
0

) + 32�4
(
g2 + γ 2

0

) − 16g4 + 27γ 4
0 − 4γ 2

0 �2 + 16g2
(
3γ 2

0 + �2
)

4
[
9γ 4

0 + 18γ 2
0 �2 + 8�4 + 4g2

(
γ 2

0 + 2�2
)] .

(14)

In the limits of weak and strong driving respectively, we find
from Eq. (14) the more compact asymptotics

g(2)
12,co(0) =

(
4g2 + γ 2

0

)2

4γ 4
0

, � � γ0, (15)

g(2)
12,co(0) = 1, � 	 γ0. (16)

Therefore, the system is uncorrelated and g(2)
12,co(0) → 1 with

high driving, since the driving � dominates the coherent
coupling g and the pair behaves like an uncoupled system.
With weak driving, both correlations and anticorrelations are
possible. The anticorrelation minimum of g(2)

12,co(0) → 1/4 is
seen to arise with vanishing coherent coupling g → 0, while
for strong coupling g 	 γ0 the correlation maximum follows
via a quartic scaling, g(2)

12,co(0) � 4(g/γ0)4.

We plot the full cross-correlator g(2)
12,co(0) as a function of

the drive amplitude � in Fig. 4(a) using Eq. (14). In the plot,
thicker lines are associated with stronger coherent coupling
strengths g. Most noticeably, for � 	 γ0 all correlations are
washed out, which is increasingly the case for smaller coher-
ent coupling g (thinner lines), where one finds g(2)

12,co(0) → 1.
At small drivings � � γ0, the impact of differing coherent
coupling strengths g is keenly felt. Approximately, if g > γ0/2
(orange, purple, and pink thicker lines) correlation behavior
g(2)

12,co(0) > 1 is displayed, while for g < γ0/2 (blue and red

0.01 0.1 1 10
0.1

1

10

100

Ω/γ0

g
(2

)
1
2
,c

o
(0

)

g → 0
g = (1/4)γ0

g = (1/2)γ0

g = (3/4)γ0

g = γ0

g = 2γ0

FIG. 4. Correlations in the coherent coupling regime. Cross-
correlator g(2)

12,co(0) when there is no time delay, and when the
coherent coupling dominates. We plot against the drive amplitude
� [see Eq. (14)]. Various coupling strengths g are considered (see
the plot legend). Dashed gray line: Guide for the eye at unity.

thinner lines) anticorrelations with g(2)
12,co(0) < 1 arise, as fol-

lows from the asymptotics of Eq. (15). Hence, in the weak
driving limit at least, the system has an interesting tunability
in g(2)

12,co(0) via the coupling strength g.

C. Spectrum

Here we are interested in the optical spectrum in the
SS, as defined via the integral over the two-time correlator
〈σ †

1 (t )σ1(t + τ )〉 [74,75],

S1(ω) = 1

π
lim

t→∞ Re

∫ ∞
0 eiωτ 〈σ †

1 (t )σ1(τ + t )〉dτ

〈σ †
1 (t )σ1(t )〉 , (17)

that is, the probability density that the first 2LS has an
emission at the frequency ω. The theoretical framework
for the results is detailed in Appendix B, where we also
comment on the Rayleigh (delta) peak which has been ne-
glected throughout the main text. In essence, Eq. (17) may be
rewritten as the summation of Lorentzian and dispersive line
shapes [58]:

S1(ω) =
∑

ζ

1

π

γζ

2 Lζ − (ω − ωζ ) Kζ( γζ

2

)2 + (ω − ωζ )2
. (18)

where the spectral peaks ωζ and the spectral broadenings
γζ arise from the possible transitions (indexed with ζ ) in
the system. The real numbers Lζ and Kζ are the weighting
factors of the Lorentzian and dispersive parts for each spectral
component [58]. Notably, in the simpler case of the spec-
trum of a single 2LS all aforementioned spectral parameters
{ωζ , γζ , Lζ , Kζ } may be calculated analytically, as is shown in
Appendix A.

In Fig. 5, we plot the incoherent part of the optical spec-
trum Sco

1 (ω) of the first 2LS in the coherent and strong
coupling regime, where the coherent coupling strength g =
γ0. In each panel of Fig. 5, stronger drivings � are denoted
by thicker colored lines, as indicated by the plot legends. In
panel (a), we show the results with weak driving � � (2/5)γ0,
where the spectrum is clearly a well-defined doublet due to
the emissions from the intermediate states to the ground state
(the doubly excited eigenstate has a negligible population).
Panel (b) shows the effect of moderate driving (2/5)γ0 �
� � (3/5)γ0, causing the doublet spectrum to split into a
narrow triplet, which is most noticeable for � = γ0/2 (thin
pink line). However, soon the satellite peaks either side of the

023717-5



C. A. DOWNING et al. PHYSICAL REVIEW A 107, 023717 (2023)

0

0.05

0.1

0.15

γ
0

S
c
o

1
(ω

)

Ω = (2/5)γ0

Ω = (3/10)γ0

Ω = (1/5)γ0

Ω = (3/5)γ0

Ω = (11/20)γ0

Ω = (1/2)γ0

−10 −5 0 5 10
0

0.1

0.2

0.3

(ω − ω0)/γ0

γ
0

S
c
o

1
(ω

)

Ω1 = γ0

Ω1 = (9/10)γ0

Ω1 = (4/5)γ0

−10 −5 0 5 10

(ω − ω0)/γ0

Ω = 3γ0

Ω = 2γ0

Ω = (3/2)γ0

(a) (b)

(c) (d)

doublet triplet

singlet quintuplet
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is displayed in panel (a). The triplet regime, with moderate driving, is shown in panel (b). The singlet regime, with strong driving, is given in
panel (c). (d) The quintuplet regime, with very strong driving. In the figure, the coherent coupling strength g = γ0.

main peak, which is always centered at resonance, become al-
most indistinguishable (thicker cyan and lime lines). In panel
(c), with strong driving (3/5)γ0 � � � γ0, the quasisinglet
regime is eventually reached, although towards the upper end
of this regime the mostly hidden satellite peaks are beginning
to emerge (thick blue line). Eventually in panel (d), with
very strong driving � � γ0, the Mollow quintuplet regime
is unveiled, where either side of the main central peak are
doublet satellite peaks. The quintuplet is most visible for the
strongest drivings (thick purple line), and is a hallmark of the
coherent coupling regime with very strong driving, in direct
analogy to the Mollow triplet for a single 2LS.

As discussed in Appendix A, a strongly laser-driven sin-
gle 2LS is associated with four transitions (two of which
are degenerate) leading to the possibility of a triplet spectral
structure [see Fig. 13(b) for the Mollow triplet and Fig. 14
for its explanation]. This interpretation may be extended to a
pair of coupled 2LSs and its associated quintuplet structure, as
illustrated in Fig. 6. Let us consider the four states |G〉, |−〉,
|+〉 and |X 〉 arising from the undriven Hamiltonian H0 + Hc

[see Eq. (2)], and residing at 0, ω0 − g, ω0 + g, and 2ω0

respectively. We also include the quantum harmonic oscillator
states |n〉 representing the laser driving the system, which
are separated in frequency by ωd as sketched in Fig. 6(a).
At resonance (ω0 = ωd ) and in the rotating frame, the com-
bined system of coupled 2LSs and driving laser displays
doubly degenerate energy levels at (n + 2)ω0, through the
states |G, n + 2〉 (green bar) and |X, n〉 (yellow bar). The

superposition states |+, n + 1〉 (cyan bar) and |−, n + 1〉
(pink bar) lie either side of this degeneracy, split by 2g (red
arrow), as shown in the left-hand side of Fig. 6(b). The
2LS-driving coupling then splits the doubly degenerate levels
leading to a doublet spaced by the frequency f as depicted
in Fig. 6(c). There are then several decay channels involving
the formed dressed states (purple bars) from the upper to the
lower manifold. In particular, the five transition frequencies
ω0, ω0 ± ( f + g), and ω0 ± ( f − g) correspond to the five
distinct frequencies of the Mollow quintuplet displayed in
Fig. 5(d). In the preceding qualitative discussion, the fre-
quency f is precisely the quantity appearing in the calculation
of the dressed energy levels ε±,± as described by Eqs. (5) and
(6), and the five aforementioned transition frequencies arise
from the differences between the various ε±,±.

