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Abstract
The process of ground motion selection and scaling is an integral part of hazard-
and risk-consistent seismic demand analysis of structures. Due to the lack of
ground motion records that naturally possess high amplitude and intensity, the
research community generally relies on scaling the records tomatch a target haz-
ard intensity level. The scaling factors used are frequently as high as 10. Due
to the criticism received in previous research studies, the extent of amplitude
scaling and its process has become a matter of debate, and various constraints
on the scaling factors have been proposed. The primary argument against unre-
stricted amplitude scaling is the unrealistic nature of the scaled records and the
possible biases caused in the engineering demand parameters (EDPs) of struc-
tures. This study presents a framework to utilizemachine-learning and statistical
techniques for the assessment of ground motion amplitude scaling for nonlin-
ear time-history analysis (NTHA) of structures. The framework utilizes Bayesian
non-parametric Gaussian process regressions (GPRs) as surrogate models to
obtain statistical estimates of EDPs for scaled and unscaled groundmotions. The
GPR surrogate models are developed based on a large-scale analysis of five steel
moment frames (SMFs) using 200 unscaled as-recorded ground motions for ten
spectral acceleration levels, (𝑆𝑎(𝑇1)) (ranging from 0 g to maximum considered
earthquake, MCE) and 2500 scaled groundmotions representing 50 scale factors
(𝑆𝐹), and the 10 𝑆𝑎(𝑇1) levels for each SMF. For each building, two types of EDPs
are considered: i) peak inter-story drift ratio (PIDR) and ii) peak floor accelera-
tion (PFA). To provide a better interpretation of the GPR surrogate models, the
concept of explainable artificial intelligence (i.e., Shapley additive explanation,
SHAP) is used to obtain insights into the decision-making process of the GPR
models with respect to the 𝑆𝐹 and 𝑆𝑎(𝑇1). Then, for the 10 𝑆𝑎(𝑇1) levels, theGPR-
based EDP estimates under scaled groundmotions corresponding to 50 different
SFs are compared with the EDP estimates of unscaled ground motions. The
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comparison is conducted using Kolmogorov–Smirnov (KS) statistical hypothe-
sis test. Results indicate that the range of allowable 𝑆𝐹s depends on two factors:
i) intensity level (characterized by 𝑆𝑎(𝑇1)), and ii) the dynamic properties of the
building. In general, it is noticed that allowable 𝑆𝐹s range between 0.5 and 3.0 for
PIDRs, and from 0.6 to 2.0 for PFAs. Finally, the EDP between the unscaled and
scaled groundmotions are adhered to various discrepancies observed in different
intensity measures representing amplitude-, duration-, energy-, and frequency-
content of the two sets of ground motions.

KEYWORDS
amplitude scaling, Bayesian non-parametric, explainability, Gaussian process regression,
groundmotion scaling, interpretability, machine learning, scale factors, surrogate models, XAI

1 INTRODUCTION

The advances in computational capacities have driven the use of nonlinear time history analysis (NTHA) to assess the
performance of buildings under the framework of performance-based earthquake engineering (PBEE). In this context, an
essential step is the selection and scaling process of ground motions which are used for the NTHA of the building struc-
tures. The method of ground motion selection and scaling forms a link between the fields of seismology and earthquake
engineering. Considering the limited number of strong recorded ground motions available in current ground motion
databases and hence the inability to represent the typical hazard levels for performance-based analysis (e.g., design basis
earthquake DE, maximum considered earthquake MCE, or collapse), it is a common practice to select moderate-to-low
amplitude ground motions and scale them to reach higher spectral amplitudes that represent the required hazard levels.
Thus, code provisions such as the American Society of Civil Engineers (ASCE 7–16)1 and performance-based guidelines
such as the Los Angeles Tall Buildings Structural Design Council (LATBSDC),2 among others, have included procedures
to select and scale recorded ground motions for conducting NTHA.
For decades, several researchers (specially seismologists) have criticized the validity of scaling groundmotion records to

achieve the desired intensity level.3,4 The primary concerns in this regard are the differences in the frequency content and
duration of ground motions recorded from different magnitudes and distances. It is well-known that for a given rupture
distance (𝑅𝑟𝑢𝑝) and a class site, the spectral acceleration, on average, tends to increase with an increase in earthquake
moment magnitude (𝑀𝑤). On the other hand, for a given magnitude and site class, an increase in the source-to-distance
(such as 𝑅𝑟𝑢𝑝) leads to a decrease in spectral acceleration amplitude (attenuation). Thus, amplitude scaling can be inter-
preted as an artificial increment or decrement of𝑀𝑤 or 𝑅𝑟𝑢𝑝, and thereby can lead to inconsistencies in the correlations
between intensity measures (IMs) and corresponding 𝑀𝑤 or 𝑅𝑟𝑢𝑝 of the ground motions.4 Due to this, studies such as
Bommer and Acevedo5 have postulated that 𝑀𝑤 strongly influences the frequency content and strong motion duration
andmust be considered as a parameter in the groundmotion selection process. They proposed limiting𝑀𝑤 of the selected
ground motion records to be within ±0.20 units of the disaggregated𝑀𝑤 for the desired hazard level.
As a remedial measure, many studies have proposed to set limits on the scaling factors that can be used in the ground

motion selection and scaling process. For example, Krinitzsky and Chang6 proposed a scaling factor limit of 4 without
exhaustive scientific support for this criterion. Later on, Cornell and his group7,8 studied the nonlinear response of a
multiple-degree-of-freedom (MDOF) system subjected to groundmotion records grouped into four different bins in terms
of𝑀𝑤 and 𝑅𝑟𝑢𝑝 to explore alternative criteria for the record selection and scaling. These scenarios included unscaled and
scaled ground motion records. The study concluded that the bias from scaled records (in terms of the MDOF’s response)
is minimized when the records are scaled to the median spectral acceleration at the structural first period (𝑆𝑎(𝑇1)) of
the corresponding 𝑀𝑤 and 𝑅𝑟𝑢𝑝 bin. These results were further confirmed by Iervolino and Cornell,9 where the study
concluded that the nonlinear response of structures is not affected by conducting record selection using 𝑀𝑤 and 𝑅𝑟𝑢𝑝
scenarios, by scaling records for sites with no directivity effects and for records without systematic peak-valley effects.
Subsequent studies on the effect of amplitude scaling focus on estimates of the potential bias introduced by scaling

ground motion records on the seismic performance of structures. For instance, Luco and Bazzurro10 quantified the bias
introduced in the nonlinear structural drift response of single-degrees-of-freedom (SDOFs) andMDOF systems by scaling
records randomly selected from a𝑀𝑤 − 𝑅𝑟𝑢𝑝 range to a target intensity level. The scaled ground motions were then used
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NOVELTY

This article is a step towards utilization of artificial intelligence andmachine learning concepts to solve earthquake
engineering problems such as groundmotion selection and scaling. In particular, this article utilizesGaussian pro-
cess regression (GPR) to carefully develop a data-driven surrogate model for statistical comparison of structural
demands for steel moment frames obtained under scaled and unscaled ground motion records. This is one of the
first studies that clearly provides the range of allowable scale factors for ground motion scaling different inten-
sity levels and dynamic properties of the building structures. Furthermore, to provide a better interpretation of
the GPR surrogate models, the concept of explainable artificial intelligence (i.e., Shapley additive explanation,
SHAP) is used to acquire insights into the decision-making process of the GPR models. Hence, this study also
aims to implement solutions to reduce the black-box nature of machine learning models and provide engineering
interpretation to the models.
Due to its novelty, its topical subjectmatter, and its strong potential to have a high impact on the field of earthquake
engineering, we believe this work will be of broad and considerable interest to the readers of EESD and its special
issue on AI and Data-driven Methods in Earthquake Engineering.

for NTHA of the SDOF and MDOF systems, and the obtained responses were compared with responses from unscaled
records corresponding to the specific intensity level. Thus, bias was calculated as the ratio between the median structural
response of scaled records to the median structural response of unscaled records at the target 𝑆𝑎(𝑇1)). Their analyses
indicated that the record scaling introduces a bias in the nonlinear response of the systems and their engineering demand
parameters (EDPs) (i.e., lateral drifts). Specifically, this bias was found to depend on the scaling factor, the fundamental
period of the structure, the overall overstrength of the structure, higher mode effects, and on the𝑀𝑤 − 𝑅𝑟𝑢𝑝 range of the
records scaled. The computed bias ranged from 15% to 60% for SDOF systems (with different periods) for scaling factors
from 2 to 10, respectively, while for MDOF systems, the bias spanned from 25% to 80% for scaling factors from 2 to 10,
respectively. The study concluded that this bias is due to the differences in the response spectra of the scaled and unscaled
records. Similar observations were confirmed by Backer and Cornell,11 who proposed to select ground motions based on
the parameter ε, which is considered a measure of spectral shape.
More recently, Zacharenaki et al.,12 Du et al.,13 and Davalos and Miranda3,4 studied the influence of amplitude scaling

