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1. Introduction

The experimental results from the Fermilab Muon g-2 experiment [1] and E821 experiment [2],
for the muon anomalous magnetic moment, motivates reducing the errors on lattice QCD calcula-
tions of the leading order hadronic vacuum polarization contribution to the muon anomalous mag-
netic moment (𝑎HVP,LO

𝜇 ). There is a comprehensive review [3] of the theoretical calculations of
𝑎HVP,LO
𝜇 .

This project is part of the Fermilab Lattice, HPQCD and MILC collaboration’s [4–9] work
on computing 𝑎HVP,LO

𝜇 . Reducing the theoretical uncertainty of 𝑎HVP,LO
𝜇 below 1% requires the

inclusion of isospin breaking effects. These arise from the up and down quarks unequal masses,
𝑚𝑢 ≠ 𝑚𝑑 , and their unequal electric charges, 𝑄𝑢 = 2𝑒/3 ≠ 𝑄𝑑 = −𝑒/3. This project aims to
calculate the QED isospin breaking correction to the light and strange connected 𝑎HVP,LO

𝜇 .
We use the following definition for the QED correction to the 𝑎HVP,LO

𝜇 , 𝛿𝑎 𝑓
𝜇,

𝛿𝑎
( 𝑓 )
𝜇 ≡ 𝑎

𝑓
𝜇 (𝑚 𝑓 , 𝑄 𝑓 ) − 𝑎

𝑓
𝜇 (𝑚 𝑓 , 0), (1)

where 𝑓 labels the quark flavour and the difference is evaluated at equal renormalised quark mass.
The QED correction to the connected strange 𝑎HVP,LO

𝜇 is then

𝛿𝑎 (𝑠)
𝜇 = 𝑎𝑠𝜇 (𝑚𝑠,−1/3𝑒) − 𝑎𝑠𝜇 (𝑚𝑠, 0), (2)

with corresponding formulas for the up and down quarks. The QED correction to the light connected
𝑎HVP,LO
𝜇 is the sum of the corrections for the up and down quarks,

𝛿𝑎 (𝑙)
𝜇 = 𝛿𝑎 (𝑢)

𝜇 + 𝛿𝑎 (𝑑)
𝜇 . (3)

We originally extract QED corrections to 𝑎𝜇 at fixed bare quark mass (Δ𝑎𝜇) and then convert
to 𝛿𝑎𝜇 using

𝛿𝑎𝜇 = Δ𝑎𝜇 − 𝛿𝑚𝑞
𝜕𝑎𝜇

𝜕𝑚𝑞
(4)

A Dashen-like scheme is used to set the renormalized quark mass following [10, 11].

2. Simulation Details

We measured correlators on gauge field ensembles generated with the Highly Improved Stag-
gered Quark (HISQ) action [12] with 2+1+1 flavours of dynamical sea quarks and physical pion
masses. In order to take the continuum limit we took measurements on three ensembles with lattice
spacings of approximately 0.15, 0.12, and 0.09 fm. The HISQ ensembles were generated by the
MILC collaboration [13, 14]. The basic parameters of the ensembles are in Table 1. The lattice
spacing is fixed using the Wilson flow parameter 𝑤0=0.1715(9) fm [15].

name 𝐿3x𝑇 𝑤0/𝑎 𝑀𝜋𝐿 𝑀𝜋 (MeV) 𝑁cfg

very coarse 323x48 1.13215(35) 3.30 134.73(71) 1844
coarse 483x64 1.41490(60) 3.88 132.73(70) 967
fine 643x96 1.95180(70) 3.66 128.34(68) 596

Table 1: Properties of the gauge field ensembles used in the measurements. The lattice spacings, 𝑤0/𝑎, and
pion masses are from [7].
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We use the electro-quenched approximation [10, 16, 17] to partially include the dynamics of
QED. The quenched QED fields were fixed to the Feynman gauge with the QED𝐿 prescription [18].
We measure pseudoscalar and vector correlators with equal mass, oppositely charged quarks and
antiquarks, so that all the mesons are neutral. The code first reads in a dynamical SU(3) gauge
configuration and a quenched U(1) gauge configuration before multiplying the U(1) link fields into
the SU(3) link fields, and gauge smearing as usual.

