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Abstract: High-resolution soil moisture (SM) information is essential for regional to global hydro-
logical and agricultural applications. The Soil Moisture Active Passive (SMAP) offers daily global
composites of SM at coarse-resolution 9 and 36 km, with data gaps limiting its local application to
depict SM distribution in detail. To overcome the aforementioned problem, a downscaling and gap-
filling novel approach was adopted, using random forest (RF) and artificial neural network (ANN)
algorithms to downscale SMAP SM data, using land-surface variables from moderate-resolution
imaging spectroradiometer (MODIS) onboard Aqua and Terra satellites from the years 2018 to 2019.
Firstly, four combinations (RF+Aqua, RF+Terra, ANN+Aqua, and ANN+Terra) were developed.
Each combination downscaled SMAP SM at a high resolution (1 km). These combinations were
evaluated by using error matrices and in situ SM at different scales in the ShanDian River (SDR)
Basin. The combination RF+Terra showed a better performance, with a low averaged unbiased
root mean square error (ubRMSE) of 0.034 m3/m3 and high averaged correlation (R) of 0.54 against
the small-, medium-, and large-scale in situ SM. Secondly, the impact of various land covers was
examined by using downscaled SMAP and in situ SM. Vegetation attenuation makes woodland more
error-prone and less correlated than grassland and farmland. Finally, the RF+Terra and ANN+Terra
combinations were selected for their higher accuracy in gap filling of downscaled SMAP SM. The
gap-filled downscaled SMAP SM results were compared spatially with China Land Data Assimilation
System (CLDAS) SM and in situ SM. The RF+Terra combination outcomes were more humid than
ANN+Terra combination results in the SDR basin. Overall, the RF+Terra combination gap-filled
data showed high R (0.40) and less ubRMSE (0.064 m3/m3) against in situ SM, which was close to
CLDAS SM. This study showed that the proposed RF- and ANN-based downscaling methods have a
potential to improve the spatial resolution and gap-filling of SMAP SM at a high resolution (1 km).

Keywords: SMAP soil moisture; artificial neural network; random forest; downscaling; gap-filling;
ShanDian River Basin

1. Introduction

Soil moisture (SM) plays a significant role in global water and energy balance [1,2], and
it influences hydrological and atmospheric cycles [3,4], irrigation management, drought
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conditions [5], and many other processes. SM can be attained from ground-truth obser-
vation (in situ) [6], land surface models (LSM) possibly using data assimilation [7], and
remotely sensed datasets [4,8,9]. On a regional scale, in situ SM measurements cannot
reflect the exact SM distribution [10]. In areas where stations are sparsely distributed,
data-assimilation products based on these measurements are unable to provide a complete
picture of the spatial and temporal variability of surface soil moisture (SSM) [11,12]. Re-
cently, remotely sensed SM products have been the only practical alternative for gaining
access to a vast amount of SM data on both spatial and temporal dimensions, something
that is almost impossible to achieve with in situ SM monitoring networks [13–15]. Due
to the large dielectric difference between dry soil and liquid water, microwave remote
sensing is one of the remote-sensing technologies that can penetrate the soil surface and
directly measure the SSM content. Although enormous efforts have been made in the
past several decades to retrieve SM via microwave remote-sensing satellites (active and
passive), these methods are not without their drawbacks. Datasets from active sensors
such as the European Remote Sensing (ERS) satellite are significantly impacted by scat-
tering caused by surface roughness and vegetation structure [16,17]. Passive microwaves’
products can provide more accurate SSM observations, unlike active sensors, because they
are less impacted by topography, vegetation coverage, soil water content, and soil surface
roughness [18,19], but their products contain coarse spatial resolution, and their sensing
depth is also limited [20].

Recent studies revealed that a combination of active and passive sensors is necessary
to acquire reliable satellite-based SM data [21,22]. The SMAP satellite, launched by the
National Aeronautics and Space Administration (NASA, Washington, DC, USA) in 2015,
provided high-resolution SM on a global scale by fusing high-resolution L-band (active)
radar backscatter data with L-band (passive) brightness temperature (TB) [19,23]. The
SMAP satellite offers SM on a 36 km grid cell during both the ascending and descending
passes (6:00 a.m. and 6:00 p.m., respectively). In July of 2015, the SMAP radar instrument
stopped functioning, leaving the radiometer instrument as the sole functional component
of the SMAP satellite and the only source of the level 2 SM data (L2SMP) [24].

For investigations at the global and continental scales, the spatial resolution of the
SMAP SM observation is adequate; however, it is not appropriate for applications in re-
gional or local studies, such as agricultural and drought monitoring, without a product
with a better resolution [19,25–28]. Higher-resolution SM is still needed for several uses
involving land surfaces, such as water resource management, agriculture, and crop produc-
tion. Because of variations in climate and land-surface attributes across various locations,
remote-sensing products tend to have site-specific performances that cannot be extrapolated
elsewhere. Because optical/thermal infra-red (TIR) datasets often have high spatial reso-
lutions, downscaling algorithms that utilize these datasets produce downscaled products
with a similar fine resolution [18,24,29–33]. Some downscaling techniques are already pro-
posed on the bases of fine-resolution optical/TIR observations, such as vegetation indices
(VIs) and land-surface temperature (LST); triangular/trapezoidal feature space [18,33–35];
University of California, Los Angeles (UCLA) method [30]; Peng’s approaches (based on the
vegetation temperature condition index (VTCI)) [36,37]; Disaggregation based on Physical
And Theoretical scale Change (DisPATCh) based on some soil evaporative processes (actual
evaporative fraction (EF); and soil evaporative efficiency (SEE)) [38–40]. In downscaling,
methods such as Peng’s, UCLA’s, EF, SEE, and DisPATCh employ an SM proxy variable to
construct the interaction framework with SM. Merlin et al. [38] applied actual evaporative
fraction (EF) and SM indices. Using the North American Land Data Assimilation System
(NLDAS) model, Fang et al. [31] and Fang and Lakshmi. [41] examined and compared
several techniques for determining the SEE and used them to downscale AMSR-E SM over
the Little Washita Watershed, Oklahoma, United States. Using this approach, the root mean
square error (RMSE) of the downscaled SM ranged from 0.02 to 0.058 cm3/cm3. However,
Peng et al. [37] and Malbéteau et al. [40] demonstrated that simple SM proxy variables
could not robustly depict the spatial and temporal variability in SM.
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In recent years, various developments have been achieved in the construction of
downscaling models, using ML algorithms with different data sources. It is possible to
extract intricate and highly nonlinear relationships between input variables (predictors)
and output variables (targets) by using ML algorithms from large datasets [27,42–44]. In
recent times, several machine-learning methods, including RF, ANN, General Regression
Neural Network (GRNN), and Support Vector Machine (SVM), have been introduced for
downscaling of remotely sensed SM [45–50]. Intricate relationships between AMSR-E SM
data and other MODIS surface-factor products were investigated in a downscaling research
study by Im et al. [34], using RF. The outcome shows that the RF technique can characterize
the connection between AMSR-E and MODIS products with acceptable accuracy (RMSE
= 0.051 m3/m3). Combining MODIS surface temperature with SM collected by SMOS,
Srivastava et al. [46] employed ANN, SVM, relevance vector machines, and generalized
linear models and concluded that the ANN model produced superior results to other
approaches. An ANN was utilized by Alemohammad et al. [51] to establish a connection
between low-resolution SM datasets and the normalized difference vegetation index (NDVI)
estimates; then high-resolution NDVI data were used to generate high-spatial-resolution
SM outputs. The SMAP passive SM products were downscaled by Abbaszadeh et al. [52],
using the RF model based on the parameters of the top 5 cm of soil in the CONUS region
between April and December 2015. In the Little Washita watershed and the Walnut Gulch
Experimental Watershed, the ubRMSE values for 2015 ranged from 0.02 to 0.06 cm3/cm3

