
University of Plymouth

PEARL https://pearl.plymouth.ac.uk

Faculty of Science and Engineering School of Engineering, Computing and Mathematics

2023-03-02

SDN-Based Routing Framework for

Elephant and Mice Flows Using

Unsupervised Machine Learning

Al-Saadi, M

https://pearl.plymouth.ac.uk/handle/10026.1/20601

10.3390/network3010011

Network

MDPI AG

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with

publisher policies. Please cite only the published version using the details provided on the item record or

document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.

Citation: Al-Saadi, M.; Khan, A.;

Kelefouras, V.; Walker, D.J.; Al-Saadi,

B. SDN-Based Routing Framework

for Elephant and Mice Flows Using

Unsupervised Machine Learning.

Network 2023, 3, 218–238. https://

doi.org/10.3390/network3010011

Academic Editor: Youn-Hee Han

Received: 9 December 2022

Revised: 20 January 2023

Accepted: 22 February 2023

Published: 2 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

SDN-Based Routing Framework for Elephant and Mice Flows
Using Unsupervised Machine Learning
Muna Al-Saadi 1,2,*, Asiya Khan 1 , Vasilios Kelefouras 1, David J. Walker 1 and Bushra Al-Saadi 2

1 Autonomous Marine Systems Research Group, School of Engineering, Computing and Mathematics,
University of Plymouth, Plymouth PL4 8AA, UK

2 Department of Missions and Cultural Relations, University of Information Technology
and Communications (UoITC), Baghdad 00964, Iraq

* Correspondence: muna.al-saadi@plymouth.ac.uk

Abstract: Software-defined networks (SDNs) have the capabilities of controlling the efficient move-
ment of data flows through a network to fulfill sufficient flow management and effective usage
of network resources. Currently, most data center networks (DCNs) suffer from the exploitation
of network resources by large packets (elephant flow) that enter the network at any time, which
affects a particular flow (mice flow). Therefore, it is crucial to find a solution for identifying and
finding an appropriate routing path in order to improve the network management system. This
work proposes a SDN application to find the best path based on the type of flow using network
performance metrics. These metrics are used to characterize and identify flows as elephant and
mice by utilizing unsupervised machine learning (ML) and the thresholding method. A developed
routing algorithm was proposed to select the path based on the type of flow. A validation test was
performed by testing the proposed framework using different topologies of the DCN and comparing
the performance of a SDN-Ryu controller with that of the proposed framework based on three factors:
throughput, bandwidth, and data transfer rate. The results show that 70% of the time, the proposed
framework has higher performance for different types of flows.

Keywords: Software-Defined Networks (SDN); Data Center Networks (DCN); Machine Learning
(ML); K-means; Principal Components Analysis (PCA); elephant flows; mice flows; flow identification;
SDN application

1. Introduction

In traditional networks, control management and data forwarding are tightly coupled,
where distributed devices control the whole network, and it is hard to improve the flexibility
and extensibility of the network. Therefore, congestion and unbalanced loads are real
problems in networking. One of the main causes of these problems is the unfair use of
network resources by specific flows [1,2]. Subsequently, the need to develop a network
architecture and corresponding traffic engineering (TE) technology becomes imperative to
solve these problems [3].

To address this problem, the idea of software-defined networking (SDN) is introduced.
Compared to traditional networks, a SDN has several advantages to support TE because of
its distinguished characteristics, such as the separation between the forwarding and control
plane, control centralization, and capability for network behavior programmability [4,5].
In addition, a SDN has the capability of controlling the efficient movement of data flows
through the network to fulfill sufficient flow management and effective usage of network
resources. A SDN enables the development of more innovative programmable network
control and routing solutions based on a global view of network status and fine-grained
control of network traffic and network resources [6]. The essential portion, which has a
real effect on network performance, is flow routing. The main purpose of flow routing in a

Network 2023, 3, 218–238. https://doi.org/10.3390/network3010011 https://www.mdpi.com/journal/network

https://doi.org/10.3390/network3010011
https://doi.org/10.3390/network3010011
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/network
https://www.mdpi.com
https://orcid.org/0000-0003-3620-3048
https://doi.org/10.3390/network3010011
https://www.mdpi.com/journal/network
https://www.mdpi.com/article/10.3390/network3010011?type=check_update&version=1

Network 2023, 3 219

network is to access the required data as fast as possible, which is an obvious advantage
that can be provided to the performance of a network by the routing process [7,8]. In
multipath routing, the calculation of the optimal path and the substitution of link failure is
the responsibility of the SDN controller. However, recent studies have shown that the time
spent to select the optimal path by the SDN controller is high [9].

A data center is a network of computing and storage resources. It provides the delivery
of applications and shared data. Recently, data centers have developed quickly, with their
infrastructure having changed from the traditional structure of physical servers to virtual
networks, which supports applications. In a DCN, most of the network traffic is mice
flows with a small volume, and they hold less than 10% of the overall transmitted bytes. In
contrast, elephant flows represent only 10% of the flows, but they hold 90% of the overall
transmitted bytes. In general, mice flows induce transient congestion, while elephant
flows cause constant congestion. Network congestion is one of the main reasons for poor
performance, as not all of the flows use the network resources equally.

To address the above problem, ML approaches are introduced, such as in [10–16]. All
these studies have proposed techniques for optimizing network performance and providing
high quality of service (QoS) by prioritizing mice flows or scheduling re-routing elephant
flows. Recently, some studies [17,18] have integrated ML techniques in a SDN to enhance
the security system of the network, improve network flow management, and strengthen the
development of network design. ML has the potential of solving a wide range of networking
problems, including design, implementation, performance, and verification [19].

In this paper, unsupervised ML algorithms are utilized to characterize network traffic
and identify them into mice and elephant flows based on predefined features. To minimize
the dimensionality of the data while keeping their distinctive features, principal component
analysis (PCA) is used. K-means is implemented for grouping the flows that have similar
metrics of network performance to aid the flow routing of elephants and mice based on
their features. The main contributions of this paper are to develop a SDN-based application
using unsupervised ML and achieve four specific aims:

(i) To develop a new SDN-based routing framework using the concept of flow identifi-
cation. The framework includes two parts that cooperate with the controller, namely,
traffic analysis and external application.

(ii) To provide an identification mechanism to distinguish flows as mice and elephants
based on K-means clustering after a phase of dimensionality reduction using princi-
pal component analysis.

(iii) To develop a flow routing algorithm that selects the shortest paths for mice and the
widest paths for elephants. Hence, a more balanced network results and a higher
throughput is obtained.

(iv) To enable more efficient calculation of route cost and provide consistency with
real-time constraint. Route update is accomplished based on a recursive process.

The remainder of this paper is organized as follows: In Section 2, the literature review
is presented. Afterward, the methodology is provided in Section 3. Section 4 shows the
experimental results and analysis. The conclusions and directions for future works are
provided in Section 5.

2. Literature Review

The centralization concept of SDNs is to transfer the control of routing from individual
elements of a network to a central point of control. In addition, the synchronization and
control ability in a SDN provides all the required information about the interconnection
between the hosts and the capability to make fast decisions of switching. Therefore, SDNs
can guarantee a high level of performance.

The essential reasons for network performance degradation are network congestion
and imbalance in network load, which may be caused by inefficient routing of elephant
and mice flows. In [20], a SDN-based detection and scheduling algorithm was proposed
for the detection and scheduling of elephant and mice flows based on flow-completion

Network 2023, 3 220

time (FCT), leading to the mitigation of mice flows and the throughput maintenance of
elephant flows in the data center network. Similarly, the authors in [21] introduced an
ESCA framework. The aim of the proposed framework is to achieve an effective load-
balanced routing for scheduling mice and elephant flows. This framework is implemented
based on the proposed efficient sampling and classification methods. In [22], a SDN-based
load balancing approach in a data center network is suggested. This approach starts with
classifying flows as elephants and mice and ends with enforcing distinct schemes of routing
for specified flow types to enable a high-capacity usage of the network. The proposed
solution works initially by determining two zones for elephant and mice flows with several
idle paths, which are pre-decided for elephant flows, and minimum weighted paths, which
are confined to the mice zone for mice flows. In [23], a load balancing mechanism was
proposed using multipath routing of elephant flows in the SDN to improve the utilization
of the network.

The application of SDNs have attracted a lot of interest to solve the problem of network
management in recent years. In [24], the authors applied a dynamic routing mechanism
in a SDN to solve the problem of inconsistent distribution of network traffic that causes
congestion in the network links. The authors in [25] introduced a system that enables the
operator of the network to define templates. These templates can reroute elephant flows
for a specific objective in order to address the high impact of elephant flows on the overall
network traffic.

To improve network performance, elephant detection and routing techniques were
proposed in [26]. The proposed techniques scan the network to find all the paths available
between the source and the destination and calculate the link bandwidth of different avail-
able paths. In [27], the rerouting of elephant flows using an ant colony optimization-based
technique is presented. This technique, which is called DPLBAnt, utilizes a shortest-path
problem in the SDN to alleviate the high controller-switch load. In [28], the authors pro-
posed a routing strategy that is based on deep Q-learning (DQL) to autonomously generate
optimal routing paths for SDN-based data center networks. The proposed framework
trains deep Q networks to meet the different demands of mice and elephant flows in the
data center networks by achieving a low latency and a low packet loss rate for mice flows
and a high throughput and a low packet loss rate for elephant flows. The researchers
in [29] presented a model-free reinforcement learning method, which converts the path
computational problem into a learning problem. In order to improve the network’s average
path utilization, the DeepRoute model learns strategies to manage arriving elephant and
mice flows from the network environment. Similarly, [30] proposed an NNIRSS, which is a
neural network (NN)-based intelligent routing scheme for SDNs. It utilizes NN to create
patterns for data flow transmission and replaces the flow table with well-trained NN in
the form of an NN packet. Furthermore, the authors developed a mechanism of intelligent
routing based on the radial basis function of neural networks.

Overall, it is found that none of the existing approaches for flow routing in SDNs
have proposed an application for identifying mice and elephant flows, enabling flow type
and topology-aware routing. The objective of this paper is to propose a framework that
can accomplish this by using two blocks, namely, external application and traffic analysis.
Furthermore, this work proposes a mechanism for routing by using the short routes for mice
flows and the widest routes for elephant flows. The cost of routing is computed recursively,
which provides more efficiency and enables consistency with real-time constraints.

