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Multi-Joint Leg Moment Estimation During
Walking Using Thigh or Shank Angles

Mahdy Eslamy and Mo Rastgaar , Senior Member, IEEE

Abstract— To reinstate human-like locomotion by using
robotic prosthetics, orthotics or exoskeletons, a main chal-
lenge is how to coordinate the motion of these devices with
that of the biological limbs. One approach to overcome this
challenge is to identify firstly the relationships that exist
between the kinematics and kinetics of the lower extremity
joints and limbs. In this work we aimed to continuously
estimate sagittal plane ankle, knee and hip moments using
shank or thigh angles. For this purpose, neural network
and wavelets were used in a nonlinear auto-regressive
model with exogenous inputs. This approach circumvented
the need for switching rules or intermediate parameters.
To assess the performance of the estimator, four case stud-
ies were developed. First, thigh angles (inputs) were used
to estimate hip moments (outputs). Second, thigh angles
were used to estimate knee moments. Third, ankle moments
were estimated using thigh angles, and in the fourth case
study, ankle moments were estimated using shank angles.
Three different databases involving 106 subjects at different
walking speeds were used to evaluate estimation quality.
The testing procedure involved both inter-subject and intra-
subject evaluations. The best estimation performance was
observed when ankle moments were estimated from shank
angles. The weakest estimation performance was observed
when knee moments were estimated using thigh angles at
0.5 m/s. For this case, the estimation quality was much
better at 1.5 m/s. Average RMS errors were 0.13 – 0.15,
0.10 – 0.13, and 0.09 – 0.12 [Nm/kg] for hip, knee and ankle
moments, respectively.Average mean absolute errors MAEs
were 0.10 – 0.11, 0.07 – 0.10, and 0.06 – 0.08 [Nm/kg] for hip,
knee and ankle moments, respectively. Average correlation
coefficients were 0.90 – 0.98 and 0.98 – 0.99 for hip and ankle
moment estimations. The value for knee was comparable
only at high speed (0.96 for 1.5 m/s), while it was less
accurate at slow speed (0.71 for 0.5 m/s). In general, for
all of the joints, the estimation accuracy was comparable
with that of other studies, although one source of input was
employed (either shank or thigh angle).

Index Terms— Estimation of leg moments, prosthetics,
orthotics, motion planning.

I. INTRODUCTION

TO DEVELOP high-level controllers and motion planners
for intelligent assistive devices such as robotic orthotics,
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prosthetics, and exoskeletons [1], [2], [3], [4], and gait rehabil-
itation devices [5], [6], one approach is to create relationships
between gait variables such as joints’ kinetics and kinematics,
muscular activities and/or ground reaction forces.

To estimate joints’ moments, different algorithms have
been suggested in which a wide range of inputs such as
gait kinematics, kinetics, EMG (electromyography) signals,
demographic (e.g., age and gender) and anthropometric (e.g.,
height and mass) information were used.

Some studies used impedance concept to express ankle
and knee moments as a function of joint’s angular positions
and velocities multiplied by stiffness and damping gains [2],
[3], [4], [7], [8], [9]. These algorithms are sometimes used
with finite-state machine approach, in which a gait cycle is
segmented into different phases (states) (e.g., into four [2]).
For each state, stiffness and damping gains were determined
piece-wise, first based on average human gait data, e.g.,
from [10] and then tuned based on subject-specific experi-
mental data. Next, the gains were obtained using a constrained
least-squares optimization for each state [2]. Both linear [3]
and nonlinear [2], [11], [12] expressions were proposed to
represent knee/ankle moments. In addition to the gait cycle
segmentation, another requirement was defining some switch-
ing rules to transit between different gait phases.

To avoid gait cycle segmentation, the impedance approach
was combined with other algorithms. In [13], LASSO regres-
sion (least absolute shrinkage and selection operator) was
utilized to predict ankle, knee, and hip moments as a linear
summation of stiffness and damping gains multiplied by joint
angular positions and velocities, respectively. To estimate,
e.g., ankle moment, the method however required ankle, knee
and hip angles and angular velocities from both ipsi- and
contra-lateral sides. In [14], in addition to angular and angular
velocity terms, angular acceleration and gravity terms were
included to estimate the hip moment. This approach was
limited to a specific walking speed.

The phase plane approach was proposed in [14] to con-
tinuously predict ankle motions during walking. The method
required gait percents and walking speeds to estimate the
corresponding motions. To estimate those parameters, shank
angular velocities and angles were employed as inputs. Next,
the corresponding ankle moments or angles were found out
using a previously produced off-line look-up table. To pre-
dict different speeds, conditional if-then statements were also
required. A Gaussian process regression algorithm was devel-
oped in [15] to predict ankle moments for twenty-one subjects
using shank angular positions and velocities. In that approach,
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it was not necessary to predict speeds or gait percents. Instead,
the inputs were directly mapped to the outputs without requir-
ing those intermediate parameters.

