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In this work we analyze the local nonlinear electrochemical impedance spectroscopy (NLEIS) response of a lithium-ion battery and
estimate model parameters from measured NLEIS data. The analysis assumes a single-particle model including nonlinear diffusion
of lithium within the electrode particles and asymmetric charge transfer kinetics at their surface. Based on this model and assuming
a moderately-small excitation amplitude, we systematically derive analytical formulae for the impedances up to the second
harmonic response, allowing the meaningful interpretation of each contribution in terms of physical processes and nonlinearities in
the model. The implications of this for parameterization are explored, including structural identifiability analysis and parameter
estimation using maximum likelihood, with both synthetic and experimentally measured impedance data. Accurate fits to
impedance data are possible, however inconsistencies in the fitted diffusion timescales suggest that a nonlinear diffusion model
may not be appropriate for the cells considered. Model validation is also demonstrated by predicting time-domain voltage response
using the parameterized model and this is shown to have excellent agreement with measured voltage time-series data (11.1 mV
RMSE).
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Lithium-ion batteries have emerged as the dominant energy
storage solution for portable electronics and electric vehicles,
enabled by their high energy and power density and decreasing
costs.1 They are also increasingly of interest for renewable energy
integration within the power grid. In all of these applications, battery
models are used to improve understanding of performance trade-offs
at design stage and for operational monitoring of key factors such as
state of charge, temperature, and lifetime. Equivalent circuit models
are widely used in battery management systems, but electrochemical
models, such as those derived from porous electrode theory within
the Doyle-Fuller-Newman (DFN) framework,2 are also increasingly
of interest for high-fidelity predictions in academia and industry.

The effectiveness of electrochemical battery models as a tool for
performance understanding and improvement depends on the
realism of their internal structure and parameters for the particular
questions being asked. Even if measured input-output quantities
such as voltage can be predicted accurately, the internal states may
differ significantly from reality. This is compounded by the large
number of parameters required in these models (e.g. the DFN model
has more than 30 parameters) and hence values are often taken from
literature, but may not apply to the specific cell at hand. Fast and
noninvasive characterization techniques that can completely para-
meterize a physical model for a specific cell are therefore desirable.

Electrochemical impedance spectroscopy (EIS) is a widely used
noninvasive frequency-domain characterization technique where a
small amplitude sinusoidal current (or voltage) is applied to a device
and the corresponding voltage (or current) response is measured.3

The system response is assumed to be linear, and is traditionally
fitted using “local” equivalent circuit models containing resistors,
capacitors, and sometimes other ad hoc components (e.g. constant
phase elements), although this may lead to overfitting and difficulties
in interpretation of the underlying processes—see Ciucci et al.4 for a
review of the application of EIS to lithium-ion batteries. The
assumption of a linear response in standard EIS necessarily discards

information about nonlinearities that may be useful for model
selection and parameterization. This information may be measured
by applying a larger amplitude sinusoidal excitation to generate
harmonics in the response of the device under test.

The injection of a sufficiently large amplitude sinusoidal current
into a battery will result in a nonlinear voltage response, with
harmonic components not only at the fundamental excitation
frequency ω, but at all integer multiples of this i.e. 0, ω, 2ω, 3ω,
…; see Fig. 1. The components nω with n ⩾ 2 are referred to as
higher harmonics, and are due entirely to nonlinearities. Several
ways of analysing these harmonics have been considered,5,6 but one
approach is to assume the input amplitude is small, but larger than
for linear EIS. Then a “weakly” nonlinear response is induced, with
analytical predictions from the model possible via a perturbation
expansion. We will refer to this technique as nonlinear EIS
(NLEIS).7 It was first widely applied in the context of solid-oxide
fuel cells,8–13 proving useful for model selection, i.e. identifying
inconsistencies between proposed models and experiment. It has
since been considered for many other electrochemical systems, as
discussed in the review by Fasmin and Srinivasan.14

There has been limited application of NLEIS to lithium-ion
batteries. Murbach and Schwartz,5 using a DFN-type physical
model, calculated the second and third harmonics by an expansion
in current amplitude, but this required numerical solution of the
spatial system of ODEs due to the model complexity. They showed
that the higher harmonics are sensitive to the symmetry of the charge
transfer reaction and to several parameters of interest, e.g. solid-state
and electrolyte diffusivities. The authors also showed qualitative
similarity between measured and predicted nonlinear impedances
and that the second harmonic may be sensitive to cell ageing.15