IV. THE REGIME OF DISSIPATIVE COUPLING

In what follows, we focus on the purely dissipative (ds)
coupling regime, where the coherent coupling is set to zero
(g = 0) as alluded to in the illustration of Fig. 2(a). The aver-
age populations are considered in Sec. IV A, the second-order
degree of coherence in Sec. IV B, and the power spectrum in
Sec. IV C. We especially focus on how distinctive features
in this coupling regime arise as a function of the dissipative
coupling strength γ and driving strength � into the first 2LS.

This incoherent coupling regime can arise in several phys-
ical systems of current interest [46], including in cavity
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FIG. 6. An interpretation of the Mollow quintuplet. (a) A sketch of the energy ladder giving rise to the Mollow quintuplet. The four states
of the coupled two-level systems are represented by colored bars, including the spitting 2g between the intermediate states |+〉 and |−〉 (red
arrow). The infinite number of states |n〉 of the quantum harmonic oscillator (modeling the driving laser) are depicted by orange bars, and
the interlevel spacing ωd is shown (red arrows). (b) At resonance (ω0 = ωd ) and in the rotating frame, the combined system of two coupled
2LSs and driving laser displays doubly degenerate energy levels. For example, at (n + 2)ω0 the degeneracy arises via the states |G, n + 2〉
(green bar) and |X, n〉 (yellow bar). The intermediate states |+, n + 1〉 (cyan bar) and |−, n + 1〉 (pink bar) lie either side of this degeneracy.
(c) The 2LS-driving coupling splits the doubly degenerate levels leading to a doublet spaced by f = √

g2 + 4�2. There are then several decay
channels from the dressed states (purple bars), and the five transition frequencies ω0, ω0 ± ( f + g), and ω0 ± ( f − g) correspond to the five
distinct frequencies of the Mollow quintuplet.

optomechanical platforms [76], with hybridized magnon-
photon modes in cavities [77,78], by exploiting photon
Bose-Einstein condensates [79], and even with thermoacous-
tic oscillators [80].

A. Populations

The steady-state mean populations ρds
n,m of the four states

|n, m〉 are (see Appendix B for the theory)

ρds
0,0 =

(
9γ 2

0 − γ 2
)(

γ 3
0 − γ0γ

2
)2 + 8γ 2

0 �2
(
2γ 4 − 3γ 2γ 2

0 + 9γ 4
0

) + 4�4
(
44γ 4

0 + 29γ 2γ 2
0 − 5γ 4

) + 16�6
(
8γ 2

0 + γ 2
)

(
9γ 2

0 − γ 2
)(

γ 3
0 − γ0γ 2

)2 + 4γ 2
0 �2

(
3γ 4 + 2γ 2γ 2

0 + 27γ 4
0

) − 32�4
(
γ 2 − 10γ 2

0

)(
γ 2 + γ 2

0

) + 64�6
(
γ 2 + 4γ 2

0

) ,

(19a)

ρds
1,0 = 4γ0�

2
(
9γ 2

0 − γ 2
) + 4�4

(
36γ 4

0 + 25γ 2γ 2
0 − 3γ 4

) + 16�6
(
γ 2 + 8γ 2

0

)
(
9γ 2

0 − γ 2
)(

γ 3
0 − γ0γ 2

)2 + 4γ 2
0 �2

(
3γ 4 + 2γ 2γ 2

0 + 27γ 4
0

) − 32�4
(
γ 2 − 10γ 2

0

)(
γ 2 + γ 2

0

) + 64�6
(
γ 2 + 4γ 2

0

) ,

(19b)

ρds
0,1 = 4γ 2�2

(
9γ 4

0 + 9γ 2
0 �2 + 4�4 + γ 2

[
�2 − γ 2

0

])
(
9γ 2

0 − γ 2
)(

γ 3
0 − γ0γ 2

)2 + 4γ 2
0 �2

(
3γ 4 + 2γ 2γ 2

0 + 27γ 4
0

) − 32�4
(
γ 2 − 10γ 2

0

)(
γ 2 + γ 2

0

) + 64�6
(
γ 2 + 4γ 2

0

) ,

(19c)

ρds
1,1 = 4γ 2�4

(
4�2 + 9γ 2

0 − γ 2
)

(
9γ 2

0 − γ 2
)(

γ 3
0 − γ0γ 2

)2 + 4γ 2
0 �2

(
3γ 4 + 2γ 2γ 2

0 + 27γ 4
0

) − 32�4
(
γ 2 − 10γ 2

0

)(
γ 2 + γ 2

0

) + 64�6
(
γ 2 + 4γ 2

0

) .

(19d)

In the limiting case of strong driving (� 	 γ0), Eq. (19)
collapses into the simple expressions

ρds
0,0 = ρds

1,0 = 1

2

(
1 − 1

2

(γ /2)2

(γ /2)2 + γ 2
0

)
, (20)

ρds
0,1 = ρds

1,1 = 1

4

(γ /2)2

(γ /2)2 + γ 2
0

, (21)

which exhibit a coalescing of behaviors of the |0, 0〉 and
|1, 0〉 states, and the |0, 1〉 and |1, 1〉 states respectively. Re-
markably, in the opposing weak driving regime � � γ0, and
with maximal dissipative coupling γ → γ0, we find from

Eq. (19) the mean populations ρds
0,0 = 1/2, ρds

1,0 = ρds
0,1 = 1/4,

and ρds
1,1 = 0. This analysis suggests a population trapping

effect, where the intermediate states |1, 0〉 and |0, 1〉 are
associated with nonzero populations, which precipitates an
unconventional ground state of the system. Notably, such a
scenario is not possible for the case of purely coherently
coupled 2LSs.

The average populations of Eq. (19) are plotted in Fig. 7
as a function of the drive amplitude �. Where the inco-
herent coupling strength γ = γ0/2 in panel (a), the result
is reminiscent of the coherently coupled case reported in
Fig. 3(a). Namely, the driven state population |1, 0〉 (medium
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blue line) is very similar to the single 2LS result (dashed
gray line), while the populations of the undriven state |0, 1〉
(medium green line) and doubly excited state (thick red line)
are negligible. In Fig. 7(b), where the dissipative coupling
is maximal γ = γ0, the surprising population trapping ef-
fect appears. Now, even in the limit of vanishing driving
� → 0, the intermediate states of |0, 1〉 and |1, 0〉 (green and
blue medium-thickness curves) are populated, such that the
ground state (thin red line) is described by ρds

0,0 = 1/2 (and
not ρds

0,0 = 1 as may have been reasonably envisaged). This

population trapping effect has arisen due to the maximal dissi-
pative coupling quenching transitions from the singly excited
states to the ground state. It has been noticed before within a
dimer platform in an incoherent pumping setup [67,81].