In [16], hip angles together with thigh Euler angles were
processed in an artificial neural network to estimate the
corresponding gait percents. A cosine function (with gait
percents as inputs) was then used to simplistically represent
the hip moments. The work was later continued in [17], where
two machine learning algorithms (extreme gradient boosting
algorithm and a feed-forward neural network) were imple-
mented to estimate subject-specific hip moments. To perform
moment estimations, hip angles, gyroscopic data and six-axis
acceleration from a thigh-mounted IMU were used. The study
concluded that both methods had relatively similar estimation
quality.

Electromyography (EMG) signals are the other types of
the inputs used for moment estimation [18], [19], [20], [21].
In [22], a neural network was utilized to estimate ankle
moments for very slow to fast walking speeds. EMG signals
obtained from five lower extremity muscles were used for
this purpose. The study showed that EMG signals extracted
from tibialis anterior, medial gastrocnemius and biceps femoris
(combined) led to the lowest root mean square errors. On the
other side, EMG signals from tibialis anterior and medial
gastrocnemius (combined) led to very slightly less favorable
results.

In [23], ground reaction forces together with EMG signals
were used to continuously estimate ankle, knee and hip
moments during walking. Performance of a wavelet neural
network was compared with that of a feed forward neural
network for four subjects. Results showed that the wavelet
approach could predict joint moments with higher accuracy,
however, the method required a high number of inputs (two
ground reaction forces and eight EMG signals). Different
studies reported that merging kinematics with EMG inputs
can lead to better estimation accuracy in comparison to solely
using EMG signals, [24], [25], [26], [27].

In addition to EMG and kinematics data, anthropomet-
rics and demographics are also used as inputs to different
algorithms. An artificial neural network with three layers
was designed in [28] to convert various inputs (kinemat-
ics, anthropometrics, demographics, electromyography) to the
sagittal plane ankle, knee and hip moments during self-selected
walking for nineteen healthy young subjects.

Interestingly, the study showed that using less inputs includ-
ing only kinematics (joint angles, velocities and accelera-
tions) and demographics (age and gender) led to a relatively
similar estimation quality compared to using a complete
set of the inputs. Furthermore, the study reported that the
estimation performance using EMG plus demographics inputs
was less accurate than the kinematics plus demographics
inputs.

In [29], hip, knee and ankle angles together with gait
velocity, subjects’ height and weight, and foot, shank and thigh
lengths were used to estimate lower extremity joints’ moments.
To do so, an artificial neural network was trained with inputs
from twelve subjects walking from 0.8 to 2 m/s. The work
was later continued in [30], in which the angular velocities

and linear accelerations of the lower extremity limbs were
used to estimate ankle, knee and hip moments during walking
(only stance phase). The performance of two algorithms,
a long short term memory neural network and a feed forward
one was compared. Both approaches had relatively similar
results.

A customized instrumented insole and a tissue force sensor
were developed in [31] to estimate ankle moments for six
healthy subjects. An artificial neural network was devel-
oped to compare the estimated values with those obtained
from an inverse dynamics procedure. The effects of differ-
ent inputs (ankle angles, inputs from instrumented insole,
Achilles tendon force) were investigated on the estimation
results.

State estimation with minimal inputs is of interest in bio-
mechanical gait analysis or designing control algorithms for
assistive devices, [22], [28], [32], [33]. This potentially leads
to robotic assistive devices with less embedded sensors (and
markers, in case of gait studies).

In this work, we focus on the estimation of the sagittal
plane ankle, knee and hip moments using only thigh or
shank angles, depending on the joint under investigation. The
target is to estimate joint moments using minimal sensory
information which can be potentially obtained from a lower
limb proximally above a specific joint. For instance, when
possible (e.g., for knee and ankle joints), estimation was
performed using the lower limb’s angle above the respective
joint (thigh angle for knee moment estimation, or shank angle
for ankle moment estimation). The reason is that we would
like to develop a motion planner whose outputs are a function
of relatively independent inputs. Obtaining inputs from a lower
limb which is below a specific joint, will result in a motion
planner whose inputs are directly influenced by the movement
of the corresponding joint, and hence creates a paradoxical
situation for the motion planner. Therefore, we used the logical
hierarchy existing in the human body structure.

Furthermore, it was aimed to eliminate the need for speed or
gait percent identification, switching rules or look-up tables.
To achieve these targets, a nonlinear auto-regressive model
was used in combination with wavelets and neural networks
to estimate those variables.

We used this approach previously to estimate ankle and knee
angles for several walking speeds [34]. In this study, this algo-
rithm is extended to multi-joint moment estimation for lower
extremities. This helps us create a potential comprehensive and
integrated controller and motion planner to be used in robotic
prostheses or orthoses.

The human gait has periodic as well as variable nature.
Similar to Fourier series, the wavelets theory [35] expresses
a function (a signal) as the sum of a series of weighted
small waves called wavelets. The wavelets rise and decay
through time, and therefore have a fundamental difference with
basis functions used in Fourier series. Therefore, the wavelets
can chase the changes of system response both in time
and frequency domains [36], [37], [38], and as a result can
describe a part of a function with a resolution corresponding
to its scale. Further discussion is presented in the Methods
section.
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Fig. 1. Definition of the thigh and shank angles θth, θsh, together with
hip, knee and ankle moments Mh, Mk, Ma.