of groundmotions on the probability of collapse of SDOF andMDOF systems with different fundamental periods. Specif-
ically, Davalos and Miranda3 investigated the impact of using spectral shape for the ground motion selection process on
the assessment of bias in the seismic response of several SDOF and MDOFs systems, including 2- and 4-story reinforced
concrete moment frames. This study compared the median structural response and collapse probabilities using scaled
and unscaled records. It indicated that the bias in drifts (overestimation) is observed even though the ground motions are
selected and scaled considering the mean and variance of spectral shape. The study concluded that the bias occurs due to
the presence of a large number of pulses with large incremental velocities in the scaled ground motions compared to the
unscaled records. Thus, the differences in energy distribution, frequency, and duration of the scaled and unscaled ground
motions for the same intensity level can be adhered to explain the statistical mismatch in the corresponding EDPs.
On the other hand, Du et al.13 investigated the effect of scaling factor limits on ground motions selected by the con-

ditional spectra criterion14 for four different hazard scenarios. The authors studied the effect of scaling on the ground
motions characteristics, conducted NTHA on SDOF and MDOF systems, and recommended a scaling limit of 3 to 5 for
general use when ground motions are selected from the Next Generation Attenuation West 2 (NGA-West 2) database.15
Modern studies on the topic have included artificial intelligence techniques in their analyses. For instance, Fayaz and
Zareian16 presented an algorithm to simulate site-based ground motions that reach a target IM between a range of peri-
ods. This algorithm used predictive relations between the model parameters and the spectral acceleration spectrum of the
site-based ground motions and was used to generate ground motions for the NTHA of a bridge structure. The response
of this bridge was compared to three sets of ground motions, including unscaled, scaled, and simulated ground motions.
Results from this study indicate that the set of scaled ground motions led to significant bias in the EDP estimates com-
pared to the unscaled and simulated sets. Besides these studies, Tsalouchidis and Adam (2022)17 investigated the impact
of amplitude scaling on the structural response of buildings. For this purpose, ten steel moment frames (SMFs) were
subjected to NTHA. They studied the potential biases introduced in the peak inter-story drift ratio (PIDR) due to the
scaling of ground motions. The study utilized cloud analysis and generalized linear regression models to deduce any
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4 FAYAZ et al.

changes in the PIDR trends caused by the scaling of spectrally compatible and scenario-compatible ground motions. The
comparisons were made for scaling factors ranging from 2 to 20 and were primarily conducted by checking the ratios
between scaled and unscaled EDPs. They concluded that the scaling process doesn’t cause a major bias in the EDPs how-
ever recommended caution while using large scaling factors. Although this finding is consistent with some earlier studies
on the topic (e.g.,9,18), many modern studies (e.g.,3,4,10) have indicated that amplitude scaling can lead to major biases
even if ground motions are selected with proper consideration of the spectral shape. One of the major limitations of the
Tsalouchidis and Adam (2022)17 study relies in their ground motion selection criteria, where it is evident that the ground
motions with smaller IMs are over-represented in the dataset of cloud analysis which can cause biases in the regression
models and hence in the conclusions.
In summary, various research studies (e.g.,3,4,10–13) have indicated that the scaling of the ground motions for NTHA

leads to bias in the EDPs of structural systems. Most studies agree that the bias is not statistically significant for smaller
scaling factors. However, there is no clear scientific rationale for what scaling factors are acceptable and do not lead
to substantial biases in the structural demands. Also, ground motion scaling for hazard levels of engineering interest
such as DE or MCE is barely studied. Furthermore, it is evident from the previous studies that allowable scaling fac-
tors may also vary based on the target intensity level. Moreover, most of these studies were conducted on non-degrading
systems (e.g.,7) or did not include structures of different configurations, limiting the generalization of their results. In
addition, the selected ground motions for their analyses do not provide a vast range of intensity levels or focus on a spe-
cific limit state such as collapse level (e.g.,3,4). No proper alternatives were explored to overcome the limitations of high
intensity ground motion records. Furthermore, only traditional statistical tools were used to estimate bias (e.g., compar-
ing the mean drift response from scaled or unscaled records) and no information was provided about their uncertainty
distributions.
Against this backdrop, this study proposes a comprehensive framework based on principles of machine learning and

statistical surrogacy to assess the impact of ground motion amplitude scaling on NTHA of structural systems. In par-
ticular, the paper presents a sophisticated statistical investigation using Gaussian process regression (GPR) to provide
insights concerning the bias introduced by scaling ground motion records for NTHA of steel moment frames. Specifi-
cally, the objectives of this paper are threefold: a) investigate potential bias in EDPs caused by scaling of ground motions
using machine-learning-based surrogate models; b) understand and interpret the decision-making process of developed
surrogate-models using the concepts of explainable artificial intelligence (XAI); c) provide recommendations on the use
of scale limits based on the target intensity level of ground motions. For this study, a series of NTHA in conducted on
five archetype SMFs (i.e., 2-,4-,8-,12-, and 20-story) to obtain two EDPs: i) peak inter-story drift ratio (PIDR); and ii) peak
floor acceleration (PFA). A total of 2500 scaled and 200 unscaled ground motion records are selected from the NGAWest2
database15 to match ten intensity levels ranging from 0 g to MCE level for each SMF. The results of the analyses are then
used to develop GPR-based surrogate models for scaled and unscaled demands, which are then interpreted and explained
using Shapley additive explanation (SHAP) to provide insights. The surrogate models are then used to sample the EDP
posterior distributions for different intensity levels and scaling factors (𝑆𝐹). The distributions are utilized and compared to
understand the joint impact of 𝑆𝐹 and 𝑆𝑎(𝑇1) on the EDPs; the comparison is conducted through hypothesis testing of the
scaled and unscaled EDP distributions to provide recommendations on the record scaling process. Finally, the observed
bias in the EDPs under scaled ground motions as compared to the unscaled ground motions is briefly investigated by
analyzing the differences in the intensity measures representing amplitude-, duration-, energy-, and frequency- content
of the two sets of ground motions.

1.1 Assessment framework

The framework is based on a selection of ground motion records from an extensive ground motion database (such as
the NGAWest2 database15) and relies on large-scale NTHA of the selected structural application. The general scientific
background of this investigation is based on a ten-stepped procedure described below (the text provided in parenthesis for
the steps explains the corresponding items used in this study).

1. Select a ground motion IM (e.g., 𝑆𝑎(𝑇1)) and corresponding target IM level (e.g., MCE level) based on the structural
application (e.g., steel SMFs) and hazard level of interest (e.g., MCE level).

2. Obtain 𝑛 stripes of IMs between the minimum IM level of interest and the target IM level by dividing the range into
𝑛 groups (e.g., 𝑛 = 10 equal stripes between 0 g and MCE level).
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FAYAZ et al. 5

3. For each of the𝑛 IM stripes, from the groundmotion database, obtain 𝑖 number of unscaled groundmotions possessing
IM closest to the IM stripe (e.g., 𝑖 = 20 is used to select 20 unscaled ground motions). Hence a total of 𝑛 × 𝑖 unscaled
ground motions are selected (e.g., 10 × 20 = 200 unscaled ground motions are selected for each SMF).

4. For each of the 𝑛 IM stripes, compute the average IM of the selected 𝑖 unscaled ground motions.
5. Select 𝑚 values of 𝑆𝐹s to obtain scaled ground motions for the computed average IM of each IM stripe (e.g., 𝑚 = 50

is used with 25 divisive 𝑆𝐹s (< 1) and 25 multiplicative 𝑆𝐹s (> 1)).
6. Obtain 𝑗 scaled groundmotions (e.g., 𝑗 = 5 is used to select 5 scaled groundmotions) for each of the𝑚 values of 𝑆𝐹s by

selecting the 𝑗 ground motions that require𝑚th 𝑆𝐹 to attain the average IM of the 𝑖 unscaled ground motions. Hence
a total of 𝑛 × 𝑗 × 𝑚 scaled ground motions are obtained (e.g., 10 × 5 × 50 = 2500 scaled ground motions are selected
for each SMF).

7. Utilize the selected scaled and unscaled ground motions to conduct NTHA of the selected structure (e.g., steel SMF)
and obtain the EDPs of interest (e.g., PIDRs and PFAs). Hence a total of 𝑛 × 𝑗 × 𝑚 scaled + 𝑛 × 𝑖 unscaled EDPs are
finally obtained for the selected structure.

8. Due to the limitation of recorded ground motions, the EDP grid constructed using 𝑛 × 𝑚 scaled and unscaled ground
motions (unscaled represents 𝑆𝐹 = 1) are likely to be sparse andwould not adequately cover all ranges of IMs and 𝑆𝐹s.
Hence utilize appropriate machine-learning/statistical methods to develop a comprehensive surrogate model which
can be used to complete the dataset. Themodel needs to be trained using the IMs and 𝑆𝐹s as inputs and should be able
to provide proper statistical estimates of corresponding EDPs (e.g., Bayesian non-parametric GPR models are trained
using the scaled and unscaled datasets).

9. For a particular IM level, use the surrogate model to obtain the estimate for the unscaled EDPs for 𝑆𝐹 = 1 and scaled
EDP for the 𝑚 different 𝑆𝐹s; the estimates can be point estimates of a statistical moment or complete statistical
distribution (e.g., complete posterior distributions of EDPs are obtained using the GPR models).