We use stochastic-wall sources projected onto the appropriate spin-taste quantum numbers.
For the vector current we use the 𝛾𝑖 ⊗ 𝛾𝑖 operators, and for the pseudoscalar current we use the
𝛾5 ⊗ 𝛾5 operator. The local vector current is not conserved, therefor it requires renormalising with a
renormalisation factor 𝑍𝑉 . The required 𝑍𝑉 , including the QED corrections, have been calculated
by HPQCD [17, 19]. To remove potential subjective bias, we do a “blinded analysis”. The blinding
is done by multiplying the correlators on each ensemble by a random hidden number in [0.95,1.05].

Following BMW [20], in order to avoid the increased statistical noise incurred by simulating
at the light quark mass, 𝑚𝑙 ≡ 1/2(𝑚𝑢 + 𝑚𝑑), we measure with valence quarks at multiples of
𝑚𝑙. We measure at 3𝑚𝑙, 5𝑚𝑙, and 7𝑚𝑙 and the strange quark mass, 𝑚𝑠, on each ensemble. We
use a multi-shift solver so that for each charge all the masses can be solved in a single iterative
process. As it is not prohibitively expensive we also measure at the physical 𝑚𝑢 and 𝑚𝑑 on the very
coarse ensemble. The correlators measured, including the quark masses and electric charges, are
summarised in Table 2.

name Charges (𝑒) Quark masses (𝑎𝑚𝑞) sources

very coarse ±2/3,±1/3,0
0.001524, 0.003328,

16
0.007278, 0.01213, 0.01698, 0.0677

coarse ±2/3, ±1/3, 0 0.00552, 0.0092, 0.01288, 0.0527 16
fine ±2/3, ±1/3, 0 0.0036, 0.006, 0.0084, 0.0364 16

Table 2: The valence quark masses and charges used to compute the pseudoscalar and vector correlators.

We measure three sets of correlators, one uncharged where the SU(3) link fields are not multi-
plied by U(1) fields, and two charged with opposite electric charges. All the correlators are overall
electrically neutral. We calculate two sets of correlators in this way as the charged correlators are
noisier than the uncharged correlators. This is due to the presence of a QED noise term propor-
tional to the electric charge, 𝑒, in the propagator. To suppress this noise term we average over the
two correlators with opposite charges.

We use 16 time-sources on each field configuration to improve the statistics. All other things
being equal this would increase the resources needed to run the simulations by a factor of 16. To
mitigate this we use the truncated solver method (TSM) [21][13]. We use 16 sloppy solves with
a residual of 10−3 and 1 precise solve with a residual of 10−6 before averaging over all the solves
using the TSM method.

3. Results

The QED corrections at equal bare quark mass, Δ𝑎𝜇 are shown in Figure 1. The uncertainty
of Δ𝑎𝜇 increases when the size of the charge is doubled and, as expected, grows rapidly with de-
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(a) Δ𝑎𝜇 for down-like (𝑄=−1/3𝑒) electric charges. (b) Δ𝑎𝜇 for down-like (𝑄 =−1/3𝑒) and up-like (𝑄 =2/3𝑒)
electric charges.

Figure 1: The blinded QED corrections to 𝑎HVP,LO
𝜇 for all the ensembles and quark masses at fixed bare quark

mass.

creasing quark mass. Figure 1 shows that the Δ𝑄 = 1/3𝑒 and Δ𝑄 = 2/3𝑒 QED corrections are
highly correlated, not unexpected because the same stochastic-wall source is used for the neutral
and charged correlators.

The strange quark contribution makes up around 7% of 𝑎HVP,LO
𝜇 . An advantage of computing

the QED corrections to the connected strange 𝑎HVP,LO
𝜇 , is that the larger mass of the strange quark

compared to the light quarks causes reduced errors for the strange 𝑎HVP,LO
𝜇 , so it is potentially easier

to determine the QED contribution. No chiral extrapolation is required at the mass of the strange
quark.

Figure 2: How 𝑅0
QED [𝑎

(𝑠)
𝜇 ] and Δ𝑎 (𝑠)

𝜇 vary with inverse box size for 𝑄 = −1/3𝑒, 2/3𝑒. The dashed lines are
the mean of the three values.
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In order to assess the magnitude of possible QED finite volume effects on Δ𝑎 (𝑠)
𝜇 we computed

vector correlators on ensembles with varying spatial volumes. Hatton et al. [17] have preformed
a similar finite volume study for the charmonium Δ𝑎 (𝑐)

𝜇 . In this study we used the coarse physical
ensemble with two ensembles with a similar lattice spacing (0.12 fm) and unphysically heavy pions
with lattice volumes: 243 × 64 and 403 × 64. We can define the ratio of a quantity with and without
QED,