There have been several other studies where moderate or large
amplitude sinusoidal currents have been applied to lithium-ion
batteries.6,16–18 In particular, nonlinear frequency response analysis
(NFRA) is a term used to refer to a particular type of NLEIS where
there is no restriction on the input amplitude, and only the modulus
(magnitude) of the harmonics is retained. No restriction on input
amplitude means a stronger nonlinear response, however, the model
analysis is purely numerical, with direct simulation in the time
domain necessary before transformation to the frequency domain,zE-mail: toby.kirk@maths.ox.ac.uk

Journal of The Electrochemical Society, 2023 170 010514

https://orcid.org/0000-0002-6700-0852
https://orcid.org/0000-0001-9451-0631
https://orcid.org/0000-0002-0620-3955
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1149/1945-7111/acada7
https://doi.org/10.1149/1945-7111/acada7
https://doi.org/10.1149/1945-7111/acada7
mailto:toby.kirk@maths.ox.ac.uk
https://crossmark.crossref.org/dialog/?doi=10.1149/1945-7111/acada7&domain=pdf&date_stamp=2023-01-13


which is computationally expensive. The aforementioned “weakly
nonlinear” analysis, on the other hand, can be done directly in the
frequency domain. In addition, the practice in NFRA of discarding the
harmonics’ phase and hence potentially half of the nonlinear
information does not seem justified. NFRA on lithium-ion batteries
was explored experimentally by Harting et al.,6,16 and signatures of
degradation processes (e.g. lithium plating) were able to be identified.
Wolff et al.17 considered NFRA applied to a DFN-type model and
performed a parameter sensitivity analysis, and they18 investigated the
signatures of several models of SEI. Large amplitude multisine signals
have recently been considered by Fan et al.19,20 who also performed a
sensitivity analysis on a DFN model, giving support to the notion of
asymmetry of charge transfer kinetics reported by others.15

Previously, NLEIS analysis of battery models has been applied
only to relatively complex physical models with many parameters,
such as the DFN model, making the evaluation and interpretation of
the model impedances difficult. In this paper, we consider instead the
NLEIS response of a reduced-order physical model, the single-
particle model (SPM), which is the simplest physical model that
considers each electrode separately and captures the key battery
dynamics and overpotentials, e.g. Butler—Volmer reaction kinetics,

solid-state diffusion of lithium, and double-layer capacitance. The
SPM can also be used in modelling cell aging, e.g. chemical and
mechanical degradation,21 and is computationally simple enough to
enable optimal control of grid-connected batteries.22 Indeed, the
SPM can be further simplified, e.g. to an equivalent-hydraulic
model, which can in principle be deployed directly in battery
management systems.23

The simplicity of the SPM allows us to derive analytical formulae
for the impedances up to the second harmonic, and interpret each
contribution in terms of physical processes, extending the estab-
lished language of EIS Nyquist plots to include nonlinear harmonics.
The nonlinearities are identified explicitly, originating from: (i)
asymmetric Butler—Volmer kinetics; (ii) concentration dependence
of the exchange current density; (iii) open circuit potential functions;
(iv) solid-state diffusion. We then consider the implications of this
new nonlinear information for parameter estimation, extending the
structural identifiability analysis of a single-particle model by
Bizeray et al.,24 which was limited to linear impedances. This is
complemented with parameter estimates from synthetic and from
experimentally measured NLEIS data using a commercial pouch
cell. Our results show that the model fits the impedance data

Figure 1. Diagram of the NLEIS process, where a sinusoidal current input and voltage output are transformed to the frequency domain using Fourier transforms.
In practice experimental measurements are pre-processed to remove transients and windowed (e.g. with a Hann window) before transforming.

Figure 2. Single particle model schematic with a representative particle for each electrode. Not depicted is a resistor in series with the two electrodes.
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accurately, capturing many of the key features of each harmonic and
determining all model parameters excluding open circuit potentials.
Lastly, the model is independently validated in the time domain,
showing improvements in accuracy of voltage predictions over
conventional methods.