10. Use an appropriate hypothesis test to statistically compare the similarity of one estimate of unscaled EDP against
𝑚 scaled EDP estimates corresponding to 𝑚 𝑆𝐹s (e.g., KS test is used in this study). Finally obtain the 𝑆𝐹s whose
corresponding scaled EDP estimates are deemed statistically similar to the unscaled EDP estimate, thereby showing
no bias.

This process should be repeated for other IM levels of interest to obtain the corresponding 𝑆𝐹s leading to no significant
bias in EDPs. The results can then be used to provide recommendations for the allowable 𝑆𝐹 ranges for different IM levels
and EDPs. While the proposed framework is general and can be used for any type of structure and groundmotions, in this
study, the process is applied to steel SMFs and crustal ground motions, and the results are discussed in the subsequent
sections of the paper. The sections: “Structural Models” provide details of the five SMFs utilized in this study; “Ground
Motion Selection” discusses the selection and scaling process of ground motions (i.e., steps 1 to 6); “Seismic Demand
Surrogate Model using GPR” entails the description of NTHA and development of GPR-based surrogate modelling (i.e.,
steps 7 and 8); “Interpretability of the developed GPR models” provides supplementary interpretability of the developed
GPRs for engineering analysis; “Hypothesis Testing and Results” discusses the results of KS hypothesis test and provides
recommendations for allowable scaling limits (i.e., steps 9 and 10); and finally “Conclusions” section provides the final
analysis of the framework within the setting of steel SMF structures.

1.2 Structural models

For this study, five (i.e., 2-, 4-, 8-, 12- and 20-story) different archetype SMFs are selected as the prototype structures for
analysis. The five SMFs mathematical models vary only in their height since this parameter is a quite important charac-
teristic of buildings, as pointed out in several parametric studies conducted in the past (e.g.,19–22). Thus, the height of the
SMFs varies from 8.50 m (2-story) to 79.85 m (20-story).
The SMFs are designed as per ASCE 7–16.1 A dead load of 4.78 kN/m2 and a live load of 2.38 kN/m2 are applied to all

floors. In addition, a perimeter load of 1.20 kN/m2 is applied to simulate the cladding. Figure 1 illustrates the elevation
and the plan view of the selected archetype frames used in this investigation. As per Figure 1, the SMFs share common
characteristics, such as the plan view. The SMFs are located at the perimeter of the building plan and consist of three-bay
frames with a bay width of 6 m. The first story’s height is 4.5 m, while the typical height of the rest of the stories is 3.90 m.
The beam-column connections are detailed as reduced beam section (RBS) connections as per the American Institute of
Steel Construction (AISC) AISC-341-1623 and AISC-358-16.24 Table 1 summarizes the first mode’s participation factors and
natural periods of the SMFs. For further details about the archetype frames, the readers are referred to Kircher et al.25
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6 FAYAZ et al.

F IGURE 1 Archetype SMFs’ outline

TABLE 1 SMFs’ modal properties

2-story 4-story 8-story 12-story 20-story
First period (s) 1.03 1.6 2.21 2.97 4.64
First mode mass participation 95.31% 83.80% 80.41% 78.28% 74.89%

The SMFs are modeled as plane frames (2D) using the software OpenSEES for all the NTHA since this platform has
been extensively verified26 for nonlinear analysis. Beam and column elements of the SMFs are modeled as linear elastic
elements with rotational springs located at their ends. The nonlinear rotational springs aim to capture the hysteretic
behavior of the beam-column connections and are represented by Ibarra-Medina-Krawinkler (IMK) bilinearmodel.27 This
phenomenological model consists of a trilinear backbone curve, rules to predefine the hysteretic behavior, and rules to
capture cyclic strength and stiffness deterioration. These springs’ properties are computed per the guidelines for nonlinear
structural analysis for the design of buildings provided by the National Institute of Standards and Technology (NIST GCR
17-917-46v2).28 However, these phenomenological springs cannot capture the moment-axial load interaction effect in the
columns of the SMFs. Thus, this phenomenon is tackled in an approximate manner. First, based on the recommendations
given by NIST GCR 17-917-46v2[28], the gravity loads are assumed as an average value of the axial load obtained during the
NTHA of the frames. Next, the bending strength of the columns is reduced using the AISC 318-1629 interaction equations
for combined forces. Finally, this reduced strength is used in all column springs. This procedure is appropriate since
SMFs are typically drift-controlled rather than force-controlled, entailing that the SMF columns are only lightly loaded.
Moreover, experimental studies in the past (e.g.,30) on shake tables have showngood agreementwithmathematicalmodels
calibrated with the preceding approach. Because of these reasons, several studies on SMFs20,31,32 conducted in the past
have adopted similar modeling decisions.
The panel zones are modeled as a hinge parallelogram assembly by rigid elements with a nonlinear spring in one of the

corners to simulate shear distortion. This spring is defined by the yield strength, full plastic strength, and the correspond-
ing stiffness parameters.33 A leaning column simulates P-delta effects through large displacement geometric nonlinearity.
This leaning column is loaded with gravity loads corresponding to half of the plan-building on each floor and is con-
nected to the SMFs through rigid elements. Finally, column base connections are simulatedwith themathematicalmodels
developed by Torres-Rodas et al.34 and Torres-Rodas et al.35 for exposed and embedded base connections, respectively.
Consistent with current engineering practice,36 the exposed base plate detail is used for the low-rise buildings (i.e., 2-, 4-
story), while for the taller frames (i.e., 8-,12- and 20-story), the embedded base connection detail is preferred.

1.3 Ground motion selection

Proper ground motion record selection is essential to understand the joint impact of 𝑆𝐹 and 𝑆𝑎(𝑇1) on the response of
steel structures. The study uses a large subset from the NGAWest2 database15 consisting of ∼7000 mainshock records
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FAYAZ et al. 7

F IGURE 2 (A) Spectra of selected ground motions and MCE UHS of LADT; (B) selected 𝑆𝑎(𝑇1) and 𝑆𝐹 grid for eight-story SMF

from ∼277 earthquakes with moment magnitudes (𝑀𝑤) ranging from 3 ≤ 𝑀𝑤 ≤ 8 and rupture distance (𝑅𝑟𝑢𝑝) ranging
from 0 ≤ 𝑅𝑟𝑢𝑝 ≤ 100 km. More details about the subset database can be found in Fayaz et al.37
Since the steel structures are designed for the hazard levels of the Los Angeles Downtown (LADT)25 site (lati-

tude = 34.05204, longitude = -118.25713, 𝑉𝑠30 = 360 m/s), the MCE level 𝑆𝑎(𝑇1) is obtained from the uniform hazard
spectrum (UHS) of the site using the unified hazard tool (UHT)38 (corresponding to step 1). The 𝑆𝑎(𝑇1) levels are then
uniformly divided into 10 equal stripes from 0 g to the obtainedMCE 𝑆𝑎(𝑇1) level (corresponding to step 2). For each stripe
of 𝑆𝑎(𝑇1), 20 unscaled ground motion records that closely match (without any scaling) the respective 𝑆𝑎(𝑇1) are selected
from the ∼7000 records database. Hence a total of 200 unscaled ground motions are selected for each building for this
study (corresponding to step 3). The selected groundmotion spectra are shown along with the UHS of LADT in Figure 2A
for the eight-story building ( 𝑇1 = 2.21 s). The 𝑆𝑎(𝑇1) of the selected unscaled records are also plotted against 𝑆𝐹 = 1

in Figure 2B for the eight-story building ( 𝑇1 = 2.21 s). The different colors of the diamond-shaped data points represent
the ground motions selected for different 𝑆𝑎(𝑇1) stripe. It can be observed from the data points that as the stripe 𝑆𝑎(𝑇1)
increases, the variance of 𝑆𝑎(𝑇1) of the selected ground motions also increases. This is due to the lack of enough ground
motions in the recorded database for large 𝑆𝑎(𝑇1) levels. Though the 𝑆𝑎(𝑇1) distribution and accuracy of the selected 20
groundmotions are not the same for higher 𝑆𝑎(𝑇1) levels as compared to the lower 𝑆𝑎(𝑇1), the differences in the unscaled
𝑆𝑎(𝑇1) are not expected to lead to significant differences in the final analyses, as will be described in the following sections
of selecting scaled ground motions and developing/utilizing GPR-based surrogate models.
For each group of the selected 20 unscaled ground motions, a corresponding set of 250 scaled ground motions is