𝑅0
QED [𝑋] ≡

𝑋 [QCD+qQED]
𝑋 [QCD] at fixed 𝑎𝑚𝑠, (5)

and look at how this ratio varies with lattice volume. Figure 2 shows how Δ𝑎 (𝑠)
𝜇 and 𝑅0

QED [𝑎
(𝑠)
𝜇 ]

vary with the inverse lattice side (1/𝐿𝑠). Figure 2 shows that the QED finite volume effects on
Δ𝑎 (𝑠)

𝜇 are negligible for the statistics used. Even with the unphysical (for the strange quark) larger
electric charge 𝑄𝑠 = −2/3𝑒 the maximum deviation is only slightly above 1𝜎. The results of the
finite volume study are similar to what was found for charm quarks [17] and is consistent with
expectations from effective field theory [22].

The QED contribution, 𝛿𝑎 (𝑠)
𝜇 , to 𝑎 (𝑠)

𝜇 is obtained by taking the 𝑄 = 0 and 𝑄 = −1/3𝑒 strange
vector correlators and computing 𝑎 (𝑠)

𝜇 and Δ𝑎𝜇, before converting to the Dashen scheme to obtain
𝛿𝑎𝜇. We note that the scheme adjustment on the fine ensemble is very imprecise, because the chiral
extrapolation of the mass of the pseudoscalar meson to 𝑚𝑙 needed to get the quark mass shift is
less constrained on the fine ensemble. After the scheme adjustment the continuum limit needs to be
taken. As the HISQ action has lattice artifacts of O(𝑎2) the data is fit to a simple function, linear in
𝑎2. The extrapolation function used is:

𝛿𝑎 (𝑠)
𝜇 (𝑎2) = 𝑐0

(
1 + 𝑐1(𝑎Λ)2

)
, (6)

where the 𝑐𝑖 are parameters to be fitted, 𝑎 is the lattice spacing, and Λ = 0.5 GeV for the typical
QCD scale.

The extrapolation in 𝑎2 is plotted in Figure 3 and the fitted parameters are listed in Table 3.
The fit is satisfactory with goodness of fit parameters 𝜒2/dof = 0.21 for the 𝑎 (𝑠)

𝜇 extrapolation and
𝜒2/dof = 0.0014 for the 𝛿𝑎 (𝑠)

𝜇 extrapolation. Figure 3 shows that the slope in 𝑎2 is mild and the
posterior for 𝑐1 is consistent with a horizontal band.

param prior posterior
𝛿𝑎 (𝑠)

𝜇

𝑐0 0(1)×10−10 −0.0092(81)×10−10

𝑐1 0(100) 0.3(6.4)
𝑎 (𝑠)
𝜇

𝑐0 0(1)×10−8 54.38(80)×10−10

𝑐1 0(1) −0.22(14)

Table 3: Priors and preliminary results for the parameters of the continuum extrapolations of 𝛿𝑎 (𝑠)
𝜇 and 𝑎 (𝑠)

𝜇 .
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Figure 3: The blinded continuum extrapolations of 𝛿𝑎 (𝑠)
𝜇 and 𝑎 (𝑠)

𝜇 . See equation 6 and Table 3 for the fit
function and fitted parameter values.

The extrapolated continuum values are,

𝛿𝑎 (𝑠)
𝜇 = −0.0092(81)×10−10

𝑎 (𝑠)
𝜇 = 54.38(80)×10−10 ,

(7)

where we remind the reader that these are blinded results. Our computed absolute uncertainty,
0.0081 × 10−10, contributes a tiny amount to the overall uncertainty of 𝑎𝜇.

The light quark contribution to 𝑎𝜇 comes from quark loops formed from up and down quarks
𝑎 (𝑙)
𝜇 makes up the lion’s share, around 90%, of the total value of 𝑎𝜇. We work in the limit where

the up and down quarks have the same mass (in QCD), 𝑚𝑙 = 1
2 (𝑚

phys
𝑢 + 𝑚

phys
𝑑 ). We measure vector

correlators at 3𝑚𝑙, 5𝑚𝑙, 7𝑚𝑙 for all ensembles, because measurements at the physical pion mass are
noisy.

