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Passivity-based Trajectory Tracking and Formation
Control of Nonholonomic Wheeled Robots Without

Velocity Measurements
Ningbo Li, Pablo Borja, Member, IEEE, Jacquelien M.A. Scherpen, Fellow, IEEE, Arjan van der

Schaft, Fellow, IEEE, Robert Mahony, Fellow, IEEE

Abstract—This note proposes a passivity-based control method
for trajectory tracking and formation control of nonholonomic
wheeled robots without velocity measurements. Coordinate trans-
formations are used to incorporate the nonholonomic constraints,
which are then avoided by controlling the front end of the robot
rather than the center of the wheel axle into the differential
equations. Starting from the passivity-based coordination design,
the control goals are achieved via an internal controller for
velocity tracking and heading control and an external controller
for formation in the port-Hamiltonian framework. This approach
endows the resulting controller with a physical interpretation. To
avoid unavailable velocity measurements or unreliable velocity
estimations, we derive the distributed control law with only
position measurements by introducing a dynamic extension.
In addition, we prove that our approach is suitable not only
for acyclic graphs but also for a class of non-acyclic graphs,
namely, ring graphs. Simulations are provided to illustrate the
effectiveness of the approach.

Index Terms—Passivity, wheeled robots, port-Hamiltonian,
nonholonomic constraints

I. INTRODUCTION

Recently, there has been an increasing interest in the forma-
tion control of multi-robot systems, giving rise to numerous
studies on this topic such as the surveys [1], [2], [3] and
the references therein. This note considers trajectory tracking
and formation control of a network of nonholonomic wheeled
robots.

The existing literature on formation control and trajec-
tory tracking can be classified into two groups. First, the
references where the formation trajectory tracking, for fully
actuated systems, such as single or double integrator models,
is achieved for time-varying linear and angular velocities, e.g.,
[4], [5], [6]. Second, the references that consider wheeled
robots with nonholonomic constraints, where the formation
trajectory tracking can be achieved for a specific constant
heading and an unspecified forward velocity (e.g., [7], [8]) or
in a leader-follower strategy (e.g., [9], [10], [11], [12], [13],
[14]). Notably, in the approaches that adopt the leader-follower
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strategy, the prescribed information of the leaders are known
to the follower through measuring or communication, and the
followers achieve formation control and trajectory tracking of
the whole group. In [10], the parallel heading formation and
vanishing trajectory was considered, while in [11], the case
of communication constraints was investigated. Both papers
assume that the robots have access to velocity measurements.
However, velocity sensors are expensive and may introduce
additional errors. To avoid this issue, several kinds of observers
were proposed in [12], [13], [14]. Furthermore, introducing
observers may increase the complexity of the analysis and
control design due to the nonlinear nature of the system to
be controlled. In contrast to the approaches mentioned above,
we consider the leaderless formation control and trajectory
tracking simultaneously without using velocity measurements
or implementing observers.

In this note, we model the network of wheeled robots
in port-Hamiltonian (pH) form [15]. In contrast to other
modeling approaches where the agents are modeled as single
or double integrators, the pH framework is suitable to represent
complex and heterogeneous agent dynamics. Furthermore, pH
models are convenient in terms of scalability [16], making
them suitable to represent complex networks. Since in this
modeling framework the dissipation and the energy of the
system are underscored, passivity-based control techniques
arise as a natural option to control pH systems. In particular,
passivity-based decentralized controllers allow the agents to
exert forces based on relative information with respect to their
neighbors, such as relative position, distance, and bearing. In
this control approach, virtual springs determine the formation
by shaping the energy function of the network, while the
transient response is modified by virtual dampers that inject
damping into the network.

Due to the nonholonomic constraints on the wheel axle,
there exists no continuous state feedback to stabilize the robot
dynamics [17]. In order to solve the stabilization problem,
discontinuous control laws [18] and time-varying control laws
[19] have been proposed. To deal with the nonholonomic
constraints in the pH form, we first use a coordinate trans-
formation [20] to incorporate the algebraic constraints into the
differential equations. Controlling the front end of the wheeled
robot rather than the center of the wheel axle is a common
technique to deal with nonholonomic constraints. Then, we
combine this technique with virtual couplings by changing
the assigning point to the front end of the robot. We remark
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that this approach is not restrictive in practical terms as end
effectors and sensors are usually put at the front of the robot.

The starting point for the trajectory tracking and formation
control approach proposed in this note is the passivity-based
group coordination design given in [21] and the results re-
ported in [22]. In contrast to the mentioned references, we
consider that the wheeled robots do not have access to their
velocities or relative velocities in this note. This, in principle,
hampers the damping injection, which guarantees the con-
vergence of the trajectories or better transitory response. To
overcome this issue, we propose a dynamic extension similar
to what is done in [23], [24], [25], [26], [27], and extend it
to formation networks. This dynamic extension permits in-
jecting damping without velocity measurements or observers.
Hence, to address the trajectory tracking and formation control
problems simultaneously, we propose a controller that consists
of two parts: an internal feedback that guarantees velocity
tracking and heading control for every single robot; and a dis-
tributed external controller that achieves group coordination.

The passivity-based group coordination design proposed
in [21] and [22] only considers acyclic graphs since graphs
containing cycles yield undesired equilibria [16]. In this note,
we prove that the proposed control law is applicable to acyclic
graphs and cyclic ring graphs. One of the main motivations
behind this is the fault tolerance of the network, i.e., if one of
the robots fails, the remaining graph is still connected as an
acyclic graph, and the whole system still works.

The main contributions of this paper are summarized as
follows:

• The trajectory tracking and formation control of nonholo-
nomic wheeled robots with the specified velocity and
heading are simultaneously considered in the pH form.
Moreover, we propose a general closed-loop Hamiltonian
for heading control which can address additional issues,
such as large control signals.

• Inspired by the results reported in [23], [24], [25], [26],
[27], we propose a dynamic extension approach that
permits injecting damping into the closed-loop system
without measuring velocities while preserving the pH
structure. The latter lets us extend the result to the multi-
agent case, contrary to the mentioned references where
the authors consider only one agent.

• In contrast to [21] and [22], the proposed passivity-based
design for formation control is applicable not only to
acyclic graphs but also to a class of non-acyclic graphs,
namely, ring graphs. Hence, the proposed approach is
robust against robot failures.