II. METHODS

Shank or thigh angles were used to estimate sagittal plane
ankle, knee and hip moments. For this purpose, three databases
involving 106 subjects were used.

The first database was obtained from [39], in which twenty-
one subjects (1.73±0.09 m, 70.9±11.7 kg, 25.4±2.7 yr)
walked at slow, moderate and fast speeds (0.5, 1, and 1.5 m/s).
The second database (publicly available) was obtained from
[40], in which thirty-seven subjects walked at eight dif-
ferent (subject-specific) speeds (young adults (27.6±4.4 yr,
171.1±10.5 cm, 68.4±12.2 kg) and older adults (62.7±8.0 yr,
161.8±9.5 cm, 66.9±10.1 kg)). The third database (publicly
available) was obtained from [41], in which forty-eight
subjects walked at several speeds (6 – 72 yr, 18.2 – 110 kg,
116.6 – 187.5 cm). In the second and third databases, each
subject walked at self-selected speeds which were not neces-
sarily similar to another participant’s speeds. Therefore, unlike
the first database, the participants were not required to walk
at fixed specific speeds.

The definitions of thigh angle θth , shank angle θsh , hip
moment Mh , knee moment Mk and ankle moment Ma are
shown in Fig. 1. In Fig. 2A-E, hip, knee and ankle moments
as well as thigh and shank angles, are shown for twenty-one
subjects together with their mean curves. The numerical values
in Fig. 2 were obtained from [39].

To estimate joints’ moments, a nonlinear autoregressive
model with exogenous inputs (NARX) [42] was developed.
We previously used this modeling approach to estimate joints’
angles for different speeds [34]. The proposed model is
comprised of the inputs, the estimator and the outputs Fig. 3.
The outputs are the estimated joints’ moments ŷ (e.g., M̂h ).
In this algorithm, the inputs consist of the current and past
values of the external inputs u (thigh or shank angles) and past
values of the estimated outputs ŷ (hip/knee/ankle moments).
The estimator f̂ , creates a functional relationship between the
outputs and the inputs. According to the above, we will have

ŷ(k) = f̂ (x(k))

x(k) = [. . . , ŷ(k − 1), u(k), u(k − 1), . . .] (1)

The dimension d of the x is usually determined according to
the problem to be solved [25], [43], [44], [45]. Having the

Fig. 2. The curves of (A): hip moments Mh, (B): knee moments Mk,
(C): ankle moments Ma, (D): thigh angles θth and (E): shank angles θsh
(twenty-one subjects walking at 0.5, 1 and 1.5 m/s). For each speed, the
mean curves are in bold. The numerical values were obtained from the
first database [39].

Fig. 3. The schematic view of the estimation algorithm, the figure shows
the input at time instant k for the case x(k) = [ŷ(k − 1),u(k),u(k − 1)].
The estimator f̂(x(k)) then processes the input to produce the estimated
outputs ŷ(k).

above definitions in mind, the estimation algorithm works as
depicted in Fig. 3.

To define estimator f̂ , wavelets [36], [37], [38] have been
used. In general, to enhance the estimation quality, a summa-
tion of the wavelets in the form of a network is used [46],
[47]. The wavelets theory is similar to the Fourier series. The
main difference is that wavelets can describe a function more
accurately when its frequency changes with respect to time
(which is common in human gait) or when singularities happen
at some region of a function.

Wavelets theory converts a signal into small waves (i.e.,
the wavelets). Unlike basis functions of the Fourier series
(sine and cosine functions), the basis function of the wavelets
theory grow and decay through time. According to above, the
estimator f̂ can be written as f̂ (x) = �L

i=1ωiψi (x).
Different options exist for the basis function ψ(x). In this

study, the Gaussian derivatives family [48] was selected which
is usually used to study joints’ motions [49], [50], [51],

[52], [53]. Therefore, ψ(x) = (d−xxT )e− xxT
2 . In the above

equations, L is the number of wavelets, xT denotes the
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transpose of x and d is the dimension of the input x [35],
[36], [37], [38], [48].

The definition of f̂ shows that wavelets can be combined
with neural networks theory. The input of the network would
be according to [x(k)], and the hidden layer of the network
contains the wavelets-based basis functions together with the
ω coefficients. Finally, the outputs are the estimated joints’
moments. Further information about wavelets can be found
in [35], [36], [37], [46], [47], [48], and [38]. In addition, more
details are provided in [34].

To estimate joint moments, four case studies were designed:
1) hip moments Mh (estimated outputs ŷ) were estimated using
thigh angles θth (external inputs u), 2) knee moments Mk

were estimated using thigh angles, 3) ankle moments Ma were
estimated using thigh angles, and 4) ankle moments Ma were
estimated using shank angles θsh .