The procedure to obtain 𝛿𝑎 (𝑙)
𝜇 is essentially the same as that described above for 𝛿𝑎 (𝑠)

𝜇 . To aid
the calculation we split up 𝛿𝑎 (𝑙)

𝜇 = 𝛿𝑎 (𝑢)
𝜇 + 𝛿𝑎 (𝑑)

𝜇 , where 𝛿𝑎 (𝑑)
𝜇 is calculated using the 𝑄 = 0, 1/3𝑒

correlators and 𝛿𝑎 (𝑢)
𝜇 is calculated from the 𝑄 = 0, 2/3𝑒 correlators. To find the physical value of

𝛿𝑎 (𝑙)
𝜇 we do a combined chiral-continuum extrapolation for each piece before adding them together.

We fit our data to the following functional form,

𝛿𝑎 (𝑑)
𝜇 (𝑎2, 𝑚𝑞/𝑚𝑙) = 𝑐 (𝑑)0

(
1 + 𝑐 (𝑑)1 (𝑎Λ)2 + 𝑐 (𝑑)2 𝑚𝑞/𝑚𝑙

)
𝛿𝑎 (𝑢)

𝜇 (𝑎2, 𝑚𝑞/𝑚𝑙) = 𝑐 (𝑢)0

(
1 + 𝑐 (𝑢)1 (𝑎Λ)2 + 𝑐 (𝑢)2 𝑚𝑞/𝑚𝑙

)
,

(8)

which has a similar form to the extrapolation used for the strange quark contribution. The 𝑐 (𝑢)2 𝑚𝑞/𝑚𝑙

and 𝑐 (𝑑)2 𝑚𝑞/𝑚𝑙 terms control the extrapolation in quark mass. We again use Λ = 0.5 GeV. The fit
has six parameters for 3 masses× 3 ensembles× 2 (u/d) = 18 pieces of data. We fit all six parameters

6
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simultaneously to account for correlations between measurements on the same ensemble. We plot
both the continuum and chiral extrapolations of 𝛿𝑎 (𝑢)

𝜇 , 𝛿𝑎 (𝑑)
𝜇 in Figure 4 and list the fitted values of

the 𝑐𝑖 in Table 4.

param prior posterior
𝛿𝑎 (𝑢)

𝜇

𝑐0 0(1)×10−9 −1.2(1.6)×10−11

𝑐1 0(1) −0.17(86)
𝑐2 0(1) 0.06(23)

𝛿𝑎 (𝑑)
𝜇

𝑐0 0(1)×10−10 −0.5(1.0)×10−12

𝑐1 0(1) −0.06(94)
𝑐2 0(1) 0.14(51)

Table 4: Priors and preliminary fitted results for the parameters of the chiral-continuum extrapolation of
𝛿𝑎 (𝑙)

𝜇 . See equations 8 for fit function.

Figure 4: The blinded chiral-continuum extrapolations of 𝛿𝑎 (𝑢)
𝜇 (red) and 𝛿𝑎 (𝑑)

𝜇 (blue). On the left is the
extrapolation in the lattice spacing at 𝑚𝑞/𝑚𝑙 = 1 and on the right is the extrapolation in quark mass at 𝑎 = 0.
See equations 8 and Table 4.

Our extrapolated value for the quenched QED correction to the light connected HVP is

𝛿𝑎 (𝑙)
𝜇 (𝑎2 = 0, 𝑚𝑞/𝑚𝑙 = 1) = −1.3(1.5) × 10−11 . (9)

If the correlations between quark masses and charges are turned off we find an extrapolated 𝛿𝑎 (𝑙)
𝜇 =

1.9(3.4) × 10−11.

4. Conclusions

We have used staggered quarks, gluon fields generated with the HISQ action, and quenched
U(1) fields gauge fixed with the QEDL prescription to measure vector correlators at a series of lattice

7
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spacings and light quark masses. From these correlators we have computed the QED corrections to
the light and strange connected 𝑎HVP,LO

𝜇 .
To compare our results on the QED contributions to 𝑎HVP,LO

𝜇 in the Dashen scheme with those
from other collaborations requires work on converting the results to a consistent scheme. Our re-
sults, even though they are still blinded, imply that the QED correction to the connected 𝑎HVP,LO

𝜇 are
small, with an absolute uncertainty less than 1 × 10−10. This is well below the threshold necessary
for sub percent precision on the total 𝑎𝜇 (≤ 5 × 10−10). We are working on reducing the errors on
the other contributions to 𝑎HVP,LO

𝜇 to below sub percent precision, which when combined with the
planned future experimental measurements of 𝑎𝜇 will maximize the test of the theoretical prediction
of 𝑎𝜇 from the standard model [3].

We also plan to study the contribution of QED to the windows on the hadronic vacuum polar-
ization [9], compute the QED contributions to the disconnected diagrams and the effect of QED in
the sea.
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