The rest of the paper is structured as follows. The prelimi-
naries and the problem formulation are given in Section II. The
controller design for the control goals with dynamics extension
is presented in Section III. Simulations are provided in Section
IV, and concluding remarks appear in Section V.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Preliminaries

The pH systems theory brings together port-based model-
ing, geometric mechanics, and system and control theory in
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Fig. 1. Wheeled robot with the center of the axle and the front end

physical system modeling and analysis, which provides a clear
representation of many physical processes. Considering the
energy function, the interconnection relation, and the energy-
dissipation of the system, the input-state-output pH model
[15], [28] is formulated as

¤𝑥 = (𝐽 (𝑥) − 𝑅(𝑥)) 𝜕𝐻
𝜕𝑥

(𝑥) + 𝑔(𝑥)𝑢,
𝑦 = 𝑔𝑇 (𝑥) 𝜕𝐻

𝜕𝑥
(𝑥),

where 𝑥 ∈ R𝑛 is the state, 𝑢 ∈ R𝑚 is the input, 𝑦 ∈ R𝑚 is
the output, 𝐽 (𝑥) = −𝐽𝑇 (𝑥) ∈ R𝑛×𝑛 is the skew-symmetric
interconnection matrix, and 𝑅(𝑥) = 𝑅𝑇 (𝑥) ≥ 0 ∈ R𝑛×𝑛
is the positive semi-definite dissipation matrix. 𝐻 (𝑥) is the
Hamiltonian that equals the total energy stored in the system.
It is easy to verify that the time derivative of 𝐻 (𝑥) satisfies that
¤𝐻 (𝑥) ≤ 𝑦𝑇𝑢, which leads to the passivity of the system with

respect to (𝑢, 𝑦) under the assumption that 𝐻 (𝑥) is bounded
from below. Otherwise, the system is cyclo-passive. This
passivity property is often used to prove the stability of the
closed-loop system. In contrast to other modeling approaches,
the pH systems highlight the interconnection structure related
to the exchange of energy. This suitable description of systems
is essential for passivity-based control, in which most design
techniques are achieving control objectives by energy-shaping
and damping injection. For more details of passivity-based
control and the pH systems, we refer the readers to [29], [15].

B. Problem Formulation

Consider a group of 𝑁 wheeled robots with an information
exchange topology between these robots described by a graph
G(V𝑁 , E𝑀 ). The incidence matrix 𝐵 ∈ R𝑁×𝑀 describes the
relationship between the nodes and the edges, and it takes the
following form:

𝑏𝑖 𝑗 =


+1 if node 𝑖 is at the positive side of edge 𝑗 ,

−1 if node 𝑖 is at the negative side of edge 𝑗 ,

0 otherwise.

In this note, we focus on acyclic graphs, 𝑀 = 𝑁 − 1 and
cyclic ring graphs, 𝑀 = 𝑁 , where 𝑁 ≥ 2. The graphs consist
of a node set V, where V = {𝑛1, 𝑛2, ..., 𝑛𝑁 }, and an edge
set E ⊆ V × V, where E = {𝑒1, 𝑒2, ..., 𝑒𝑀 }. The dynamics
of each wheeled robot are modeled as a rigid body with a
nonholonomic constraint on its axle. Let 𝑞𝑖 = (𝑞𝑥𝑖 , 𝑞𝑦𝑖 , 𝜙𝑖)𝑇 ∈
R3, 𝑝𝑟𝑏

𝑖
= (𝑝𝑥𝑖 , 𝑝𝑦𝑖 , 𝑝𝜙𝑖

)𝑇 ∈ R3 denote the position and
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momentum of the 𝑖-th robot respectively. Let 𝑀𝑟𝑏
𝑖

= diag
(𝑚𝑖 , 𝑚𝑖 , 𝐼𝑐𝑚𝑖

) denote the mass inertia matrix where 𝑚𝑖 is
the total mass and 𝐼𝑐𝑚𝑖

is the moment of inertia around
the center of mass of robot 𝑖. Let 𝑢𝑖 = (𝑢 𝑓𝑖 , 𝑢𝜙𝑖

)𝑇 ∈ R2

denote the vector of driving input force with forward force
𝑢 𝑓𝑖 and rotation torque 𝑢𝜙𝑖

acting on the axis of rotation. Let
𝑦𝑖 = 𝑣𝑖 = (𝑣 𝑓𝑖 , 𝑣𝜙𝑖

)𝑇 ∈ R2 denote the passive output with
forward velocity 𝑣 𝑓𝑖 and angular velocity 𝑣𝜙𝑖

. The dynamics
of the 𝑖-th wheeled robot [15] are given as

©«
¤𝑞𝑖
¤𝑝𝑟𝑏
𝑖

ª®¬ =
©«

0 𝐼3

−𝐼3 −𝐷𝑟𝑏
𝑖

ª®¬ ©«
𝜕𝐻𝑟𝑏

𝑖

𝜕𝑞𝑖
(𝑝𝑟𝑏

𝑖
)

𝜕𝐻𝑟𝑏
𝑖

𝜕𝑝𝑟𝑏
𝑖

(𝑝𝑟𝑏
𝑖
)
ª®¬ + ©«

0

𝐹 (𝑞𝑖)
ª®¬ 𝑢𝑖 ,

𝑦𝑖 = 𝐹
𝑇 (𝑞𝑖)

𝜕𝐻𝑟𝑏
𝑖

𝜕𝑝𝑟𝑏
𝑖

(𝑞𝑖 , 𝑝𝑟𝑏𝑖 ),

(1)

with

𝐷𝑟𝑏
𝑖 =

©«
𝑑 𝑓𝑖 0 0
0 𝑑 𝑓𝑖 0
0 0 𝑑𝜙𝑖

ª®¬ , 𝐹 (𝑞𝑖) = ©«
cos 𝜙𝑖 0
sin 𝜙𝑖 0

0 1

ª®¬ ,
where 𝑑 𝑓𝑖 is the forward viscous friction coefficient, and 𝑑𝜙𝑖

is the rotation viscous friction coefficient. The Hamiltonian
𝐻𝑟𝑏

𝑖
: R3 ↦→ R equals the kinetic energy

𝐻𝑟𝑏
𝑖 (𝑝𝑖) =

1
2
(𝑝𝑟𝑏𝑖 )𝑇 (𝑀𝑟𝑏

𝑖 )−1
𝑝𝑟𝑏𝑖 . (2)

The nonholonomic constraint on the wheel axle of each
robot is given by

¤𝑞𝑥𝑖 sin 𝜙𝑖 − ¤𝑞𝑦𝑖 cos 𝜙𝑖 = 0. (3)

We restrict our attention to the desired trajectory of the
whole group specified by a straight line. Therefore, the control
objectives can be reformulated as follows: each wheeled robot
tracks a specified velocity 𝑣∗

𝑖
= (𝑣∗

𝑓𝑖
, 0)𝑇 with the nonzero

forward velocity 𝑣∗
𝑓𝑖

and zero angular velocity, i.e., a constant
desired heading 𝜙∗

𝑖
, while the whole group achieves the desired

formation shape. Note that to maintain a formation shape,
𝑣∗
𝑖
, 𝜙∗

𝑖
should be the same for all the robot 𝑖, 𝑖 ∈ {1, 2, ..., 𝑁}.