and from 0.02 to 0.07 cm3/cm3, respectively. They also showed that the downscaled SM
products could be more accurate when other factors, such as soil texture and topography,
are considered. According to the aforementioned studies, ML has the adaptability and
competence to handle large amounts of remote-sensing data and nonlinear difficulties in
SM downscaling. The ML techniques may be used to illustrate the nonlinear connections
between SM and surface variables. As a result of their excellent generalization capacity and
resilience, RF and ANN have been frequently employed in prior research [48,53–55].

Compared to other inland areas, the availability of SMAP SM in the SMN-SDR Basin
is much lower. For instance, the SMAP SM data were unavailable for most of the SMN-SDR
Basin throughout the first half of 2018 due to clouds and frozen state events. The need
for gap-filling techniques to generate temporally and spatially comprehensive SMAP SM
data is essential due to the importance of the SMN-SDR Basin to the global environment.
Several gap-filling approaches were proposed to reconstruct the SM data to overcome
the problem of missing pixels. For instance, Liu et al. [56] used original SMAP SM data
with maximum available pixels to improve the spatial coverage of Essential Climatic
Variable (ECV) SM pixels in Europe by estimating their arithmetic means. Unfortunately,
this gap-filling method is very dependent on the availability of the SMAP pixels and is
thus useless when no SMAP data are available. Zhang et al. [57] suggested an ANN
method for reconstructing the ESA CCI missing data for China between 1982 and 2015,
with several environmental parameters serving as training data. Tong et al. [58] proposed
RF and geostatistical methodologies to fill the SM gaps in the SMAP products as a solution
to the problem of missing data in the SMAP 36 km SM Level 3 (L3) product across the
Tibetan Plateau. They verified the findings and concluded that the ML approach and the
geostatistical methodology can release retrievals from the limits of traditional radiative
transfer models and enhance the coverage in time and space for SMAP SM products.

In light of the above insights, we built RF and ANN models by using topographic
data and optical/TIR data for downscaling coarse-resolution (36 km) SMAP passive mi-
crowave SM (SPL3SMP, Version 4) data. In this study, SM was the output variable, whereas
optical/TIR data and topographical data were the input factors. This study focused on
achieving the following purposes: (1) to downscale coarse resolution (36 km) SMAP SM at
fine resolution (1 km), using RF and ANN models; (2) to evaluate downscaled SM quality
of these ML techniques, comparing with ground truth SM observations at different scales
over the SMN-SDR Basin; (3) to analyze the influence of various land-cover types, primarily
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forests, on the downscaled SM across the study region; (4) to fill missing gaps in the SMAP
SM, using ML techniques, and validate them with CLDAS data at spatial–temporal scales.

2. Materials and Methods
2.1. Study Area

In the northern part of China, the ShanDian River Basin (Figure 1), which includes
a wireless Soil Moisture Network referred to as SMN-SDR, was the primary focus of the
research. The network’s total coverage area is 10,000 km2. The ShanDian River Basin is
situated between 115.5◦E and 116.5◦E and between 41.5◦N and 42.5◦N in latitude and
longitude, respectively. This region is big enough to accommodate sufficient SMAP SSM
pixels with coarse resolution. The SMN-SDR is characterized by relatively flat topography
and a landscape composed mostly of farmland, grassland, and scattered woodlands and
wetlands. The yearly average precipitation in most regions ranges from 300 to 500 mm [59].
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2.2. Data
2.2.1. SMAP Data

SMAP’s global TB data are used to generate SM products with spatial resolutions
of 36 km [60], 9 km active–passive [19], and 3 km (radar), with a temporal resolution
of 1 to 3 days. Using active L-band radar and passive L-band radiometer, the SMAP
satellite precisely monitors Earth’s surface at approximately 6:00 a.m. (descending) and
approximately 6:00 p.m. (ascending) every day, in synchronization with the sun [61]. On
31 March and 13 April 2015, the radar and radiometer, respectively, began to provide SMAP
imagery. Although the high spatial resolution of radars (about 1–3 km) is not comparable
to the radiometer’s moderate resolution, radiometer (passive) devices are less sensitive
to vegetation density and roughness of the ground than radar (active) sensors (around
40 km). The accuracy and spatial resolution of SM measurements are improved by SMAP’s
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integration of radar and radiometer sensors [62]. However, owing to a technical issue, the
radar ceased supplying SMAP active microwave datasets on 7 July 2015. The near-SSM
(0–5 cm) is determined by using radiometric-based methods with a volumetric accuracy
of 0.04 m3/m3 [63]. As a result, SMAP’s passive SM product is crucial for examining and
analyzing in SM conditions throughout the world, and recent validation experiments have
shown that it has a strong potential to accurately capture SSM dynamics [13,64,65].

For this study, we used SMAP Level 3 passive radiometric SM product (SPL3SMP,
Version 4) from 2018 and 2019, which has 36 km spatial resolution on the Equal-Area
Scalable Earth (EASE) Grid. This product provides daily composites of SSM generated
by daily Level 2 half-orbit granules. The NASA’s National Snow and Ice Data Center
Distributed Active Archive Center (NSIDC) website (https://www.nsidc.org/data/smap/
smap-data.html, last accessed on 10 April 2022) offers this dataset at no cost.

2.2.2. Land-Surface Model Data

We utilized the CLDAS soil volumetric water-content-analysis tool from the China
Meteorological Data Service Centre. The CLDAS data have a spatial resolution of 0.0625◦

and have a temporal resolution of 1 h, covering the Asian region (0–65◦N, 60–160◦E). The
CLDAS soil volumetric water content product has a correlation coefficient of 0.89, a root
mean square error (RMSE) of 0.02 m3/m3, and a variance of 0.01 m3/m3 when compared
to the real ground observation data throughout all regions at a national scale [66]. This is
shown by comparing soil volumetric water content measurements from CLDAS-V2.0 with
SM observation measurements from China’s network of automated monitoring stations, all
of which have undergone stringent quality controls. The CLDAS has higher spatial and
temporal resolutions than either GLDAS or NLDAS SM. There are a total of four SM layers
in the product, but just the topmost layer (0–10 cm) was the primary focus of this study.
Hourly volumetric SM measurements were downloaded from the top layer, and then daily
averages were computed.