3. Proposed Methodology

In this section, the SDN-based flow routing application is presented. Figure 1 illustrates
the stages of the proposed methodology. These stages are detailed hereinafter.

Network 2023, 3 221

Network 2023, 3, FOR PEER REVIEW 4

In this section, the SDN-based flow routing application is presented. Figure 1 illus-
trates the stages of the proposed methodology. These stages are detailed hereinafter.

Figure 1. Proposed Methodology.

The proposed method starts by capturing the OpenFlow traffic statistics from the
SDN switch and saving them as raw data. Then, the proposed application takes over the
pre-processing of the input data to prepare them for the next step, which uses unsuper-
vised ML.

The aim of utilizing unsupervised ML techniques is to characterize the flows based
on network performance metrics. This step includes applying PCA and K-means. The
PCA technique is applied to reduce dimensionality. PCA is a technique that uses a linear
transformation concept. The technique starts with arranging the data based on their vari-
ance and representing the arranged data as coordinates. In the end, the coordinates with
the highest variance values will be kept, while those with the lowest values will be ig-
nored. Consequently, the dimension of the dataset will be reduced. K-means has attracted
wide attention due to its simplicity and effectiveness in building robust cluster labeling.
It is considered one of the efficient and fast techniques that contributes to solving practical
clustering problems [31]. K-means as an unsupervised clustering method can create clus-
ters of flow without the need for predefining the classes. After that, to identify flows as
mice or elephants, the thresholds for the flow features are pre-defined.

After that, the flows are identified as mice and elephants for each cluster that results
from the clustering process. The thresholds for predefined flow features are determined
to achieve an automated identification process that can optimize the forwarding of these
flows in the network [32].

Finally, two topologies of data center networks (DCN) are used for the SDN deploy-
ment. The main objective of this work is to select the best path for each of the elephant
and mice flows. The selection of the best path for a flow is performed depending on the
requirements of the flow, such as low latency for mice flows and high bandwidth for ele-
phant flows. Therefore, the links that fulfill the conditions are determined, and the paths
that contain the appropriate bandwidth and latency will be selected. To find the best path
for mice and elephant flows, a developed algorithm was proposed that leverages the in-
verse relationship between the bandwidth and latency to calculate the cost of the link.

The rest of this section is organized as follows: In Section 3.1 the architecture of the
proposed SDN-application is presented. Afterward, the implemination of the architecture
is provided in Section 3.2.

3.1. SDN-Based Application Architecture
The conceptual graph shown in Figure 2 displays the proposed framework for ele-

phant and mice flow identification and selection of the best paths to route them. The pro-
cesses of the framework are based on specifying the appropriate parameters and integrat-
ing the unsupervised ML and the SDN environment. The proposed framework contains

Figure 1. Proposed Methodology.

The proposed method starts by capturing the OpenFlow traffic statistics from the SDN
switch and saving them as raw data. Then, the proposed application takes over the pre-
processing of the input data to prepare them for the next step, which uses unsupervised ML.

The aim of utilizing unsupervised ML techniques is to characterize the flows based
on network performance metrics. This step includes applying PCA and K-means. The
PCA technique is applied to reduce dimensionality. PCA is a technique that uses a linear
transformation concept. The technique starts with arranging the data based on their
variance and representing the arranged data as coordinates. In the end, the coordinates
with the highest variance values will be kept, while those with the lowest values will
be ignored. Consequently, the dimension of the dataset will be reduced. K-means has
attracted wide attention due to its simplicity and effectiveness in building robust cluster
labeling. It is considered one of the efficient and fast techniques that contributes to solving
practical clustering problems [31]. K-means as an unsupervised clustering method can
create clusters of flow without the need for predefining the classes. After that, to identify
flows as mice or elephants, the thresholds for the flow features are pre-defined.

After that, the flows are identified as mice and elephants for each cluster that results
from the clustering process. The thresholds for predefined flow features are determined
to achieve an automated identification process that can optimize the forwarding of these
flows in the network [32].

Finally, two topologies of data center networks (DCN) are used for the SDN deploy-
ment. The main objective of this work is to select the best path for each of the elephant
and mice flows. The selection of the best path for a flow is performed depending on
the requirements of the flow, such as low latency for mice flows and high bandwidth for
elephant flows. Therefore, the links that fulfill the conditions are determined, and the
paths that contain the appropriate bandwidth and latency will be selected. To find the best
path for mice and elephant flows, a developed algorithm was proposed that leverages the
inverse relationship between the bandwidth and latency to calculate the cost of the link.

The rest of this section is organized as follows: In Section 3.1 the architecture of the
proposed SDN-application is presented. Afterward, the implemination of the architecture
is provided in Section 3.2.

3.1. SDN-Based Application Architecture

The conceptual graph shown in Figure 2 displays the proposed framework for elephant
and mice flow identification and selection of the best paths to route them. The processes of
the framework are based on specifying the appropriate parameters and integrating the un-
supervised ML and the SDN environment. The proposed framework contains four blocks,
which are clarified into four categories: (i) the data center network (DCN) topology, which
is responsible for the deployment of the proposed DCN topologies; (ii) the SDN controller,
which is the block that facilitates the communication between the blocks (i) and (iii) by
using an OpenFlow protocol as a southbound interface and RESTfull API as a northbound
interface; (iii) the external application, which is the block that implements the proposed
flow routing mechanism; and (iv) traffic analysis, which is responsible for storing flows
and their paths and visualizing the record.

Network 2023, 3 222

Network 2023, 3, FOR PEER REVIEW 5

four blocks, which are clarified into four categories: (i) the data center network (DCN)
topology, which is responsible for the deployment of the proposed DCN topologies; (ii)
the SDN controller, which is the block that facilitates the communication between the
blocks (i) and (iii) by using an OpenFlow protocol as a southbound interface and RESTfull
API as a northbound interface; (iii) the external application, which is the block that imple-
ments the proposed flow routing mechanism; and (iv) traffic analysis, which is responsi-
ble for storing flows and their paths and visualizing the record.

Figure 2. SDN-Based Application Framework.

In this study, the Mininet emulator [33,34] was used to implement the proposed
method. The SDN was deployed utilizing the SDN-Ryu controller [35]. The SDN applica-
tion was designed for flow routing optimization that depends on a statistical analysis of
network performance. The characterization of the flows based on the network perfor-
mance metrics was achieved by employing unsupervised ML.

Principal component analysis (PCA) is a linear technique that was used in the pro-
posed framework to reduce the dimensionality of the dataset employed. By converting
correlated features to uncorrelated features, the dataset is reduced from a high-dimen-
sional space to a low-dimensional space. To cluster the flows based on their own features
of network performance, K-means was used as a second unsupervised ML technique. Af-
terward, flow identification is executed as a second stage of the proposed application. This
stage consists of the process that is responsible for determining the type of flows (elephant
or mice) based on the thresholds of the pre-defined parameters (flow duration, packet
count, and average packet size) and a sampling operation to obtain representative flows
for each cluster. The procedure is applied to each cluster that has resulted from the clus-
tering operation.

The final stage includes selection of the best path for each type of flow. By using a
developed routing algorithm, the best path selection is achieved for each representative
flow. The developed algorithm was built based on two algorithms, which are the shortest-
path Dijkstra algorithm [36] and the widest-path Dijkstra algorithm [37]. They were cho-
sen to find the links that fulfill the conditions related to the types of flow previously iden-
tified.

Figure 2. SDN-Based Application Framework.

In this study, the Mininet emulator [33,34] was used to implement the proposed
method. The SDN was deployed utilizing the SDN-Ryu controller [35]. The SDN applica-
tion was designed for flow routing optimization that depends on a statistical analysis of
network performance. The characterization of the flows based on the network performance
metrics was achieved by employing unsupervised ML.

Principal component analysis (PCA) is a linear technique that was used in the proposed
framework to reduce the dimensionality of the dataset employed. By converting correlated
features to uncorrelated features, the dataset is reduced from a high-dimensional space
to a low-dimensional space. To cluster the flows based on their own features of network
performance, K-means was used as a second unsupervised ML technique. Afterward, flow
identification is executed as a second stage of the proposed application. This stage consists
of the process that is responsible for determining the type of flows (elephant or mice) based
on the thresholds of the pre-defined parameters (flow duration, packet count, and average
packet size) and a sampling operation to obtain representative flows for each cluster. The
procedure is applied to each cluster that has resulted from the clustering operation.

The final stage includes selection of the best path for each type of flow. By using a
developed routing algorithm, the best path selection is achieved for each representative
flow. The developed algorithm was built based on two algorithms, which are the shortest-
path Dijkstra algorithm [36] and the widest-path Dijkstra algorithm [37]. They were chosen
to find the links that fulfill the conditions related to the types of flow previously identified.

The developed Dijkstra algorithms were employed to find the paths with appropriate
bandwidth and latency. The last part of the proposed design is the traffic analysis. In this
part, the flows with their paths are stored and visualized.

The next section covers the implementation of the proposed framework by running a
group of proposed algorithms.

3.2. Architecture Implementation

The details of the algorithm for routing a flow are illustrated in Algorithm 1. This
algorithm seeks to identify the best path in order to route each flow, which is the major
procedure of the proposed framework. The procedure starts with extracting all the infor-
mation of each input packet, such as source IP, destinationIP, inport, and outport. For each
packet of the input flow, the existence of the source in the macTable is checked. Then, it is
added to the macTable if it is not there. Thereafter, the destination is checked if it is in the
macTable or not. In the case that a destination does not exist in the macTable, a broadcast

Network 2023, 3 223

message will be sent. Otherwise, a topology discovery will be executed using a Link Layer
Discovery Protocol (LLDP). Next, Algorithm 2 FAS (Find all Available paths between two
Switches) will be implicitly called by Algorithm 3 FAPBS (Find all Available Paths Between
each pair of Switches) to find all available paths between each pair of switches.