Let 𝑧 𝑗 := (𝑧𝑥 𝑗
, 𝑧𝑦 𝑗

) ∈ R2 denote the relative position of the
center on 𝑥 and 𝑦 axis for two agents connected by an edge 𝑗 .
The desired formation shape is defined by 𝑧∗

𝑗
for all edges 𝑗 ,

𝑗 ∈ {1, 2, ..., 𝑀}. Therefore, the objectives can be summarized
as follows 

𝜙𝑖 (𝑡) → 𝜙∗𝑖
𝑣 𝑓𝑖 (𝑡) → 𝑣∗𝑓𝑖
𝑧 𝑗 (𝑡) → 𝑧∗𝑗

𝑎𝑠 𝑡 → ∞. (4)

III. MAIN RESULTS

In order to eliminate the nonholonomic constraint of
the model (1), we use the coordinate transformation [15]
(𝑞𝑖 , 𝑝𝑟𝑏𝑖 ) → (𝑞𝑖 , 𝑝𝑖 , 𝑝𝑠𝑖 ), with 𝑝𝑖 = (𝑝 𝑓𝑖 , 𝑝𝜙𝑖

), which trans-
forms the rigid body momentum vector 𝑝𝑟𝑏

𝑖
into the pseudo-

momentum vector (𝑝 𝑓𝑖 , 𝑝𝜙𝑖
, 𝑝𝑠𝑖 ), where 𝑝 𝑓𝑖 , 𝑝𝜙𝑖

, and 𝑝𝑠𝑖
denote the forward pseudo-momentum, the angular pseudo-
momentum, and the constrained sideway pseudo-momentum,

respectively. The specific coordinate transformation for the
model can be formulated as

©«
𝑝 𝑓𝑖

𝑝𝜙𝑖

𝑝𝑠𝑖

ª®¬ =
©«
cos 𝜙𝑖 sin 𝜙𝑖 0

0 0 1
sin 𝜙𝑖 − cos 𝜙𝑖 0

ª®¬ ©«
𝑝𝑥𝑖
𝑝𝑦𝑖
𝑝𝜙𝑖

ª®¬ (5)

Note that the dynamics of 𝑝𝑠𝑖 are eliminated in the new
coordinates due to the nonholonomic constraint. Hence, the
dynamics of the constrained state space is

©«
¤𝑞𝑖

¤𝑝𝑖

ª®®®¬ =

©«
0 𝑆𝑖 (𝑞𝑖)

−𝑆𝑇
𝑖
(𝑞𝑖) −𝐷𝑟

𝑖

ª®®®¬
©«
𝜕𝐻𝑖

𝜕𝑞𝑖
(𝑝𝑖)

𝜕𝐻𝑖

𝜕𝑝𝑖
(𝑝𝑖)

ª®®®®¬
+

©«
0

𝐼2

ª®®®¬ 𝑢𝑖
𝐻𝑖 (𝑝𝑖) = 1

2 𝑝
𝑇
𝑖
(𝑀𝑟

𝑖
)−1𝑝𝑖 , 𝑦𝑖 =

𝜕𝐻𝑖

𝜕𝑝𝑖
(𝑝𝑖),

(6)

where 𝐷𝑟
𝑖

:= 𝑆𝑇
𝑖
(𝑞𝑖)𝐷𝑟𝑏

𝑖
𝑆𝑖 (𝑞𝑖), 𝑀𝑟

𝑖
= diag(𝑚𝑖 , 𝐼𝑐𝑚𝑖

), and

𝑆𝑖 (𝑞𝑖) =
©«
cos 𝜙𝑖 0
sin 𝜙𝑖 0

0 1

ª®¬ .
The control objectives are divided into three parts: heading

control, forward velocity tracking, and formation control.
Correspondingly, the control law is the sum of the three
controllers. Moreover, we split the controller into an internal
controller for forward velocity tracking and heading control;
and an external controller for formation control.

A. Controller design for heading control and forward velocity
tracking

The first step in the control design consists in defining the
errors of interest 𝑞𝑖 = (𝑞𝑥𝑖 , 𝑞𝑦𝑖 , 𝜙𝑖)𝑇 , 𝑝𝑖 = (𝑝 𝑓𝑖 , 𝑝𝜙𝑖

), which
are given by

𝑞𝑥𝑖 := 𝑞𝑥𝑖 − 𝑞∗𝑥𝑖 , 𝑞𝑦𝑖 := 𝑞𝑦𝑖 − 𝑞∗𝑦𝑖 , 𝜙𝑖 := 𝜙𝑖 − 𝜙∗𝑖 ,

𝑝 𝑓𝑖 := 𝑝 𝑓𝑖 − 𝑝∗𝑓𝑖 , 𝑝𝜙𝑖
:= 𝑝𝜙𝑖

− 𝑝∗
𝜙𝑖
,

where 𝑞∗𝑥𝑖 , 𝑞
∗
𝑦𝑖
, 𝜙∗

𝑖
are desired positions and 𝑝∗

𝑓𝑖
, 𝑝∗

𝜙𝑖
are desired

momenta. Note that, due to the nonholonomic constraint
between the heading and velocity, ¤𝑞∗𝑥𝑖 , ¤𝑞

∗
𝑦𝑖

are time-variant
during the transition process, and the states 𝑞𝑥𝑖 , 𝑞𝑦𝑖 eventually
converge to constant values. To obtain the error dynamics, we
use the coordinate transformations twice. For heading control,
we define the heading error 𝜙𝑖 = 𝜙𝑖 − 𝜙∗. The positions are
transformed from 𝑞𝑖 = (𝑞𝑥𝑖 , 𝑞𝑦𝑖 , 𝜙𝑖)𝑇 to 𝑞𝑖 = (𝑞𝑥𝑖 , 𝑞𝑦𝑖 , 𝜙𝑖)𝑇 ,
and 𝑝𝑖 remains the same. For forward velocity tracking, the
following generalized canonical coordinate transformations
[30] are introduced to derive the error dynamics:(