obtained. As described above, the selected unscaled ground motions do not necessarily have the same 𝑆𝑎(𝑇1) as the tar-
get 𝑆𝑎(𝑇1) of the different stripes. Hence, to select a statistically compatible set of scaled ground motions, 𝑆𝑎(𝑇1) of the
selected 20 unscaled ground motions for each stripe is averaged (shown in dashed red lines in Figure 2B) (corresponding
to step 4). Then the averaged 𝑆𝑎(𝑇1) is used as a target 𝑆𝑎(𝑇1) to select five scaled ground motions for 50 different 𝑆𝐹s.
The 50 𝑆𝐹s are determined by dividing 𝑆𝐹s from 0.1 (divided by 10) to 1 in 25 intervals and from 1 to 10 (multiplied by 10)
in 25 intervals (corresponding to step 5). Then for each 𝑆𝐹, five groundmotions are selected for the respective 𝑆𝑎(𝑇1) from
a subgroup of the ground motions database with𝑀𝑤,𝑚𝑖𝑛 − 0.5 ≤ 𝑀𝑤 ≤ 𝑀𝑤,𝑚𝑎𝑥 + 0.5, where𝑀𝑤,𝑚𝑖𝑛 and𝑀𝑤,𝑚𝑎𝑥 denote
the minimum andmaximum𝑀𝑤 of the corresponding 20 unscaled records, respectively (corresponding to step 6). This is
done to reduce any additional sources of variability between the scaled and unscaled ground motions that may occur due
to differences in causal parameters. The selection is made by first obtaining the required 𝑆𝐹s for all the groundmotions in
the subgroup to achieve the target averaged 𝑆𝑎(𝑇1) and then selecting the five closest to each of the 50 𝑆𝐹 levels. Hence, a
total of 2500 scaled groundmotions are set (5 groundmotions× 50 𝑆𝐹s×10 𝑆𝑎(𝑇1) stripes) for each SMF (corresponding to
step 6). The selected scaled groundmotions are shown in grey data points in Figure 2B. It should be noted here that in the
complete record selection process (including scaled and unscaled), once a groundmotion is selected for any level of scaled
or unscaled 𝑆𝑎(𝑇1) and 𝑆𝐹, it is removed from the database to avoid any repetitive selection of the same ground motion.
This selection process is repeated for each SMF (five in total) analyzed herein. In this manner, a total of 13,500 ground
motions (2500 scaled + 200 unscaled = 2700 ground motions × 5 SMFs) are selected for NTHA of the steel structures.
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8 FAYAZ et al.

F IGURE 3 Histogram of PIDR for scaled (2500) and unscaled (200) records for eight-story SMF

1.4 Seismic demand surrogate model using GPR

The selected 2700 groundmotions are used to conduct NTHA of the five SMFs to obtain two peak responses: i) peak inter-
story drift ratio (PIDR) and ii) peak floor acceleration (PFA) (corresponding to step 7). Figure 3 illustrates a normalized
histogram of the PIDR distributions for the 8-story frame. As per Figure 3, most of the PIDRs (∼ 80%) are below 0.025
(i.e., are code compliant), implying modest nonlinear behavior. Similar trends are observed in the other SMFs. The aim is
to compare the 2500 scaled responses for the selected 50 scaling factors against the 200 unscaled responses. As described
in the previous section, due to the lack of unscaled records for large 𝑆𝑎(𝑇1) and scaled records for the combination of
large 𝑆𝑎(𝑇1) and 𝑆𝐹 < 1, the obtained EDPs data are not viable for the direct comparison. This can be thought of as a
“missing data” or “kriging” problem. Hence, in this study, Bayesian non-parametric and machine-learning-based GPR39
is deployed to develop surrogate models, which are used to complete the data for the entire selected 𝑆𝑎(𝑇1) and 𝑆𝐹 grid
(corresponding to step 8).
The basis of GPRs relies on the Gaussian process (GP), which is defined as a collection of random variables, any finite

number of which have a joint (multivariate) Gaussian distribution.40 GPR is a powerful and effective tool for nonlinear
regression problems since it has a simple structure and, unlike most regression methods, provides non-uniform uncer-
tainty estimations based on the proximity of features.41 GPR serves as an efficient tool for performing inference both
passively (i.e., interpolation, such as completing missing data, or extrapolation, such as forecasting or prediction) as well
as actively (i.e., filtering and smoothing).39 It can accurately capture a wide variety of relations between the features and
targets by utilizing a theoretically infinite number of parameters and allowing the data to determine the level of complex-
ity through Bayesian inference.42 Furthermore, it is observed that many Bayesian regression models based on artificial
neural networks converge to the Gaussian process with an infinite number of hidden units.43 Due to the efficacy of GPRs,
it has been widely used as surrogate models for various modeling purposes and applications (e.g.,44–49).
AGPRmodel attempts to describe the data in terms of a signal term (𝑓(𝑥)) and noise term (𝜀), as explained in Equation 1.

Similar to other regressionmodels, the noise term 𝜀 reflects the inherent aleatory randomness in the data and is assumed to
be normally distributed with zero mean and variance (𝜎2). The signal term (𝑓(𝑥)) is also assumed to be a random variable
following a particular statistical distribution, thereby reflecting the uncertainty of the function. In GPRs, this distribution
is assumed to be a Gaussian process with a mean (𝑚(𝐱)) and covariance (𝑘(𝐱, 𝐱′)) function, as mentioned in Equation 2.
The mean function (𝑚(𝐱)) describes the expected value (E[.]) of the function 𝑓(𝑥) at input 𝐱 as shown in Equation 3.
The covariance function (𝑘(𝐱, 𝐱′)) explains the dependence between the values of the function at inputs 𝐱 and 𝐱′. The
covariance function 𝑘(𝐱, 𝐱′) involves the utilization of a kernel that models the correlation between two points based on
the distance between the points. This means that closer points are expected to behave more similarly than points that are
further away from each other. Many available kernels are used to develop the covariance function, such as radial-basis
function (RBF), white, matérn, rational quadratic, pairwise, etc.39
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FAYAZ et al. 9

Based on the trade-off between explainability, generalization (prevent overfitting), and accuracy, this study uses the
summation of matérn (Equation 5) and white (Equation 6) kernels as described in Equation 7. The class of matérn kernels
is a generalization ofRBFkernels. It is parameterized by two factors, including i) length scale (𝑙), which is greater than zero,
and ii) smoothness parameter (𝑣). The length scale parameter (𝑙) can either be a scalar (an isotropic variant of the kernel)
or a vector with the same number of dimensions as the inputs x (an anisotropic variant of the kernel). The smaller 𝑣, the
less smooth the approximated function is. As 𝑣 → ∞, the kernel becomes equivalent to the RBF kernel. When 𝑣 = 1∕2,
the matérn kernel becomes identical to the absolute exponential kernel. Other important intermediate values include
𝑣 = 1.5 (once differentiable functions) and 𝑣 = 2.5 (twice differentiable functions). Furthermore, 𝑑(.), 𝐾𝑣(.), and Γ(.)
represent the Euclidean distance, modified Bessel function, and gamma function, respectively. The white kernel is mainly
used as a sum kernel and explains the noise (∈) of the signal as an independent and identical normal distribution with
variance 𝜙2. Lastly, 𝜂 represents the scaling factor of the used kernel function 𝑘(𝐱, 𝐱′) (Equation 7). Due to the lognormal
nature of seismic demands and IMs, the GPR models are trained in the lognormal domain.50,51

𝑦 = 𝑓 (𝑥) + 𝜀
(
∼ 𝑁

(
0, 𝜎2

))
(1)

𝑓 (𝑥) ∼ 𝐺𝑃
(
𝑚 (𝐱) , 𝑘

(
𝐱, 𝐱′

))
(2)

𝑚 (𝐱) = E [𝑓 (𝐱)] (3)

𝑘
(
𝐱, 𝐱′

)
= E

[
(𝑓 (𝐱) − 𝑚 (𝐱))

(
𝑓
(
𝐱′
)
−𝑚

(
𝐱′
))]

(4)

𝑘
(
𝐱, 𝐱′

)
𝑚𝑎𝑡

=
1

Γ (𝑣) 2𝑣−1

(√
2𝑣

𝑙
𝑑
(
x, x′

))𝑣

𝐾𝑣

(√
2𝑣

𝑙
𝑑
(
x, x′

))
(5)

𝑘
(
𝐱, 𝐱′

)
𝑤ℎ𝑖𝑡𝑒

=∈
(
∼ 𝑁

(
0, 𝜙2

))
; if x = x′ else 0 (6)

𝑘
(
𝐱, 𝐱′

)
= 𝜂2 ×

(
𝑘
(
𝐱, 𝐱′

)
𝑚𝑎𝑡

+ 𝑘
(
𝐱, 𝐱′

)
𝑤ℎ𝑖𝑡𝑒

)
(7)

For each SMF, two types of GPRs are trained as surrogate models using the resulting EDPs of i) 200 unscaled ground
motions with 𝑆𝑎(𝑇1) as the input features, and ii) 2500 scaled ground motions with 𝑆𝑎(𝑇1) and 𝑆𝐹s as the input features
(corresponding to step 8). The two EDPs (i.e., PFA and PIDR) are independently used as the target variables for the GPRs.
Hence a total of four GPRs are developed for each SMF. Since each combination of 𝑆𝑎(𝑇1) and 𝑆𝐹, five scaled ground
motions are selected and used for NTHA, and the GPRs are developed by obtaining the mean EDPs (in the lognormal
domain) and 𝑆𝐹𝑠. Hence for each five scaled ground motions obtained at the intersection of 𝑆𝑎(𝑇1) and 𝑆𝐹, the respec-
tive mean EDPs are obtained to represent the scaled response. This is presented in Figure 4A for eight-story SMF, where
the yellow data points show the 200 unscaled records against 𝑆𝐹 = 1, grey points show the 2500 scaled records, and red
markers show the 500mean values (i.e., onemean value for five scaled records) for the scaled records. This is done for both
PFAs and PIDRs, and the obtained 500 mean values are utilized to develop GPR surrogate models for scaled responses,
while the 200 unscaled values are used to develop GPR surrogate models for unscaled responses (corresponding to
step 8).
The posterior mean prediction surface and curve using the scaled and unscaled GPR models, respectively, are shown

in Figure 4B (other views are given in Figures 4C and D) for the eight-story building. As can be seen from the figure, the
GPR models demonstrate a good prediction power for the PIDRs with a coefficient of determination (𝑅2) of 0.75 and 0.85
for unscaled and scaled responses, respectively. Similarly, 𝑅2 of 0.74 and 0.9 are observed for unscaled and scaled PFAs,
respectively. Similar results are observed for other SMFs and EDPs. Hence based on the good prediction power of the
developed GPRs for the dataset, they can be used as surrogate models for the data completion. It should be noted that the
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10 FAYAZ et al.