2.2.3. MODIS Data

The quantity and quality of the datasets significantly impact the accuracy of ML
approaches and the choice of algorithms [67,68]. For regression models, it is crucial to
choose feature variables properly. The relationship between SSM and surface variables
is the major step in establishing any downscaling process. In many previous studies,
different important land-surface variables, such as LST, NDVI, enhanced vegetation index
(EVI), surface albedo (ALBEDO), and normalized difference water index (NDWI), were
used to establish a relationship with SSM. These land-surface variables mainly consist of
vegetation indices, water indices, and surface reflectance, which directly influence SSM.
In this study, we used some new indices related to soil wetness, such as the land-surface
water index (LSWI) [69] and normalized shortwave-infrared difference bare SM index
(NSDSI) [70]. MODIS onboard the Aqua and Terra satellites are the best sources for any
region to obtain all of these continuous time-series predictors. The MODIS products
MYD11A1 and MOD11A1 were used to obtain daily Aqua and Terra LST at 1 km spatial
resolution, respectively; MYD13A2 and MOD13A2 for 1 km resolution 16-days Aqua and
Terra vegetation indices (NDVI and EVI), respectively; and 1 km resolution daily Aqua and
Terra surface ALBEDO obtained from MYDTBGA and MODTBGA products, respectively.
The soil wetness indices (NDWI, LSWI, and NSDSI) were calculated by processing different
bands obtained from MODIS (Aqua and Terra) surface reflectance products (MYD09GA
and MODO9GA), respectively. The following equations represent the soil wetness indices:

NDWI = (B4 − B2 )/(B4 + B2) (1)

LSWI = (B2 − B6 )/(B2 + B6) (2)

NSDSI = (B6 − B7 )/B6 (3)

https://www.nsidc.org/data/smap/smap-data.html
https://www.nsidc.org/data/smap/smap-data.html
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where B2, B4, B6, and B7 are the 2nd, 4th, 6th, and 7th surface reflectance bands, respectively,
of the Aqua and Terra MYD09GA and MODO9GA products. These MODIS products
are accessible via the NASA Earthdata website (https://search.earthdata.nasa.gov, last
accessed on 14 April 2022), and all of the data were collected for the years 2018 and 2019.

2.2.4. Topographic Data

SM is strongly associated with elevation, slope, and aspect [52,71]. As a source of
elevation data, we used the Shuttle Radar Topography Mission (SRTM) digital elevation
model (DEM). Based on the DEM, the slope and aspect can be calculated. Th slope and
aspect were assessed by using QGIS, and these data were received directly from the land
processes distributed active archive center website (https://lpdaac.usgs.gov, last accessed
on 27 April 2022).

2.2.5. In Situ SM Data

This study collected ground-based SM data from the SMN-SDR, a wireless network
that measures soil moisture in the SMN-SDR Basin of North China. From 18 July 2018
to 28 September 2018, the SMN-SDR was operational during the SM experiment in the
Luan River [59]. The SMN-SDR network’s in situ SM data was made publicly accessible
via the International Soil Moisture Network (ISMN) [72]. The network, which consisted of
34 stations in total, was constructed using three different sample scales: large scale (100 km),
medium scale (50 km), and small scale (10 km). As can be seen in Figure 1, 14 large-scale
(L) stations (out of total 34 stations), 12 medium-scale (M) stations, and 8 small-scale (S)
stations fit precisely inside the SMAP 9 km grid. Estimates of SM were made at five different
depths (3, 5, 10, 20, and 50 cm) across all stations using Decagon EM50, USA (5TM probes)
sensors. The data were recorded during 10-min (before June 2019) and 15-min (beginning
June 2019) intervals. The SMN-SDR SM data at 5 cm depths (from 25 July 2018 through
31 December 2019) were utilized to check the accuracy of SMAP L3 SM in this study.

2.2.6. Precipitation Data

The SMN-SDR includes additional meteorological data, such as precipitation, in
addition to multilayer soil temperature (at the same depths as the SMs). In total, 20 of the
34 stations use HOBO rain gauges (made by Austria), measuring up to 160 inches of rain at
rates as high as 12.7 cm (5 inches) per hour in the SMN-SDR [59]. The majority of these
stations are situated on small and medium scales. The HOBO rain gauge is described in
further detail at (https://www.onsetcomp.com/products/data-loggers/rg3, last accessed
on 18 April 2022). Each of these stations has time-series hourly data of soil temperature,
precipitation, and SM. The climate in the experimental area is moderate continental, with
annual precipitation averaging between 300 and 500 mm, with 70% of falling between July
and September [59].

2.3. Statistical Analysis

The downscaled SMAP SM was qualitatively evaluated with the SMN-SDR network
at two spatial scales: core validation sites (CVSs), which provide all of the S-scale (S) and
a sparse network of M-scale (M) and L-scale (L) stations. In this study, these networks
were utilized to compare the SMAP SM downscaled by RF and ANN at 1 km spatial
resolution with in situ SM, using a series of statistical metrics, including the ubRMSE [73,74],
correlation coefficient (R), and mean Bias [65]. The validating metrics are defined as follows:

Bias = E[θ est]−E[θ insitu] (4)

RMSE =

√
E[((θ est)− (θ insitu))

2] (5)

ubRMSE =

√
E[((θ est – E[θ est]) – (θ insitu – E[θ insitu]))

2] (6)

https://search.earthdata.nasa.gov
https://lpdaac.usgs.gov
https://www.onsetcomp.com/products/data-loggers/rg3
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R = E[(θ est − E[θ est])(θ insitu − E[ θ insitu])] (σ estσ insitu)
−1 (7)

where E[.] is the expectation value operator; θ est and θ insitu represent SMAP and in-situ
SM values, respectively; σ est is the standard deviation of θ est; and σ insitu is the standard
deviation of θ insitu.

3. Soil Moisture Downscaling Framework

The spatial and temporal heterogeneities of the SM were employed in conjunction
with high-resolution datasets to downscale the SM from the SMAP radiometer. All of the
abovementioned variables, such as VIs, WIs, LST, slope, elevation, and aspect, are readily
accessible at acceptable resolutions and are considered to have good explanatory power
on the SM profile at various scales [71]. Precipitation, a covariate of the atmosphere, is
used to sustain the downscaled SM’s temporal evolution. Aspect, slope, and elevation
are geophysical factors that represent the variation and spatial distribution patterns of
downscaled SM. To consider the impact of different kinds of vegetation on the downscaled
SM spatial and temporal distribution patterns, further variables are used, such as VIs (as a
measure of greenness). Low-quality pixels that might have been impacted by clouds or
aerosols were omitted from the analysis by performing a thorough quality-control check
and by reprojecting all the data to the same coordinate reference system (i.e., WGS 84).
Furthermore, nearest-neighbor interpolation and simple arithmetic mean approaches were
utilized to compensate for the differences in spatial resolution between the predictors and
the response variables. Coarse-resolution predictors were resampled to a high-resolution
by using nearest-neighbor interpolation, whereas high-resolution predictors (e.g., LST, Vis,
and WIs) were resampled to a coarse resolution, using the simple arithmetic mean.