Model Formulation

The single-particle model (SPM).—The model of a lithium-ion
cell we consider is the single-particle model (SPM).24–26 Here we
summarise the model assumptions and governing equations. The
transport of lithium ions in the electrolyte is assumed to be fast, so
that they remain at a constant uniform concentration *ce . Throughout,
asterisks denote dimensional quantities. In each electrode, the active
particles that make up the porous electrode medium are all assumed
identical in size and shape. Thus they behave identically, and only a
model of a single representative particle is necessary. A schematic of
the model geometry is shown in Fig. 2. Let the subscript ± denote
that a quantity applies to, or is defined in, the positive and negative
electrode, respectively. Mass transport of lithium within spherical
particles of radius *± is modelled here by spherically-symmetric
nonlinear diffusion,
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Here F* is Faraday’s constant, *Rg is the universal gas constant, T* is

the temperature (assumed constant), *±i0, is the exchange current

density (with a dependence on the surface value of *±c , with
evaluation on * = *± ±r assumed), *±m is a reaction rate coefficient,
*±c ,max is the maximum lithium concentration in the positive/negative
electrode material. The cathodic transfer coefficient β± (and corre-
sponding anodic transfer coefficient 1− β±) is not assumed to be the
typical value of 1/2, but may take any value between 0 and 1, i.e.,
β± ∈ (0, 1). Electrical conductivity in the electrode materials is
assumed large, meaning the electric potential in each is uniform,

only a function of time t*, and expressed relative to the potential in
the electrolyte, ϕ ϕ*( *) = *( *) − *± ±V t t e . Then η*( *) = *( *)−± ±t V t

*( *∣ )* *± ± =± ±U c r R is the reaction overpotential, where the open circuit

potential (OCP) is given by *±U , a function of the surface concentra-
tion. The evaluation of *±c at * = *± ±r in the current density and
overpotential expressions will, for brevity, be understood from here
on and not stated explicitly.

The nonconstant diffusion coefficient *( *)± ±D c will be left as a
general function of *±c in our analysis, but for our results we will
interpret it as originating from a diffusive flux driven by chemical
potential gradients, such as in concentrated solution theory.
Therefore we take the radial lithium flux to be27
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which has been shown to give more accurate behavior than a Fickian
diffusion model when parameterized using galvanostatic intermittent
titration technique (GITT). Here * ±DLi, is the constant diffusivity of
the Li species in each electrode material, and the flux 7 gives rise to
1 with the concentration-dependent diffusivity
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Note that, as per this equation, the dependence on *±c is completely
determined, and depends on the gradient of *±U .

Finally, conservation of charge relates both of the surface lithium
flux densities to the macroscopic applied circuit current *Iapp. Let *±a
be the surface area per unit volume, related to the electrode volume
fraction ϵ± for spherical particles by ϵ* = *± ± ±a 3 , then the
interfacial current density is related to the applied current via the
differential equation
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where * >I 0app corresponds to a charging current, * ±Cdl, is the double-

layer capacitance at the surface of each electrode, *±L is the through-
cell thickness of each electrode, and * is the area of the electrodes
in the transverse directions.

We include double-layer capacitance here due to its relevance in
modelling the frequency domain behavior, in particular at high
frequencies. However, a model neglecting double-layer capacitance
has computational advantages and is particularly useful in time-
domain simulations of scenarios where short timescales are less
important, e.g., charging or discharging. We may neglect capaci-
tance by setting * =±C 0dl, in 9, reducing it to the algebraic equation
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If the applied current is prescribed, then substituting 10 into the
boundary condition 4 allows 1–4 to be solved for *±c , and 5
subsequently inverted to give the potentials in each electrode
(relative to the electrolyte potential)

η= ( ) + [ ]±
∗

±
∗

±
∗

±
∗V U c . 11

With the potentials *±V given either by the solution of 9 (when
capacitance is included) or the explicit expression 11 (when
capacitance is neglected), the terminal voltage for the cell is then

Journal of The Electrochemical Society, 2023 170 010514



* * * * * *
* * * *

ϕ ϕ( ) = − +

= − + [ ]
+ −

+ −

V t R I

V V R I . 12

s

s

app

app

A series resistance, *Rs , is included to account for linear resistances
arising from, e.g., current collector contacts, and ionic and electronic
conduction in the electrodes and electrolyte.

Scaling and nondimensional SPM.—To reduce the number of
parameters required and establish the minimal set of physical
parameter groups necessary to use the model, we proceed to
nondimensionalise it. The internal variables *±c and *±r are scaled
by the maximum lithium concentrations *±c ,max and particle radii

*±, respectively. The external variables, i.e., those directly

measurable via the cell terminals such as the current *Iapp, voltage
V*, and time t*, are scaled with typical values J*, Φ*, τ*. It is
convenient for these values to be known a priori, that is, not
chosen from some internal property of the cell itself. We choose
the potential scale to be the thermal voltage, Φ* = * ( * *)F R Tg ,
and J* = 1 A, τ* = 1 s.