To train and test the algorithm, different approaches were
adopted to evaluate the performance. For the first data-
base [39], the leave-one-subject-out cross validations was
used. Therefore, for each case study explained above, the
inputs from twenty participants were used for training. Next,
the inputs from one remaining subject was used for testing.
This procedure was carried out for each individual to estimate
the corresponding joints’ moments.

The participants in the second and third databases, walked
at different speeds individually. For the second database [40],
for each subject, data from three speeds were used for training,
and data from the remaining five speeds of that subject were
used for testing the estimation performance (intra-subject).
For the third database [41], depending on the available data,
for some subjects more than five speeds and for some less
than five were used for testing the estimation performance
(intra-subject).

According to Fig. 3, the external input u is θth or θsh ,
and the estimated output ŷ is M̂h , M̂k or M̂a , depending on
the joint under study. The root mean square (RMS) errors,
the mean absolute errors (MAEs), and the correlation coef-
ficient [19], [54], [55] were used to evaluate the estimation
quality of the four case studies defined above.

RM SE =
√∑n

i=1(Mi − M̂i )2

n

M AE =
∑n

i=1 |Mi − M̂i |
n

ρcc =
∑n

i=1(Mi − M̄)(M̂i − ¯̂M)√∑n
i=1(Mi − M̄)2

√∑n
i=1(M̂i − ¯̂M)2

(2)

In the formulas above, n is the number of the samples, M̂ is
the estimated moment, and M is the actual one.

Since activation functions of the algorithm are of the
wavelets form, it is a nonlinear auto-regressive model. In the
linear version, f̂ is expressed as a linear combination of
the past and current external inputs and past outputs. This
version would then be of the form f̂ (x(k)) = a0u(k)+a1u(k−
1)+ . . .+ b1 ŷ(k − 1)+ . . ., in which ai ’s and bi ’s are scalar
values. The estimation results of both linear and nonlinear
versions are compared in this study (section III-A).

Fig. 4. (Subsection III-A) Comparison between the average RMS
errors in nonlinear and linear models with respect to size of x(k).
(A): knee moment estimations using thigh angles, and (B): ankle moment
estimations using shank angles. The values are for the subjects of the
first database [39] at different speeds.

According to the definition of x(k), it can contain different
components. It was of interest to keep the number of the com-
ponents to a minimum level. Therefore, the performance of the
estimator f̂ was evaluated according to different components
of x(k) (sections III-A and III-B) to find out the optimal size
of x . To decouple the influence of the past estimations on
the new ones, the inclusion of the past outputs in x(k) was
avoided. Therefore, the estimation of the joints’ moments got
dependent only on the external inputs u originated from a
lower limb (shank or thigh). Nevertheless, the impact of the
inclusion of the past estimations on the performance of the
algorithm is investigated later in this study. The results are
discussed in the next section.

III. RESULTS

A. Linear vs. Nonlinear Auto-Regressive Model
Fig. 4A-B compares the performance of a linear model vs.

a nonlinear one. It shows the mean RMS errors of the knee
and ankle moment estimations using thigh and shank angles,
respectively. Those mean values are for the the participants
of the first database [39] at different speeds. Furthermore, the
figure shows the variations of the RMS errors with respect to
different sizes of input x(k).

Fig. 4A-B shows that for all of the speeds, the RMS errors
of the linear model were much higher than those of the
corresponding nonlinear model (excluding x(k) = [u(k)]).
According to the observed RMS errors, the non-linear model
was preferred. Fig. 4A-B also shows that the RMS errors in
the non-linear model, tend to their minimums faster than the
linear one. Fig. 4 shows that increasing the dimension of input
x(k) does not necessarily lead to better estimation.

B. Impact of the Input Size on the Estimation (in
Nonlinear Model)

Fig. 5A-D shows the variation of the average RMS errors of
the nonlinear model with respect to different sizes of x(k). The
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Fig. 5. (Subsection III-B) The change of average RMS errors for the
nonlinear model with respect to different sizes of x(k). Figures A-D are
according to the four case studies explained in the Methods section. The
average values are for the subjects of the first database [39] at various
speeds.

average values are for the subjects of the first database [39]
at different speeds and according to the four case studies
explained in the Methods section.

In Fig. 5A, when x(k) = [u(k)] (i.e., size of x(k) is
1), the average RMS errors were high. The values declined
considerably when x(k) = [u(k), u(k − 1)], for all of the
speeds. This trend is seen in sub-figures B to D as well.
Fig. 5A also shows that increasing the dimension of x(k) does
not necessarily lead to a continuous decline of the average
RMS errors. This is especially more visible in Fig. 5B-D.