Algorithm 1 Algorithm for routing a flow

1. Every new flow,extract flow information (src, dst, inport, outport, etc.)
2. adjacency←Ø
3. availableBW←Ø {availableBW:available bandwidth}
4. paths←Ø
5. clusterID←Ø
6. flowType←Ø
7. acceptableLatency←Ø
8. bestpath←Ø
9. if src not in macTable, then
10. add src to macTable
11. end if
12. if dst in macTable, then
13. check topology using LLDP to get adjacency and availableBW
14. paths← FAPBS(adjacency, availableBW)
15. clusterID, flowType, acceptableLatency← flowIdentification(kmeansModel, flow)
16. bestpath← SelectBestPaths(src, dest, acceptableLatency, flowType, paths)
17. paths← updatedPaths(paths, availableBW)
18. else
19. send broadcast message
20. end if

Algorithm 2 Find all Available paths between two Switches (FAS)

1. source: source switch
2. destination: destination switch
3. adjacency: adjacency matrix represents the network as a graph
4. paths: set of available paths between source and destination
5. paths← Ø
6. QueOfPaths← Queue()
7. QueOfNode← Queue()
8. QueOfNode.add(source)
9. for each len(QueOfPaths) > 0 do
10. currPath← QueOfPaths.pop()
11. lastNode← currQue[−1]
12. if lastNode matches destination then
13. paths.append(currPath)
14. end if
15. for each neighbor in adjacency[lastNode] do
16. newPath← copy(currPath)
17. newPath.add(neighbor)
18. if !QueOfPaths.contains(newPaths) then
19. QueOfPaths.add(newPath)
20. end if
21. end for
22. end for
23. for each availablePaths in paths do
24. for each path in availablePaths do
25. cost← updateCost(path)
26. path.addLast(cost)
27. end for
28. end for

Network 2023, 3 224

Algorithm 3 Find all Available Paths Between each pair of Switches (FAPBS)

1. adjacency: adjacency matrix represents the network as a graph
2. availableBandwidth:2D array contains available bandwidth between each two switches
3. Paths: set of available paths between source and destination
4. Paths← Ø
5. for each node1 in adjacency do
6. for each node2 in adjacency do
7. if node1 does not match node2 then
8. p← FAS(node1,node2,adjacency)
9. paths{′node1TOnode2′}← p
10. end if
11. end for
12. end for
13. Paths← updateCost(paths, availableBandwidth)

The aim of the K-means clustering and identification processes is to obtain representa-
tive flows for each mice and elephant type. Each representative flow is characterized by
their network performance metrics. The flow identification process starts with extracting
three parameters for each flow in each cluster. These parameters are flow duration, packet
count, and average packet size. In the case of having a packet count higher than 15, a
flow duration higher than 5 s, and an average packet size higher or equal to 10 KB, the
flow is predicted as an elephant. Otherwise, the predicted flow is mice. This process is
implemented by calling Algorithm 4. At the end of this process, three variables are obtained.
clusterID represents the ID of the predicted cluster, flowType is a string indicating a mice or
elephant flow, and the acceptable delay of the flow is represented as a float number called
acceptableLatency.

Algorithm 4 Flow Identification

1. PPR: set of rules for predefined parameters
2. CID: set of predicted clusters (kmeansModel)
3. FT: a string indicates mice or elephant flow
4. CF: set of current flows
5. RF: set of representative flows
6. AL: a float number represents the acceptable delay of cf ∈ CF
7. FT← Ø
8. RF← Ø
9. AL← Ø
10. for each cid ∈CID do
11. for each cf ∈ CF do
12. for each ppr ∈ PPR do
13. if cf.packetCount > 15 and cf.flowDuration > 5 and cf.avgPacketSize ≥ 10 then
14. FT← ‘elephant‘
15. else
16. FT← ‘mice’
17. AL← cf.latency
18. end if
19. end for
20. end for
21. RF← kmeansModel.lefts{cid}
22. end for

After the flow identification process has ended, selecting the best path for each rep-
resentative flow, installing the determined path, and updating the cost of the path re-
cursively are the main steps of the routing process, which will be executed by calling
Algorithms 5 and 6.

Network 2023, 3 225

Algorithm 5 Select best paths

1. source: source switch
2. destination: destination switch
3. acceptableLatency: acceptable delay
4. FT: a string indicates mice or elephant flow
5. paths: set of paths between each two switches
6. N: integer, determine number of paths to be selected
7. RT: routing table
8. N← Ø
9. cost← Ø
10. availablePaths← paths{′sourceTOdestination′}
11. if FT matches ’mice’ then
12. path← availablePaths.sort(key = len, ascending = False){0}
13. Else
14. path← availablePaths.sort(key = cost,ascending = False){0 N}
15. end if
16. RT← path /*path installing*/

Algorithm 6 updateCost

1. Paths: set of output of FAPBS algorithm
2. key:(src,dst)
3. availableBandwidth: 2D array contains available bandwidth between each two switches
4. updatedPaths: updated version of input paths contains each path associated with the cost of

that path
5. updatedPaths←Ø
6. for each key in Paths.keys() do
7. updatedPaths{key}←Ø
8. for each path in Paths{key} do
9. cost← 0
10. for each node1, node2 in path{:-1}, path{1:} do
11. cost← cost + availableBandwidth{node1}{node2}
12. end for
13. updatedPaths{key}.append({path,cost})
14. end for
15. end for

The first step of the routing process is checking the type of flow. If it is a mice flow,
the available paths, which have been found by calling the FAPBS and FAS algorithms, are
sorted with respect to length, and the shortest path will be selected as the best. Otherwise,
it is an elephant flow, and the best N paths will be chosen based on the 1/bandwidth, as
shown in Section 4.1.6. As a result, for each type of flow, we have the best path based on
acceptable delay and available bandwidth for a particular source and destination. Then,
the best path is installed for each of the elephant and mice flows (Algorithm 5). This is
performed by sending a message containing the information of the selected path to the
SDN controller in order to determine the required switches. Finally, an updated version
of the input paths contains each path associated with the cost of the path. The process of
updating is based on the paths, which is the output of the FAPBS algorithm and available
bandwidth as a 2D array containing available bandwidth between every two switches. This
is summarized in Algorithm 6.

4. Results and Analysis of Experiment

This section provides the experimental design and results. The experimental design is
provided in Section 4.1, and the experimental results are provided in Section 4.2.

Network 2023, 3 226

4.1. Experimental Design

Two DCN topologies were used to test the proposed framework. Figure 3 illustrates
the first topology (No. 1), which consists of two servers, seven switches, and six hosts. The
second topology (No. 2) includes two servers, sixteen switches, which are distributed on
five layers, and three hosts, as shown in Figure 4.

Network 2023, 3, FOR PEER REVIEW 9

6. for each key in Paths.keys() do
7. updatedPaths{key} ←Ø
8. for each path in Paths{key} do
9. cost ← 0
10. for each node1, node2 in path{:-1}, path{1:} do
11. cost ← cost + availableBandwidth{node1}{node2}
12. end for
13. updatedPaths{key}.append({path,cost})
14. end for
15. end for

The first step of the routing process is checking the type of flow. If it is a mice flow,
the available paths, which have been found by calling the FAPBS and FAS algorithms, are
sorted with respect to length, and the shortest path will be selected as the best. Otherwise,
it is an elephant flow, and the best N paths will be chosen based on the 1/bandwidth, as
shown in Section 4.1.6. As a result, for each type of flow, we have the best path based on
acceptable delay and available bandwidth for a particular source and destination. Then,
the best path is installed for each of the elephant and mice flows (Algorithm 5). This is
performed by sending a message containing the information of the selected path to the
SDN controller in order to determine the required switches. Finally, an updated version
of the input paths contains each path associated with the cost of the path. The process of
updating is based on the paths, which is the output of the FAPBS algorithm and available
bandwidth as a 2D array containing available bandwidth between every two switches.
This is summarized in Algorithm 6.

4. Results and Analysis of Experiment
This section provides the experimental design and results. The experimental design

is provided in Section 4.1, and the experimental results are provided in Section 4.2.

4.1. Experimental Design
Two DCN topologies were used to test the proposed framework. Figure 3 illustrates

the first topology (No. 1), which consists of two servers, seven switches, and six hosts. The
second topology (No. 2) includes two servers, sixteen switches, which are distributed on
five layers, and three hosts, as shown in Figure 4.

 Figure 3. Topology No. 1 of Network.

Network 2023, 3, FOR PEER REVIEW 10

Figure 3. Topology No. 1 of Network.

Figure 4. Topology No. 2 of Network.

The experiment was carried out by a group of steps as described below.

4.1.1. Monitoring and Gathering Data
Traffic monitoring is vital for improving the comprehensive performance of a net-

work and traffic flow optimization, which is the aim of this study. The SDN technology
introduces an innovative concept by making the network infrastructure scalable, usable,
programmable, and centralized controllable. Furthermore, the SDN presents a dynamic
monitoring scheme for network traffic. The Mininet emulation paradigm was used for
setting up and installing a SDN environment in this study. The emulation environment
includes a Ryu controller, OpenFlow switches, and hosts. Two scenarios for the DCN to-
pologies were emulated, as presented in Figures 3 and 4, for implementing the proposed
method. The used topologies are configured for handling the TCP and UDP packets.
These flows are generated using a virtual machine created by the VMware workstation in
a Linux environment. The OpenFlow Wireshark and tcpdump tools are used with the
Mininet emulator to understand the behavior of the proposed DCN topologies for analyz-
ing the performance of the network.

In order to perform a flow background load on the network, the experiment started
with generating UDP packets with different sizes and rates during 300 s of simulation, as
shown in Table 1.

Table 1. UDP Packets Generated During 300 Seconds of Simulation.

Duration Packet Rate Byte Rate
0–30 s 250 p 1024B

30–60 s 500 p 2097152B
60–120 s 1000 p 12582912

120–200 s 1000 p 14582912
200–260 s 1000 p 20971520
260–300 s 1500 p 20971520

Following that, many TCP connections were initialized with different time flow be-
tween two hosts. The behavior of the first DCN topology using the throughput parameter
is demonstrated in Figure 5.

Figure 4. Topology No. 2 of Network.

The experiment was carried out by a group of steps as described below.

4.1.1. Monitoring and Gathering Data

Traffic monitoring is vital for improving the comprehensive performance of a net-
work and traffic flow optimization, which is the aim of this study. The SDN technology
introduces an innovative concept by making the network infrastructure scalable, usable,
programmable, and centralized controllable. Furthermore, the SDN presents a dynamic
monitoring scheme for network traffic. The Mininet emulation paradigm was used for
setting up and installing a SDN environment in this study. The emulation environment
includes a Ryu controller, OpenFlow switches, and hosts. Two scenarios for the DCN
topologies were emulated, as presented in Figures 3 and 4, for implementing the proposed

Network 2023, 3 227

method. The used topologies are configured for handling the TCP and UDP packets. These
flows are generated using a virtual machine created by the VMware workstation in a Linux
environment. The OpenFlow Wireshark and tcpdump tools are used with the Mininet
emulator to understand the behavior of the proposed DCN topologies for analyzing the
performance of the network.