The nondimensional variables are defined as
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where χ± is defined below in 28. If the reactions are symmetric, i.e.
β± = 1/2, then E±(η) reduces to η( )sinh 2 . Here R± is the reciprocal
of the (nondimensional) exchange current density, and can be
interpreted as a nonlinear reaction resistance, with a dependence
on the surface concentration c± (evaluation at =± ±r understood).
This dependence has the nonlinear, but assumed known, functional
form in 24 with parameters β± and χ±. The factor of 2 in 20 is
necessary for R± to correspond to the well-known charge transfer
resistance if the model is linearized—see the Nonlinear Impedance
section.

If we neglect double-layer capacitance, then we may set C± = 0
in 19, which reduces to
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exchange current density, i.e. magnitude of *±i0, from 6. Thus, the
denominator in 30 is the typical reaction current.
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Model parameters.—Here we summarize the model parameters
necessary to use the nondimensional SPM 15–24.

OCPs and electrode balancing.—These are quantities that relate
to the rest-state of the cell, and should be determined by investiga-
tions at equilibrium. They are:

• U±(c±), the electrode OCPs (relative to a Li/Li+ reference) as a
function of stoichiometry c± ∈ [0, 1];

• ξ±, the ratio of the theoretical electrode capacities * ±Qth, to the
reference scale J*τ*;

• c±,init, the initial electrode stoichiometries. These can be
expressed in terms of the depth-of-discharge (DoD) of the cell, or

= * * ∈ [ ]Q Q Q 0, 1cap , where Q* is the discharge capacity and *Qcap
is the rated cell capacity. Then c±,init can be calculated using the
linear relations

= + ( − ) [ ]± ± ± ±c c c c Q, 320% 100% 0%

where ±c
0% and ±c

100% are the stoichiometries at 0% and 100% DoD
(i.e. Q= 0 and Q= 1). Note that these can be related to the
theoretical electrode capacities, and hence ξ±, via

*
*

*

* *τ
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Q

Q

Q
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3
, 33100% 0% cap
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therefore only one of the stoichiometries in each electrode, say

±c
0%, must be provided independently.In general, this amounts to
requiring the knowledge of 2 functions (U±(c±)) and 4 constants
(ξ±, ±c

0%) related to the balancing of the electrodes. These are
typically found invasively, by disassembling a similar cell and
reassembling into two half cells and then measuring the OCVs, or
by the use of reference electrodes. For the experimental data
used in this study, the U± are taken to be known as a function of
DoD (or Q), measured using a minimally invasive reference
electrode24,28—see the Methods section. We note, however, that
the use of a reference electrode does not allow the electrode OCPs
to be determined outside the normal operation range of the full cell.
To do so, half-cell measurements would be required.

Dynamical parameters.—With the electrode balancing para-
meters determined, the remaining 9 parameter groups necessary
for the dynamic modelling of the cell (nonzero currents) consist of 4
per electrode and 1 series resistance, as follows:

• τ τ τ= * *± ±d, d, , typical diffusion timescale (scaled by the
reference timescale τ*= 1 s);

• χ±, typical nondimensional charge transfer resistances;
• β±, cathodic charge transfer coefficients;
• C± , nondimensional double-layer capacitances;
• Rs, nondimensional series resistance.

This list of parameters can be written as a vector,

θ τ χ β τ χ β= ( ) [ ]+ + + + − − − −C C R . 34s
T

d, d,

Structural identifiability and estimation of these parameters from
NLEIS data will be explored as part of the results of this paper, in
the Results section.

Model nonlinearities.—Since NLEIS is a nonlinear extension of
EIS, it is useful to list the various sources of nonlinearity present in
the model, namely

• the OCPs, i.e. the nonlinear functions U±(c±) which encode
much of the thermodynamic behavior of the electrodes, and

• the Butler—Volmer reaction kinetics. These contribute non-
linearities in two different ways: (i) the exponential dependence of
the reaction current on overpotential, given by E±(η±) in 23; (ii) the
dependence of the exchange current density, or equivalently the
charge transfer resistance R±(c±) in 24, on lithium concentration.
Finally,

• nonlinear diffusion in the particles, i.e. the dependence of the
diffusion coefficient on lithium concentration.

Each of these nonlinearities contributes to the measured nonlinear
impedance, and in the following Section we will derive explicit
formulae for the impedance, making each distinct contribution
apparent.