Therefore, using Fig. 5A-D, the size of the x(k) was decided
based on the trade-off (compromise) between complexity of
x(k) (i.e., its size) and RMS errors at different speeds. Thus,
for the first database [39], for case study 1 the size of x(k) was
set to 5 (i.e., x(k) = [u(k), . . . , u(k − 4)]), for case study 2
the size of x(k) was set to 3, for case study 3 the size of x(k)
was set to 5, and for case study 4 the size of x(k) was set to 4.
It should be noted that, for instance, for case study 1, Fig. 5A
shows that when size of x(k) is 10, the minimum results are
obtained, however in comparison to the compromised input
size (i.e., 5, as we discussed before), the differences were
not very considerable. For this case, the RMSE decrease was
3.9%, 4.2%, and 5.2% for 0.5, 1 and 1.5 m/s, respectively

(selected vs. minimum). According to the above, we decided
to reach a compromise between computational costs due to
the size of the input, and RMS errors. Furthermore, it was
of interest to avoid the reliance of the current output to
too many previous inputs, since it might result in improper
response of the motorized prosthetics/orthotics in real-world
applications. Therefore, we took into consideration a spectrum
of objectives and their impacts/importance. This attitude was
adopted throughout this work for each case study. For the
second [40] and third [41] databases, the size of x(k) is
reported at the corresponding Results subsections.

C. RMS Errors, MAEs and ρcc for First Database [39]

Fig. 6 shows the root mean square (RMS) errors (A),
mean absolute errors (MAEs) (B), and ρcc values (C) for
different subjects and speeds (first database [39]). For better
comparison, the results are also reported in Tab. I.

The cyan circles are for the first case study, where thigh
angles θth were used to estimate hip moments Mh . The blue
circles are for the second case study, where thigh angles θth

were used to estimate knee moments Mk . The red circles show
the results for the third case study, where thigh angles θth were
used to estimate ankle moments Ma , and the green circles are
for the fourth case study, where shank angles θsh were used
to estimate ankle moments Ma . The black squares denote the
mean values in each case study. All of the values mentioned in
this subsection are for 0.5 m/s, 1 m/s and 1.5 m/s, respectively.

1) Estimating Hip Moment Using Thigh Angles: The
average±std RMS errors were 0.13±0.05, 0.13±0.05 and
0.15±0.05 [Nm/kg] (0.5 m/s, 1 m/s and 1.5 m/s, respec-
tively). The average mean absolute errors (MAEs) errors were
0.10±0.04, 0.10±0.04 and 0.11±0.04 [Nm/kg]. The average
ρcc were 0.90±0.09, 0.97±0.02 and 0.98±0.01.

2) Estimating Knee Moment Using Thigh Angles: The
average±std RMS errors were 0.13±0.05, 0.13±0.06 and
0.13±0.06 [Nm/kg]. The MAEs errors were 0.10±0.04,
0.10±0.05 and 0.09±0.05 [Nm/kg]. The average ρcc were
0.71±0.20, 0.90±0.13 and 0.96±0.03.

3) Estimating Ankle Moment Using Thigh Angles: The
average RMS errors were 0.13±0.05, 0.12±0.04 and
0.10±0.04 [Nm/kg]. The MAEs errors were 0.10±0.04,
0.08±0.02 and 0.07±0.03 [Nm/kg]. The average ρcc were
0.96±0.04, 0.98±0.01 and 0.98±0.01.

4) Estimating Ankle Moment Using Shank Angles: The
average RMS errors were 0.12±0.05, 0.10±0.04 and
0.09±0.03 [Nm/kg]. The MAEs errors were 0.08±0.04,
0.07±0.03 and 0.06±0.02 [Nm/kg]. The average ρcc were
0.98±0.02, 0.99±0.01 and 0.99±0.01.

D. Ankle, Knee and Hip Moments:
Estimated vs. Gait Data

Fig. 7A-D compares the estimated ankle, knee and hip
moments versus gait data for several speeds and subjects
(related to the first database [39]), according to the four
case studies explained in the Methods section. Fig. 7A (first
column) is related to estimating the hip moment (case study 1).
The second column (Fig. 7B) is related to estimating the knee
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Fig. 6. (Subsection III-C) The root mean square (RMS) errors (A), mean absolute errors (MAEs) (B) and ρcc (C) values for hip, knee and ankle
moment estimations for different inputs (θth or θsh), speeds and subjects (first database [39]), according to the four case studies explained in the
Methods section. For each case study the mean values are indicated by the black squares.

Fig. 7. (Subsection III-D) The estimated hip, knee and ankle moments vs. gait data for various speeds and subjects (first database [39]), according
to the four case studies explained in the Methods section.

moment (case study 2). The third column is related to the ankle
moment estimations using thigh angles (case study 3), and the
fourth column is related to the ankle moment estimations using
shank angles (case study 4).