B. Correlations

The expression for Glauber’s (normalized) second-order
cross-correlator at zero delay [see Eq. (13)] in the incoherent
coupling dominated arena reads (Appendix B contains the
underlying theory)

g(2)
12,ds(0) = 1 + 1

4

γ 2
(
γ 4 − 11γ 2γ 2

0 + 18γ 4
0 − 2�2

[
γ 2 + 6γ 2

0

])
γ 4

0

(
γ 2 − 9γ 2

0

) + 2�2
(
2γ 4 − 17γ 2γ 2

0 − 18γ 4
0

) − 8�4
(
γ 2 + 4γ 2

0

) + 1

4

4γ 2
0 �2 − 27γ 4

0 + γ 2
(
3γ 2

0 − 10�2
)

9γ 4
0 − γ 2γ 2

0 + 18γ 2
0 �2 + 8�4

.

(22)

The asymptotics of Eq. (22), for both weak and strong driving,
are as follows:

g(2)
12,ds(0) =

(
γ 2 − γ 2

0

)2

4γ 4
0

, � � γ0, (23)

g(2)
12,ds(0) = 1, � 	 γ0. (24)

Therefore, with weak coupling the dissipative coupling
regime presents anticorrelations g(2)

12,ds(0) < 1, and minimally

g(2)
12,ds(0) → 0 when the incoherent coupling is maximal γ →

γ0. Strong driving � 	 γ0 wipes out any correlations since
the system behaves as if it is uncoupled.

We plot g(2)
12,ds(0) in Fig. 8 as a function of the drive

amplitude �. Stronger incoherent couplings γ are marked
with thicker lines. As for the coherently coupled case of
Fig. 4, strong driving � 	 γ0 washes out any correla-
tions g(2)

12,ds(0) → 1, independent of the dissipative coupling
strength γ . Most noticeably, between � � γ0 and γ0/10, the
cross-correlator reaches its minimum, which is highly depen-
dent on the dissipative coupling strength γ . For the case of
very small incoherent coupling γ → 0 (thinnest, red line), the
minimum of g(2)

12,ds(0) → 1/4 is reached, while for maximal
dissipative coupling γ → γ0 (thick purple line), the absolute

minimum of g(2)
12,ds(0) → 0 is arrived at, making the dissi-

patively coupled regime highly discriminatory within these
statistics.

C. Spectrum

In Fig. 9, we plot the optical spectrum of the first 2LS in
the dissipative coupling regime Sds

1 (ω) [see Eq. (17)]. In each
panel, increasingly strong driving coupling � is denoted by
increasingly thick colored lines, as indicated by the legends.
Importantly, in Figs. 9(a) and 9(b) the dissipative coupling
strength is below its maximum value, being γ = γ0/2. With
weak driving � � γ0/2 in panel (a), we see a simple singlet
spectral structure, with hints of other, unresolvable peaks for
higher driving strengths (thicker lines). In panel (b), with
strong driving � > γ0/2, a distinctive triplet structure has
finally emerged, which is particularly visible for � > γ0 (blue
and green thicker line). In this way, the dissipatively coupled
regime presents a much simpler behavior than the coherently
coupled regime, where quintuplets may also be formed. This
is because the absence of any coherent coupling (g = 0) en-
sures that all spectral peaks arise from the driving only, in
a similar way to the case of a single 2LS (see Appendix A
for the interpretation of the spectrum of one 2LS) so that only
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spectral singlets or spectral triplets may form, depending upon
whether the driving is above or below a threshold dissipation
rate (which here is composed of contributions from both γ

and γ0).
In Fig. 9(c), where the dissipative strength is increased

to its maximal strength of γ = γ0, a very different spectral
evolution is displayed. Now, a triplet structure is observed
for all driving strengths, since the weightings of key tran-
sitions [those which allowed for the spectral singlet-triplet
transition in panels (a) and (b)] are proportional to γ0 − γ

and thus disappear in this parameter regime [in a similar

way, the population trapping effect reported in Fig. 7(b) only
occurs when γ → γ0]. Of course, the triplet displayed in
Fig. 9(c) becomes more widely separated with increasing driv-
ing strengths (thicker lines), and the persistence of the spectral
triplet acts as an indicator of maximal dissipative coupling
being reached.

V. THE REGIME OF UNIDIRECTIONAL COUPLING

Here we consider the unidirectional coupling regime,
where the coherent and dissipative coupling strengths are
fixed by the ratio g/γ = 1/2, as enforced by Eq. (8a). The
relative phase θ − φ can be equal to π/2 or 3π/2, as follows
from Eq. (8b), depending on whether the one-way coupling
between the pair of 2LSs follows the directionality 1 → 2 or
1 ← 2, as sketched in Fig. 2(c). Within this one-way coupling
regime, we discuss the mean populations in Sec. V A, the
second-order degree of coherence in Sec. V B, and the optical
spectrum in Sec. V C. We concentrate on the case of unidirec-
tionality in the direction of 1 → 2 only in this section since
only the first 2LS is being driven.

This unusual coupling regime can be realized in a num-
ber of platforms, including with a metallic nanoparticle
and a quantum emitter housed inside a cavity [82], with
metal-insulator-metal heterostructures [83], using a couple of
yttrium iron garnet microspheres [84], and by exploiting a pair
of quantum emitters in a suitable dielectric environment [85].

A. Average populations

The average populations ρun
n,m associated with the four

states |n, m〉 in the unidirectional (un) regime 1 → 2 [see
Fig. 2(c)] read (see Appendix B for the theoretical back-
ground)

ρun
0,0 = 1

γ 2
0 + 8�2

9γ 8
0 + 8γ 4

0 �2
(
9γ 2

0 − 4γ 2
) + 16�4

(
11γ 4

0 + 21γ 2γ 2
0 − 4γ 4

) + 64�6
(
2γ 2

0 + γ 2
)

9γ 6
0 + 4γ 2

0 �2
(
28γ 2 + 9γ 2

0

) + 32�4
(
γ 2 + γ 2

0

) , (25a)

ρun
1,0 = 4�2

γ 2
0 + 8�2

(
1 − 4γ 2�2

(
9γ 2

0 + 4�2
)

9γ 6
0 + 4γ 2

0 �2
(
28γ 2 + 9γ 2

0

) + 32�4
(
γ 2 + γ 2

0

)
)

, (25b)

ρun
0,1 = 16γ 2�2

γ 2
0 + 8�2

9γ 4
0 + 9γ 2

0 �2 + 4�2
(
γ 2 + �2

)
9γ 6

0 + 4γ 2
0 �2

(
28γ 2 + 9γ 2

0

) + 32�4
(
γ 2 + γ 2

0

) , (25c)

ρun
1,1 = 16γ 2�4

γ 2
0 + 8�2

9γ 2
0 + 4�2

9γ 6
0 + 4γ 2

0 �2
(
28γ 2 + 9γ 2

0

) + 32�4
(
γ 2 + γ 2

0

) . (25d)

The hallmark of unidirectional coupling is seen through the
exact relation ρun

1,0 + ρun
1,1 = n0. That is, the mean population

of 2LS-1 is exactly that of a solitary, uncoupled 2LS [see
Eq. (9)] due to the backaction from 2LS-2 being nullified by
the mixture of coherent and incoherent coupling. In the limit
of strong driving (� 	 γ0), Eq. (25) reduces to

ρun
0,0 = ρun

1,0 = 1

4

γ 2 + 2γ 2
0

γ 2 + γ 2
0

,

ρun
0,1 = ρun

1,1 = 1

4

γ 2

γ 2 + γ 2
0

, (26)

such that the four state populations again couple into pairs, in
the same manner as for the coherent and dissipative coupling
regimes of the preceding sections.