In order to perform a flow background load on the network, the experiment started
with generating UDP packets with different sizes and rates during 300 s of simulation, as
shown in Table 1.

Table 1. UDP Packets Generated During 300 s of Simulation.

Duration Packet Rate Byte Rate

0–30 s 250 p 1024B

30–60 s 500 p 2097152B

60–120 s 1000 p 12582912

120–200 s 1000 p 14582912

200–260 s 1000 p 20971520

260–300 s 1500 p 20971520

Following that, many TCP connections were initialized with different time flow be-
tween two hosts. The behavior of the first DCN topology using the throughput parameter
is demonstrated in Figure 5.

Network 2023, 3, FOR PEER REVIEW 11

Figure 5. Throughput of the Network During 300 s of Simulation.

Wireshark was run in the background to capture the OpenFlow packets, which are a
TCP packet type. Then, the tcpdump tool was utilized for the loopback interface. The col-
lected data were stored as pcap files for the two proposed DCN topologies. To undertake
a comprehensive analysis, the tcptrace tool was employed to produce all complete flows
characterized based on the performance parameters and to store them in a CSV files.

4.1.2. Pre-Processing
This step is essential to obtain consistent, integrated, and processable data using the

machine learning techniques. The preprocessing starts with data cleaning and data trans-
formation, and it ends with data reduction [38], as illustrated in Figure 6. The data clean-
ing process is used to clean the dataset by eliminating irrelevant and useless records and
parameters. Afterward, data transformation is performed to convert all features. The step
ends with data reduction, where PCA is utilized with 13 components. The results prove
the validity of the findings of the preprocessing in [38] by achieving a balance between
completeness and simplicity and an accuracy of the clustering process.

Figure 6. Steps of Preprocessing.

4.1.3. Flow Characterization and Cluster Analysis
The first aim of this project is to develop a flow characterizing mechanism based on

the metrics of network performance. Unsupervised machine learning techniques were
proposed to achieve this goal. K-means as unsupervised clustering can create clusters of
flow without the need for predefining the classes. This algorithm isutilized to understand

Figure 5. Throughput of the Network During 300 s of Simulation.

Wireshark was run in the background to capture the OpenFlow packets, which are
a TCP packet type. Then, the tcpdump tool was utilized for the loopback interface. The
collected data were stored as pcap files for the two proposed DCN topologies. To undertake
a comprehensive analysis, the tcptrace tool was employed to produce all complete flows
characterized based on the performance parameters and to store them in a CSV files.

4.1.2. Pre-Processing

This step is essential to obtain consistent, integrated, and processable data using
the machine learning techniques. The preprocessing starts with data cleaning and data
transformation, and it ends with data reduction [38], as illustrated in Figure 6. The data
cleaning process is used to clean the dataset by eliminating irrelevant and useless records
and parameters. Afterward, data transformation is performed to convert all features. The
step ends with data reduction, where PCA is utilized with 13 components. The results prove
the validity of the findings of the preprocessing in [38] by achieving a balance between
completeness and simplicity and an accuracy of the clustering process.

Network 2023, 3 228

Network 2023, 3, FOR PEER REVIEW 11

Figure 5. Throughput of the Network During 300 s of Simulation.

Wireshark was run in the background to capture the OpenFlow packets, which are a
TCP packet type. Then, the tcpdump tool was utilized for the loopback interface. The col-
lected data were stored as pcap files for the two proposed DCN topologies. To undertake
a comprehensive analysis, the tcptrace tool was employed to produce all complete flows
characterized based on the performance parameters and to store them in a CSV files.

4.1.2. Pre-Processing
This step is essential to obtain consistent, integrated, and processable data using the

machine learning techniques. The preprocessing starts with data cleaning and data trans-
formation, and it ends with data reduction [38], as illustrated in Figure 6. The data clean-
ing process is used to clean the dataset by eliminating irrelevant and useless records and
parameters. Afterward, data transformation is performed to convert all features. The step
ends with data reduction, where PCA is utilized with 13 components. The results prove
the validity of the findings of the preprocessing in [38] by achieving a balance between
completeness and simplicity and an accuracy of the clustering process.

Figure 6. Steps of Preprocessing.

4.1.3. Flow Characterization and Cluster Analysis
The first aim of this project is to develop a flow characterizing mechanism based on

the metrics of network performance. Unsupervised machine learning techniques were
proposed to achieve this goal. K-means as unsupervised clustering can create clusters of
flow without the need for predefining the classes. This algorithm isutilized to understand

Figure 6. Steps of Preprocessing.

4.1.3. Flow Characterization and Cluster Analysis

The first aim of this project is to develop a flow characterizing mechanism based on
the metrics of network performance. Unsupervised machine learning techniques were
proposed to achieve this goal. K-means as unsupervised clustering can create clusters of
flow without the need for predefining the classes. This algorithm isutilized to understand
the differentiation of flows with respect to their network performance features. It is applied
to construct three clusters, where the minimum number of clusters was investigated in
this experiment. The quality of clustering is measured by using the accuracy metric. This
metric is determined by two factors: inter-cluster distance and intra-cluster distance [38].
As a result, unique samples of flow are recognized for each cluster.

4.1.4. Identifying Flow

One of the serious problems that affects the quality of service for mice flows is a slow-
down transfer caused by elephant flows through a network, which leads to a degradation
of network performance. The identification mechanism was proposed to distinguish the
flows as elephants and mice by leveraging some of the parameters clarified in Section 4.1.3.
Each elephant or mice flow is defined based on the threshold values marked on pre-
decided features using the thresholding method [32]. The final step in this phase includes
representative flow extraction for the elephant and mice flows in each cluster that has
resulted from the clustering process. It is interesting in this step that, in some clusters, one
or two representative flows can be extracted for elephant or mice flows.

4.1.5. Best Path Selection

Normally, a large number of servers and switches are included in DCNs. In a wide
DCN, each node has multiple flows. Therefore, accessing the data with reliability and in
a simple way is extremely hard in this type of network. To solve this problem, different
topologies are used to improve the utilization of bandwidth and reduce network congestion.
In this part of the work, two types of DCNs based on the SDN are deployed, as explained
in Figures 3 and 4. In the DCN, the performance of the network is a critical aspect; hence,
high throughput and sensitivity to packet loss are required. Elephant and mice flows are
known as the main types of traffic in a DCN. Therefore, the need to manage the traffic of
these types of flow still exists as discussed in the literature review section.

Many algorithms can provide routing for elephants and/or mice flows. For example,
equal-cost multipath routing (ECMP) [39] can be utilized for routing mice but not elephant
flows [40]. In this project, the primary aim is to select the best path for each elephant and
mice flow. The best path for a flow is the path that achieves the requirements of the flow,
such as low latency for mice flows and high bandwidth for elephant flows. A developed

Network 2023, 3 229

Dijkstra algorithm was proposed to find the route based on the type of flow (elephant
or mice flows) by employing Algorithms 2, 3, and 5, as shown in Section 3.2. Using a
developed Dijkstra algorithm, the links that fulfill the conditions are determined, and the
paths that contain the appropriate bandwidth and latency are selected.

The Dijkstra algorithm was applied to find the shortest path for mice flows, whereas
for elephant flows, the Widest- Dijkstra algorithm was used to find multiple paths to route
them and record all the available shortest paths. Because it has an appropriate complexity
for real-time problems and it gives deterministic results, the Dijkstra algorithm was chosen
in this part of the work.

4.1.6. Updating Cost of Link

Determining a route for a particular flow through a SDN efficiently is still challenging.
The SDN controller must obtain a lot of information in order to accomplish this. The
information includes getting a comprehensive vision of the network (i.e., network topology
discovery and getting link state information), computing the optimum paths for the flows
considering the information of the flows and the network, and reconfiguring the routing
table based on the new forwarding rules in the infrastructure plane. Common routing
algorithms depend on three concepts to compute the cost of a link. These concepts are static
link cost (Hop-to-Hop count, distance, and link capacity), dynamic link cost (available link
capacity, and link utilization), and dynamic link cost while minimizing the interference
(available link capacity, link utilization, and flow count on a link) [41]. The approach
presented in this part explains the computing and updating of the cost of a link in the SDN
framework. The cost of a link is calculated based on the inverse relationship between the
bandwidth and the latency of the link, where latency is equal to the reciprocal value of
bandwidth. The cost of the link is updated recursively. The cost of the link is calculated
based on the updateCost algorithm in Section 3.2. An example and figures are explained
for this aspect below.

Suppose that a host (Host) wants to send a set of packets to a server (Server) and there
are two different routes between the Host and the Server, as shown in Figure 7, the steps
below will be followed to calculate the link cost of both routes:

1. 1st route R1 goes through switches S1- > S2- > S4- > S6- > Server
2. 2nd route R2 goes through switches: S1- > S3- > -S5- > S6- > Server
3. The getAvailablePaths (Host, Server) algorithm will find these two paths (R1, R2)

between Host and Server
4. For each link in R1,R2
5. B1 = Available bandwidth of P1 = availableBW(L12) + availableBW(L24) + availableBW(L46)
6. B2 = Available bandwidth of P2 = availableBW(L13) + availableBW(L35) + availableBW(L56)
7. Latency of P1 = D1 = 1/B1; Latency of P2 = D2 = 1/B2.
8. If D1–acceptableLatency > D2–acceptableLatency then bestCost = D2
9. else bestCost = D1
10. Then we get the nearest value to the acceptable Latency
11. If bestCost = D1 then best path is R1 else best path is R2.

Network 2023, 3, FOR PEER REVIEW 13

approach presented in this part explains the computing and updating of the cost of a link
in the SDN framework. The cost of a link is calculated based on the inverse relationship
between the bandwidth and the latency of the link, where latency is equal to the reciprocal
value of bandwidth. The cost of the link is updated recursively. The cost of the link is
calculated based on the updateCost algorithm in Section 3.2. An example and figures are
explained for this aspect below.