For the first database, since all of the participants performed
experiments at specific speeds, it was possible for us to provide
the figures (Fig. 6 and Fig. 7) and the results, grouped based
on the speeds.
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TABLE I
COMPARISON OF AVERAGE(±STD) RMS ERRORS, MAES AND ρcc (DATABASE 1, SEE ALSO SUBSECTION III-C)2

TABLE II
COMPARISON OF AVERAGE(±STD) RMS ERRORS, MAES AND ρcc (SEE ALSO SUBSECTION III-E � III-F)

Unlike the first database, subjects in the second and third
database did not perform experiments at specific speeds, but
rather the speeds were different for each participant. As a
result, for these databases the results are not reported accord-
ing to the speeds and it was not possible for us to show the
curves in one figure, similar to what we did in Fig.7. Therefore,
in the following subsections, for each quality measure (RMS
errors, MAEs, ρcc), the mean of all of the subjects and all of
the speeds are reported instead (Tab. II).

E. RMS Errors, MAEs and ρcc for Second Database [40]

1) Estimating Hip Moment Using Thigh Angles:
The average±std RMS errors, MAEs and ρcc were
0.13±0.03 [Nm/kg], 0.09±0.02 [Nm/kg] and 0.94±0.03,
respectively. The size of x(k) was 5, i.e., x(k) =
[u(k), . . . , u(k − 4)].

2) Estimating Knee Moment Using Thigh Angles:
The average±std RMS errors, MAEs and ρcc were
0.13±0.04 [Nm/kg], 0.09±0.02 [Nm/kg] and 0.82±0.12,
respectively. The size of x(k) was 3.

3) Estimating Ankle Moment Using Thigh Angles:
The average±std RMS errors, MAEs and ρcc were
0.12±0.06 [Nm/kg], 0.08±0.03 [Nm/kg] and 0.97±0.04,
respectively. The size of x(k) was 3.

4) Estimating Ankle Moment Using Shank Angles:
The average±std RMS errors, MAEs and ρcc were
0.15±0.05 [Nm/kg], 0.10±0.02 [Nm/kg] and 0.95±0.03,
respectively. The size of x(k) was 2.

F. RMS Errors, MAEs and ρcc for Third Database [41]

1) Estimating Hip Moment Using Thigh Angles:
The average±std RMS errors, MAEs and ρcc were
0.10±0.03 [Nm/kg], 0.07±0.02 [Nm/kg] and 0.94±0.04,
respectively. The size of x(k) was 4.

2) Estimating Knee Moment Using Thigh Angles:
The average±std RMS errors, MAEs and ρcc were
0.11±0.03 [Nm/kg], 0.07±0.02 [Nm/kg] and 0.80±0.09,
respectively. The size of x(k) was 3.

3) Estimating Ankle Moment Using Thigh Angles:
The average±std RMS errors, MAEs and ρcc were
0.10±0.03 [Nm/kg], 0.07±0.02 [Nm/kg] and 0.97±0.02,
respectively. The size of x(k) was 3.

4) Estimating Ankle Moment Using Shank Angles:
The average±std RMS errors, MAEs and ρcc were
0.11±0.03 [Nm/kg], 0.07±0.02 [Nm/kg] and 0.97±0.01,
respectively. The size of x(k) was 3. In order to better
compare the results of these two databases with database 1
(Tab. I), the outcomes are also reported in Tab. II.

IV. DISCUSSIONS & CONCLUSION

Thigh and shank angles, were used to estimate ankle, knee
and hip moments in this work. Several case studies were
investigated and the results were reported.

Comparing the ρcc results related to the three databases
(Tabs. I, II), we see some similarities between the outcomes
obtained in III-C, III-E, III-F. The best results were achieved
when estimating ankle moments using thigh or shank angles.
The second best results were related to the hip moment estima-
tions, and the third place belongs to knee moment estimations.
This trend is commonly observable in all three databases as
reported in Tabs. I and II. The weakest estimation performance
was observed when knee moments were estimated using thigh
angles at 0.5 m/s in Tab. I. In this case, the estimation quality
was much better at 1.5 m/s.

According to the results seen in subsection III-C,
Figs. 6 and 7, and Tab. I, in general, the estimation quality
was lower for lower speeds. For hip and knee joints, the
differences are more obvious. For ankle joint, however, the
differences are very slight either for thigh or shank inputs.
The lower estimation quality for the knee joint is also reported
in [28] and [56]. One possible explanation could be that lower
walking speed has less energy efficiency in comparison to
normal walking [57]. This might possibly be linked to the
relationship between kinematics and kinetics of this joint at
lower speeds. This may come into more attention when we see
that for this joint the input source and method was the same,
however performance was better at higher speeds. On the
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TABLE III
COMPARISON OF THIS STUDY WITH DIFFERENT STUDIES (SEE ALSO SECTION IV FOR MORE INFORMATION)

other side, the results of the ankle joint are not supporting
the above statement, where even for lower speed, good results
were obtained. Nevertheless, if and how kinetics, kinematics,
and gait energetics could be correlated and impact the estima-
tion accuracy requires further in-depth investigations. Another
explanation could be that the number of input sources or type
of the inputs, or even the processing algorithm was not suitable
for that specific speed. The results might get improved if, e.g.,
the inputs were combined with angular velocities and/or EMG
signals. However, Tab. III shows that even with high number
of inputs, some studies have reported the lowest R2 values for
this joint [28], [56]. Furthermore, in [15] we showed that a
Gaussian process regression fed only by shank angles or only
angular velocities did not lead to acceptable ankle moment
estimation, however in this study shank angles were sufficient
using the proposed algorithm. The above discussions can form
starting points for further investigations.