F IGURE 4 (A) True computed, (B) GPR predictions (view 1), (C) GPR predictions (view 2), (D) GPR predictions (view 3), for unscaled
and mean scaled PIDR for eight-story SMF

developed GPRs are not proposed as general surrogate models but are only used as kriging models to complete the EDPs
dataset in this study. It is important to point out that only non-collapse cases of analysis have been considered in this study.
Thus, a PIDR limit of 0.10 has been set as a threshold between collapse or non-collapse, following notable publications
on the topic (e.g.,52).
Several previous research studies (such16,53–56) have described the importance of using IMs that explain spectral accel-

erations at a range of periods rather than 𝑆𝑎(𝑇1). This is mainly to include the period elongation (due to non-linearity)
that can occur during the time history of high-intensity ground motions and to include higher mode effects. However,
such conclusions are usually observed in the cases of structures that are expected to undergo huge non-linearity during
the ground motion and have a higher number of participating modes. In this study, the modal mass contributions of the
first mode for the SMFs are 95.31% for two-story, 83.80 for four-story, 80.41% for eight-story, and 78.28% for 12-story, and
74.89% for 20-story (as mentioned in Table 1). Thus, higher modes’ contributions are not deemed significant to the total
response of the used SMFs. Furthermore, the recorded EDPs are observed to be low (code compliance), and consequently,
the level of inelasticity/non-linearity occurring during the ground motion is also small. Hence, 𝑆𝑎(𝑇1) is postulated to
be a sufficient IM in the study. This hypothesis is tested by comparing the relative feature importance of 𝑆𝑎(𝑇1) against
the average spectral acceleration (𝑆𝑎,𝑎𝑣𝑔) and 𝑆𝑎,𝑟𝑎𝑡𝑖𝑜 using random forests algorithm. 𝑆𝑎,𝑎𝑣𝑔 is defined as the geometric
mean of spectral acceleration values between periods 𝑎.𝑇1 and 𝑏.𝑇1 where 𝑎 and 𝑏 are non-negative constants (𝑎 ≤ 𝑏).57
In this study a = 0.2 and b = 3 are used. On the other hand, 𝑆𝑎,𝑟𝑎𝑡𝑖𝑜, is a metric used to quantify spectral shape, and
defined as 𝑆𝑎(𝑇1) normalized by 𝑆𝑎,𝑎𝑣𝑔 over a period range.55 This data-driven method checks the relative importance of
the candidate features for explaining a target variable.53 To avoid any bias or collinearity issues, in this case, the algorithm
is employed in two settings; 𝑆𝑎(𝑇1) is compared against 𝑆𝑎,𝑎𝑣𝑔 and 𝑆𝑎,𝑟𝑎𝑡𝑖𝑜 for the target 𝑃𝐼𝐷𝑅 for the 2700 (scaled and
unscaled) responses for all five SMFs. It can be observed from Figures 5A and B for the dataset of the eight-story SMF,
𝑆𝑎(𝑇1) is observed to be more significant in describing 𝑃𝐼𝐷𝑅 as compared to 𝑆𝑎,𝑎𝑣𝑔 and 𝑆𝑎,𝑟𝑎𝑡𝑖𝑜, thereby validating the
hypothesis. Also, to make the conclusions simpler and interpretable, it is essential to minimize the number of features
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FAYAZ et al. 11

F IGURE 5 Relative feature importance of 𝑆𝑎(𝑇1) against: (A) 𝑆𝑎,𝑎𝑣𝑔 and (B) 𝑆𝑎,𝑟𝑎𝑡𝑖𝑜 , for PIDR of eight-story SMF

and use scalar quantities of IMs as the inputs to the GPRs. Hence it can be concluded that for the used dataset, 𝑆𝑎(𝑇1) is
sufficient to explain the demands of the used SMFs. The readers can conduct similar feature analysis for their datasets
and utilize the appropriate IMs (corresponding to step 1).

1.5 Interpretability of the developed GPRmodels

Due to the versatility of the machine-learning models, they have been widely used in engineering applications. However,
due to the “black-box” nature of these models, there is a general reluctance in the research community to propose and
utilize such models. Hence it is critical to provide sufficient analytics for model interpretability and its response in terms
of predictions based on variability in the input features. With the onset of XAI, various algorithms have been developed
that provide different methods that allow interpretability of these “black-box” models and step towards “grey-box” and
even “white-box” nature (such as linear regression, decision trees, etc.).
This study uses SHAP to analyze and interpret the nature of the developed GPRs.58 SHAP is amodel-agnostic procedure

that provides insights to explain individual predictions of the model based on the game’s theoretically optimal Shapley
values. Shapley values are a widely used approach from cooperative game theory with desirable properties.59 The feature
values of a data instance act as players in a coalition. The Shapley value is the average marginal contribution of a feature
value across all possible coalitions. Shapley values are the only solution that satisfies properties of efficiency, symmetry,
dummy, and additivity.58
SHAP belongs to the class of models called “additive feature attribution methods,” where the explanation is expressed

as a linear function of features, as described by Equation 8. In this equation, 𝑔(𝑧) represents a local surrogate model of
the original model 𝑓(𝑥) (in this case 𝑓(𝑥) is the GPR model), 𝑀 is the number of input features of the model 𝑓(𝑥) (i.e.
𝑆𝑎(𝑇1) and 𝑆𝐹), 𝜃0 denotes the bias term, which represents the base value of the predictions made by the model 𝑓(𝑥), 𝜃𝑖 is
the contribution of the ith feature towards the final output (i.e., SHAP value), and 𝑧𝑖 is a binary variable that takes a value
of 1 for the feature corresponding to 𝜃𝑖 contribution and 0 otherwise. 𝜃𝑖 evaluates the difference to the final predictions
made by the model 𝑓(𝑥) by including the ith feature for all combinations of features other than i. This is expressed in
Equation 9, where 𝑆 represents a subset of features among all 𝑁 features except the ith feature (denoted as 𝑆 ⊆ 𝑁∖{𝑖}),
[𝑓𝑥([{𝑖}) − 𝑓𝑥(𝑆)] is the difference in the outputs made by the ith feature, and

|𝑆|!(𝑀−|𝑆|−1)!
𝑀!

is the weighing factor counting
the number of permutations of the subset 𝑆.𝑓𝑥(𝑆) in the different part of the equation represents the expected output given
the subset of features 𝑆,which is similar to the marginal average on all other features other than the subset 𝑆. Hence, in a
nutshell, SHAP values explain the contribution of the features to the respective outputs in a quantitative manner, thereby
allowing interpretation. These are analogically similar to the coefficients of a regression model, which provide the impact
of the corresponding feature on the target variable. Due to the computational complexity of computing Equation 10, SHAP
values are approximated using various types of explainers such as kernel-explainer, tree-explainer, deep-explainer, etc.60
In this study, kernel-explainer uses a special weighted linear regression to compute the importance of each feature. The
computed importance values are Shapley values from game theory and coefficients from a local linear regression.60

𝑔 (𝑧) = 𝜃0 +

𝑀∑
𝑖 = 1

𝜃𝑖𝑧𝑖 (8)
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12 FAYAZ et al.

F IGURE 6 (A) SHAP values and (B) relative mean absolute SHAP values for 𝑆𝐹 and 𝑆𝑎(𝑇1), for PIDR of eight-story SMF

𝜃𝑖 =
∑

𝑆⊆𝑁∖{𝑖}

|𝑆|! (𝑀 − |𝑆| − 1)!
𝑀!