We plot in Fig. 10 the average populations during the
unidirectional coupling dominance, against the drive ampli-
tude �. The dashed gray line is the single 2LS population
[see Eq. (9)]. In panel (a), where the incoherent coupling
γ = γ0/2, the evolution of the average populations is similar
to the dissipatively coupled regime of Fig. 7(a), but with a
more noticeable rise in population of the state |0, 1〉 (medium
green line) because of the unidirectional character of the

023717-9



C. A. DOWNING et al. PHYSICAL REVIEW A 107, 023717 (2023)

−8 −4 0 4 8
0

0.2

0.4

0.6

(ω − ω0)/γ0

γ
0

S
d
s(

ω
)

1

Ω = (1/2)γ0

Ω = (1/5)γ0

Ω = (1/10)γ0

−8 −4 0 4 8

(ω − ω0)/γ0

Ω = 2γ0

Ω = γ0

Ω = (4/5)γ0

−3 −2 −1 0 1 2 3
0

1

2

3

(ω − ω0)/γ0

γ
0

S
d
s

1
(ω

)

Ω = γ0

Ω = (3/4)γ0

Ω = (1/2)γ0

Ω = (1/4)γ0

(a) (b) (c)γ = γ0/2 γ = γ0/2 γ = γ0

singlet triplet triplet

FIG. 9. Spectra in the dissipative coupling regime. Optical spectrum Sds
1 (ω) of the first 2LS in the dissipative coupling regime, in units

of the inverse damping rate γ −1
0 . In each panel, increasingly strong driving coupling � is denoted by increasingly thick colored lines. (a, b)

Moderate dissipative coupling γ = γ0/2, which displays singlet [panel (a)] and triplet [panel (b)] regimes. (c) Maximal dissipative coupling
γ = γ0 is associated with a spectral triplet only.

effective interaction from two-level system 1 → 2. In
Fig. 10(b), where the dissipative coupling is maximal (γ =
γ0), the peak in population of the state |0, 1〉 (medium green
line) is even more apparent due to the strongest possible
unidirectional coupling in its favor, such that it is even the
most populated state for � � γ0/2. For stronger driving � >

(3/4)γ0, the unidirectional coupling is finally overcome by the
coherent driving into 2LS-1, and the |1, 0〉 (medium blue line)
becomes the most likely state to be populated.

B. Correlations

The expression for Glauber’s (normalized) second-order
cross-correlator at zero delay g(2)

12,un(0) in the unidirectional
coupling regime [see Eq. (13)] reads (see Appendix B for the
supporting theory)

g(2)
12,un(0) =

(
γ 2

0 + 8�2
)(

9γ 2
0 + 4�2

)
36γ 2

0 + 8�2
(
2γ 2 + 9γ 2

0

) + 32�4
, (27)

which has the following simple limiting forms in the small
and large driving limits:

g(2)
12,un(0) = 1

4 , � � γ0, (28)

g(2)
12,coI(0) = 1, � 	 γ0. (29)

The cross-correlator g(2)
12,un(0) is displayed in Fig. 11(a), and

is plotted against the drive amplitude �. Stronger incoherent
couplings γ are associated with thicker curves. Most notice-
ably, the figure shows universal anticorrelations g(2)

12,un(0) <

1. The variation in dissipative coupling strength γ is not
very discriminatory in this quantity, as it sweeps between the
asymptotic values of 1/4 and 1 in a sigmoid-function-like
manner.

C. Spectrum

In Fig. 11(b), we display the optical spectrum [see Eq. (17)]
of the first 2LS in the unidirectional coupling regime Sun

1 (ω).
As expected, it indeed displays all of the hallmarks of the
spectrum of a single 2LS because of the absence of any
backaction from the second 2LS [73]. It thus follows the exact
expression familiar from the single 2LS case [see Appendix A
for the derivation]:

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Ω/γ0

m
ea

n
po

pu
la

ti
on

|0, 0〉
|1, 0〉
|0, 1〉

|1, 1〉
n0

0 1 2 3 4 5

Ω/γ0

(a) (b)γ = γ0/2 γ = γ0

FIG. 10. Populations in the unidirectional coupling regime. Mean populations in the unidirectional coupling regime, as a function of the
drive amplitude �, in units of the damping rate γ0 [Eq. (25)]. Dashed gray line: Single 2LS population [see Eq. (9)]. (a) Moderate dissipative
coupling strength γ = γ0/2. (b) Maximal dissipative coupling strength γ = γ0. The labeling of the mean population of the state |i, j〉 is
displayed in the legend of panel (a), and states with a number of excitations N = {0, 1, 2} are shown with increasingly thick lines.
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1 (ω) of the first 2LS in the unidirectional coupling regime. Stronger driving coupling � is denoted
by thicker colored curves. The incoherent coupling γ = γ0 and the unidirectional conditions of Eq. (8) are observed.

Sun
1 (ω) = 1

2π

γ0

2(
γ0

2

)2 + (ω − ω0)2
− γ0

π

(ω − ω0)2 + γ 2
0 − 16�2

4(ω − ω0)4 + (ω − ω0)2
(
5γ 2

0 − 32�2
) + (

γ 2
0 + 8�2

)2 . (30)

Notably, as shown in Fig. 11(b), there is a singlet regime with
weak driving (thin cyan line), before a Mollow triplet regime
arises with strong driving (thicker yellow, green, and red
lines), in a remarkable manifestation of single atom physics
within an ostensibly coupled pair system. Due to the one-
way nature of the coupling, the interpretation of this triplet
structure is essentially the same as for the one atom case (see
Fig. 14 and the discussion around it for example). The unidi-
rectional coupling regime discussed in this section is the most
extreme example of a more general asymmetric coupling, and
for completeness we discuss a few results with less extreme
asymmetric coupling in Appendix C.

VI. CONCLUSIONS

We have completed a systematic survey of some of the
fundamental quantum optical properties of an asymmetri-
cally driven-dissipative pair of two-level systems. In an open
quantum systems approach, we have calculated the mean pop-
ulations, coherences, and optical spectra which this simple
setup supports. We have revealed how these key quanti-
ties change depending on the location within the coupling
landscape, which encompasses coherent, dissipative, unidirec-
tional, and asymmetric coupling. In particular, we have shown
how the celebrated Mollow triplet spectrum for a single atom
can be reproduced in a pair system with unidirectional cou-
pling, and how away from this special regime anything from
a singlet to a quintuplet may appear. We have also reported
an instance where the population is trapped (in the limit of
maximal incoherent interactions) which is associated with the
disappearance of the spectral singlet to triplet transition, and
we have revealed the gamut of strong correlations appearing
in the duo of atoms.