Nonlinear Impedance

General description of NLEIS.—The technique of (galvano-
static) NLEIS involves the application of a sinusoidal current,

ω( ˆ) = ˆ + ˆ = { ˆ }ω ω ω−I t I I I I; , e e Re 2 et t ti i i to a device under test,
where, by choice of phase, Î is real and positive, giving the real
representation ω= ˆI I t2 cos (it is more convenient to work with Î ,
rather than the real amplitude Î2 ). Then, the nonlinear voltage
response of the system, ω( ˆ)V t I; , , is measured. After the decay of
any initial transients, V will in general be periodic in t with period
P= 2π/ω matching the input current, and hence have the Fourier
representation
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and the bar denotes complex conjugation. The component at
frequency ω, matching that of the input current, is referred to as
the fundamental. However, due to nonlinearities in the system, all
higher harmonics, i.e. at frequencies 2ω, 3ω, …, are in general also
present. The Fourier coefficients  ω( ˆ)V I,n depend on the excitation
amplitude Î . Thus, we express each Fourier coefficient as a Taylor
series expansion for small current amplitude ˆ ≪I 1, and it can be
shown14,15 that in general,

 ∑ω ω( ˆ) = ˆ ( )

= ˆ + ˆ + ( ˆ ) [ ]
=

∞
+ ( + )

( ) + ( + ) +

V I I Z

I Z I Z O I

,

, 36
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n
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n
n
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n
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0
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where ω( )( + )Zn
n r2 , n, r= 0, 1, 2, … are independent of Î . The

subscript refers to the frequency mode or harmonic in the Fourier
series expansion, and the superscript is the index in the Taylor series
expansion in powers of Î . That is, a superscript (m) denotes a
coefficient of Î m. Then ( )Z0

0 is simply the rest (open circuit) voltage,
( )Z1
1 is the usual linear impedance, and all other ( + )Zn

n r2 with n ⩾ 2 or
r ⩾ 1 are nonlinear impedances.

For a given harmonic n in the voltage, ˆ ( )I Zn
n
n is the leading-order

response, and so ( )Zn
n is the leading-order impedance for that

harmonic and can be isolated from Vn via


ω ω( ) = ( ˆ)

ˆ [ ]( )
ˆ→

Z
V I

I
lim

,
. 37n

n

I

n
n

0

The higher order impedances ( + )Zn
n r2 , r ⩾ 1, can be isolated

sequentially in a similar way, provided all lower-order terms for
that harmonic are first subtracted from Vn. We will focus on the
leading-order impedances in this paper, e.g. ( )Z1

1 and ( )Z2
2 , however

( )Z0
2 is also easily derived in this analysis.
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The expansion in current amplitude ˆ ≪I 1 can be performed
analytically on the SPM, solving for each ( + )Zn

n r2 , order-by-order, in
a systematic fashion. Formally, any variable X, which includes any
of the quantities c±, η±, j± or V±, has a series expansion identical to

35–36. Up to ( ˆ )O I 2 , which is the highest order we will consider here,
these take the form



 

∑ω ω( ˆ) = ( ˆ)

= [ ]

ω

=−∞

∞

−

X t I X I

X X

; , , e

where , 38
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with Fourier coefficients Xn, as follows:

( )
^ = ^ + ^ ^ + (^ ) [ ]
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X X I X O I
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, 390 0

0 2

0

2 4

ω/ ( )
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( )
X I X O I
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, 401 1

1 3

ω( )
^ = ^ ^ + (^ ) [ ]

( )
X I X O I

2nd harmonic 2 :

, 412
2

2

2 4

ω( ⩾ ) (^ ) [ ]n n O IHigher harmonics , 3 : 42
3

SPM neglecting double-layer capacitance.—First, we consider
the SPM with double-layer capacitance neglected, i.e., Eqs. 15–18,
23–26. In this case there is only a single path that the current can
take through the cell, and the impedance formulae are useful in
expressing the full formulae with capacitance included. We will
denote the impedances without capacitance by a lowercase z to
distinguish them from the full impedances with capacitance in-
cluded, denoted by Z, which will be stated afterwards.

The details of the expansion are given in Section S1 of the
supplementary material, and the resulting impedances for the full
cell model can be written in terms of half-cell impedances

=±
( )

±
( )

z Vn
m

n
m

, , , found from the expansion of the half-cell voltages V±.
At leading order in the current amplitude, there is only a zero

frequency response, = = ( )±
( )

±
( )

± ±
( )z U U c0,

0 0 0 , the OCP at the stoichio-

metry ±
( )c 0 for that state of charge.