[𝑓𝑥 (𝑆 ∪ {𝑖}) − 𝑓𝑥 (𝑆)] (9)

𝑓𝑥 (𝑆) = E [𝑓 (𝑥) |𝑥𝑆] (10)

The 50 𝑆𝐹s and 10 𝑆𝑎(𝑇1) are used as the inputs (i.e., 50×10 = 500 samples) to the GPR surrogate model for scaled
ground motions and the respective SHAP values for 𝑆𝐹 (i.e., 𝑆𝐻𝐴𝑃𝑆𝐹) and 𝑆𝑎(𝑇1) (i.e., 𝑆𝐻𝐴𝑃𝑆𝑎(𝑇1)) are computed. The
SHAP values for the 500 samples for 𝑃𝐼𝐷𝑅 of eight-story SMF are presented in Figure 6a, where the color of the data
points represents the magnitude of the feature values, while low refers to values close to 0 for both 𝑆𝐹s and 𝑆𝑎(𝑇1), high
refers to values close to 10 and 0.6 for 𝑆𝐹s and 𝑆𝑎(𝑇1), respectively. As described above, the sign of SHAP indicates the
direction of contribution and the absolute value of SHAP indicates the magnitude of contribution. Hence negative SHAP
values indicate that the corresponding feature lowers the final target prediction while positive SHAP indicates an increase
in the final output of the model. It can be observed that, in general, with an increase in the value of both features, their
corresponding SHAP values tend to move from a negative sense to a positive sense. The trend is more evident for 𝑆𝐹s,
which means for central values of the feature (i.e., 𝑆𝐹 = 1), the contribution tends to be close to zero. Hence this means a
higher the magnitude of scaling factor (division or multiplication) and 𝑆𝑎(𝑇1) leads to a higher magnitude of contribution
to the output 𝑃𝐼𝐷𝑅. Furthermore, it can be observed from the Figure 6A that extreme values of 𝑆𝐹 lead to a higher
magnitude of SHAP and hence lead tomore significant changes in the output𝑃𝐼𝐷𝑅 as compared to 𝑆𝑎(𝑇1). Also, Figure 6B
presents the relative feature importance of 𝑆𝐹 and 𝑆𝑎(𝑇1) on the GPR output, in terms of theirmean absolute SHAP values
(|SHAP|). This is done by computing themean |SHAP| values for the 500 samples for both 𝑆𝐹 and 𝑆𝑎(𝑇1) and then dividing
them by the sum of the two mean |SHAP|. Since the SHAP values represent the contribution of the features to the model
output, computing their relative sum for the two features in an absolute sense signifies the importance of the respective
feature in predicting 𝑃𝐼𝐷𝑅. It can be observed from the figure that 𝑆𝐹 tends to have a higher contribution in the GPR
model to predict the 𝑃𝐼𝐷𝑅 as compared to 𝑆𝑎(𝑇1). The difference in the contribution is close to 60%:40% in favor of 𝑆𝐹
against 𝑆𝑎(𝑇1). This means the scaling processes require more careful examination in terms of both 𝑆𝐹 and 𝑆𝑎(𝑇1).
Figure 7 presents the dependence contribution plots for SHAP𝑆𝐹 and SHAP𝑆𝑎(𝑇1) against 𝑆𝐹 and 𝑆𝑎(𝑇1) and the colors

provide the dimension of other features. Dependence plots allow better understanding and insights into the features’
interactions and the respective SHAP values. Figure 7A shows the 500 𝑆𝐹s plotted against the corresponding SHAP𝑆𝐹
while Figure 7B shows the 500 𝑆𝑎(𝑇1) plotted against the corresponding SHAP𝑆𝑎(𝑇1). The plots also provide box plots for
the respective SHAP values for showing the statistics. The box plots show that the range of SHAP𝑆𝐹 tends to be higher than
SHAP𝑆𝑎(𝑇1), whichmeans that sensitivity of𝑃𝐼𝐷𝑅 is higher towards the change in 𝑆𝐹 as compared to 𝑆𝑎(𝑇1). Furthermore,
it can be observed from Figure 7A, SHAP𝑆𝐹 tends to be close to 0 for 𝑆𝐹s∼1 showing no contribution to the GPR model
predictions. This is in line with the expectations since, for 𝑆𝐹s∼1, 𝑆𝑎(𝑇1) is the only parameter that impacts the 𝑃𝐼𝐷𝑅. It
is further observed that as the value of 𝑆𝐹 decreases less than 1, the magnitude of SHAP𝑆𝐹 increases linearly in a negative
sense with significantly less variability due to 𝑆𝑎(𝑇1). On the other hand, an increase in 𝑆𝐹 greater than 1 leads to a
plateau effect in terms of SHAP𝑆𝐹 , however, the variability in the SHAP values increases significantly due to 𝑆𝑎(𝑇1). This
means the contribution of 𝑆𝐹 < 1 (i.e., divisive scaling factors) to the 𝑃𝐼𝐷𝑅 doesn’t vary significantly with 𝑆𝑎(𝑇1), while
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FAYAZ et al. 13

F IGURE 7 Dependence contribution plots: (A) SHAP𝑆𝐹 vs. 𝑆𝐹, and (B) SHAP𝑆𝑎(𝑇1) vs. 𝑆𝑎(𝑇1), for PIDR of eight-story SMF

F IGURE 8 SHAP: (A) force plot and (B) decision plot for PIDR of eight-story SMF

for 𝑆𝐹 > 1 (i.e., multiplicative scaling factors), the contribution to the 𝑃𝐼𝐷𝑅 varies considerably with 𝑆𝑎(𝑇1). Similarly, in
Figure 7B, it can be observed that with an increase in 𝑆𝑎(𝑇1), SHAP𝑆𝑎(𝑇1) increases considerably, and interaction with 𝑆𝐹
leads to significant variability in the SHAP values. This means the contribution of 𝑆𝑎(𝑇1) to predict 𝑃𝐼𝐷𝑅 is significantly
affected by the level of scaling involved. Hence it is essential to develop regulations for amplitude scaling in conjunction
with the IMs (i.e., 𝑆𝑎(𝑇1) in this case).
Lastly, to interpret the decision-making process of the GPR model, Figure 8A presents force plots for six grid samples

among the 500 samples (50 𝑆𝐹 s × 10 𝑆𝑎(𝑇1) ). The selected six samples represent the four corners (maximums and
minimums of 𝑆𝐹 and 𝑆𝑎(𝑇1) ) and two central (factor of 2 for 𝑆𝐹 and median 𝑆𝑎(𝑇1) ) examples of the selected 𝑆𝐹 and
𝑆𝑎(𝑇1) grid. The dashed line in the figure shows the base value obtained from theGPRmodel, which represents the average
prediction for 𝑃𝐼𝐷𝑅 and hence is the same across all predictions. The overall prediction from the GPRmodel is computed
as described in Equation 11. The two-colored arrows in the figure show how the 𝑆𝐹 and 𝑆𝑎(𝑇1) influence the GPR base
value (i.e., SHAP value) and arrive at the final prediction of 𝑃𝐼𝐷𝑅 based on the input values. It can be observed in general
that 𝑆𝐹 tends to have a decreasing impact on the model outcome while 𝑆𝑎(𝑇1) tends to raise the values, thereby having an
increasing impact. Specifically, it is observed that for smaller values of 𝑆𝑎(𝑇1) the model outputs are influenced by 𝑆𝑎(𝑇1)
to a more considerable extent as compared to 𝑆𝐹,which is consistent with Figure 7b. Figure 8B presents the final decision
plots for the 500 samples and shows the contributions of 𝑆𝐹 and 𝑆𝑎(𝑇1) on the GPR base value and thereby how themodel
arrives at the final predicition as per Equation 11. It can be observed that the GPR predictions marked with cross marker
are in close vicinity to the true 𝑃𝐼𝐷𝑅 values thereby showing good surrogacy power of the GPR model. The values of
SHAP𝑆𝐹 are observed to mainly cause a decrease in the GPR base values and SHAP𝑆𝑎(𝑇1) tend to increase the base values.
While the results are presented here only for the eight-story SMF, similar analyses are conducted for the other four SMFs
and 𝑃𝐹𝐴 . These results are expected to allow the readers to interpret the GPR surrogate model and gain insights into how
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14 FAYAZ et al.

the GPR model makes the final decision and lead to predictions of the EDPs .

Pred ln (𝑃𝐼𝐷𝑅) = GPR Base Value + SHAP𝑆𝐹 + SHAP𝑆𝑎(𝑇1) (11)

1.6 Hypothesis testing and results

The GPR-based surrogate models are utilized to provide recommendations for careful scaling of ground motions to con-
duct NTHA of the steel SMFs. This is done by using the scaled GPR model to sample the posterior distributions of EDPs
for 50 𝑆𝐹s (25 divisive andmultiplicative) × 50 𝑆𝑎(𝑇1) (0 g to MCE in 50 equal intervals) grid; and using the unscaled GPR
model to sample the posterior distribution of EDPs for the 50 𝑆𝑎(𝑇1) (unscaled EDPs correspond to 𝑆𝐹 = 1). Hence, after
the sampling, there are 50 distributions for the scaled EDPs (corresponding to 50 𝑆𝐹s) and one distribution for unscaled
EDPs (corresponding to 𝑆𝐹 = 1) against each of 50 𝑆𝑎(𝑇1) (corresponding to step 9). The obtained 50 scaled EDP distri-
butions are compared against the one unscaled EDP distribution for each 𝑆𝑎(𝑇1) to identify the 𝑆𝐹s that lead to significant
statistical bias in EDPs.Herein, it should be noted that “scaled EDPs” do notmean that the EDPs are scaled themselves, but
rather refers to the EDPs obtained for the scaled groundmotions (surrogated by theGPRmodel). The comparison between
the scaled and unscaled EDP distributions is conducted using Kolmogorov–Smirnov (KS) hypothesis test for each 𝑆𝑎(𝑇1)
(corresponding to step 10). The null hypothesis proposes that the two distributions are statistically similar, which thereby
suggests that the scaled EDPs for the corresponding 𝑆𝐹 are identical to the unscaled EDPs for the given 𝑆𝑎(𝑇1). Hence the
p-values greater than a significance level (typically 0.05) indicate no significant bias in the EDPs due to scaling of ground
motions, while p-values lower than the significance level mean that the corresponding 𝑆𝐹 introduces a bias in the EDPs.
Figures 9 and 10 summarize the findings by illustrating the results from the KS test using contour plots of the obtained