This research created the downscaling framework by using RF and ANN ML tech-
niques. In the following sections, the fundamentals of these strategies and how they work
are thoroughly covered. The primary contribution of this study is the development of a
novel method for including the aforementioned atmospheric and geophysical variables in
the RF and ANN models, which will enhance estimations of SM at finer resolutions.

3.1. Random Forest (RF)

The RF method is an ensemble learning technique that combines the outputs of many
different decision trees to improve prediction accuracy [75]. Its advantage lies in the
rapidity with which it can be trained and the precision with which the RF model can be
optimized for performance [76]. RF relies heavily on bootstrap aggregation (bagging), a
statistical technique used to produce many subgroups by repeatedly sampling the training
dataset with a replacement (i.e., bootstrap samples). In this study, approximately two-
thirds of each random subset (e.g., in-bag, IB) was used to train the decision trees that
comprise the ensemble, while the remaining one-third (e.g., out-of-bag, OOB) was used for
model verification. The final anticipated value is an average of the predictions made by
the various regressors. RF may be tuned to improve its prediction ability by using a few
user-defined parameters. The maximum number of parameters that may be selected at
each decision tree split, the maximum depth of the decision tree, and the total number of
decision trees to be developed are all interconnected. Furthermore, an appealing aspect
of RF is its capacity to highlight the perceived importance of predictors by making use of
OOB data. Because of its adaptability, randomization, and decorrelation, RF may be used
to describe extremely nonlinear and complicated relationships. RF is easy to work with and
adaptable, and it is less sensitive to changes in hyperparameters than other models. It has
been shown in previous studies that the RF model is capable of representing a workable SM
downscaling model, and it has also been proved to be successful in complicated nonlinear
fitting [34,49,50,53,76,77].

3.2. Artificial Neural Network (ANN)

The artificial neural network (ANN) is a technique of ML that originated and devel-
oped from the idea of replicating the human brain. ANNs are also known as convolutional
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neural networks. The pyramid of artificial intelligence (AI) depicts the progression from
machine learning to ANN and further to deep learning (DL). The ANN is presently one of
the most prominent ML techniques and is employed in numerous applications, including
the remote sensing of SM inversion [55,78–81]. ANNs have the capability of learning
complicated functional forms in an adaptive manner and of capturing extremely nonlinear
correlations between the inputs (predictors) and the targets (responses) [82]. Three essential
elements are present in any neural network: the node character, the network architecture,
and the learning rules. The node’s character, which includes its number of inputs and
outputs, the weights assigned to each input and output, and the activation function, defines
how signals are processed by the node. An activation function, which is a mathematical
function, uses ANN processing to transform the result of the summing function into the
node’s final output. The organization and connectivity of nodes are determined by network
topology. Establishing the network’s topology requires counting the number of nodes in
each layer, determining the total number of layers, and tracing the paths of the connections
between the nodes. The initialization and adjustment of the weights are controlled by
learning rules. The ANN trains the network via a learning process. To produce the intended
output, the ANN is trained to detect patterns in the provided input datasets during the
training phase. After the network has been trained, the next step is testing, where the
pattern identified during training is used to create the corresponding output depending on
the inputs [79–81].

The training process for complicated ANNs may provide the false impression of high
accuracy owing to the overfitting of the data. To prevent overfitting during iterative train-
ing, ANNs often use the regularization technique of early stopping [83]. In this research, a
particular kind of ANN known as a multilayer perceptron (MLP) was used. It is made up of
little units called perceptrons. MLP is a model built by hierarchically stacking perceptrons,
layer by layer. In a particular layer, the perceptrons are independent of one another, yet
each is linked to the remainder of the perceptrons in the next layer. Each layer is made up
of a group of neurons that are trained by using a backpropagation technique. It is one of the
most widely used methods for supervised multilayered neural network training [55,79,82].
By altering the weight values internally, it approximates the nonlinear relationship be-
tween the input and the response. Then it is considered that the weights with the lowest
error functions are the key to solving the learning problems. An ANN algorithm was
implemented by using the neuralnet and h2o R-language packages, both of which have a
number of pre-existing functions. One input layer, two hidden layers, and one output layer
were used to make up ANN models with 200 hidden neurons in this research work. The
quantity of epochs indicates how often the weights are updated by using the whole set of
training data. In other words, it measures how many times the backpropagation algorithm
runs across the complete training dataset. The research made use of 100 epochs. The
“RectifierWithDropout” was used as the activation function. Assessment metrics between
actual and anticipated values for dataset were used to complete the final model evaluation.

3.3. Downscaling Process

This study employed RF and ANN ML techniques to downscale SPL3SMP (36 km)
SM to 1 km. Recently, they have become more widely used in remote sensing to address
classification and regression issues, especially RF [46]. Both of the proposed downscaling
methods are based on the same principle: establishing a statistical connection between
SMAP SM and geospatial variables (elevation, slope, and aspect), and land-surface variables
(NDVI, EVI, NDWI, LSWI, NSDSI, and LST) at a coarse resolution (36 km) that link input
variables’ output covariates by using the following equations:

SM = (p1, p2, p3 ... pn) + ε (8)

where SM is the downscaled SM data (response); is the regression function of ML tech-
niques (RF and ANN); p1, p2, p3 . . . pn represent the input covariates (i.e., NDVI, EVI,
NDWI, LSWI, NSDSI, LST, elevation, slope, and aspect); and n is the total number of predic-
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tors. The layout of the aforementioned SM downscaling technique is briefly summarized in
the following steps.

Step 1: The DEM and high-resolution MODIS surface variables (1 km) were resampled
to the same coarse resolution (36 km) of the SMAP SM product. Then the regression
interaction between surface parameters and SM datasets was established by using the
RF and ANN models at a coarse resolution. During the regression, MODIS/Aqua and
MODIS/Terra land-surface variables were used to develop four different combinations with
SMAP SM, applying RF and ANN algorithms. These combinations (RF+Aqua, ANN+Aqua,
RF+Terra, and ANN+Terra) elaborated the ability of these downscaling techniques and the
impact of different MODIS data. These combinations were developed when both MODIS
and SMAP SM datasets were available for the whole study. Due to clouds and frozen
events in the study area, only those days were selected when 90% of pixels had effective
values during the time period from 2018 to 2019. The qualified number of days for all the
combinations against multi-scale in situ SM and different land covers for study duration is
listed in Table 1.

Table 1. Number of days with available datasets for all combinations at different scales in situ SM
sites and vegetation.