𝑞𝑖 (𝑡)
𝑝𝑖 (𝑡)

)
=

(
𝑞𝑖 −

(
𝑞𝑖 (0) +

∫ 𝑡

0 𝑆𝑖 (𝑞𝑖 (𝜎))𝑣
∗
𝑖
𝑑𝜎

)
𝑝𝑖 − 𝑀𝑟

𝑖
𝑣∗
𝑖

)
, (7)

where 𝑡 ∈ R+ denotes the time, 𝑞𝑖 = (𝑞𝑥𝑖 , 𝑞𝑦𝑖 , 𝜙𝑖)𝑇 , and

𝑆𝑖 (𝑞𝑖) = ©«
cos(𝜙𝑖 + 𝜙∗𝑖 ) 0
sin(𝜙𝑖 + 𝜙∗𝑖 ) 0

0 1

ª®¬ .
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Since 𝑣∗
𝑖
= (𝑣∗

𝑓𝑖
, 0)𝑇 , with desired angular velocity 𝑣∗

𝜙𝑖
= 0,

it follows that 𝜙𝑖 = 𝜙𝑖 . In new coordinate (𝑞𝑖 , 𝑝𝑖), note that
𝑆𝑖 (𝑞𝑖) = 𝑆𝑖 (𝑞𝑖).

The open-loop system (6) has no potential energy, which
is fundamental to determining the equilibrium point of a
mechanical system. Therefore, we need to design a control law
that assigns the desired potential 𝑈𝑖 (𝑞𝑖) : R3 → R+ energy to
the error system. While such energy has no fixed structure,
for stability purposes, it is convenient to propose it positive
definite with respect to zero, i.e.,

𝑈𝑖 (0) = 0, 𝑈𝑖 (𝑞𝑖) > 0 ∀ 𝑞𝑖 ∈ R3 − {0}. (8)

To avoid large control signals when the heading error is
large, we choose the following desired potential energy

𝑈𝑖 (𝑞𝑖) =
1
2
𝑞2
𝑥𝑖
+ 1

2
𝑞2
𝑦𝑖
+ 𝑘 𝜙

𝑖
ln |cosh 𝜙𝑖 |. (9)

where the control gain 𝑘
𝜙

𝑖
> 0. Moreover, to preserve the

physical meaning of the controller, we select the following
desired kinetic energy

𝑇𝑖 (𝑝𝑖) =
1
2
𝑝𝑇𝑖 (𝑀𝑟

𝑖 )−1𝑝𝑖 . (10)

Therefore, the desired Hamiltonian is given by

𝐻ℎ𝑣
𝑖 (𝑞𝑖 , 𝑝𝑖) = 𝑈𝑖 (𝑞𝑖) + 𝑇𝑖 (𝑝𝑖), (11)

where the superscript ℎ𝑣 stands for heading control plus
forward velocity tracking.

The following theorem introduces the control law that ad-
dresses the heading stabilization and forward velocity tracking
problems.

Proposition 1. Consider the system (6) in closed-loop with

𝑢ℎ𝑣𝑖 = −𝑆𝑇𝑖 (𝑞𝑖)
𝜕𝑈𝑖

𝜕𝑞𝑖
(𝑞𝑖) − 𝐷𝑟

𝑖 𝑣
∗
𝑖 , (12)

with 𝑈𝑖 (𝑞𝑖) given in (9). The closed-loop system tracks the
desired forward velocity 𝑣∗

𝑓 ,𝑖
and desired heading 𝜙∗

𝑖
.

Proof. Considering the first row of (7) we have

¤̄𝑞𝑖 = 𝑆𝑖 (𝑞𝑖) (𝑀𝑟
𝑖
)−1𝑝𝑖 − 𝑆𝑖 (𝑞𝑖)𝑣∗𝑖

= 𝑆𝑖 (𝑞𝑖) (𝑀𝑟
𝑖
)−1𝑝𝑖 ,

(13)

where we used the definition of the error of velocity. Moreover,

¤̄𝑝𝑖 = −𝐷𝑟
𝑖
(𝑀𝑟

𝑖
)−1𝑝𝑖 + 𝑢ℎ𝑣𝑖

= −𝑆𝑇
𝑖
(𝑞𝑖)

𝜕𝑈𝑖

𝜕𝑞𝑖
(𝑞𝑖) + 𝐷𝑟

𝑖

(
𝑣∗𝑖 − (𝑀𝑟

𝑖 )−1𝑝𝑖

)
= −𝑆𝑇

𝑖
(𝑞𝑖)

𝜕𝑈𝑖

𝜕𝑞𝑖
(𝑞𝑖) − 𝐷𝑟

𝑖 (𝑀𝑟
𝑖 )−1𝑝𝑖 .

(14)

Hence, combining (13) and (14), we can express the closed-
loop system as a pH system. i.e.

©«
¤̄𝑞𝑖

¤̄𝑝𝑖

ª®¬ =
©«

0 𝑆𝑖 (𝑞𝑖)

−𝑆𝑇
𝑖
(𝑞𝑖) −𝐷𝑟

𝑖

ª®¬
©«
𝜕𝐻ℎ𝑣

𝑖

𝜕𝑞𝑖
(𝑞𝑖 , 𝑝𝑖)

𝜕𝐻ℎ𝑣
𝑖

𝜕𝑝𝑖
(𝑞𝑖 , 𝑝𝑖)

ª®®®®¬
(15)

where 𝐻ℎ𝑣
𝑖

(𝑞𝑖 , 𝑝𝑖) is defined as in (11), with the kinetic and
potential energies given by (10) and (9), respectively. Note
that 𝐻ℎ𝑣

𝑖
(𝑞𝑖 , 𝑝𝑖) satisfies the following

𝐻ℎ𝑣
𝑖

(0) = 0
𝐻ℎ𝑣

𝑖
(𝑞𝑖 , 𝑝𝑖) > 0, ∀ (𝑞𝑖 , 𝑝𝑖) ≠ (0, 0). (16)

Take 𝐻ℎ𝑣
𝑖

(𝑞𝑖 , 𝑝𝑖) as a candidate Lyapunov function. Its
time-derivative is given by

¤𝐻ℎ𝑣
𝑖 (𝑞𝑖 , 𝑝𝑖) = ¤̄𝑞𝑇𝑖

𝜕𝐻ℎ𝑣
𝑖

𝜕𝑞𝑖
+ ¤̄𝑝𝑇𝑖

𝜕𝐻ℎ𝑣
𝑖

𝜕𝑝𝑖

= −𝑝𝑇𝑖 (𝑀𝑟
𝑖 )−1𝐷𝑟

𝑖 (𝑀𝑟
𝑖 )−1𝑝𝑖 .