Suppose that a host (Host) wants to send a set of packets to a server (Server) and
there are two different routes between the Host and the Server, as shown in Figure 7, the
steps below will be followed to calculate the link cost of both routes:

1. 1st route R1 goes through switches S1- > S2- > S4- > S6- > Server
2. 2nd route R2 goes through switches: S1- > S3- > -S5- > S6- > Server
3. The getAvailablePaths (Host, Server) algorithm will find these two paths (R1, R2)

between Host and Server
4. For each link in R1,R2
5. B1 = Available bandwidth of P1 = availableBW(L12) + availableBW(L24) + availa-

bleBW(L46)
6. B2 = Available bandwidth of P2 = availableBW(L13) + availableBW(L35) + availa-

bleBW(L56)
7. Latency of P1 = D1 = 1/B1; Latency of P2 = D2 = 1/B2.
8. If D1–acceptableLatency > D2–acceptableLatency then bestCost = D2
9. else bestCost = D1
10. Then we get the nearest value to the acceptable Latency
11. If bestCost = D1 then best path is R1 else best path is R2.

Figure 7. Updating Link Cost.

4.2. Results and Evaluation
This experiment was implemented with a CSV file for each DCN topology. Each file

contains 1 million flows and 129 features regarding network performance metrics. These
features can be found in Appendix A. The 129 features were chosen based on their effi-
ciency in the clustering model [42]. For each TCP flow, we have all the network perfor-
mance parameters, such as packet loss, round trip time (RTT), and throughput. To reduce
the dimensions of the dataset, the PCA technique was applied. A total of 13 PCA compo-
nents were input into the clustering process. It is the best number of components to
achieve a balance between completeness and simplicity [38]. The outputs of the clustering
and identification steps are three clusters. Each cluster consists of a group of elephants
and mice flows, which have distinct characteristics. In each cluster, the representative flow
are selected for each type of flow. To find the best path for each elephant and mice flow,
a developed Dijkstra algorithm was utilized. The flow types and description for the ex-
periments are provided in Table 2.

Figure 7. Updating Link Cost.

Network 2023, 3 230

4.2. Results and Evaluation

This experiment was implemented with a CSV file for each DCN topology. Each file
contains 1 million flows and 129 features regarding network performance metrics. These
features can be found in Appendix A. The 129 features were chosen based on their efficiency
in the clustering model [42]. For each TCP flow, we have all the network performance
parameters, such as packet loss, round trip time (RTT), and throughput. To reduce the
dimensions of the dataset, the PCA technique was applied. A total of 13 PCA components
were input into the clustering process. It is the best number of components to achieve
a balance between completeness and simplicity [38]. The outputs of the clustering and
identification steps are three clusters. Each cluster consists of a group of elephants and
mice flows, which have distinct characteristics. In each cluster, the representative flow
are selected for each type of flow. To find the best path for each elephant and mice flow,
a developed Dijkstra algorithm was utilized. The flow types and description for the
experiments are provided in Table 2.

Table 2. Routing Traffic Based on Flow Types.

Flow Type Port Number Protocol Service Packet Rate Method to Apply

Elephant 88 HTTP 1 M Multipath
Elephant 443 HTTPS 300 K Multipath
Elephant 20 FTP 22 K Multipath
Elephant 25 SMTP 12 K Multipath

Mice 514 Syslog 632 K Singlepath
Mice 88 Kerberos 220 K Singlepath
Mice 119 NNTP 125 K Singlepath

Figure 8 depicts the routing process of each type of flow (elephant or mice) for all
three clusters. To accomplish a high efficiency and obtain a higher throughput, a flow of
the elephant type is sent by more than one path. At the same time, some available paths
are kept to serve higher-priority flows, such as real-time traffic. The top left corner of the
figure presents the best path that has been selected by the proposed algorithm (Widest-
Dijkstra algorithm) for all elephant flows in cluster 1. Using the same technique, the best
path for the elephant flows in clusters 2 and 3 are chosen. On the other hand, the bottom
right corner of the figure shows the best path for the mice flows in the three clusters. This
path has been selected based on Algorithm 5 and the Dijkstra algorithm. The figures clarify
the used links with a green dotted line, whereas an unused link is represented by a red
dashed line.

Network 2023, 3, FOR PEER REVIEW 14

Table 2. Routing Traffic Based on Flow Types.

Flow Type Port Number Protocol Service Packet Rate Method to Apply
Elephant 88 HTTP 1 M Multipath
Elephant 443 HTTPS 300 K Multipath
Elephant 20 FTP 22 K Multipath
Elephant 25 SMTP 12 K Multipath

Mice 514 Syslog 632 K Singlepath
Mice 88 Kerberos 220 K Singlepath
Mice 119 NNTP 125 K Singlepath

Figure 8 depicts the routing process of each type of flow (elephant or mice) for all
three clusters. To accomplish a high efficiency and obtain a higher throughput, a flow of
the elephant type is sent by more than one path. At the same time, some available paths
are kept to serve higher-priority flows, such as real-time traffic. The top left corner of the
figure presents the best path that has been selected by the proposed algorithm (Widest-
Dijkstra algorithm) for all elephant flows in cluster 1. Using the same technique, the best
path for the elephant flows in clusters 2 and 3 are chosen. On the other hand, the bottom
right corner of the figure shows the best path for the mice flows in the three clusters. This
path has been selected based on Algorithm 5 and the Dijkstra algorithm. The figures clar-
ify the used links with a green dotted line, whereas an unused link is represented by a red
dashed line.

Figure 8. Flow Paths in the Network Using the Proposed Method.

The evaluation results show the effectiveness of the proposed flow routing optimi-
zation method against the SDN-Ryu controller. Employing a developed Dijkstra algo-
rithm to optimize flow routing results in improved network performance in relation to
data center network resources. Furthermore, the evaluation aims to present the benefit of
routing-based traffic management over network performance, regardless of the routing of
a particular type of flow that is being optimized by the developed routing algorithm, us-
ing the SDN framework.

The evaluation of the proposed system conducted for both topologies is provided in
Figures 3 and 4. The first test includes a comparison between the SDN-Ryu controller and
the proposed system based on their performance using the DCN topology in Figure 3. The
comparison is accomplished based on the throughput and bandwidth parameters. As
shown below in Figure 9, the proposed application provides a higher throughput than the

Figure 8. Flow Paths in the Network Using the Proposed Method.

Network 2023, 3 231

The evaluation results show the effectiveness of the proposed flow routing optimiza-
tion method against the SDN-Ryu controller. Employing a developed Dijkstra algorithm
to optimize flow routing results in improved network performance in relation to data
center network resources. Furthermore, the evaluation aims to present the benefit of
routing-based traffic management over network performance, regardless of the routing of
a particular type of flow that is being optimized by the developed routing algorithm, using
the SDN framework.

The evaluation of the proposed system conducted for both topologies is provided
in Figures 3 and 4. The first test includes a comparison between the SDN-Ryu controller
and the proposed system based on their performance using the DCN topology in Figure 3.
The comparison is accomplished based on the throughput and bandwidth parameters. As
shown below in Figure 9, the proposed application provides a higher throughput than
the Ryu controller. This is achieved for all flows. For example, at flow number 10, the
throughput of the proposed application improves by a ratio of 61.5% compared to the
throughput of the Ryu controller.

Network 2023, 3, FOR PEER REVIEW 15

Ryu controller. This is achieved for all flows. For example, at flow number 10, the through-
put of the proposed application improves by a ratio of 61.5% compared to the throughput
of the Ryu controller.

Figure 9. Comparison Between the Proposed Method and the Ryu Controller With Respect to
Throughput for the Two Types of Flows.

In addition, it is observed that a higher number of parallel flows leads to a decline in
the throughput for both the proposed application and the Ryu controller. However, the
performance of the proposed method is still better than the Ryu controller. The compari-
son of throughput was performed for the two types of flows.

Figure 10 presents the throughput for elephant flows for the proposed approach and
the Ryu controller. The findings show that the throughput provided by the proposed ap-
plication outperforms that of the Ryu controller. For instance, for flow number 16, the
result changes because the routing process is based on the type of flow and the ID of the
cluster. Therefore, the type of representative flow for each cluster is determined precisely,
which is not applied in the Ryu controller. Consequently, the route for the representative
flow is selected in a particular cluster and then applied to all the elephant flows in that
cluster. For flow number 22, the throughput of our application is about 88.2% superior to
that of the Ryu controller for elephant flows, when the throughput measurement is exe-
cuted for intervals of 0–40 s and has a bandwidth of 100 MB.

Figure 10. Comparison Between the Proposed Method and the Ryu Controller With Respect to
Throughput for Elephant Flows.

Figure 9. Comparison Between the Proposed Method and the Ryu Controller With Respect to
Throughput for the Two Types of Flows.

In addition, it is observed that a higher number of parallel flows leads to a decline in
the throughput for both the proposed application and the Ryu controller. However, the
performance of the proposed method is still better than the Ryu controller. The comparison
of throughput was performed for the two types of flows.

Figure 10 presents the throughput for elephant flows for the proposed approach and
the Ryu controller. The findings show that the throughput provided by the proposed
application outperforms that of the Ryu controller. For instance, for flow number 16, the
result changes because the routing process is based on the type of flow and the ID of the
cluster. Therefore, the type of representative flow for each cluster is determined precisely,
which is not applied in the Ryu controller. Consequently, the route for the representative
flow is selected in a particular cluster and then applied to all the elephant flows in that
cluster. For flow number 22, the throughput of our application is about 88.2% superior
to that of the Ryu controller for elephant flows, when the throughput measurement is
executed for intervals of 0–40 s and has a bandwidth of 100 MB.

Network 2023, 3 232

Network 2023, 3, FOR PEER REVIEW 15

Ryu controller. This is achieved for all flows. For example, at flow number 10, the through-
put of the proposed application improves by a ratio of 61.5% compared to the throughput
of the Ryu controller.

Figure 9. Comparison Between the Proposed Method and the Ryu Controller With Respect to
Throughput for the Two Types of Flows.

In addition, it is observed that a higher number of parallel flows leads to a decline in
the throughput for both the proposed application and the Ryu controller. However, the
performance of the proposed method is still better than the Ryu controller. The compari-
son of throughput was performed for the two types of flows.