The performance of the estimator was investigated as well
when past estimated outputs [y(k − 1), y(k − 2), . . .] were
included in the input x(k) (see Fig. 3). Here, the results
are reported for two case studies with data from the second
database [40]. The average values are the mean of all of
the subjects and speeds. For hip moment estimations using

thigh angles, when x(k) = [u(k), . . . , u(k − 4), y(k − 1)],
the average RMS errors, MAEs and ρcc were 0.35 Nm/kg,
0.29 Nm/kg, and 0.87, respectively. In this case, further
investigation showed that when x(k) = [u(k), . . . , u(k −
4), y(k − 1), y(k − 2)], the average values were 0.18, 0.13,
and 0.91, respectively. For ankle moment estimations using
shank angles, when x(k) = [u(k), . . . , u(k − 4), y(k − 1)],
the average RMS errors, MAEs and ρcc were 0.43 Nm/kg,
0.28 Nm/kg, and 0.78, respectively.

Compared with the results seen in subsections III-E.1
and III-E.4 (where past outputs of y were not included),
the inclusion of the previous outputs y in the x(k) does not
necessarily lead to better estimation performance. This point
can potentially reduce the computation time required by the
algorithm.

The impact of different training approaches on the esti-
mation quality was investigated as well. Here the results
are reported for two case studies when hip moments were
estimated using thigh angles. Using first database [39], in the
first case study, the inputs from the first two lowest speeds
were used for training, and the input from all of the speeds
was used for testing. The average±std RMS errors were
0.12±0.05, 0.13±0.05 and 0.25±0.10 [Nm/kg]. For MAEs the
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values were 0.14±0.06, 0.08±0.03, 0.11±0.04 [Nm/kg] and
for ρcc the values were 0.92±0.07, 0.97±0.02, 0.91±0.05, for
0.5, 1 and 1.5 m/s respectively.

Next, for the second case study, inputs from the low-
est and highest speeds were used for training, and the
input from all of the speeds was used for testing. The
average±std RMS errors were 0.12±0.05, 0.14±0.05 and
0.15±0.05 [Nm/kg], the average±std MAEs were 0.15±0.07,
0.09±0.03, 0.07±0.02 [Nm/kg] and the average±std ρcc were
0.90±0.09, 0.96±0.03, 0.98±0.01, for 0.5, 1 and 1.5 m/s
respectively.

A similar procedure was done for the second database [40]
as well as the third one. At first, the input from the first two
lowest speeds was used for training, and the input from the
remaining six speeds was used for testing. The average±std
RMS errors, MAEs and ρcc were 0.26±0.05 [Nm/kg],
0.19±0.04 [Nm/kg] and 0.80±0.09, respectively (average of
all of the subjects and all of the speeds).

Next, the input from the lowest and highest speeds was used
for training, and the input from the remaining six speeds was
used for testing. The average±std RMS errors, MAEs and ρcc

were 0.19±0.07 [Nm/kg], 0.14±0.05 [Nm/kg] and 0.90±0.05,
respectively.

Similarly, for the third database [41], in the first
case, the average±std RMS errors, MAEs and ρcc were
0.17±0.09 [Nm/kg], 0.13±0.06 [Nm/kg] and 0.88±0.07,
respectively (average of all of the subjects and all of the
speeds). For the second case, the average±std RMS errors,
MAEs and ρcc were 0.14±0.10 [Nm/kg], 0.11±0.08 [Nm/kg]
and 0.89±0.11, respectively (average of all of the subjects and
all of the speeds).

According to the results obtained, the estimation perfor-
mance was better (in some cases slightly) in interpolation
(second case study) than extrapolation (first case study). This
finding can be potentially used for planning relatively efficient
and less time-consuming training procedures. In this regard,
at first the data at the lower and upper boundary conditions
can be used for training, and then the estimation quality of the
algorithm can be evaluated. Next, the results can be compared
with those of a full-data training.

This finding was similar to what we saw in our previ-
ous studies, in which the estimation results for interpolation
approach and for full-data training were relatively similar [34],
[58]. Further future studies can better reveal the pros and cons
of such a training approach for various locomotion modes.

A number of studies have suggested different methods
to estimate ankle, knee or hip moments. In those works,
different algorithms and inputs were proposed and used, and
the approaches were verified on different number of partic-
ipants. Tab. III presents a summary of the results obtained
from several studies in this regard. It also compares them
with the results obtained in this study. The table shows that
both mechanical (kinetics, kinematics) and EMG signals were
used to estimate the moments, depending on the algorithm.
Furthermore, biometric data such as age and height were
used in a number of studies as well, e.g., [28], [29]. In this
work, we used one source of input for each case study
(shank angles or thigh angles, see Methods section). The

table shows the obtained results are comparable to different
studies. Interestingly, a part of our findings was similar to
what other researchers have reported in different studies. For
instance, [28], [56], reported better R2 results for ankle and
hip joints in comparison to knee joint. The results reported
by [30], show much better results for the knee joint, however,
they have benefited from eighteen different signals into their
algorithm. We reached a relatively similar result at higher
speed (1.5 m/s), using only one input signal. Study [17] reports
relatively better results for the hip joint in comparison to ours,
however the number of the inputs are considerably higher than
our work. Furthermore, the number of the studied participants
is much less than this study. The table also shows that the
vast majority of the studies have used mechanical or EMG
signals.