Multi-Scale In Situ SM Number of Days Vegetation Covers Number of Days

S-scale 151 Grassland 151

M-scale 151 Farmland 99

L-scale 129 Woodland 138

Step 2: A calibration of the residual error between the prediction results of the RF and
ANN downscaling models and the original data is required. Residuals at coarse resolution
were computed by using original SM, and estimated results were resampled bilinearly at a
coarse resolution. Then the coarse-resolution (36 km) residuals were interpolated to 1 km
fine resolution, using the simple kriging interpolation technique.

Step 3: The trained RF and ANN models (established in first step) were applied for
1 km surface variables to obtain 1 km downscaled SMAP SM.

Step 4: After applying a residual correction, the final downscaled results were obtained
by adding the estimated SM data at 1 km to the residual at 1 km. A random selection of
70%, 15%, and 15% of the data was used as the training set, verification set, and testing
set, respectively, in the development of the RF and ANN downscaling models. After
establishing the best possible model by using the lowest RMSE as a benchmark, the testing
set was used to assess the model’s accuracy.

4. Results
4.1. Models Evaluation

Figure 2 shows the performances of downscaling models RF and ANN with different
MODIS land-surface variables for training datasets. The scatter plot for each combination
was developed to compare the predicted SMAP SM at a coarse resolution (36 km) with
the original coarse-resolution SMAP SM. It can be observed that there is good agreement
between predicted SMAP SM and original SMAP SM for all the combinations except
ANN+Aqua. Comparing RF+Aqua and ANN+Aqua combinations, the correlation value
for RF+Aqua is R = 0.96, which is much higher than that of ANN+Aqua, at about R = 0.63.
Comparing the RMSE for the abovementioned combinations, we can see that the RF+Aqua
showed a better performance, with lower error values of RMSE and an MAE of about
0.01 m3/m3, as compared to ANN+Aqua errors RMSE and MAE values of 0.03‘m3/m3 and
0.02 m3/m3, respectively. Similarly, comparing RF+Terra and ANN+Terra combinations,
we can see that the correlation value for RF+Terra (R = 0.97) is higher than the ANN+Terra
(R = 0.88). The mean RMSE value for RF+Terra is 0.01 m3/m3, and for ANN+Terra, it is
0.03 m3/m3; meanwhile, the MAE value for both combinations is 0.01 m3/m3. In general,
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the comparison between different algorithms and MODIS data-based models indicated the
strength of RF-based regression models over ANN-based models. Overall, the RF+Terra
combination results showed better correlation and fewer errors than the other combination.
The differences in the performance of these combinations can be elaborated by accounting
the influence of the MODIS Aqua and Terra datasets on the downscaling algorithms
(especially ANN). As we know, the MODIS Terra orbits around the earth from north to
south over the equator in the morning, whereas the MODIS Aqua passes from south to
north across the equator in the afternoon. Therefore, during daytime, the solar radiation
induced the variations in the Aqua LST that also affects the vegetation cover and water
bodies that are directly linked with VIs and WIs, respectively. It can be observed that the
RF-based models are independent of the Aqua or Terra satellites’ data, while this heavily
affects ANN-based models. This might be because of the randomization and robustness of
the RF algorithm that help the model avoid overfitting when even thousands of variables
are given simultaneously. Moreover, the spatial aggregation of high-resolution predictors,
such as VIs, WIs, Albedo, and LST, had a smoothing impact on the extreme values, resulting
in the training of RF and ANN models with minimal extremes, as previously indicated by
Wakigari et al. [77]. However, this was not special to our work since existing downscaling
approaches depend on calibration at a coarse spatial resolution as the initial step, making
the aggregation of high spatial-resolution predictors inevitable. Despite the fact that the
ANN was proven to be an effective tool for dealing with the high-dimensional datasets
employed in this work, it tended to overestimate lower SM values and underestimate
higher SM values.
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Testing RF and ANN models using various ancillary datasets often shows that they
can accurately predict SM at a coarse resolution; thus, these models were developed and
implemented for predicting SM at a 1 km spatial resolution, assuming that the RF and
ANN models constructed at coarse spatial resolution would also be viable for predicting
SM at high geographical resolution utilizing high-spatial-resolution predictors. Since it was
assumed that the RF and ANN models created at a coarse spatial resolution were equally
viable for SM prediction at a high spatial resolution employing high-spatial-resolution
predictors, these models were successfully applied for SM prediction at a spatial resolution
of 1 km.

4.2. Comparison of Downscaled SM with In Situ Observations

Considering the better performance of RF and ANN models that present statistically
and quantitatively strong relationships between land-surface variables and SSM, these
models were then applied to fine-resolution variables to obtain high-resolution SM from
SMAP. The validation of downscaled SM was statistically conducted with multi-scale
(S-scale, M-scale, and L-scale) in situ SM observations over the SMN-SDR Basin from 2018
to 2019.

The scatter plots of the original SMAP SM and downscaled SM against the S-scale
in situ SM observations are shown in Figure 3a–d, and the corresponding performance
metrics are shown in Figure 4a–c. In comparison to in situ measurements, the RF+Terra-
based downscaled SM showed a strong correlation (R = 0.52) and lower ubRMSE value
of 0.037 m3/m3, as well as RMSE and Bias values of 0.084 m3/m3 and −0.079 m3/m3,
respectively. The ANN+Aqua model showed the worst performance among all the models,
with less correlation (R = 0.51) and high errors (ubRMSE = 0.051 m3/m3). The ubRMSE,
Bias, and R values for RF+Aqua are 0.039 m3/m3, −0.079 m3/m3, and 0.50, respectively,
whereas the ANN+Terra showed slightly better performance with values of 0.048 m3/m3,
−0.065 m3/m3, and 0.44, respectively. Figure 3e–h presents scatter plots of all the four
model combinations’ results of downscaled SM and original SMAP SM against M-scale
in situ measurements. As compared to the original SMAP SM, it can be observed that the
downscaled SM provided excellent correlation with the in situ SM. The error metrics for
four models are presented for M-scale in Figure 4d–f. The same as for the S-scale results, the
RF+Terra model showed a high correlation (R = 0.58), less error (ubRMSE = 0.034 m3/m3),
and negative biasness (Bias = −0.084) for M-scale. The RF+Aqua and ANN+Terra models
showed the ubRMSE values of 0.035 m3/m3 and 0.044 m3/m3 and R values of 0.57 and
0.45, respectively. Similarly, the ANN+Aqua model performance was worst in terms of
ubRMSE value of 0.045 m3/m3 and a very high Bias value of 0.085 m3/m3 but a slightly
better correlation of 0.52 compared to the ANN+Terra model’s correlation value. For the
L-scale, again the RF+Terra model outperformed with a high R value of 0.53 and lower
ubRMSE value of 0.033 m3/m3 as compared to the other models (as shown in Figure 4g–i).
The lowest correlation value (R = 0.45) and highest error value (ubRMSE = 0.040 m3/m3)
resulted from the ANN+Terra model. The scatter plots of downscaled SM and original
SMAP SM against the L-scale in situ SM are presented in Figure 3i–l. We compared the
downscaled SM from all the combination against different scales in situ SM categorized
as core validation sites (S-scale) and sparse validation sites (M-scale and L-scale). The
abovementioned results show that all the RF and ANN models’ outcomes presented better
performance for the sparse validation site compared to core validation sites in term of
higher correlation and lower error.