p-values for the grid. In these figures, the horizontal axis represents the scaling factor while the vertical axis is the IM
(defined here 𝑆𝑎(𝑇1)). The color bar represents the p-value from the KS test. Thus, the green-colored regions in the figures
illustrate the grid cases with p-value∼ 0, thereby rejecting the null hypothesis of statistical similarity between the scaled
and unscaled EDPs and indicating bias due to the scaling of ground motions. Similarly, other regions represent grid cases
where the test fails to reject the null hypothesis suggesting no significant bias with different probability levels (i.e., p-
values). While the consensus in statistical research is to use p-value = 0.05 for hypothesis testing and balance type I
and type II errors, in this study, the contours are presented for different p-values to allow stakeholders to choose their
appropriate levels of required confidence.
The hypothesis test is conducted for both EDPs: PIDR and PFA (for all the archetype frames). Figures 9 and 10 present

the results for PIDR and PFA, respectively, for all five SMFs. In both figures, it is observed that large scaling (both mul-
tiplicative and divisive) leads to p-values∼ 0, indicating bias in the scaled PIDRs and PFAs. Also, both figures show that
for all SMFs, the bias is dependent on both 𝑆𝑎(𝑇1) and 𝑆𝐹; and generally allows a higher range of 𝑆𝐹 for lower levels of
𝑆𝑎(𝑇1) and leads to a more restricted range of 𝑆𝐹 for higher levels of 𝑆𝑎(𝑇1). Furthermore, it is noticed that the results are
not symmetric for 𝑆𝐹 < 1 and 𝑆𝐹 > 1 for both PIDR and PFA. The allowable 𝑆𝐹𝑠 tends to decrease faster with increasing
𝑆𝑎(𝑇1) for 𝑆𝐹 > 1, and the slope is observed to be lower for 𝑆𝐹 < 1.
In Figure 9, it is observed that for 𝑆𝑎(𝑇1) values close to 0.1 g, the allowable range of scaling factors is: between 0.4 and

3.5 for p-value∼ 0.025, between 0.5 and 3 for p-value∼ 0.05, and between 0.6 and 2 for p-value∼ 0.1. In contrast, for higher
levels of intensity (e.g., 𝑆𝑎 (𝑇1) = 0.7 g for eight-story SMF) the allowable SF range narrows down to: between 0.7 and 2
for p-value∼ 0.025, between 0.75 and 1.75 for p-value∼ 0.05 and between 0.85 and 1.15 for p-value∼ 0.1. This phenomenon
can be due to the mismatch in time-histories created by the 𝑆𝐹 for low amplitude ground motions compared to the true
high amplitude unscaled ground motions. For example, it can be postulated that the use of 𝑆𝐹 = 2 for ground motions
with PGA = 0.1 g and PGA = 1 g may not lead to the same changes in their other respective ground motions parameters.
Hence the impact of scaling should be considered along with the level of ground motion intensity. Furthermore, a
closer inspection of Figure 9 indicates that the bias in EDPs is also affected by the height of the SMFs. For instance,
for the 12-story frame, at 𝑆𝑎 (𝑇1) = 0.5𝑔 the range of no-bias scaling factors is between 0.70 and 2.00, while for the
two-story, at the same intensity level, the range spans from 0.40 to 3.00. This trend is observed across the five frames.
This phenomenon may be explained due to the differences in the plastic strain distribution along with the height of the
buildings. For instance, taller buildings (e.g., 12- and 20- story) generally lead to concentrated plasticity in a few elements
in the lower stories. In contrast, in short buildings (e.g., two- and four-story), the plasticity is more evenly distributed
along with the height. Thus, differences in the first period of the structure (associated with building height) entail an
influence on the range of allowable 𝑆𝐹s. This analysis is consistent with the mass modal participation factors mentioned
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FAYAZ et al. 15

F IGURE 9 p-value contours for PIDR for: (A) 2-story; (B) 4-story; (C) 8-story; (D) 12-story; (E) 20-story

in the earlier sections, where the first mode leads to the participation of 95.31% for the two-story SMF and reduces to
74.89% for the 20-story SMF. Furthermore, as mentioned above, the slope of allowable 𝑆𝐹s with respect to 𝑆𝑎(𝑇1) tends to
be steeper for 𝑆𝐹 > 1 as compared to 𝑆𝐹 < 1. This means the contribution of 𝑆𝐹 < 1 (i.e., divisive scaling factors) to the
𝑃𝐼𝐷𝑅 doesn’t vary significantly with 𝑆𝑎(𝑇1), while for 𝑆𝐹 > 1 (i.e., multiplicative scaling factors), the SF contribution to
the 𝑃𝐼𝐷𝑅 varies considerably with 𝑆𝑎(𝑇1). This observation is consistent with the results obtained from SHAP analysis.
PFAs play an important role in detailing nonstructural components of buildings.61,62 Hence it is also important to con-

sider the impact of ground motion scaling on the structural PFAs. Figure 10 presents the KS test results for the PFAs of
the five SMFs. In general, it can be observed that the range of allowable scaling factors is narrower for PFAs as com-
pared to PIDRs. Similar to the cases in Figure 9, the bias due to record scaling on PFAs depends on the intensity level.
It can be observed that for 𝑆𝑎(𝑇1) values close to 0.1 g, the allowable range of scaling factors is between 0.45 and 2.5 for
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16 FAYAZ et al.

F IGURE 10 p-value contours for PFA for: (A) 2-story; (B) 4-story; (C) 8-story; (D) 12-story; (E) 20-story

p-value∼ 0.025, 0.6, and 2.1 for p-value∼0.05, and 0.7 and 2 for p-value∼ 0.1. In contrast, for higher levels of intensity (e.g.,
𝑆𝑎 (𝑇1) = 0.7 g for eight-story SMF) the range narrows down to: between 0.65 and 1.8 for p-value∼ 0.025, between 0.8
and 1.5 for p-value∼ 0.05 and between 0.9 and 1.1 for p-value∼ 0.1. The results indicate that the scaling bias in PFAs has
lower variability for the same intensity level than in the case of PIDRs. However, the slope of allowable 𝑆𝐹s concerning
𝑆𝑎(𝑇1) is observed to be more prominent for 𝑆𝐹 > 1 in the case of PFAs as compared to PIDRs. Lastly, in contrast with
Figure 9, the scaling bias is less sensitive to the building height, implying lower effects of 𝑆𝑎(𝑇1) on the ground motion
scaling in PFAs. These differences in the results between PFAs and PIDRs can be due to the tendency of PFAs to decrease
(as reported by63) nonlinearly with levels of plasticity to a higher degree in contrast to the PIDRs.
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FAYAZ et al. 17

F IGURE 11 Pair plot between various IMs of selected scaled and unscaled ground motions for the eight-story SMF (in the natural
logarithmic domain)

The findings presented in Figures 9 and 10 are consistent with the previous studies conducted on the topic (e.g.3,4,10,64),
implying that record scaling leads to bias in EDPs. The reasons behind this bias, as pointed out by other authors
(e.g.,3,4,10,64), can be due to: i) strong ground motion duration (which is related with 𝑀𝑤) is not affected by amplitude
scaling and has been reported to influence the behavior of buildings65; ii) ground motions with benign amplitude are typ-
ically recorded for small 𝑀𝑤 or large 𝑅𝑟𝑢𝑝, and consequently require large scaling for utilization at engineering hazard
levels.Such scaled records lead to bias in EDPs due to the fact that the scaled 𝑆𝑎(𝑇1) is not aligned with the corresponding
𝑀𝑤 or 𝑅𝑟𝑢𝑝 and hence other related IMs are not consistently altered4,57,66; iii) as reported by Davalos and Miranda3, the
scaled ground motion records lead to larger input energy due to acceleration pulses with larger amplitudes compared to
the input energy of unscaled records for similar intensity levels. In a nutshell, the EDP biases can adhere to the fact that
the amplitude scaling in terms of 𝑆𝑎(𝑇1) or any other scalar IM, do not appropriately scale the other correlated IMs of the
ground motions (such as energy-content, frequency, duration, etc.). Hence the scaled ground motions do not inherit the
internal correlations among the various IMs and event parameters (such as𝑀𝑤, 𝑅𝑟𝑢𝑝, etc.). Additionally, as observed from
the figures, the range of 𝑆𝐹s with possible bias increases with an increase in the groundmotion intensity (i.e., 𝑆𝑎(𝑇1)). This
is directly related to the level of inelasticity developed in the buildings due to high intensity ground motions. Note that
the analyses in this study are conducted to a 𝑆𝑎(𝑇1) equal to the MCE level. Hence it can be concluded that the collapse-
oriented analyses are strongly affected by scaling the low-amplitude records with a factor of ∼2 and above. Accordingly, it
is observed that the levels associated with serviceability, design, and MCE requirements have different allowable scaling
ranges that should be considered for ground motion selection and scaling procedures.
To briefly explore the reasoning behind the observed biases and provide new insights, Figure 11 compares different

groundmotion IMs of the unscaled and scaled records (in the natural logarithmic domain). In this figure, the red and blue
colors represent the unscaled and scaled records, respectively. The diagonal insets of the figure present the normalized
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18 FAYAZ et al.