Our basic theory, spanning both coherent and incoherent
coupling, may be realized in a plethora of artificial atom

systems [86], including with ultracold atoms [87], supercon-
ducting qubits [88], and plasmonic nanoparticles [89,90]. The
presented theory opens up the opportunity for the detection
of cooperative Mollow physics and chiral physics within an
elemental dimer system, with natural extensions. Indeed, the
scaling up of the dimer system into a quantum network may
present novel opportunities for quantum transport and com-
munication, as well as for quantum information processing.
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APPENDIX A: A SINGLE DRIVEN-DISSIPATIVE
TWO-LEVEL SYSTEM

Here we detail some explanatory results for a single 2LS
driven coherently [3,59,60,63,73]. We describe the open quan-
tum systems model in Appendix A1, before studying the
populations and coherences in Appendix A2 and the optical
spectrum in Appendix A3. Notably, the few-level system con-
sidered here ensures that the Hilbert space is very small, and
that the equations of motion naturally close with the second
moments.
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1. Model

The Hamiltonian H of a single, coherently driven 2LS is
composed of two contributions as follows:

H = H0 + Hd , (A1)

where the 2LS excitation term H0 and the drive term Hd are
given by

H0 = ω0σ
†σ, (A2)

Hd = �(eiωd tσ + e−iωd tσ †), (A3)

where the 2LS is characterized by the transition frequency
ω0, and the coherent drive has the amplitude � and the fre-
quency ωd . The 2LS raising and lowering operators σ † and
σ act such that σ †|0〉 = |1〉 and σ |1〉 = |0〉. The 2LS has a
two-dimensional Hilbert space, composed of the states |0〉
and |1〉, and upon neglecting the drive term Hd the associated
eigenfrequencies are simply zero and ω0. Upon moving to a
rotating frame, the Hamiltonian of Eq. (A1) transforms into
H̃ = UHU † + i(∂tU )U †. With the operator U = eiωd tσ †σ , one
finds the transformed Hamiltonian H̃ becomes

H̃ = �σ †σ + �(σ + σ †), (A4)

with the detuned frequency � = ω0 − ωd . In the bare state
basis {|0〉, |1〉}, the 2 × 2 matrix representation of the trans-
formed Hamiltonian H̃ reads

H̃ =
(

0 �

� �

)
, (A5)

which suggests the following diagonalized form of the Hamil-
tonian:

H̃ = ω+||+〉〉〈〈+|| + ω−||−〉〉〈〈−||. (A6)

Here the two dressed energy levels ω± read

ω± = �

2
± R, (A7)

where we have introduced the splitting frequency R, defined
via the expression

R =
√(

�

2

)2

+ �2. (A8)

The two dressed eigenstates ||±〉〉 appearing in Eq. (A6), and
corresponding to the eigenfrequencies ω±, read

||+〉〉 = sin θ |0〉 + cos θ |1〉, (A9)

||−〉〉 = cos θ |0〉 − sin θ |1〉, (A10)

where we use single (double) kets for the bare (dressed)
eigenstates. In Eq. (A9), the two Bogoliubov coefficients are

Δ

0

|1

|0

||+
ω+

ω−
weakdriving strong driving

FIG. 12. A sketch of the energy ladder of a single 2LS of res-
onance frequency ω0, driven coherently with the driving amplitude
� and frequency ωd (the detuning � = ω0 − ωd ). We show both the
weak (left) and strong (right) driving regimes [see Eq. (A7)].

defined by

sin θ = 1√
2

√
1 − �

2R
, (A11)

cos θ = 1√
2

√
1 + �

2R
. (A12)

In the limit of weak driving (� → 0, and so R → �/2), one
recovers the undressed results since ||+〉〉 → |1〉 and ||−〉〉 →
|0〉, while the eigenfrequencies satisfy ω+ → � and ω− → 0.

We plot the energy ladder of the 2LS in Fig. 12 in both the
weak (left) and strong (right) driving regimes [see Eq. (A7)].
It illustrates the enlarged interlevel frequency splitting from �

to ω+ − ω− = 2R due to the coherent driving of strength �,
which is important for the discussion of the optical spectrum
later on.

The quantum master equation of the system’s density ma-
trix ρ is considered to be in the typical Lindblad form [65]

∂tρ = i[ρ, H̃ ] + γ

2
(2σρσ † − σ †σρ − ρσ †σ ), (A13)

in terms of the transformed Hamiltonian H̃ of Eq. (A4),
and where γ is the damping decay rate of the 2LS. Equa-
tion (A13), in conjunction with the quantum regression
formula, gives rise to the results of the following subsections
for the mean population and coherence (Appendix A2) and
optical spectrum (Appendix A3).

2. Population and coherence

The quantum regression formula and the quantum master
equation of Eq. (A13) together yield the following equation of
motion for the mean values of the first and second moments
of the 2LS:

∂t u = P − Qu, (A14)
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S
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Ω = γ/4

Ω = γ/2
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(a) (b)

FIG. 13. Population and spectrum of a single 2LS. (a) The mean steady-state population n of a single 2LS as a function of the drive strength
�, in units of the damping rate γ [see Eq. (A17)]. We show results for increasingly strong detuning frequencies � (increasingly thick lines).
Dashed gray line: Guide for the eye at 1/2. (b) The spectrum of a single 2LS, as a function of the frequency ω, in units of the damping rate
γ [see Eq. (A29)]. We consider zero detuning [� = 0, corresponding to the thin red line in panel (a)] and show results for increasingly large
drive amplitudes � (increasingly thick lines).

for the three-vector of correlators u, and with the drive term
P and the dynamical matrix Q, where these objects are
defined by

u =
⎛
⎝ 〈σ 〉

〈σ †〉
〈σ †σ 〉

⎞
⎠, P = i�

⎛
⎝−1

1
0

⎞
⎠, (A15)

Q =
⎛
⎝ γ

2 + i� 0 −2i�
0 γ

2 − i� 2i�
−i� i� γ

⎞
⎠. (A16)

In the SS, where at long times (t → ∞) the first time deriva-
tive ∂t u = 0, it follows from Eq. (A14) that the steady-state
population of a single 2LS, n = 〈σ †σ 〉SS, and its coherence
c = 〈σ 〉SS, are captured by the expressions

n = �2

2�2 + �2 + (
γ

2

)2 , (A17)

c = − �
(
� + i γ

2

)
2�2 + �2 + (

γ

2

)2 . (A18)

For the case of zero detuning (� = 0), Eq. (A17) reproduces
the mean population given as n0 in Eq. (9) in the main text
(where we also relabel γ as γ0 to match the notation of
the dimer problem). Notably, in the limit of strong driving
� 	 γ , the mean population reaches its maximum value of
n = 1/2, since population inversion cannot occur with purely
coherent driving [73].

We plot the steady-state population n in Fig. 13(a), as a
function of the drive strength �, for increasing large detuning
frequencies � (increasingly thick colored lines). The plot
displays graphically the evolution of n up to the threshold
value of n = 1/2, revealing the saturation in the system for
large drivings.

3. Spectrum

Applying the quantum regression formula along with the
quantum master equation of Eq. (A13) leads to a two-time
equation of motion [see Eq. (A14)] containing the object
〈σ †(t ) σ (t + τ )〉, which is most relevant for the optical spec-

trum, as follows:

∂τ v(t, t + τ ) = P〈σ †(t )〉 − Qv(t, t + τ ), (A19)

where the two-time correlators in t and t + τ , where τ is the
delay time, are contained within the three-vector

v(t, t + τ ) =

⎛
⎜⎝

〈σ †(t ) σ (t + τ )〉
〈σ †(t ) σ †(t + τ )〉

〈σ †(t ) σ †(t + τ )σ (t + τ )〉

⎞
⎟⎠, (A20)

and where the drive term P and the regression matrix Q
are given in Eq. (A15). In what follows, we consider zero
detuning (� = 0) for simplicity and we take the steady-state
limit t → ∞, such that objects like 〈σ †(t → ∞)〉 can be taken
from Eq. (A17).

The exact solution of Eq. (A19) is composed of transient
and steady-state parts, as follows:

v(t, t + τ ) =
∑

ζ=A,B,C

aζ vE
ζ e

−
(

iωζ +
γζ

2

)
τ +

⎛
⎝ c

c∗
n

⎞
⎠〈σ †(t )〉.