Figure 10 presents the throughput for elephant flows for the proposed approach and
the Ryu controller. The findings show that the throughput provided by the proposed ap-
plication outperforms that of the Ryu controller. For instance, for flow number 16, the
result changes because the routing process is based on the type of flow and the ID of the
cluster. Therefore, the type of representative flow for each cluster is determined precisely,
which is not applied in the Ryu controller. Consequently, the route for the representative
flow is selected in a particular cluster and then applied to all the elephant flows in that
cluster. For flow number 22, the throughput of our application is about 88.2% superior to
that of the Ryu controller for elephant flows, when the throughput measurement is exe-
cuted for intervals of 0–40 s and has a bandwidth of 100 MB.

Figure 10. Comparison Between the Proposed Method and the Ryu Controller With Respect to
Throughput for Elephant Flows.

Figure 10. Comparison Between the Proposed Method and the Ryu Controller With Respect to
Throughput for Elephant Flows.

On the other side, the throughput of mice flows is presented in Figure 11. It shows that
both the proposed application and the Ryu controller provide the same throughput. It is
interpreted by the fact that both of these methods use the shortest path for routing the mice
flows. The measurement of mice throughput is run for interval 0–60 s with a bandwidth
100 KB.

Network 2023, 3, FOR PEER REVIEW 16

On the other side, the throughput of mice flows is presented in Figure 11. It shows
that both the proposed application and the Ryu controller provide the same throughput.
It is interpreted by the fact that both of these methods use the shortest path for routing the
mice flows. The measurement of mice throughput is run for interval 0–60 s with a band-
width 100 KB.

Figure 11. Comparison Between the Proposed Method and the Ryu Controller With Respect to
Throughput for Mice Flows.

For the second parameter, which is bandwidth usage, Figure 12 shows that the per-
formance of the proposed application is higher in most of the flows compared to the Ryu
controller. The reasons behind that are (i) the use of a clustering process and (ii) the use of
a developed Dijkstra algorithm. The low performance of the proposed method in flows 14
and 22 is because of the need to serve higher-priority flows.

Figure 12. Comparison Between the Bandwidth Used in the Proposed Method and the Ryu Con-
troller for the Two Types of Flows.

The evaluation of the proposed mechanism for the second topology was accom-
plished by running two experiments to compare the performance of the Ryu controller
and our proposed method. The comparison was based on the same parameters for the
first topology. Figures 13 and 14 depict the throughput and bandwidth usage measure-
ment provided by the proposed mechanism and the Ryu controller in the two experi-
ments. It is clear from the charts of experiment 1 that the performance of the proposed

Figure 11. Comparison Between the Proposed Method and the Ryu Controller With Respect to
Throughput for Mice Flows.

For the second parameter, which is bandwidth usage, Figure 12 shows that the per-
formance of the proposed application is higher in most of the flows compared to the Ryu
controller. The reasons behind that are (i) the use of a clustering process and (ii) the use of
a developed Dijkstra algorithm. The low performance of the proposed method in flows 14
and 22 is because of the need to serve higher-priority flows.

Network 2023, 3 233

Network 2023, 3, FOR PEER REVIEW 16

On the other side, the throughput of mice flows is presented in Figure 11. It shows
that both the proposed application and the Ryu controller provide the same throughput.
It is interpreted by the fact that both of these methods use the shortest path for routing the
mice flows. The measurement of mice throughput is run for interval 0–60 s with a band-
width 100 KB.

Figure 11. Comparison Between the Proposed Method and the Ryu Controller With Respect to
Throughput for Mice Flows.

For the second parameter, which is bandwidth usage, Figure 12 shows that the per-
formance of the proposed application is higher in most of the flows compared to the Ryu
controller. The reasons behind that are (i) the use of a clustering process and (ii) the use of
a developed Dijkstra algorithm. The low performance of the proposed method in flows 14
and 22 is because of the need to serve higher-priority flows.

Figure 12. Comparison Between the Bandwidth Used in the Proposed Method and the Ryu Con-
troller for the Two Types of Flows.

The evaluation of the proposed mechanism for the second topology was accom-
plished by running two experiments to compare the performance of the Ryu controller
and our proposed method. The comparison was based on the same parameters for the
first topology. Figures 13 and 14 depict the throughput and bandwidth usage measure-
ment provided by the proposed mechanism and the Ryu controller in the two experi-
ments. It is clear from the charts of experiment 1 that the performance of the proposed

Figure 12. Comparison Between the Bandwidth Used in the Proposed Method and the Ryu Controller
for the Two Types of Flows.

The evaluation of the proposed mechanism for the second topology was accomplished
by running two experiments to compare the performance of the Ryu controller and our
proposed method. The comparison was based on the same parameters for the first topology.
Figures 13 and 14 depict the throughput and bandwidth usage measurement provided by
the proposed mechanism and the Ryu controller in the two experiments. It is clear from the
charts of experiment 1 that the performance of the proposed method is better than that of
the Ryu controller for the majority of flows for both parameters. However, as the number
of flows increases, the performance of the proposed method is equal to or slightly less
than that of the controller. In experiment 2, as shown in the charts of the aforementioned
figures, the throughput and bandwidth provided by the proposed mechanism are improved
compared to those by the Ryu controller. Consequently, the performance of the proposed
mechanism is enhanced for 70% of the flows. Nevertheless, compared to the performance of
the Ryu controller, the performance of the proposed application declines for the remaining
30% of the flows. The reason behind this reduction in performance is the need to serve
higher-priority flows.

Network 2023, 3, FOR PEER REVIEW 17

method is better than that of the Ryu controller for the majority of flows for both param-
eters. However, as the number of flows increases, the performance of the proposed
method is equal to or slightly less than that of the controller. In experiment 2, as shown in
the charts of the aforementioned figures, the throughput and bandwidth provided by the
proposed mechanism are improved compared to those by the Ryu controller. Conse-
quently, the performance of the proposed mechanism is enhanced for 70% of the flows.
Nevertheless, compared to the performance of the Ryu controller, the performance of the
proposed application declines for the remaining 30% of the flows. The reason behind this
reduction in performance is the need to serve higher-priority flows.

Figure 13. Comparison of Throughput Between the Proposed Method and the Ryu Controller for
the Two Types of Flows in Two Experiments.

Figure 14. Comparison of Bandwidth Usage Between the Proposed Method and the Ryu Controller
for the Two Types of Flows in Two Experiments.

In general, it is observed that the performance of the two methods improves as the
number of flows increases in both experiments.

The third parameter that was used to compare the performance of the proposed ap-
proach and the RYU controller is the data transfer rate. This parameter was added to sup-
port the evaluation of the proposed method. Figure 15 shows that the proposed method
is more effective in transferring data than the Ryu controller for most of the flows in both
experiments. Based on the measurement of the rate of data transfer, the proposed method

Figure 13. Comparison of Throughput Between the Proposed Method and the Ryu Controller for the
Two Types of Flows in Two Experiments.

Network 2023, 3 234

Network 2023, 3, FOR PEER REVIEW 17

method is better than that of the Ryu controller for the majority of flows for both param-
eters. However, as the number of flows increases, the performance of the proposed
method is equal to or slightly less than that of the controller. In experiment 2, as shown in
the charts of the aforementioned figures, the throughput and bandwidth provided by the
proposed mechanism are improved compared to those by the Ryu controller. Conse-
quently, the performance of the proposed mechanism is enhanced for 70% of the flows.
Nevertheless, compared to the performance of the Ryu controller, the performance of the
proposed application declines for the remaining 30% of the flows. The reason behind this
reduction in performance is the need to serve higher-priority flows.

Figure 13. Comparison of Throughput Between the Proposed Method and the Ryu Controller for
the Two Types of Flows in Two Experiments.

Figure 14. Comparison of Bandwidth Usage Between the Proposed Method and the Ryu Controller
for the Two Types of Flows in Two Experiments.

In general, it is observed that the performance of the two methods improves as the
number of flows increases in both experiments.

The third parameter that was used to compare the performance of the proposed ap-
proach and the RYU controller is the data transfer rate. This parameter was added to sup-
port the evaluation of the proposed method. Figure 15 shows that the proposed method
is more effective in transferring data than the Ryu controller for most of the flows in both
experiments. Based on the measurement of the rate of data transfer, the proposed method

Figure 14. Comparison of Bandwidth Usage Between the Proposed Method and the Ryu Controller
for the Two Types of Flows in Two Experiments.

In general, it is observed that the performance of the two methods improves as the
number of flows increases in both experiments.

The third parameter that was used to compare the performance of the proposed
approach and the RYU controller is the data transfer rate. This parameter was added to
support the evaluation of the proposed method. Figure 15 shows that the proposed method
is more effective in transferring data than the Ryu controller for most of the flows in both
experiments. Based on the measurement of the rate of data transfer, the proposed method
in the second experiment has the same behavior as the previous parameters for the majority
of flows, where the performance becomes better than it is in the first experiment, although
it may be slightly less than the performance of the controller sometimes.

Network 2023, 3, FOR PEER REVIEW 18

in the second experiment has the same behavior as the previous parameters for the ma-
jority of flows, where the performance becomes better than it is in the first experiment,
although it may be slightly less than the performance of the controller sometimes.

Figure 15. Comparison of Data Transfer Rate Between the Proposed Method and the Ryu Controller
for the Two Types of Flows in Two Experiments.

As a result, the proposed approach is more efficient than the Ryu controller and
proves its ability to find the best route according to the flow type.

5. Conclusions and Future Works
This article presents an SDN-based routing framework based on the concepts of flow

characterization and flow identification. We found that the network traffic, which is de-
scribed by their performance metrics, can be routed based on their type according to these
metrics. As a result, each flow is routed in terms of its type and the ID of its cluster. There-
fore, routing a clustered traffic as elephants and mice can help improve the network man-
agement system and contribute to solving the problem of unfair use of network resources
by particular flows. The unified proposed architectural solution provides an efficient cal-
culation of route cost and consistency with real-time constraints in the SDN environment.
The results show that 70% of the flows can be routed precisely. Therefore, the dynamic
provisions of network resources among different flow types are achieved. For future
works, the proposed application sets the ground for designing an automated SDN appli-
cation, which can be employed for all kinds of flows and network topologies to improve
bandwidth utilization and reduce congestion across networks.

Author Contributions: Conceptualization, M.A.-S.; Methodology, M.A.-S.; Software, M.A.-S. and
B.A.-S.; Validation, M.A.-S.; Formal analysis, M.A.-S.; Investigation, M.A.-S.; Writing, M.A.-S.; Re-
viewing, A.K., V.K., D.J.W. and B.A.-S. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data sharing not applicable.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

Table A1. Table of Features [42].