(17)

Now, by invoking LaSalle’s invariance principle, we get
that the trajectories of the closed-loop system converge to
the largest invariant set such that ¤𝐻ℎ𝑣

𝑖
= 0. On this set

𝐷𝑟
𝑖
(𝑀𝑟

𝑖
)−1𝑝𝑖 = 0, which implies that 𝑝𝑖 = 0 and ¤̄𝑝𝑖 = 0,

i.e., 𝑣𝑖 = 𝑣∗𝑖 . Substituting ¤̄𝑝𝑖 = 0 and 𝑝𝑖 = 0 into (15) yields

𝑆𝑇𝑖
𝜕𝐻ℎ𝑣

𝑖

𝜕𝑞𝑖
=

(
𝑞𝑥𝑖 cos 𝜙𝑖 + 𝑞𝑦𝑖 sin 𝜙𝑖

𝑘
𝜙

𝑖
tanh 𝜙𝑖

)
=

(
0
0

)
(18)

The second row of (18) implies that 𝜙𝑖 = 0 on this invariant
set, thus completing the proof. □

Remark 1. Since 𝑝𝑖 = 0 and 𝜙𝑖 = 𝜙∗
𝑖

on the invariant set
such that ¤𝐻ℎ𝑣

𝑖
= 0, the states 𝑞𝑥𝑖 , 𝑞𝑦𝑖 eventually converge to

constant values. For the control objective, such values are not
relevant. Hence, it is not necessary to prove 𝑞𝑥𝑖 , 𝑞𝑦𝑖 converge
to zero.

Remark 2. Different choices for 𝑈𝑖 (𝑞𝑖) may be used to
address additional problems, e.g., transient response of the
closed-loop system or saturated control signals. See, for in-
stance, [26]. Note that for the choice proposed in (12), the
heading control term vanishes only if the heading error is zero
and saturates when the error is large.

Remark 3. To provide a physical interpretation of the con-
troller (12), note that the term

−𝑆𝑇𝑖 (𝑞𝑖)
𝜕𝑈𝑖

𝜕𝑞𝑖
(𝑞𝑖)

shapes the potential energy of the system. This can be under-
stood as virtual rotational springs that pull the robot toward
the desired heading. On the other hand, the term 𝐷𝑟

𝑖
𝑣∗
𝑖

injects
virtual damping to preserve the pH structure for the error
system.

B. Dynamics extension for formation control

To achieve the desired formation, we design a control law
that can be interpreted as virtual springs and virtual dampers
that interconnect the agents. In this control approach, the
virtual springs ensure the stability of the equilibrium for the
closed-loop system, while the virtual dampers are used to
guarantee the convergence to this equilibrium and improve the
transient performance [15]. Note that the desired Hamiltonian
for formation control is equal to the potential energy stored in
the spring which is defined as 𝐻 𝑓

𝑗
= 1

2 𝑧
𝑇
𝑗
𝐾

𝑓

𝑗
𝑧 𝑗 with the error
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of relative position 𝑧 𝑗 = 𝑧 𝑗 − 𝑧∗𝑗 , where 𝐾 𝑓

𝑗
= 𝑑𝑖𝑎𝑔(𝑘 𝑓

𝑥 𝑗
, 𝑘

𝑓
𝑦 𝑗
) ∈

R2×2 is the positive spring constants matrix. Based on the idea
of virtual couplings, we propose the following control law for
each agent.

𝑢
𝑓

𝑖
= −𝐺𝑖 (𝜙𝑖) (𝐾 𝑓

𝑗
𝑧 𝑗 + 𝐷 𝑓

𝑗
¤̄𝑧 𝑗 ), (19)

where
𝐺𝑖 (𝜙𝑖) =

(
cos 𝜙𝑖 sin 𝜙𝑖

−𝑑 sin 𝜙𝑖 𝑑 cos 𝜙𝑖

)
is used to change the assigning point from the center of the
wheel axle to the front end of the robot. Therefore, the control
is not hindered by the constraint on the wheel axle. 𝑑 denotes
the distance between the center of mass and the front end of
the robot. In (19), the subscript 𝑗 denotes the edges connecting
the agent 𝑖 and superscript 𝑓 denotes the formation control law.
The virtual spring term 𝐾

𝑓

𝑗
𝑧 𝑗 determines the formation shape,

while the virtual damping term 𝐷
𝑓

𝑗
¤̄𝑧 𝑗 with the positive virtual

damping constants matrix 𝐷 𝑓

𝑗
= 𝑑𝑖𝑎𝑔(𝑑 𝑓

𝑥 𝑗
, 𝑑

𝑓
𝑦 𝑗
) ∈ R2×2 shapes

the transient response.
Consider a connected graph G(V𝑁 , E𝑀 ) of 𝑁 wheeled

robots. Let 𝐵 denote the incidence matrix. The whole control
input is given by 𝑢ℎ𝑣 and 𝑢 𝑓 , where 𝑢ℎ𝑣 and 𝑢 𝑓 are the
compact form of 𝑢ℎ𝑣

𝑖
and 𝑢 𝑓

𝑖
,

𝑢𝑤 = 𝑢ℎ𝑣 + 𝑢 𝑓

= −(0𝑇𝑛 , 1𝑇𝑛 )𝑇 𝑘 𝜙 tan 𝜙 − 𝐷𝑟𝑣∗ − 𝐺 (𝑞) (𝐵 ⊗ 𝐼2)𝐾 𝑓 𝑧

− 𝐺 (𝑞) (𝐵 ⊗ 𝐼2)𝐷 𝑓 ¤̄𝑧,
(20)

where 𝑢𝑤 ∈ R2𝑁 . Note that in the following part when the
subscript 𝑖 is omitted, it means the state is in compact form for
all agents. The dynamics of the closed-loop system in compact
form with the controller (20) as input can be described as