Overall, the performance of RF+Terra model was better than the other models at all
scales (S-scale, M-scale, and L-scale) over the SMN-SDR Basin. Additionally, the ANN
models (ANN+Aqua and ANN+Terra) downscaled SMs are closer to original SMAP SM
than RF models, but the RF models’ results showed very good agreement with in situ SM,
as shown in Figure 3. The better performance of the RF+Terra model can be due to two
reasons: the first is the MODIS Terra data utilization to train the model, which is produced
in the morning that is not much effected by physical surface temperature as compared to
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the MODIS Aqua data that obtained at afternoon; and the second reason can be the RF
robustness and its suitability for complex and nonlinear relationship methodology due to
its adaptive, decorrelated, and randomized features as compared to ANN models.
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Figure 5 displays time series-comparisons of the original SMAP SM, in situ SM, and
downscaled SM from all models (RF+Aqua, ANN+Aqua, RF+Terra, and ANN+Terra), as
well as precipitation, collected data from multi-scale (S-scale, M-scale, and L-scale) stations
between 2018 and 2019. The downscaled SM from all the four models agreed well with
the time-series variations of the in situ SM at all the multi-scale stations. Changes in the
in situ SM observations were also effectively observed by the original SMAP SM. The
precipitation data were available for S-scale and M-scale in situ sites, and the downscaled
SM and original SMAP SM showed good correspondence with rainfall events during
the study period. However, ground observations at different footprints demonstrate
significant changes, while original SMAP SM and downscaled SM records suggest only
slight variations. Figure 5 shows that the original and downscaled SMAP SM are slightly
more underestimated for S-scale sites compared to the M-scale and L-scale sites. The
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reason is the higher biasness for the core validation sites (S-scale) as compared to the sparse
validation sites (M-scale and L-scale), as shown in Figure 4. It can be observed that the
in situ SM data have almost constant values from the period of November 2018 to March
2019. At the same time, the original SMAP SM has no data; therefore, the downscaled
SM also cannot be obtained. The reason is that the SMAP brightness temperature (TB)
estimates were not available in the winter season due to frozen states. The SMAP calculates
the SSM based on TB estimates directly linked with the dielectric constant. The variation in
the dielectric constant is due to the soil emissivity and reflectivity, which can be increased
or decreased depending on the SM quantity [65]. However, the frozen soil holds a very
low dielectric constant, the same as the dry soil dielectric constant irrespective of the
moisture content.
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4.3. Vegetation-Cover Impact on SMAP SM Downscaling Algorithms

In this part, we compare the error metrics from four developed downscaling models
across the different in situ SM sites with various vegetation-type covers. The land of the
SMN-SDR Basin was categorized into three types according to vegetation cover: grassland,
farmland, and woodland. Grass was the major vegetation over many in situ stations,
including the S-scale, M-scale, and L-scale sites, whereas the agricultural crops and forest
area cover less area to contain these in situ sites. Out of total 34 in situ sites, 2 stations are
located in the area covered by agricultural crops, 2 sites in the forestland, and rest of the
30 sites are covered by grass.

Figure 6 presents the scatter plots of downscaled SM and in situ SM for all the mod-
els at different vegetation-covered in situ SM stations. For grassland, to make scatter
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plots for the RF and ANN models, the sample datasets of downscaled SM and in situ
SM were of 151 available days during the study period. The RF+Terra-based downscaled
SM showed better correlation with in situ SM compared to the original SMAP SM (as
shown in Figure 6a–d). The RF+Aqua and ANN+Terra models also presented better per-
formance for grassland, but the ANN+Aqua-based downscaled SM showed the worst
relation with in situ SM even when compared to the original SMAP SM. The performance
metrics (R, ubRMSE, Bias) for grassland are presented in Figure 7a–c for all the models.
The R values for RF+Aqua, RF+Terra, ANN+Aqua, and ANN+Terra models were 0.57,
0.59, 0.56, and 0.51; ubRMSE values were 0.034 m3/m3, 0.033 m3/m3, 0.043 m3/m3, and
0.041 m3/m3; and bias values were −0.072 m3/m3, −0.069 m3/m3, −0.064 m3/m3, and
−0.068 m3/m3, respectively. Through these evaluation metrics, it was concluded that the
RF+Terra model outperformed the other models, followed by the RF+Aqua model and
then the ANN+Terra model, and the worst performance was from the ANN+Aqua model
containing high ubRMSE.
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Similarly, the RF+Terra models showed the best performance for farmland and wood-
land, with high correlation (R) values of 0.66 and 0.48, and lower error (ubRMSE) values of
0.033 m3/m3 and 0.032 m3/m3, respectively. The ubRMSE values for farmland ranged from
0.033 m3/m3 to 0.048 m3/m3 for the RF+Aqua and ANN models. The R and bias values
ranged from 0.57 to 0.65 and from −0.014 m3/m3 to −0.021 m3/m3, respectively. All the
RF and ANN models for the woodland showed a poor performance in terms of correlation
(R) values, which ranged from 0.30 to 0.47. However, in terms of ubRMSE values, the
RF+Terra and RF+Aqua models have error values less than 0.034 m3/m3. On the other
hand, the ANN models have slightly high error values, about 0.047 m3/m3. Analyzing the
scatter plots and errror metrics, it was observed that the models (RF+Terra and ANN+Terra)
built using MODIS Terra datasets showed a better performance in terms of high correlation
and fewer error values as compared to the models (RF+Aqua and ANN+Aqua) built by
using MODIS Aqua datasets. The difference in the performances of the models may be due
to the difference in the timing of the capturing of datasets by Aqua and Terra satellites (as
discussed above).

Figure 8 shows the time-series comparison of averaged downscaled SM obtained from
RF and ANN models with in situ SM and original SMAP SM, along with precipitation
data. There were no precipitation data for woodland due to the absence of rain gauges in
this area. The RF+Aqua- and RF+Terra-based downscaled SM showed good agreement
with the in situ SM at all types of vegetation covers. The ANN+Aqua model also showed
good temporal consistency for grassland and farmland, but it behaved inconsistently for
some days for the woodland, as shown in Figure 8c. The original SMAP SM also showed
good relevance with in situ SM, even with downscaled SM of RF and ANN models for
all the vegetation types. Overall, the original SMAP SM and downscaled SM from all the
models mostly restrained underestimation according to the grassland and farmland in
situ SM, whereas for some days, they showed an overestimation for the woodland in situ
SM. Moreover, the temporal variations of both the downscaled SM and original SMAP
SM captured a good response with the rainfall events for grassland and farmland (except
woodland). This shows the ability of ML techniques to enhance the spatial resolution of
remotely sensed SM at different vegetation-covered regions for wet and dry periods.
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4.4. Visual Assessments of the Spatial Distribution of Downscaled SM

After statistical and temporal comparison of downscaled SM, the spatial analysis was
conducted to check the quality of downscaling approaches. The downscaled SM from RF
and ANN-based models was visually compared with coarse resolution original SMAP SM.