1. First _packet 2. last_packet 3. total_packets_a2b
4. total_packets_b2a 5. resets_sent_a2b 6. resets_sent_b2a
7. ack_pkts_sent_a2b 8. ack_pkts_sent_b2a 9. pure_acks_sent_a2b

Figure 15. Comparison of Data Transfer Rate Between the Proposed Method and the Ryu Controller
for the Two Types of Flows in Two Experiments.

As a result, the proposed approach is more efficient than the Ryu controller and proves
its ability to find the best route according to the flow type.

5. Conclusions and Future Works

This article presents an SDN-based routing framework based on the concepts of
flow characterization and flow identification. We found that the network traffic, which
is described by their performance metrics, can be routed based on their type according
to these metrics. As a result, each flow is routed in terms of its type and the ID of its
cluster. Therefore, routing a clustered traffic as elephants and mice can help improve
the network management system and contribute to solving the problem of unfair use
of network resources by particular flows. The unified proposed architectural solution

Network 2023, 3 235

provides an efficient calculation of route cost and consistency with real-time constraints
in the SDN environment. The results show that 70% of the flows can be routed precisely.
Therefore, the dynamic provisions of network resources among different flow types are
achieved. For future works, the proposed application sets the ground for designing an
automated SDN application, which can be employed for all kinds of flows and network
topologies to improve bandwidth utilization and reduce congestion across networks.

Author Contributions: Conceptualization, M.A.-S.; Methodology, M.A.-S.; Software, M.A.-S. and
B.A.-S.; Validation, M.A.-S.; Formal analysis, M.A.-S.; Investigation, M.A.-S.; Writing, M.A.-S.; Re-
viewing, A.K., V.K., D.J.W. and B.A.-S. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data sharing not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Table of Features [42].

1. First _packet 2. last_packet 3. total_packets_a2b

4. total_packets_b2a 5. resets_sent_a2b 6. resets_sent_b2a

7. ack_pkts_sent_a2b 8. ack_pkts_sent_b2a 9. pure_acks_sent_a2b

10. pure_acks_sent_b2a 11. sack_pkts_sent_a2b 12. sack_pkts_sent_b2a

13. dsack_pkts_sent_a2b 14. dsack_pkts_sent_b2a 15. max_sack_blks.ack_a2b

16. max_sack_blks.ack_b2a 17. unique_bytes_sent_a2b 18. unique_bytes_sent_b2a

19. actual_data_pkts_a2b 20. actual_data_pkts_b2a 21. actual_data_bytes_a2b

22. actual_data_bytes_b2a 23. rexmt_data_pkts_a2b 24. rexmt_data_pkts_b2a

25. rexmt_data_bytes_a2b 26. rexmt_data_bytes_b2a 27. outoforder_pkts_a2b

28. outoforder_pkts_b2a 29. pushed_data_pkts_a2b 30. pushed_data_pkts_b2a

31. adv_wind_scale_a2b 32. adv_wind_scale_b2a 33. sacks_sent_a2b

34. sacks_sent_b2a 35. mss_requested_a2b 36. mss_requested_b2a

37. max_segm_size_a2b 38. max_segm_size_b2a 39. min_segm_size_a2b

40. min_segm_size_b2a 41. avg_segm_size_a2b 42. avg_segm_size_b2a

43. max_win_adv_a2b 44. max_win_adv_b2a 45. min_win_adv_a2b

46. min_win_adv_b2a 47. zero_win_adv_a2b 48. zero_win_adv_b2a

49. avg_win_adv_a2b 50. avg_win_adv_b2a 51. max_owin_a2b

Network 2023, 3 236

Table A1. Cont.

52. max_owin_b2a 53. min_non.zero_owin_b2a 54. avg_owin_a2b

55. avg_owin_b2a 56. wavg_owin_a2b 57. wavg_owin_b2a

58. initial_window_bytes_a2b 59. initial_window_bytes_b2a 60. initial_window_pkts_a2b

61. initial_window_pkts_b2a 62. ttl_stream_length_a2b 63. ttl_stream_length_b2a

64. missed_data_a2b 65. missed_data_b2a 66. data_xmit_time_a2b

67. data_xmit_time_b2a 68. idletime_max_a2b 69. idletime_max_b2a

70. throughput_a2b 71. throughput_b2a 72. RTT_samples_a2b

73. RTT_samples_b2a 74. RTT_min_a2b 75. RTT_min_b2a

76. RTT_max_a2b 77. RTT_max_b2a 78. RTT_avg_a2b

79. RTT_avg_b2a 80. RTT_stdev_a2b 81. RTT_stdev_b2a

82. RTT_from_3WHS_a2b 83. RTT_from_3WHS_b2a 84. RTT_full_sz_smpls_a2b

85. RTT_full_sz_smpls_b2a 86. RTT_full_sz_min_a2b 87. RTT_full_sz_min_b2a

88. RTT_full_sz_max_a2b 89. RTT_full_sz_max_b2a 90. RTT_full_sz_avg_a2b

91. RTT_full_sz_avg_b2a 92. RTT.full_sz_stdev_a2b 93. RTT_full_sz_stdev_b2a

94. post.loss_acks_a2b 95. post.loss_acks_b2a 96. ambiguous_acks_a2b

97. ambiguous_acks_b2a 98. RTT_min_.last._a2b 99. RTT_min_.last._b2a

100. RTT_max_.last._a2b 101. RTT_max_.last._b2a 102. RTT_avg_.last._a2b

103. RTT_avg_.last._b2a 104. RTT_sdv_.last._a2b 105. RTT_sdv_.last._b2a

106. segs_cum_acked_a2b 107. segs_cum_acked_b2a 108. duplicate_acks_a2b

109. duplicate_acks_b2a 110. triple_dupacks_a2b 111. triple_dupacks_b2a

112. max_._retrans_a2b 113. max_._retrans_b2a 114. min_retr_time_a2b

115. min_retr_time_b2a 116. max_retr_time_a2b 117. max_retr_time_b2a

118. avg_retr_time_a2b 119. avg_retr_time_b2a 120. sdv_retr_time_a2b

121. sdv_retr_time_b2a 122. SYN_pkts_sent_a2b 123. FIN_pkts_sent_a2b

124. SYN_pkts_sent_b2a 125. FIN_pkts_sent_b2a 126. req_1323_ws_a2b

127. req_1323_ts_a2b 128. req_1323_ws_b2a 129. req_1323_ts_b2a

Network 2023, 3 237

References
1. Liu, J.; Li, J.; Shou, G.; Hu, Y.; Guo, Z.; Dai, W. SDN based load balancing mechanism for elephant flow in data center networks.

In Proceedings of the International Symposium on Wireless Personal Multimedia Communications, WPMC, Sydney, Australia,
7–10 September 2014; Volume 2015, pp. 486–490. [CrossRef]

2. Kaiwa, T.; Kitsuwan, N. Imbalance state resolving considering flow types. IEICE Commun. Express 2020, 9, 66–71. [CrossRef]
3. Kumar, S.; Bansal, G.; Shekhawat, V.S. A Machine Learning Approach for Traffic Flow Provisioning in Software Defined Networks.

In Proceedings of the International Conference on Information Networking, Barcelona, Spain, 7–10 January 2020; Volume 2020,
pp. 602–607. [CrossRef]

4. Awad, M.K.; Ahmed, M.H.H.; Almutairi, A.F.; Ahmad, I. Machine learning-based multipath routing for software defined
networks. J. Netw. Syst. Manag. 2021, 29, 18. [CrossRef]

5. Zhao, Y.; Li, Y.; Zhang, X.; Geng, G.; Zhang, W.; Sun, Y. A survey of networking applications applying the software defined
networking concept based on machine learning. IEEE Access 2019, 7, 95397–95417. [CrossRef]

6. Keshari, S.K.; Kansal, V.; Kumar, S. A systematic review of quality of services (QoS) in software defined networking (SDN). Wirel.
Pers. Commun. 2021, 116, 2593–2614. [CrossRef]

7. Wang, N.; Ho, K.H.; Pavlou, G.; Howarth, M. An overview of routing optimization for internet traffic engineering. IEEE Commun.
Surv. Tutor. 2008, 10, 36–56. [CrossRef]

8. Mendiola, A.; Astorga, J.; Jacob, E.; Higuero, M. A Survey on the Contributions of Software-Defined Networking to Traffic
Engineering. IEEE Commun. Surv. Tutor. 2016, 19, 918–953. [CrossRef]

9. Kakahama, H.K.; Taha, M. Adaptive Software-defined Network Controller for Multipath Routing based on Reduction of Time.
UHD J. Sci. Technol. 2020, 4, 107–116. [CrossRef]

10. Apostolaki, M.; Vanbever, L.; Ghobadi, M. Fab: Toward flow-aware buffer sharing on programmable switches. In Proceedings of
the 2019 Workshop on Buffer Sizing, Palo Alto, CA, USA, 2–3 December 2019; pp. 1–6.