(A21)

In the first line of Eq. (A21), the ζ th complex eigenvalue
of −Q is λζ , and it is associated with the eigenvector vE

ζ .
The complex eigenfrequencies λζ may be decomposed as the
damping decay rates γζ = −2Re(λζ ) and the frequency shifts
ωζ = −Im(λζ ), producing the exponent in Eq. (A21). The
constants aζ are to be found by imposing the steady-state
boundary conditions at zero delay time (τ = 0), while the two
quantities c and n are defined in Eq. (A17) and Eq. (A18).

With the knowledge of the two-time correlators relevant
to the optical spectrum s(ω) = 〈σ †(ω)σ (ω)〉, the spectrum
normalized in the steady state S(ω) readily follows as
[58–60,65,73–75]

S(ω) = SD +
∑

ζ=A,B,C

Sζ , (A22)

where the objects inside of the summation in Eq. (A22) have
been decomposed into the standard spectral line shapes:

Sζ (ω) = 1

π

γζ

2 Lζ − (ω − ωζ ) Kζ( γζ

2

)2 + (ω − ωζ )2
. (A23)
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Here Lζ and Kζ are the real-valued weighting coefficients of
the Lorentzian and dispersive parts respectively of Eq. (A23),
as found from the formal solution of Eq. (A21). The so-called
Rayleigh peak in Eq. (A22) is defined by

SD(ω) = LDδ(ω − ω0), (A24)

where δ(x) is the Dirac delta function. Importantly, the com-
plex eigenvalues λζ of the dynamical matrix −Q appearing in
Eq. (A19) define two regimes, defined by the critical driving
strength:

�c = γ

8
. (A25)

In what follows, we consider each case separately: first the
supercritical case (� > �c), and second the subcritical case
(� � �c).

a. The supercritical regime and the Mollow triplet

The three complex eigenvalues of −Q [see Eq. (A15)] may
be decomposed in terms of their real and imaginary parts as
1
2γζ + iωζ , leading to the exponent appearing in Eq. (A21). In
the supercritical regime (� > �c), these eigenvalues are given
by

1
2γA + iωA = 1

2γ , (A26a)

1
2γB + iωB = 3

4γ + i�M, (A26b)

1
2γC + iωC = 3

4γ − i�M, (A26c)

where we have introduced the Mollow frequency splitting �M ,
defined by

�M =
√

(2�)2 − (
γ

4

)2
. (A27)

The weighting coefficients Lζ and Kζ appearing in Eq. (A23)
provide the spectral weighting decomposition into real and
imaginary parts as follows:

LA = 1

2
, (A28a)

LB + iKB = 8�2

γ 2 + 8�2

{
16�2 − 2γ 2

(4�M )2 + γ 2
+ i

γ

4�M

16�2 − γ 2 + (4�M )2

(4�M )2 + γ 2

}
, (A28b)

LC + iKC = 8�2

γ 2 + 8�2

{
16�2 − 2γ 2

(4�M )2 + γ 2
− i

γ

4�M

16�2 − γ 2 + (4�M )2

(4�M )2 + γ 2

}
, (A28c)

LD = γ 2

γ 2 + 8�2
. (A28d)

This analysis reveals the famous Mollow triplet [3], which can
be interpreted via the progressive energy ladders sketched in
Fig. 14. At either side of an unshifted central peak (denoted by
A), there are two satellite peaks (labeled by B and C) and sep-

arated by the Mollow splitting 2�M , along with a delta peak
(denoted by D) [see Eq. (A24)]. The optical spectrum S(ω)
follows by substituting Eqs. (A26) and (A28) into Eq. (A22),
leading to the exact expression [see Eq. (30)]

S(ω) = γ 2

γ 2 + 8�2
δ(ω − ω0) + 1

2π

γ

2(
γ

2

)2 + (ω − ω0)2
− γ

π

(ω − ω0)2 + γ 2 − 16�2

4(ω − ω0)4 + (ω − ω0)2(5γ 2 − 32�2) + (γ 2 + 8�2)2 . (A29)

We plot the spectrum S(ω) of Eq. (A29) in Fig. 13(b) for
increasingly strong driving � (increasingly thick lines), and
we have neglected the central Rayleigh delta peak. The Mol-
low triplet is most apparent for larger �, where the three
constituent peaks can be most easily resolved; see for ex-
ample the case of � = γ , as given by the thick purple line
[see Eq. (A27)]. This enchanting triplet structure was first
observed in a series of pioneering experiments in the 1970s
[7–10].

b. The subcritical regime and the Mollow singlet

In the subcritical regime (� � �c) there are three real
eigenvalues of −Q, which lead to the decay rates [see
Eq. (A26)]

γA = γ , (A30a)

γB = 3
2γ − 2γM, (A30b)

γC = 3
2γ + 2γM, (A30c)

where we have defined the Mollow decay rate γM as [see
Eq. (A27)]

γM =
√(

γ

4

)2 − (2�)2. (A31)

The weighting coefficients in Eq. (A23) are now wholly real
numbers (Kζ = 0 for all ζ ), and explicitly they are given by
[see Eq. (A28)]

LA = 1
2 , (A32a)

LB = 8�2

γ 2 + 8�2

γ 2 − 16�2 + 4γ γM

(4γM )2 − 4γ γM
, (A32b)
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FIG. 14. A sketch of the energy ladder giving rise to the Mollow triplet. (a) The two states |0〉 and |1〉 of the two-level system are represented
by green bars, and are separated by the frequency ω0 (cyan arrow). The infinite number of states |n〉 of the quantum harmonic oscillator
(modeling the driving laser) are depicted by yellow bars, and the interlevel spacing ωd is shown (blue arrows). (b) At resonance (ω0 = ωd )
and in the rotating frame of the driving laser, the combined system displays doubly degenerate energy levels at nω0 via the states |0, n〉 and
|1, n − 1〉. (c) The 2LS-laser coupling splits the doubly degenerate levels, leading to a doublet spaced by 2� (red arrow). There are then four
decay channels: two of which are associated with the transition frequency ω0 (cyan arrows), one with ω0 + 2� (pink arrow), and one with
ω0 − 2� (orange arrow). These three distinct transition frequencies imply a spectral Mollow triplet.

LC = 8�2

γ 2 + 8�2

γ 2 − 16�2 − 4γ γM

(4γM )2 + 4γ γM
, (A32c)

LD = γ 2

γ 2 + 8�2
, (A32d)

which together describe a single peak, unshifted in fre-
quency. The complete spectrum S(ω) is given by Eq. (A29)
and is plotted in Fig. 13(b). The singlet is most easily seen in
the weak driving regime; see for example the case of � = γ /8
(thin red line).

APPENDIX B: A PAIR OF DRIVEN-DISSIPATIVE
TWO-LEVEL SYSTEMS

Here we show explicitly the calculations leading to the
results presented in the main text for two coupled 2LSs.
The mean populations and correlations are considered in Ap-
pendix B1, and the corresponding optical spectrum is dealt
with in Appendix B2. Since we are dealing with a pair of
few-level systems the Hilbert space is rather small, and there
are a finite number of equations of motion for the moments.