In addition to the above, our study has a main difference
with some of the studies above. As an example, [31] uses
the ankle angle to estimate the ankle moment. Although
this method is very useful for human gait studies, it is not
appropriate for controlling a foot prosthesis, because in this
situation there is no biological limb whose inputs could be
used into the controller. Our method, in contrary, proposes
to use a lower limb above the specific joint, and therefore
avoids this problem. This is one of the fundamental differences
between our approach and the approaches used by most of the
studies in Tab. III. In addition, since the motion of the lower
limbs is mainly governed by the central nervous system, the
inputs originating from them would result in a more robust
and reliable motion planner.

This work aimed to create connection between the motion
of shank or thigh and the moments of ankle, knee and hip.
A main challenge in design of smart exoskeletons, orthoses
or prostheses is developing a controller that can generate
human-like motions at the joints level. The generated motions
should be in line with those of the remaining biological
limbs. The estimation approach presented in this work can
be potentially used in designing high-level controllers and
motion planners for orthotics, exoskeletons, prosthetics, and
humanoids. The inputs to the algorithm can be obtained from
thigh- or shank-mounted IMUs (inertial measurement units)
which is a common approach in this field, e.g., see [1], [60].
Next, the inputs are fed into the motion planner to estimate the
joint moment corresponding to the lower limb angle. Using a
laptop equipped with 16 GB RAM and Intel Core i7 CPU,
the computation time was less than 1 msec for a one-to-one
estimation. This time is relatively good enough considering the
working condition of current orthotic/prosthetic devices (e.g.,
1 kHz in [6] and [60]). When a desired estimated value is
generated, using e.g., a PD controller, a corresponding error
signal is produced. Next, using controller gains, appropriate
command signal can be sent to the actuator (motor). In this
way, the actuator operation will be a function of the lower
limb motion.

The proposed method is specially useful when a device
is equipped with springs. Since in this situation the motion
of the joint gets decoupled from the motion of the actuator
(motor), having information about the required moment (force)
will be vital in order to estimate the desired position of the
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actuator. In this case, the current study can be combined with
our previous study presented in [34], in order to estimate
the corresponding position of the actuator. Further infor-
mation on how to use moment and angle estimation in
order to estimate the corresponding actuator position can be
found in [57].

In this work, able-bodied gait data was used to analyze
the estimation results. One logical approach in designing
motion planners for assistive devices is to identify the rules or
the relationships latent in healthy human locomotion. These
relationships can act as a target frame and possibly gold
standard for the behavior of a powered prosthetic or orthotic
device. The performance of these devices can then be tai-
lored to meet individual requirements. Therefore, to create
a target frame for device’s performance, decoding the latent
relationships in average able-bodied human gait is a necessary
pre-requisite. In this study, we showed that relationships exist
between the motions of a limb and the moment generated in a
(corresponding) joint. The identified relationships can be used
as potential guidelines to bring and keep the performance of a
prosthesis or orthosis within a biomechanically logical region
(in terms of kinematics and kinetics).

In case of the amputees, those input data should inevitably
come from the remaining lower limbs. One logical think-
ing is that if the inputs from this population are similar
to those of able-bodied participants we used in this study,
the corresponding outputs should be in a similar region.
Therefore, we decided to compare the similarities between the
amputee inputs and able-bodied inputs. To do so, transfemoral
amputee data released publicly by [61] was used. Next, thigh
angles were extracted by a Matlab program and compared
with the average able-bodied subjects obtained from the first
database [39]. The results showed that for slow, moderate
and fast walking speeds, the correlation coefficients were
0.93 – 0.99, 0.95 – 0.99, and 0.93 – 0.98 for ten amputees
(23 – 65 yrs old) [34]. These values show that the inputs from
the two groups have sufficient correspondence. Therefore,
for these amputees, thigh angles can be potentially used to
estimate the corresponding required ankle or knee moments if
a robotic prosthesis is going to be used. Since the number of
the amputees were limited, further clinical experiments with
bigger groups of amputees would be required to analyze and
compare more thoroughly the similarities and differences of
the inputs.

In this study, sagittal plane joints’ moments were estimated
during walking gait. In order to have a more comprehensive
algorithm, one direction of the future work can be to investi-
gate the functionality of the presented estimation method for
other locomotion types such as descending or ascending the
slopes or stairs. In addition, the work can be continued to
investigate the estimation performance for other anatomical
planes.
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