©«
¤̄𝑞

¤̄𝑝

¤̄𝑧

ª®®®®®¬
=

©«
0 𝑆(𝑞) 0

−𝑆𝑇 (𝑞) −�̄� (𝑞) −𝐺∗ (𝑞)

0 𝐺∗𝑇 (𝑞) 0

ª®®®®®¬
©«

𝜕𝐻𝑤

𝜕�̄�
(𝑞, 𝑝, 𝑧)

𝜕𝐻𝑤

𝜕�̄�
(𝑞, 𝑝, 𝑧)

𝜕𝐻𝑤

𝜕�̄�
(𝑞, 𝑝, 𝑧)

ª®®®®®®¬
,

where 𝐺∗ (𝑞) = 𝐺 (𝑞) (𝐵 ⊗ 𝐼2), and

�̄� (𝑞) = 𝐷𝑟 + 𝐺∗ (𝑞)𝐷 𝑓𝐺∗𝑇 (𝑞).

The corresponding desired Hamiltonian is

𝐻𝑤 (𝑞, 𝑝, 𝑧) = 𝐻ℎ𝑣 (𝑞, 𝑝) + 𝐻 𝑓 (𝑧).

Note that the superscript 𝑤 in 𝐻𝑤 and 𝑢𝑤 denotes that
the control law and Hamiltonian are derived considering that
the relative velocity is measurable. In particular, the control
law (20) depends on the relative velocity. However, velocity
sensors are expensive and may introduce additional errors. To
avoid these issues, we propose a control law that does not
require velocity measurements.

In control practice, to avoid relying on the unavailable
velocity measurement or unreliable velocity estimates, the
following so-called dirty-derivatives filter [25] in the frequency
domain can be introduced as

a =
𝑏

𝑠 + 𝑎 ¤𝑞 ⇔ a =
𝑏𝑠

𝑠 + 𝑎 𝑞, (21)

where 𝑎, 𝑏 are parameters of the filter, 𝑠 is corresponding to
the 𝑑

𝑑𝑡
operator in time domain. 𝑞 is the position measurement

and a can be used to replace the velocity term. Define 𝑥𝑐 as
the state of the controller and assume a = 𝑥𝑐 + 𝑏𝑞, we have
the dynamic position-feedback controller in the time domain
as

¤𝑥𝑐 = −𝑎(𝑥𝑐 + 𝑏𝑞), (22)

whose output 𝑢𝑐 = −𝑘1𝑞− 𝑘2a is usually used as the input for
the plant, where 𝑘1 and 𝑘2 are corresponding control gains.

The robots do not have access to their velocity or relative
velocity, that is, implementing the control input (20) without
relying on the relative velocity ¤𝑧. The term ¤̄𝑧 is used to improve
the rate at which the system converges to the desired forma-
tion. Using the idea of (21) and (22), we design the following
dynamics of the relative position feedback controller:

¤𝑧𝑑 := 𝐾𝑐 (𝑧 − 𝐾𝑑𝑧𝑑), (23)

where 𝐾𝑐, 𝐾𝑑 ∈ R2𝑀×2𝑀 are positive-definite diagonal ma-
trices. Define 𝐾𝑐 (𝑧 − 𝐾𝑑𝑧𝑑) as the output of the controller
dynamics (23) and use this to replace the unavailable relative
velocity, the new control input is given by

𝑢 := −
(
𝑞𝑥 cos 𝜙 + 𝑞𝑦 sin 𝜙

𝑘 𝜙 tanh 𝜙

)
− 𝐺 (𝑞) (𝐵 ⊗ 𝐼2)𝐾𝑣𝑧 + 𝑢𝑑 , (24)

where 𝑢 ∈ R2𝑁 , 𝑢𝑑 = −𝐺 (𝑞) (𝐵⊗ 𝐼2)𝐷 𝑓𝐾𝑐 (𝑧−𝐾𝑑𝑧𝑑). Define
the desired Hamiltonian as

𝐻 (𝑞, 𝑝, 𝑧, 𝑧𝑑) = 𝐻𝑤 (𝑞, 𝑝, 𝑧) + 1
2
(𝑧 − 𝐾𝑑𝑧𝑑)𝑇𝐾𝑐 (𝑧 − 𝐾𝑑𝑧𝑑).

(25)
The closed-loop system with control input (24) can be de-
scribed as

©«
¤̄𝑞
¤̄𝑝
¤̄𝑧
¤𝑧𝑑

ª®®®¬ =

©«
0 𝑆(𝑞) 0 0

−𝑆𝑇 (𝑞) −�̄�𝑟 (𝑞) −𝐺∗ (𝑞) 0
0 𝐺∗𝑇 (𝑞) 0 0
0 0 0 −(𝐾𝑑)−1

ª®®®¬
×

©«
𝜕𝐻
𝜕�̄�

(𝑞, 𝑝, 𝑧, 𝑧𝑑)
𝜕𝐻
𝜕�̄�

(𝑞, 𝑝, 𝑧, 𝑧𝑑)
𝜕𝐻
𝜕�̄�

(𝑞, 𝑝, 𝑧, 𝑧𝑑)
𝜕𝐻

𝜕�̄�𝑑
(𝑞, 𝑝, 𝑧, 𝑧𝑑)

ª®®®®¬
.

(26)

Theorem 1. Assume that a group of agents modeled in (1) is
connected as an acyclic graph or a cyclic ring graph defined in
II.B. Using the control law (24), the agents achieve the control
objectives provided in (4).