Figure 9 shows the spatial distribution of coarse resolution (36 km) SMAP SM with
high-resolution (1 km) downscaled SM obtained from RF+Terra and ANN+Terra models
based on MODIS Terra auxiliary data. Three available consecutive overpasses (1 July 2018,
4 July 2018, and 6 July 2018) were selected for the spatial distribution of original SMAP
SM and downscaled SM. The visual comparison between the high- and low-resolution
SM spatial information revealed consistent spatial distribution patterns throughout the
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research region. In addition, the high-resolution downscaled SM pixels exist within coarse-
resolution original SMAP SM pixels and agree well for each pixel.
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The spatial patterns based on RF+Terra model were smoother and more consistent
with original SMAP SM data than the ANN+Terra model spatial patterns. Although the
ANN+Terra model captured the dry pattern very well for these selective days, the RF+Terra
model showed excellent results for dry-to-wet transition over the study region (shown
in Figure 9). The spatial comparison proved the successful application of downscaling
algorithms. For the date 1 July 2018, it can be found that the spatial distribution of SMAP
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SM cannot fully cover the study region, and this can be due to the cloud cover and scanning
gap in case of SMAP SM observation. The gap-filling approach was applied to overcome
this problem, which is explained in the next section.

The spatial-analysis results from the Aqua-based models (RF+Aqua and ANN+Aqua)
for the same days as for Aqua-based models with downscaled SM and original SMAP
SM are shown in Figure 10. It was observed that the RF+Aqua model captured the wet
pattern very well, whereas the ANN+Aqua models captured the dry pattern efficiently.
Using MODIS Aqua data, the ANN+Aqua model consistently followed the spatial pattern
of coarse resolution SMAP SM. On the other hand, the RF+Aqua spatial distribution at
fine resolution reasonably matched with the coarse-resolution SMAP SM pattern even with
quantitative values, as presented in Figure 10.
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Overall, the performance of all the downscaling models is acceptable, and they cap-
tured all the spatial distribution patterns over the Basin. Due to increased spatial resolution,
the downscaled SM (1 km) presented more spatial details than the coarse-resolution (36 km)
SMAP SM.

5. Discussion
5.1. Variable Importance of the Downscaling Models

The role of predictors on the performance of downscaling models mainly depends
on the selection of input variables that strongly relate to SMAP SM [84]. In this research
work, MODIS Aqua and Terra satellites’ datasets of land-surface variables were used as the
inputs for the models. The importance of these variables for different RF and ANN models
was analyzed based on the available different auxiliary datasets (MODIS Aqua/Terra). The
variable importance of the model is calculated by estimating the percentage increase of
mean square errors (MSE) when one variable is randomly perturbed and the others are un-
altered. Usually, the categorization of predictors is based on the MSE value, and if it is close
to zero, it indicates that the variable has less impact or no existence for prediction [53,80].

We selected the RF+Terra and ANN+Terra models’ important variables to present
due to their better performances. Figure 11a shows that the LST presents higher scores
than other surface variables for RF+Terra prediction, and this is due to the controlling
effect of SSM on surface energy partition and exchange, which is similar to Im et al.’s [34]
findings. NDVI, NSDSI, and WIs (LSWI and NDWI) are also very crucial variables for
RF+Terra prediction, whereas the ALBEDO has less values near zero, indicating that it
does not influence the model prediction. Figure 11b shows that the NDVI and LST are
more impactful than the other predictors and aspect has least importance for the prediction
of ANN +Terra model. Here, one thing can be observed that EVI is the most important
variable in the ANN model, whereas it has less influence on the RF model prediction;
this may be due to the different method of parameter selection for models’ training and
predictions. More importantly, the time-series evaluation of the RF and ANN models’
results showed the capability to provide a robust and strong relationship between SSM
and other surface variables, as Im et al. [34] found to downscale AMSR-E SM data, using
MODIS products.
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5.2. Spatial Distribution of Gap-Filled SM

SM features can be shown on large scales by using active and passive microwave
satellite sensors; however, there are still gaps in these satellite-based SM products. Multiple
variables, including radio-frequency interference and shifts in satellite-based sensors’ orbits
and frozen state, contribute to this issue. Due to these issues, SMAP TB estimates are
not available that are directly linked with dielectric constant associated with SM. Many
efforts have been made to fill the missing values in the remotely sensed SM products. In
this research work, for SMAP SM gap-filling, we first trained ML algorithms by using
coarse-resolution (36 km) SMAP SM, along with coarse-resolution MODIS surface variables.
During training, we selected those 36 km SMAP SM images that contain more than 90%
pixels to cover the study area. Secondly, we applied these trained algorithms with high-
resolution (1km) surface variables to fill the gaps in the SMAP SM images containing
around 50% missing value. Finally, we validated gap-filled SMAP SM against in situ
SM and temporally and spatially compared with CLDAS SM. We selected 20 images
of SMAP SM for different dates during the whole study period from the year 2018 to
2019 at 36 km resolution and then predicted the missing values by applying the trained
RF+Terra and ANN+Terra models. For gap-filing analysis, we neglected the RF+Aqua and
ANN+Aqua based models due to their low predicting abilities in gap-filling compared to
the downscaling of SMAP SM.

Figure 12 shows the spatial pattern distribution of gap-filled results from RF and ANN
Terra models compared with SMAP SM, having about 50% missing pixels over the entire
region of the SMN-SDR Basin. These gaps in the SMAP SM are due to the unavailability of
TB because of paved areas, frozen states, or clouds during the capturing time of satellites.
Overall, the southeastern part of the region is more humid than the northwestern part.
The gap-filling results of the RF+Terra model are more consistent than the ANN+Terra
model. Both models captured the humid and dry regions in the study area well. However,
the ANN+Terra model gap-filling results are more humid than the RF+Terra model, as
shown in Figure 12. However, the area having missing pixels in the original SMAP SM
product was filled with very low SM values up to 0.15 m3/m3 by RF+Terra model and up to
0.25 m3/m3 by ANN+Terra model. Compared with CLDAS SM, RF+Terra showed a similar
spatial pattern but was more relevant to the available pixels of the original SMAP SM.
There is some mismatch in the CLDAS SM compared with SMAP SM. Most of the upper
part of CLDAS SM showed the dry area having a minimum SM value of about 0.05 m3/m3,
whereas the lower part showed a higher SM value of about 0.30 m3/m3, which presents a
similar pattern related to SMAP SM. On the other hand, the spatial distribution results of
ANN+Terra model were a little bit distorted, and the missing values were filled with high
pixels values compared to the RF+Terra SM and CLDAS SM that can be due low efficiency
of ANN model.