kernel density estimations (KDE) of Arias Intensity (𝐼𝑎), significant duration (𝐷5−95), mean period (𝑇𝑚), mid-frequency
(𝑓𝑚𝑖𝑑), and 𝑆𝑎(𝑇1) for 2500 scaled (blue color) and 200 unscaled (red color) records selected for the eight-story SMF. These
IMs are used as proxies for various engineering characteristics of the ground motions: 𝐼𝑎 represents the energy content,
𝐷5−95 is the significant duration of shaking, 𝑇𝑚 signifies the dominant frequency content,67 𝑓𝑚𝑖𝑑 represents the frequency
at the middle of the shaking,68 and 𝑆𝑎(𝑇1) represents the amplitude of the ground motions. The off-diagonal subplots
in Figure 11 show relational plots (scaled and unscaled records) among the five IMs presented for two measures in each
subplot. Specifically, the upper off-diagonal insets present the scatter plots (along with mean regressions) between each
pair of IMs. In contrast, the lower off-diagonal insets show the density contour of the scatter plots.
The KDEs for the five IMs are compared between the scaled and unscaled ground motions using the KS hypothesis

test with the null hypothesis that the two KDEs are statistically similar. It can be observed that except 𝑆𝑎(𝑇1) all the other
comparisons lead to p-values < 0.05, indicating rejection of the null hypothesis. The KDE match for 𝑆𝑎(𝑇1) is obvious
here since the 2500 scaled ground motions are selected with the criteria to match the 𝑆𝑎(𝑇1) of the 200 unscaled ground
motions. This comparison of IMs signifies that even though the scaled ground motions are selected to make sure they
have consistent amplitude-based 𝑆𝑎(𝑇1) distributions with unscaled ground motions do not necessarily lead to statistical
match in other types of IMs. Notably, it can be observed that the two sets of ground motions are significantly different
in terms of their energy- and frequency- content (𝐼𝑎, 𝑇𝑚, and 𝑓𝑚𝑖𝑑). These observations are consistent with the con-
clusions made by Davalos and Miranda3 with respect to the difference in energy between scaled and unscaled ground
motions.
Furthermore, it can be observed from the upper off-diagonal insets in Figure 11 that the scaled and unscaled ground

motion IMs differ considerably in terms of their cross-relations. Notably, the relationships between the other IMs and
𝑆𝑎(𝑇1) are observed to be different in the two sets except possibly for the case of 𝐷5−95. Since the ground motions used in
this study only correspond to the crustal seismic sources, 𝐷5−95 is known to not vary significantly (due to the inclusion
of pulse- characteristics).69 Hence in Figure 11, it can be observed that, generally, the trends with 𝐷5−95 are not extremely
sensitive to ground motion selection using 𝑆𝑎(𝑇1). In addition, the trends of other IMs concerning 𝑓𝑚𝑖𝑑 are observed to
be considerably different between the scaled and unscaled ground motions. This means that the selection and scaling of
groundmotions using only amplitude-based 𝑆𝑎(𝑇1) is not sufficient in eliminating the bias that themismatches can cause
in the other types of IMs. This observation is consistent with the results of Fayaz et al.,68 who tested the efficiency and
sufficiency of different IMs to explain the EDPs of bridge structures in the context of groundmotion simulation validation.
Similar observations were made by Li et al.70 who pointed out the importance of preserving 𝐼𝑎 in addition to 𝑆𝑎(𝑇1) in
liquefaction analysis. While such detailed analysis is out of the scope of this paper, it is worth mention that Bradley71
proposed a general procedure to built vector-values IMs to develop hazard consistent analysis when more than one IMs
are required. The lower off-diagonal elements of Figure 11 compare the density contours between the selected scaled
and unscaled ground motions. In general, it can be observed that the scaled ground motions have higher variability as
compared to the unscaled ground motions. One of the reasons for this can be due to the sampling bias where only 200
unscaled groundmotions are compared against 2500 scaled groundmotions. However, it is also viable that natural ground
motions corresponding to a 𝑆𝑎(𝑇1) level have lower variability in terms of other IMs, while scaling of ground motions to
match a 𝑆𝑎(𝑇1) do not appropriately influence the other IMs, thereby leading to higher variability. Also, it is observed from
the contours that, in many cases, the mean of the unscaled ground motions contour is not similar to the density contour
of scaled ground motions, indicating bias due to scaling. Hence, all these mismatches in the IMs between the scaled and
unscaled sets can be the basis of the mismatches observed in the EDPs of SMFs. Although the reasons presented here
complement the findings of previous studies, the goal of this study is not to conduct an in-depth investigation of the
underlying causes of the EDP bias but to present an overview of the possible explanations and provide recommendations
in terms of 𝑆𝑎(𝑇1) and 𝑆𝐹. The underlying reasoning behind the EDPmismatch requires further scrutiny and is currently
beyond the scope of this study. Finally, the results of this study suggest that the scaling of groundmotions requires careful
examination in the context of seismic demand analysis.

2 CONCLUSION

The lack of high amplitude ground motion records has made ground motion selection and scaling process an essential
step for the seismic demand analysis in structural and earthquake engineering. Over the years, various measures have
been suggested to minimize the impact of extremeground motion scaling on structural demands. This study is a step to
provide statistical and machine-learning-based recommendations for scaling ground motions in terms of IM and 𝑆𝐹. The
study proposes and implements a 10-stepped procedure to assess the viability of scaling ground motions to match average
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FAYAZ et al. 19

IM levels and its impact on the structural responses in conjunction with the groundmotion intensity level. The procedure
involves careful selection of scaled and unscaled ground motions corresponding to different IM levels and using them for
NTHA of structural models. The results are then used to develop machine-learning-based surrogate models and obtain
statistical predictions for scaled and unscaled responses for various IM and 𝑆𝐹 levels. The scaled and unscaled response
predictions are then compared through hypotheses testing to determine the 𝑆𝐹 ranges of no-significant bias and provide
recommendations for ground motion scaling process.
As an exercise of the proposed procedure, the study investigates the impact of ground motion amplitude scaling on two

seismic EDPs (i.e., PFA and PIDR) of five steel SMFs varying in their heights (2-,4-,8-,12-, and 20-story) using Bayesian
non-parametric GPR-based surrogatemodels. For this purpose, a total of 200 unscaled groundmotions and corresponding
2500 scaled ground motions are selected to represent 10 𝑆𝑎(𝑇1) levels from 0 g to MCE level (2% in 50 years hazard level).
Hence a total of 2700 ground motions are applied to each SMF to conduct NTHA, and the resulting EDPs are utilized to
developGPR-based surrogatemodels for unscaled and scaled responses. To have better insights into the GPRmodels, their
prediction- and decision-making- processes are explained using the concepts of XAI and SHAP. The scaled GPR surrogate
models are then utilized to sample the EDPs for a 50× 50 grid of 𝑆𝑎(𝑇1) and 𝑆𝐹 levels. The obtained posterior distribution
of scaled EDPs for each grid point is then compared against the posterior distribution of unscaled EDPs sampled from the
unscaled GPR model corresponding to the same 𝑆𝑎(𝑇1). The comparison is conducted using the KS test, where the two
distributions are analyzed for statistical similarity and hence checked for possible bias in EDPs due to scaling.
Results of this study indicate that the record scaling (both multiplicative and divisive) introduces bias in the responses

of SMFs for both EDPs (i.e., PFA and PIDR). It is concluded that the EDP bias caused by scaling depends on three factors: i)
scaling level (i.e., 𝑆𝐹), ii) target amplitude (i.e., 𝑆𝑎(𝑇1)), and iii) fundamental period (i.e., mass and stiffness distribution).
In general, it is noticed that the allowable 𝑆𝐹s range between 0.5 and 3.0 for PIDRs, and from 0.6 to 2.0 for PFAs (with
p-value = 0.05). It is further seen that the allowable scaling range decreases with an increase in the target 𝑆𝑎(𝑇1) leading
to an allowable 𝑆𝐹 range between 0.7 and 1.8 for PIDRs, and from 0.8 to 1.6 for PFAs (with p-value= 0.05) for MCE levels.
These analyses are essential from both design and analysis points of view since drift limits typically control the design of
SMFs, while PFAs define the anchor forces for detailing nonstructural components. Finally, the EDP differences between
scaled and unscaled ground motions are briefly explained by analyzing the differences in five different IMs of the ground
motions characterizing the energy-, duration-, and frequency content of the ground motions. The analysis shows that a
sheer scaling of ground motions using amplitude-based IMs such as 𝑆𝑎(𝑇1) do not appropriately alter the other IMs, and
a significant inconsistency is noticed between the other IM relations for the scaled and unscaled ground motions. These
IM inconsistencies are postulated to be the reasons behind the mismatch in the scaled and unscaled EDPs. Based on the
results of this study, it is clear that further scrutiny and studies are required to understand the underlying phenomenon
of scaling ground motions. Furthermore, it is vital to understand the impact of other IMs in the record selection and
scaling process, and also, with the influx of further recorded/simulated data, the analysis can be conducted by taking the
variability of ground motions and its consequences into account. This study can provide a resource to the community
for the utilization of sophisticated machine-learning tools to obtain insights about ground motion selection and scaling
problems.
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