Proof. Take the Hamiltonian 𝐻 (𝑞, 𝑝, 𝑧, 𝑧𝑑), given in (25), as
a candidate Lyapunov function. Note that 𝐻 (𝑞, 𝑝, 𝑧, 𝑧𝑑) ≥ 0.
Moreover, its time derivative is given by

¤𝐻 = ¤̄𝑞⊤ 𝜕𝐻
𝜕�̄�

+ ¤̄𝑝⊤ 𝜕𝐻
𝜕�̄�

+ ¤̄𝑧⊤ 𝜕𝐻
𝜕�̄�

+ ( ¤̄𝑧𝑑)⊤ 𝜕𝐻

𝜕�̄�𝑑

= −𝑝𝑇 (𝑀𝑟 )−1𝐷𝑟 (𝑀𝑟 )−1𝑝

−(𝑧 − 𝐾𝑑𝑧𝑑)⊤𝐾𝑐 (𝑧 − 𝐾𝑑𝑧𝑑).
(27)

Hence, it follows from LaSalle’s invariance principle that
the system (26) converges to the largest invariant set where
¤𝐻 = 0. Note that on this set 𝑝 = 0 and 𝑧−𝐾𝑑𝑧𝑑 = 0, therefore
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¤̄𝑝 = 0. Substituting 𝑝 = 0, ¤̄𝑝 = 0 and 𝑧 − 𝐾𝑑𝑧𝑑 = 0 into (26),
we get the following expression:

−𝑆𝑇 (𝑞) 𝜕𝐻
𝜕𝑞

− 𝐺 (𝑞) (𝐵 ⊗ 𝐼2)
𝜕𝐻

𝜕𝑧
= 0. (28)

Note that 𝐺 (𝑞) is invertible, with

𝐺−1 (𝑞) = 1
𝑑

(
𝑑 cos(𝜙 + 𝜙∗) − sin(𝜙 + 𝜙∗)
𝑑 sin(𝜙 + 𝜙∗) cos(𝜙 + 𝜙∗)

)
, (29)

where 𝑑 is the distance between the center of mass and the
front end of the robot. Premultiplying (28) by 𝑑𝐺−1 (𝑞) and
rearranging the terms, we get

0 =

(
sin 𝜙
− cos 𝜙

)
𝑘 𝜙 tanh 𝜙 − 𝑑 (𝐵 ⊗ 𝐼2)𝐾 𝑓 𝑧. (30)

Hence, differentiating (30) we obtain(
sin 𝜙
− cos 𝜙

)
𝑘 𝜙 ¤𝜙 tanh 𝜙 +

(
sin 𝜙
− cos 𝜙

)
𝑘 𝜙 ¤̄𝜙 sec2 𝜙

−𝑑 (𝐵 ⊗ 𝐼2)𝐾 𝑓 ¤̄𝑧 = 0.
(31)

Furthermore, according to the closed-loop system (26) and
𝑝 = 0 we derive that ¤̄𝜙 = 0 and ¤̄𝑧 = 0, hence

0 =

(
sin 𝜙
− cos 𝜙

)
𝑘 𝜙 ¤𝜙 tanh 𝜙. (32)

Note that (32) implies ¤𝜙 tanh 𝜙 = 0. Therefore, we conclude
that on the largest invariant set such that ¤𝐻 = 0, we have either
¤𝜙 = 0 or 𝜙 = 0.

Suppose that ¤𝜙 = 0. Hence the formation is preserved only
if 𝜙∗

𝑖
= 𝜙∗𝑐 for all robots 𝑖, where 𝜙∗𝑐 is the common desired

heading angle. Since we proved that ¤̄𝜙 = 0, under the condition
¤𝜙 = 0, we have ¤𝜙∗

𝑖
= ¤𝜙∗𝑐 = 0, where ¤𝜙∗𝑐 is the common

desired angular velocity that depends on the desired trajectory.
Furthermore, when ¤𝜙∗𝑐 = 0, to preserve a certain formation,
it is required that 𝑣∗

𝑓𝑖
= 𝑣∗𝑐, for all robots 𝑖, where 𝑣∗𝑐 is

some common desired forward velocity. Hence, we derive that
¤𝑧∗
𝑗
= 0 for all edges 𝑗 . Moreover, since we have proved that

¤̄𝑧 = 0, it follows that ¤𝑧 = 0.
Without loss of generality, for the edge 𝑗 between robot 𝑖

and robot 𝑘 we have

¤𝑧 𝑗 = 𝐺−1 (𝜙𝑖) ¤𝑞𝑖 − 𝐺−1 (𝜙𝑘) ¤𝑞𝑘

=

(
cos 𝜙𝑖 −𝑑 sin 𝜙𝑖
sin 𝜙𝑖 𝑑 cos 𝜙𝑖

)
(𝑀𝑟 )−1𝑝𝑖−(

cos 𝜙𝑘 −𝑑 sin 𝜙𝑘
sin 𝜙𝑘 𝑑 cos 𝜙𝑘

)
(𝑀𝑟 )−1𝑝𝑘 .

(33)

Since 𝑝 = 0 on the invariant set, it follows that 𝑝𝑖 = 𝑝∗𝑖 for
all robot 𝑖. Then we have (𝑀𝑟 )−1𝑝𝑖 = (𝑀𝑟 )−1𝑝𝑘 = (0, 1)𝑇𝑣∗𝑐.
Therefore, we have the following equation due to ¤𝑧 = 0(

cos 𝜙𝑖 − cos 𝜙𝑘 −𝑑 (sin 𝜙𝑖 − sin 𝜙𝑘)
sin 𝜙𝑖 − sin 𝜙𝑘 𝑑 (cos 𝜙𝑖 − cos 𝜙𝑘)

)
𝑣∗𝑐 = 0. (34)

Since it is assumed that 𝑣∗𝑐 ≠ 0, (34) implies that 𝜙𝑖 =

𝜙𝑘 . In addition, the graph of the formation is assumed to be
connected, hence 𝜙𝑖 and 𝜙𝑖 for all 𝑖 converge to common

values 𝜙𝑐 and 𝜙𝑐. Note that the sum of the rows of 𝐵 is zero,
then we sum equations (30) over 𝑖 to obtain

0 =

𝑁∑︁
𝑖=1

(
sin 𝜙𝑖
− cos 𝜙𝑖

)
𝑘
𝜙

𝑖
tanh 𝜙𝑖

=

(
sin 𝜙𝑐
− cos 𝜙𝑐

)
tanh 𝜙𝑐

𝑁∑︁
𝑖=1

𝑘
𝜙

𝑖
.

(35)

Since 𝑘 𝜙
𝑖

is positive, it follows that 𝜙 = 0. Substituting 𝜙 = 0
into (30), we have

0 = (𝐵 ⊗ 𝐼2)𝐾 𝑓 𝑧. (36)

Now suppose that 𝜙 = 0, then following the same reasoning,
substituting 𝜙 = 0 into (30), we get (36).

Since 𝐾 𝑓 is a positive-definite diagonal matrix, it is con-
cluded from (36) that 𝑧 converges to the set {𝑧 |𝑧 ∈ 𝑘𝑒𝑟 (𝐵 ⊗
𝐼2)}. Now we split the problem into two different kinds of
graphs for the formation, namely, acyclic line graphs and
cyclic ring graphs.