Remote Sens. 2023, 15, 812 23 of 30

Remote Sens. 2023, 14, x FOR PEER REVIEW 26 of 33 
 

 

 
Figure 12. Comparison of spatial distributions of gap-filled SM by RF+Terra model (3rd row) and 
ANN+Terra model (4th row) with CLDAS SM (2nd row) and original SMAP SM (1st row) at differ-
ent dates 7 April 2018 (1st column), 29 August 2018 (2nd column), and 23 February 2019 (3rd col-
umn). 

Figure 12. Comparison of spatial distributions of gap-filled SM by RF+Terra model (3rd row) and
ANN+Terra model (4th row) with CLDAS SM (2nd row) and original SMAP SM (1st row) at different
dates 7 April 2018 (1st column), 29 August 2018 (2nd column), and 23 February 2019 (3rd column).



Remote Sens. 2023, 15, 812 24 of 30

The time series of averaged SMAP SM, CLDAS SM, and gap-filled SM derived from
RF+Terra and ANN+Terra SM are compared with in situ SM over the study area. Figure 13
describes the temporal dynamics of SM obtained from all the sources. In general, it can
be observed that the SMAP and CLDAS SM show similar trends, and the gap-filled SM
derived from the RF+Terra model shows a similar trend but is underestimated. However,
the ANN+Terra model results show abrupt changes for some days and contain negative
SM f-values, especially for the day 22 March 2019.
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Figure 14 shows a scatter plot between SMAP SM, CLDAS SM, and gap-filled SM by
RF and ANN models against in situ SM. To check the accuracy of CLDAS SM and gap-filled
SM by RF and ANN models, the performance metrics (R and ubRMSE) were calculated
against the in situ SM. The CLDAS SM showed good accuracy, with a high correlation (R)
value of 0.76 and a lower ubRMSE value of 0.061 m3/m3. The correlation values for the gap-
filled SM by RF+Terra and ANN+Terra models were 0.40 and 0.27, and the error (ubRMSE)
values were 0.064 m3/m3 and 0.066 m3/m3, respectively. These performance metrics are
close enough to the Liu et al. [85] findings. Overall, the RF+Terra-based gap-filled SM
showed a reasonable accuracy, and the statistical results were almost close to the CLDAS
SM results. It is acceptable since our approaches delivered acceptable results, significantly
contributing to gap-filled time series and high-spatial-resolution SM and concentrating
on widely used explanatory variables, such as Albedo, NDVI, and DEM. Our models,
however, demonstrate excellent capability in defining sudden environmental changes since
the variables utilized are daily [33].

Overall, downscaling SMAP SM by using ML techniques and produce spatial–temporal
gap-filled SMAP SM at a high resolution (1 km) rather than a coarse resolution (36 km) is a
good way to obtain remotely sensed SM with good accuracy from the field to regional scale.
Downscaled SM would be a realistic and significant achievement which is very useful in
the fields that require fine-resolution SM, such as water resources management, agricultural
processes (irrigation management, crop growth, and crop production). The downscaling
factors are also very significant within the downscaling process since they determine the
spatial variations within a coarse resolution SM. This study shows the effectiveness of
RF to downscaling over ANN and can be implemented by using some additional surface
variables (ET and LAI) that influence SSM condition.
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6. Conclusions

To enhance the spatial resolution of low-resolution microwave SM, downscaling ap-
proaches based on ML techniques were proposed by using optical/TIR observation of
surface variables (VIs, WIs, LST, albedo, and topographic factors). Two different ML al-
gorithms (RF and ANN) were used to establish the relationship between low-resolution
SMAP SSM and high-resolution surface variables. In this study, using MODIS (Aqua and
Terra) datasets and two ML algorithms (RF and ANN), four downscaling combinations
(RF+Aqua, RF+Terra, ANN+Aqua, and ANN+Terra) were introduced to compare down-
scaling results. The downscaled SMAP SM from all of these combinations was statistically
validated with multi-scale (S-scale, M-scale, and L-scale) in situ SM measurements over
the SMN-SDR Basin from 2018 to 2019. All the combinations performed well, but the
RF+Terra model showed the best results statistically and with spatial visualization. The
RF+Terra performed well at the L-scale, with a high correlation and less errors (R = 0.53,
ubRMSE = 0.033 m3/m3) than at the M-scale (R = 0.58; ubRMSE = 0.034 m3/m3), and then
S-scale (R = 0.52; ubRMSE = 0.037 m3/m3). The ANN+Aqua model showed the worst



Remote Sens. 2023, 15, 812 26 of 30

results in terms of ubRMSE values, but it had a slightly higher correlation compared to
ANN+Terra against all multi-scale in situ SM observations. Furthermore, the vegetation
impact on downscaled SM was analyzed against in situ SM from grassland, farmland, and
woodland. The performance of all the RF and ANN models for farmland was good in terms
of correlation (R) values, which ranged from 0.57 to 0.66, compared to grassland values,
which ranged from 0.51 to 0.57, and for woodland R values, which ranged from 0.30 to
0.47. However, in terms of ubRMSE, the RF models (RF+Aqua and RF+Terra) showed
satisfactory results, with values less than 0.034 m3/m3 for all types of vegetation covers, but
the ANN models contained higher error values, ranging from 0.038 m3/m3 to 0.048 m3/m3.
The reason for the lower accuracy for woodland is due to the high vegetation attenuation of
TB used to estimate the SSM. Moreover, the time-series comparison of downscaled SMAP
SM from all the models showed a good trend with original SMAP SM and against all scales
and all types of vegetation covered in situ SM observations. The spatial distribution of
downscaled SM captured the original SMAP SM spatial distribution patterns well. At the
end, the gaps in the original SMAP SM data due to clouds and frozen states in the study
area were filled in at a high resolution (1 km) pixels resulted from RF+Terra and ANN+Terra
models with acceptable accuracy. The gap-filled SM was statistically and spatially validated
with in situ and CLDAS SM. The gap-filled SM results from RF+Terra model showed better
accuracy (R = 0.40 and ubRMSE = 0.064 m3/m3) compared to the ANN+Terra models’
results (R = 0.27 and ubRMSE = 0.066 m3/m3) and were almost close in term of errors to
the CLDAS SM performance metrics (R = 0.76 and ubRMSE = 0.061 m3/m3). The spatial
patterns of gap-filled SM captured the wet and dry SM distribution over the study area very
well. Overall, the algorithms provide encouraging results to obtain high-resolution SM
from downscaling coarse-resolution SM products. Although the downscaling technique
provided geographically detailed SM information, its utility was revised after the elimina-
tion of biasness in extreme values. For hydrological applications such as flood forecasting,
bias correction in extreme readings, especially higher values, is crucial. Based on our study,
future works will focus on reconstructing the missing SMAP SM at a high resolution and
validating these methods in the regions covered with different vegetations types that were
missing in this work.
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