11. Wang, L.; Wang, X.; Tornatore, M.; Kim, K.J.; Kim, S.M.; Kim, D.-U.; Han, K.-E.; Mukherjee, B. Scheduling with machine-
learning-based flow detection for packet-switched optical data center networks. J. Opt. Commun. Netw. 2018, 10, 365–375.
[CrossRef]

12. Alghadhban, A.; Shihada, B. FLight: A fast and lightweight elephant-flow detection mechanism. In Proceedings of the Interna-
tional Conference on Distributed Computing Systems, Vienna, Austria, 2–6 July 2018; Volume 2018, pp. 1537–1538. [CrossRef]

13. Hong, E.T.B.; Wey, C.Y. An optimized flow management mechanism in OpenFlow network. In Proceedings of the International
Conference on Information Networking, Da Nang, Vietnam, 11–13 January 2017; pp. 143–147. [CrossRef]

14. Wu, X.; Yang, X. DARD: Distributed adaptive routing for datacenter networks. In Proceedings of the International Conference on
Distributed Computing Systems, Macau, China, 18–21 June 2012; pp. 32–41. [CrossRef]

15. Wang, W.; Sun, Y.; Zheng, K.; Kaafar, M.A.; Li, D.; Li, Z. Freeway: Adaptively Isolating the Elephant and Mice Flows on Different
Transmission Paths. In Proceedings of the 2014 IEEE 22nd International Conference on Network Protocols, Raleigh, NC, USA,
21–24 October 2014. [CrossRef]

16. Cui, W.; Yu, Y.; Qian, C. DiFS: Distributed Flow Scheduling for adaptive switching in FatTree data center networks. Comput.
Networks 2016, 105, 166–179. [CrossRef]

17. Liu, W.X. Intelligent Routing based on Deep Reinforcement Learning in Software-Defined Data-Center Networks. In Proceedings
of the IEEE Symposium on Computers and Communications, Barcelona, Spain, 29 June–3 July 2019; Volume 2019. [CrossRef]

18. Yahyaoui, H.; Aidi, S.; Zhani, M.F. On Using Flow Classification to Optimize Traffic Routing in SDN Networks. In Proceed-
ings of the 2020 IEEE 17th Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA,
10–13 January 2020. [CrossRef]

19. Amin, R.; Rojas, E.; Aqdus, A.; Ramzan, S.; Casillas-Perez, D.; Arco, J.M. A survey on machine learning techniques for routing
optimization in SDN. IEEE Access 2021, 9, 104582–104611. [CrossRef]

20. Zaher, S.M.M.; Alawadi, A.H. Sieve: A flow scheduling framework in SDN based data center networks. Comput. Commun. 2021,
171, 99–111. [CrossRef]

21. Tang, F.; Zhang, H.; Yang, L.T.; Chen, L. Elephant Flow Detection and Load-Balanced Routing with Efficient Sampling and
Classification. IEEE Trans. Cloud Comput. 2021, 9, 1022–1036. [CrossRef]

22. Shi, X.; Li, Y.; Xie, H.; Yang, T.; Zhang, L.; Liu, P.; Zhang, H.; Liang, Z. An OpenFlow-Based Load Balancing Strategy in SDN.
Comput. Mater. Contin. 2020, 62, 385–398. [CrossRef]

23. Isyaku, B.; Mohd Zahid, M.S.; Bte Kamat, M.; Abu Bakar, K.; Ghaleb, F.A. Software Defined Networking Flow Table Management
of OpenFlow Switches Performance and Security Challenges: A Survey. Future Internet 2020, 12, 147. [CrossRef]

24. Xie, J.; Yu, F.R.; Huang, T.; Xie, R.; Liu, J.; Wang, C.; Liu, Y. A survey of machine learning techniques applied to software
defined networking (SDN): Research issues and challenges. IEEE Commun. Surv. Tutor. 2018, 21, 393–430. Available online:
https://ieeexplore.ieee.org/abstract/document/8444669/ (accessed on 9 June 2022). [CrossRef]

25. Glick, M.; Rastegarfar, H. Scheduling and control in hybrid data centers. In Proceedings of the Summer Topicals Meeting Series,
SUM 2017, San Juan, PR, USA, 10–12 July 2017; pp. 115–116. [CrossRef]

26. Xiao, P.; Qu, W.; Qi, H.; Xu, Y.; Li, Z. An efficient elephant flow detection with cost-sensitive in SDN. In Proceedings of the 2015
1st International Conference on Industrial Networks and Intelligent Systems, INISCom 2015, Tokyo, Japan, 2–4 March 2015;
pp. 24–28. [CrossRef]

http://doi.org/10.1109/WPMC.2014.7014867
http://doi.org/10.1587/comex.2019XBL0132
http://doi.org/10.1109/ICOIN48656.2020.9016529
http://doi.org/10.1007/s10922-020-09583-4
http://doi.org/10.1109/ACCESS.2019.2928564
http://doi.org/10.1007/s11277-020-07812-2
http://doi.org/10.1109/COMST.2008.4483669
http://doi.org/10.1109/COMST.2016.2633579
http://doi.org/10.21928/uhdjst.v4n2y2020.pp107-116
http://doi.org/10.1364/JOCN.10.000365
http://doi.org/10.1109/ICDCS.2018.00161
http://doi.org/10.1109/ICOIN.2017.7899493
http://doi.org/10.1109/ICDCS.2012.69
http://doi.org/10.1109/ICNP.2014.59
http://doi.org/10.1016/j.comnet.2016.06.003
http://doi.org/10.1109/ISCC47284.2019.8969579
http://doi.org/10.1109/CCNC46108.2020.9045216
http://doi.org/10.1109/ACCESS.2021.3099092
http://doi.org/10.1016/j.comcom.2021.02.013
http://doi.org/10.1109/TCC.2019.2901669
http://doi.org/10.32604/cmc.2020.06418
http://doi.org/10.3390/fi12090147
https://ieeexplore.ieee.org/abstract/document/8444669/
http://doi.org/10.1109/COMST.2018.2866942
http://doi.org/10.1109/PHOSST.2017.8012677
http://doi.org/10.4108/icst.iniscom.2015.258274

Network 2023, 3 238

27. Hamdan, M.; Khan, S.; Abdelaziz, A.; Sadiah, S.; Shaikh-Husin, N.; Al Otaibi, S.; Maple, C.; Marsono, M. DPLBAnt: Improved
load balancing technique based on detection and rerouting of elephant flows in software-defined networks. Comput. Commun.
2021, 180, 315–327. [CrossRef]

28. Fu, Q.; Sun, E.; Sun, E.; Meng, K.; Li, M.; Zhang, Y. Deep Q-Learning for Routing Schemes in SDN-Based Data Center Networks.
IEEE Access 2020, 8, 103491–103499. [CrossRef]

29. Kiran, M.; Mohammed, B.; Krishnaswamy, N. DeepRoute: Herding Elephant and Mice Flows with Reinforcement Learning. In
Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); LNCS;
Springer: Cham, Switzerland, 2020; Volume 12081, pp. 296–314. [CrossRef]

30. Zhang, C.; Wang, X.; Li, F.; Huang, M. NNIRSS: Neural network-based intelligent routing scheme for SDN. Neural Comput. Appl.
2018, 31, 6189–6205. [CrossRef]

31. Wu, X.; Kumar, V.; Quinlan, J.R.; Ghosh, J.; Yang, Q.; Motoda, H.; McLachlan, G.J.; Ng, A.; Liu, B.; Yu, P.S.; et al. Top 10 algorithms
in data mining. Knowl. Inf. Syst. 2008, 14, 1–37. [CrossRef]

32. Slattery, T. A Story of Mice and Elephants: Dynamic Packet Prioritization|No Jitter. 2017. Available online: https://www.nojitter.
com/story-mice-and-elephants-dynamic-packet-prioritization (accessed on 27 August 2020).

33. Mininet. Available online: http://mininet.org/ (accessed on 25 June 2022).
34. De Oliveira, R.L.S.; Schweitzer, C.M.; Shinoda, A.A.; Prete, L.R. Using mininet for emulation and prototyping software-defined

networks. In Proceedings of the 2014 IEEE Colombian Conference on Communications and Computing (COLCOM), Bogota,
Colombia, 4–6 June 2014. [CrossRef]

35. Bavier, A.; Feamster, N.; Huang, M.; Peterson, L.; Rexford, J. In VINI veritas: Realistic and controlled network experimentation.
Comput. Commun. Rev. 2006, 36, 3–14. [CrossRef]

36. Iqbal, M.; Zhang, K.; Iqbal, S.; Tariq, I. A fast and reliable Dijkstra algorithm for online shortest path. Int. J. Comput. Sci.
Eng. 2018, 5, 24–27. Available online: https://pdfs.semanticscholar.org/b745/15006908078bc2efc27844f85a351740b148.pdf
(accessed on 25 June 2022). [CrossRef]

37. Yi, J.; Parrein, B. Multipath Extension for the Optimized Link State Routing Protocol Version 2 (OLSRv2). Available online:
http://www.rfc-editor.org/info/rfc8218 (accessed on 19 June 2022).

38. Al-Saadi, M.; Khan, A.; Kelefouras, V.; Walker, D.J.; Al-Saadi, B. Unsupervised Machine Learning-Based Elephant and Mice Flow
Identification. Lect. Notes Netw. Syst. 2021, 284, 357–370. [CrossRef]

39. Chiesa, M.; Kindler, G.; Schapira, M. Traffic engineering with equal-cost-multipath: An algorithmic perspective. IEEE/ACM Trans.
Netw. 2016, 25, 779–792. Available online: https://ieeexplore.ieee.org/abstract/document/7588075/ (accessed on 25 June 2022).
[CrossRef]

40. Thamilselvan, R.; Selvi, K.T.; Rajalaxmi, R.R.; Gothai, E. Multipath Routing of Elephant Flows in Data Centers Based on Software
Defined Networking. Int. J. Eng. Adv. Technol. 2019, 9, 2714–2717. [CrossRef]

41. Akin, E.; Korkmaz, T. Comparison of Routing Algorithms with Static and Dynamic Link Cost in Software Defined Networking
(SDN). IEEE Access 2019, 7, 148629–148644. [CrossRef]

42. Al-Saadi, M.; Ghita, B.V.; Shiaeles, S.; Sarigiannidis, P. A novel approach for performance-based clustering and anagement of
network traffic flows. In Proceedings of the 2019 15th International Wireless Communications & Mobile Computing Conference
(IWCMC), Tangier, Morocco, 24–28 June 2019. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.comcom.2021.10.013
http://doi.org/10.1109/ACCESS.2020.2995511
http://doi.org/10.1007/978-3-030-45778-5_20
http://doi.org/10.1007/s00521-018-3427-z
http://doi.org/10.1007/s10115-007-0114-2
https://www.nojitter.com/story-mice-and-elephants-dynamic-packet-prioritization
https://www.nojitter.com/story-mice-and-elephants-dynamic-packet-prioritization
http://mininet.org/
http://doi.org/10.1109/ColComCon.2014.6860404
http://doi.org/10.1145/1151659.1159916
https://pdfs.semanticscholar.org/b745/15006908078bc2efc27844f85a351740b148.pdf
http://doi.org/10.14445/23488387/IJCSE-V5I12P106
http://www.rfc-editor.org/info/rfc8218
http://doi.org/10.1007/978-3-030-80126-7_27
https://ieeexplore.ieee.org/abstract/document/7588075/
http://doi.org/10.1109/TNET.2016.2614247
http://doi.org/10.35940/ijeat.B3258.129219
http://doi.org/10.1109/ACCESS.2019.2946707
http://doi.org/10.1109/IWCMC.2019.8766728