1. Populations

A generalization of the Hamiltonian given as Eq. (3) in the
main text, in order to allow for independent coherent driving

of both the first and the second 2LS respectively, can be
captured by

H̃ = �(σ †
1 σ1 + σ

†
2 σ2) + g(eiθσ

†
1 σ2 + e−iθσ

†
2 σ1)

+ �1(σ1 + σ
†
1 ) + �2(σ2 + σ

†
2 ), (B1)

where in the main text we effectively took �1 = � and �2 =
0. The quantum master equation of Eq. (7) from the main
text, along with the above Eq. (B1), leads to the following
equation of motion for the mean values of the moments:

∂t u = P − Mu, (B2)

where the 15-vectors of correlators u and drive term P are
given by

u =

⎛
⎜⎜⎝

u1

u2

u3

u4

⎞
⎟⎟⎠, P =

⎛
⎜⎜⎜⎜⎝

−i�1

−i�2

i�1

i�2

011

⎞
⎟⎟⎟⎟⎠, (B3)
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where 0n is the zero matrix (of n rows, and a single column).
The vector of mean correlators u is further decomposed into

u1 =

⎛
⎜⎜⎝

〈σ1〉
〈σ2〉
〈σ †

1 〉
〈σ †

2 〉

⎞
⎟⎟⎠, u2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

〈σ †
1 σ1〉

〈σ †
2 σ2〉

〈σ1σ2〉
〈σ †

1 σ
†
2 〉

〈σ †
1 σ2〉

〈σ1σ
†
2 〉

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (B4)

u3 =

⎛
⎜⎜⎜⎝

〈σ †
1 σ1σ2〉

〈σ1σ
†
2 σ2〉

〈σ †
1 σ1σ

†
2 〉

〈σ †
1 σ

†
2 σ2〉

⎞
⎟⎟⎟⎠, u4 = 〈σ †

1 σ1σ
†
2 σ2〉. (B5)

The 15-dimensional regression matrix M appearing inside
Eq. (B2) is given by

M =

⎛
⎜⎜⎝

M11 M12 M13 04,1

M21 M22 M23 M24

04,4 M32 M33 M34

01,4 01,6 M43 2γ0

⎞
⎟⎟⎠, (B6)

where 0n,m is the zero matrix (of n rows and m columns). The
11 submatrices of M read

M11 =

⎛
⎜⎜⎜⎜⎝

γ0

2 + i� g̃+ 0 0

g̃∗
−

γ0

2 + i� 0 0

0 0 γ0

2 − i� g̃∗
+

0 0 g̃− γ0

2 − i�

⎞
⎟⎟⎟⎟⎠, (B7)

M12 =

⎛
⎜⎜⎜⎜⎝

−2i�1 0 0 0 0 0

0 −2i�2 0 0 0 0

2i�1 0 0 0 0 0

0 2i�2 0 0 0 0

⎞
⎟⎟⎟⎟⎠, (B8)

M13 =

⎛
⎜⎜⎜⎜⎝

−2g̃+ 0 0 0

0 −2g̃∗
− 0 0

0 0 −2g̃∗
+ 0

0 0 0 −2g̃−

⎞
⎟⎟⎟⎟⎠, (B9)

M21 =

⎛
⎜⎜⎜⎜⎜⎜⎝

−i�1 0 i�1 0
0 −i�2 0 i�2

i�2 i�1 0 0
0 0 −i�2 −i�1

0 −i�1 i�2 0
−i�2 0 0 i�1

⎞
⎟⎟⎟⎟⎟⎟⎠

, (B10)

M22 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

γ0 0 0 0 g̃+ g̃∗
+

0 γ0 0 0 g̃− g̃∗
−

0 0 γ0 + 2i� 0 0 0
0 0 0 γ0 − 2i� 0 0

g̃∗
− g̃∗

+ 0 0 γ0 0
g̃− g̃+ 0 0 0 γ0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(B11)

M23 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
0 0 0 0

−2i�1 −2i�2 0 0
0 0 2i�1 2i�2

2i�1 0 0 −2i�2

0 2i�2 −2i�1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (B12)

M24 =
⎛
⎝ 04

−2γ e−iφ

−2γ eiφ

⎞
⎠, (B13)

M32 =

⎛
⎜⎜⎝

i�2 0 −i�1 0 i�1 0
0 i�1 −i�2 0 0 i�2

−i�2 0 0 i�1 0 −i�1

0 −i�1 0 i�2 −i�2 0

⎞
⎟⎟⎠,

(B14)

M33 =

⎛
⎜⎜⎜⎝

3γ0

2 + i� g̃∗
+ 0 0

g̃− 3γ0

2 + i� 0 0
0 0 3γ0

2 − i� g̃+
0 0 g̃∗

−
3γ0

2 − i�

⎞
⎟⎟⎟⎠,

(B15)

M34 =

⎛
⎜⎜⎝

−2i�2

−2i�1

2i�2

2i�1

⎞
⎟⎟⎠, (B16)

M43 = (−i�2 −i�1 i�2 i�1
)
. (B17)

In the above submatrices Mnm, we have introduced the gener-
alized coupling constants g̃±, defined as

g̃± = ±igeiθ + 1
2γ eiφ, (B18)

which account for the competition between the coherent
(geiθ ) and dissipative (γ eiφ) coupling within the coupled 2LS
system. Notably, one can see that when the unidirectional
conditions of Eq. (8) in the main text are fulfilled, one of either
g̃+ or g̃− vanishes, whereas the other remains finite. This is a
basic fingerprint hinting that one-way coupling has arisen in
the system.

In the SS, where t → ∞ and ∂t u = 0 on the left-hand side
of Eq. (B2), we are interested in several time-independent
quantities. Namely, the probabilities of having the first and
second 2LS respectively excited, n1 = 〈σ †

1 σ1〉SS and n2 =
〈σ †

2 σ2〉SS, and the joint probability that both 2LSs are excited,
nX = 〈σ †

1 σ1σ
†
2 σ2〉SS. We also have access to the probabilities

of having only 2LS-1 excited ρ1,0 = n1 − nX , only 2LS-2 ex-
cited ρ0,1 = n2 − nX , the population of the ground state ρ0,0 =
1 + nX − n1 − n2, and the population of the doubly excited
state ρ1,1 = nX . Of course, unitarity is preserved and ρ0,0 +
ρ1,0 + ρ0,1 + ρ1,1 = 1. The steady populations across the cou-
pling landscape are considered in detail in the main text.

2. Spectrum

The quantum master equation of Eq. (A13) from the main
text, combined with the quantum regression formula, gives
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FIG. 15. Populations in the asymmetric coupling regime. Mean populations as a function of the drive amplitude �, in units of the damping
rate γ0. The unidirectional magnitude condition g = γ /2 is fixed throughout. The relative phases θ − φ = {0, π/4, π/2, 3π/2} are denoted
by solid, dashed, dotted, and dash-dotted lines respectively. Top row: The dissipative coupling strength γ = γ0/2. Bottom row: γ = γ0. The
labeling of the mean population of the state |n, m〉 is displayed above the top row of panels. In the figure, the parameters � = �2 = 0.

rise to the following two-time (t and t + τ , with τ � 0 being
the delay time) equation of motion [see Eq. (B2)]:

∂τ v(t, t + τ ) = P〈σ †
1 (t )〉 − Mv(t, t + τ ), (B19)

where the column vector P is defined in Eq. (B3), and the 15 ×
15 regression matrix M is given by Eq. (B6). The 15-vector of
two-time correlators v is decomposed into [see Eq. (B3)]

v(t, t + τ ) =

⎛
⎜⎜⎝

v1

v2

v3

v4

⎞
⎟⎟⎠, (B20)

where the four component subvectors vn read

v1 =

⎛
⎜⎜⎜⎜⎝

〈σ †
1 (t )σ1(t, t + τ )〉

〈σ †
1 (t )σ2(t, t + τ )〉

〈σ †
1 (t )σ †

1 (t, t + τ )〉
〈σ †

1 (t )σ †
2 (t, t + τ )〉

⎞
⎟⎟⎟⎟⎠, (B21)

v2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈σ †
1 (t )σ †

1 (t, t + τ )σ1(t, t + τ )〉
〈σ †

1 (t )σ †
2 (t, t + τ )σ2(t, t + τ )〉

〈σ †
1 (t )σ1(t, t + τ )σ2(t, t + τ )〉

〈σ †
1 (t )σ †

1 (t, t + τ )σ †
2 (t, t + τ )〉

〈σ †
1 (t )σ †

1 (t, t + τ )σ2(t, t + τ )〉
〈σ †

1 (t )σ1(t, t + τ )σ †
2 (t, t + τ )〉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B22)

v3 =

⎛
⎜⎜⎜⎜⎝

〈σ †
1 (t )σ †

1 (t, t + τ )σ1(t, t + τ )σ2(t, t + τ )〉
〈σ †

1 (t )σ1(t, t + τ )σ †
2 (t, t + τ )σ2(t, t + τ )〉

〈σ †
1 (t )σ †

1 (t, t + τ )σ1(t, t + τ )σ †
2 (t, t + τ )〉

〈σ †
1 (t )σ †

1 (t, t + τ )σ †
2 (t, t + τ )σ2(t, t + τ )〉

⎞
⎟⎟⎟⎟⎠,

(B23)

v4 = 〈σ †
1 (t )σ †

1 (t, t + τ )σ1(t, t + τ )σ †
2 (t, t + τ )σ2(t, t + τ )〉.

(B24)

The two-time correlator 〈σ †
1 (t )σ1(t, t + τ )〉 arising from the

solution of Eq. (B19) is intrinsically linked to the optical spec-
trum of the first 2LS, s1(ω) = 〈σ †

1 (ω)σ1(ω)〉, via a Fourier
transform and an application of the Weiner-Khinchin theorem.
This procedure leads to the normalized spectrum S1(ω), in
exactly the same way as for the spectrum S(ω) of a
single 2LS as was discussed in Appendix A, or indeed
Refs. [58–60,74,75].

APPENDIX C: ASYMMETRIC COUPLING

Here we focus on the most general coupling regime where
there are essentially no restrictions on the system parameters,
such that the coupling is typically asymmetric. Within this
regime, we discuss the mean populations in Appendix C1, the
second-order degree of coherence in Appendix C2, and the
optical spectrum in Appendix C3.

1. Populations

We plot in Fig. 15 the mean population in the asymmetric
coupling case, where the unidirectional magnitude condition
g = γ /2 is fixed throughout. The relative phases θ − φ =
{0, π/4, π/2, 3π/2} are denoted by solid, dashed, dotted,
and dash-dotted lines respectively in the figure. Going from
left to right across the rows, the mean populations of the
states |1, 0〉, |0, 1〉, |1, 1〉 are displayed in blue, green, and
orange respectively. In the top panels the dissipative coupling
strength γ = γ0/2, and in the lower panels it is increased to
its maximal value of γ = γ0. In Figs. 15(a) and 15(d), the
highest populations of the state |1, 0〉 are associated with the
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FIG. 16. Correlations in the asymmetric coupling regime. Cross-correlator g(2)
12 (0), as a function of the drive amplitude �, in units of the

damping rate γ0. The relative phases θ − φ = {0, π/4, π/2} are denoted by red, blue, and green lines respectively. Upper panels: The relative
coupling strength is fixed at the unidirectional magnitude condition of g/γ = 1/2, where in panel (a) γ = γ0/2 and in panel (b) γ = γ0. Lower
panels: The relative coupling strength is fixed at g/γ = 2, where in panel (c) γ = γ0/2 and in panel (d) γ = γ0. Dashed gray lines: Guides for
the eye at g(2)

12 (0) = 1.

dash-dotted lines, representing θ − φ = 3π/2 and therefore
unidirectional coupling from 2LS-2 to 2LS-1. Conversely, the
lowest populations of |1, 0〉 are found when θ − φ = π/2
(dotted lines), since there is no backaction coming from 2LS-
2. Similarly, in panels (b) and (e) the highest populations of
the state |0, 1〉 correspond to the dotted lines, representing
θ − φ = π/2, and thus forbidding any backaction into the
second 2LS. Meanwhile, the dash-dotted lines in these panels
equate to zero population, due to the one-way nature of the
coupling. Panels (c) and (f) display the analogous results for
the doubly excited state |1, 1〉 for completeness. Clearly, the
variation in relative phase θ − φ opens up the freedom to
significantly modulate the steady-state populations of all of
the states, which is most noticeable in the lower row of panels
(d), (e), and (f) due to the stronger coupling.

2. Correlations

We plot in Fig. 16 the cross-correlator g(2)
12 (0) as a func-

tion of the drive amplitude �, where the relative phases
θ − φ = {0, π/4, π/2} are denoted by red, blue, and green
lines respectively. In the upper panels, the relative coupling
strength is fixed at the unidirectional magnitude condition
of g/γ = 1/2, where in panel (a) γ = γ0/2 and in panel
(b) γ = γ0. Both panels (a) and (b) showcase antibunching
g(2)

12 (0) < 1, and it is noticeable that with weaker coupling
in panel (a) the effect of the relative phase θ − φ is much
reduced. With stronger coupling in panel (b), the relative

phases become much more important, and especially deter-
mining with weak coupling � � γ0. In the lower panels of
Fig. 16, the relative coupling strength is fixed at the higher
ratio g/γ = 2, so unidirectional coupling is no longer pos-
sible. In panel (c) the dissipative coupling is moderate (γ =
γ0/2), and in panel (d) it is maximal (γ = γ0). Consequen-
tially, now bunching g(2)

12 (0) > 1 is primarily displayed with
weak driving � � γ0. The most extreme bunching is show-
cased in panel (d) due to the stronger coupling, especially
for nonreciprocal phases (thinner blue and green lines). The
figure highlights the tremendous variety in the system which
is opened up due to the interplay of coherent and incoherent
coupling.

3. Spectrum

In Fig. 17, we show the optical spectrum S1(ω) of the
first 2LS in the asymmetric coupling regime. In each panel,
increasingly large relative phases θ − φ = {0, π/4, π/2} are
denoted by increasingly thick colored lines, and we fix g =
γ /2 and γ = γ0. In panel (a), the driving strength � = γ0/2,
such that for the unidirectional case with θ − φ = π/2 (thin
orange line) the spectrum is a standard singlet. Remarkably,
for the other relative phases (thicker green and red lines) a
striking asymmetric doublet appears due to the asymmetric
coupling. In Fig. 17(b), the driving strength is increased to
� = γ0, so that the spectrum is a symmetric Mollow triplet
in the unidirectional coupling regime (thin orange line). Away
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FIG. 17. Spectra in the asymmetric coupling regime: optical spectrum S1(ω) of the first 2LS in the asymmetric coupling regime, in units
of the inverse damping rate γ −1

0 . In each panel, increasingly large relative phases θ − φ = {0, π/4, π/2} are denoted by increasingly thick
colored lines. (a) The driving strength � = γ0/2. (b) � = γ0. (c) � = 2γ0. In the figure, the unidirectional magnitude condition g = γ /2 is
observed, and the dissipative coupling strength is maximal γ = γ0.

from this special case, an asymmetry again appears (thicker
green and red lines) so that the spectrum almost approaches
a doublet form, with only a small third peak. The driving
strength is further increased to � = 2γ0 in Fig. 17(c). The
spectrum is now a widely separated symmetric triplet in the
unidirectional coupling regime (thin orange line). The other

phases (thicker green and red lines) lead to a skewed triplet
spectrum, which is a hallmark of asymmetric coupling in
the pair of 2LSs. The figure represents how the modulation
of the phase θ − φ can lead to significant reconstructions
of the spectrum, especially with regard to asymmetries and
additional sidebands not previously possible.
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