Case 1: acyclic line graph. If the graph is a connected
acyclic line graph, the columns of the incidence matrix 𝐵 are
linearly independent. Therefore the kernel of 𝐵 is a null set,
and it follows that 𝑧 = 0.

Case 2: cyclic ring graph. If the graph is a connected cyclic
ring graph, the columns of the incidence matrix 𝐵 are linearly
dependent. Thus the kernel of 𝐵 is not a null set anymore.
However, the ring graph is connected and satisfies that 𝐵𝑇𝐵 =

𝐵𝐵𝑇 , which combined with (36) guarantees that

𝑧 ∈ im𝟙N, (37)

where 𝟙𝑁 is the vector of ones of dimension 𝑁 . Furthermore,∑𝑁
𝑗=1 𝑧 𝑗 = 0 follows from the geometric properties of the ring

graph. For the desired ring graph, we also have
∑𝑁

𝑗=1 𝑧
∗
𝑗
= 0.

Therefore, it follows that
∑𝑁

𝑗=1 𝑧 𝑗 = 0. This in combination
with (37) ensures that 𝑧 = 0, thus completing the proof. □

IV. SIMULATIONS

We verify the effectiveness of Theorem 1 by numerical
simulations in Matlab. Consider a network of 𝑁 = 3 wheeled
robots whose model parameters are shown in Table I.

TABLE I
MODEL PARAMETERS OF WHEELED ROBOTS

Parameter Value
Mass 𝑚𝑖 [𝑘𝑔] 0.167

Inertia 𝐼𝑐𝑚,𝑖 [𝑘𝑔 · 𝑚2 ] 9.69 · 10−5

Damping 𝑑 𝑓 ,𝑖 [𝑘𝑔/𝑠] 2
Damping 𝑑\,𝑖 [𝑘𝑔 · 𝑚2/𝑠] 0.2

Distance 𝑑 [𝑚] 0.06

The three robots are interconnected in an acyclic line graph
and a cyclic triangular graph respectively. For the local con-
trollers of heading control and velocity control, the parameters
are set as follows: 𝜙∗ = 𝜋

2 rad, 𝑘 𝜙 = 0.1 kg/s, and 𝑣∗
𝑓𝑖
= 0.2 m/s

for 𝑖 ∈ {1, 2, 3}. For the distributed formation controller where
wheeled robots exchange their information, the parameters are
set as 𝑘 𝑓

𝑥 𝑗
= 2 kg/s2, 𝑘 𝑓

𝑦 𝑗
= 2 kg/s2, 𝑑 𝑓

𝑥 𝑗
= 1 kg/s, 𝑑 𝑓

𝑦 𝑗
= 1 kg/s,
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Fig. 2. Trajectories of wheeled robots (dashed lines denote the acyclic line
formation and solid lines denote the cyclic triangular formation.)

𝑘𝑐𝑥 𝑗
= 3 kg/s, 𝑘𝑐𝑦 𝑗

= 3 kg/s and 𝑘𝑑𝑥 𝑗
= 1 kg/s, 𝑘𝑑𝑦 𝑗

= 1 kg/s
where 𝑗 ∈ {1, 2} for acyclic graph and 𝑗 ∈ {1, 2, 3} for the
cyclic graph.

The simulation is performed using MATLAB. The initial
conditions of both plots are the same. See Table II.

TABLE II
INITIAL CONDITIONS

Variable Value
𝑞𝑥 (0) (0.83, 1.00, 1.15) m
𝑞𝑦 (0) (0.17, 0.19, 0.19) m
𝜙 (0) (1.68, 1.89, 1.48) rad
𝑝 𝑓 (0) (0, 0, 0) kg·m/s
ℎ (0) (0, 0, 0) kg·m2/s

For the desired conditions of two graphs, the line graph is
given as 𝑧∗𝑥 𝑗

= 0.4 m, 𝑧∗𝑦 𝑗
= 0 m, 𝑗 = 1, 2 and the triangular

graph is given as 𝑧∗𝑥1 = 0.15 m, 𝑧∗𝑥2 = 0.15 m, 𝑧∗𝑥3 = −0.3 m,
𝑧∗𝑦1 = 0.15

√
3 m, 𝑧∗𝑦2 = −0.15

√
3 m, 𝑧∗𝑦3 = 0 m.

The trajectories of the wheeled robots are shown in Fig.
2, where the dotted lines are the trajectories of the acyclic
line graph and the solid lines are the trajectories of the
cyclic triangular graph. The time evolution of heading 𝜙,
forward velocity 𝑣 𝑓 and relative positions 𝑧𝑥 , 𝑧𝑦 of two graphs
are shown in Fig. 3 and Fig. 4. The colored lines are the
trajectories of the three wheeled robots and the dotted lines
are the desired values 𝜙∗, 𝑣∗

𝑓
, 𝑧∗𝑥 respectively. While the time

evolution of the angular velocity 𝑣𝜙 is omitted since it shows
a similar trend. Fig. 2 - Fig. 4 show that the heading and the
velocity of each wheeled robot converge to the desired value
and the desired formation of the group is achieved, which is
in accordance with Theorem 1.

In addition to the presented simulations, we have performed
simulations with measurement noise included, and the results
are very similar.

V. CONCLUSIONS

In order to achieve trajectory tracking and formation control
without velocity measurements, an integrated controller with

Fig. 3. Time evolution of heading 𝜙, forward velocity 𝑣 𝑓 and relative position
of the acyclic line graph

Fig. 4. Time evolution of heading 𝜙, forward velocity 𝑣 𝑓 and relative position
of the cyclic triangular graph

only relative position feedback is derived. The controller
consists of a local heading control part, a forward velocity
tracking part, and a distributed formation control part. By
introducing a dynamic extension into the controller, the veloc-
ity measurements or unreliable velocity estimates are avoided.
Simulation results illustrate the effectiveness of the approach.

This paper starts with displacement-based group coordina-
tion design, which means each robot can measure relative
position based on its own coordinate with the orientation
alignment of all the robots. The design is based on the
consensus problem in the passivity framework. However, more
recently, there is an increasing interest in distance-based and
bearing-based formation control, where the rigidity theory
plays a key role. Since the pH theory is a powerful tool to
study the network dynamics due to the Dirac structure behind
it, how to incorporate rigidity formation into the pH framework
is an interesting topic for future research [31].
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