At first order, ( ˆ)O I , there is a response at fundamental frequency
given bya

ω= ±[ + ( )] [ ]±
( )

±
( )

±z R Z , 431,
1 0

1,
W

with two contributions: charge transfer resistance ±
( )R 0 and so-called

finite Warburg impedance due to the diffusion of lithium within a
spherical particle,

⎜ ⎟
⎛

⎝

⎞

⎠
ω

ξ ω( ) = [ ]± ±
( ) ′ ±

±
( )

±
( )Z U

D
H

D
, 441,

W 0
0 1 0

where a prime denotes a derivative with respect to c±,

= [ ]±
( ) ′ ±

±
±
( )

U
U

c

d

d
, 45

c

0

0

and a superscript (0) denotes the leading order (zero current)
quantity at ±

( )c 0 . Note that τ= −±
( )

±
( ) ′

±
( )

±D U c0 0 0
d, , but for more

generality and brevity we will leave formulae in terms of ±
( )D 0 .

The function H1(ω) encodes the frequency dependence of the
transport process at this order, and is given by

ω ω
ω ω

( ) =
−

[ ]H
tanh i

tanh i i
, 461

with low and high ω asymptotic behaviours (differential capacitance
and diffusion in a half-space, respectively)

ω
ω

ω( ) ∼ − − → [ ]H
3

i

1

5
, as 0, 471

ω
ω ω

ω( ) ∼
−

∼ − → ∞ [ ]H
1

1 i

1

i
, as . 481

Equation 43 for the fundamental is a commonly used impedance for
batteries (and many other electrochemical systems) that appears in
linear EIS studies, e.g. Ref. 24.

At second order, ( ˆ )O I 2 , there is a response at twice the excitation
frequency, 2ω, found to be

= + + + [ ]±
( )

± ± ± ±z Z Z Z Z , 492,
2

asym,
kin

CD,
kin OCP
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W

with four contributions,
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These impedances, 50–53, each correspond to the different non-
linearities in the model, listed in the Model Formulation section. The
first and second terms, 50–51, are due to nonlinearities in the
kinetics. The kinetic term ±Zasym,

kin represents the charge transfer
asymmetry, i.e. β± ≠ 1/2, and is purely real and independent of
frequency. The kinetic term ±ZCD,

kin is due to the concentration
dependence of the exchange current density (equivalently, the charge
transfer resistance R±(c±), see 24), which is clear from the presence
of the derivative ±

( ) ′R 0 . The third term, ±Z OCP, represents the
nonlinearity of the OCP with respect to stoichiometry, indicated
by the second derivative appearing, ±

( ) ″U 0 . Finally, the term ±Z2,
W is

due to nonlinear diffusion of lithium within the particles, i.e. that the
diffusivity depends on concentration, indicated by ±

( ) ′D 0 . Therefore, it
could be interpreted as a second-order finite Warburg impedance, cf.
44. Given our assumption on the functional dependence of ±

( )D 0 (see
28), we may substitute

τ
= − ( + ) [ ]±

( ) ′

±
±
( ) ″

±
( )

±
( ) ′D U c U

1
, 540

d,

0 0 0

into 53. At this order, the frequency dependence of the diffusion
process is encoded in H2(ω), which is the solution of a linear ODE
(see Section S2 of the supplementary material), found numerically.

aThe ± prefactor is due to the fact that a positive (charging) cell current corre-
sponding to a charging current in the positive electrode but discharging current in
the negative one.
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However, the high frequency behavior of H2 may be extracted and is
found to be

⎜ ⎟
⎛
⎝

⎞
⎠

ω
ω

ω( ) ∼ − → ∞ [ ]H
1

i
1

1

2
, as , 552

which is just a real multiple of ( )H1
2 as ω→ ∞ to leading order. If the

diffusion is linear, a common simplification, then =±
( ) ′D 00 and the

term ω( )±Z2,
W vanishes.

In addition to the response at 2ω, there is a nonlinear response at
zero frequency, where many of the same terms arise:
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The terms are the same as in ±
( )z2,
2 , 49, except for the OCP and

Warburg terms, which are now
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where a different function, H0(ω) appears in the place of H2(ω)—see
Section S2 of the supplementary material. Notice that ±

( )z0,
2 is real;

this is because it represents a correction to the time average of the
response, and hence is not oscillatory.

The nonlinear impedances at ( ˆ )O I 3 and higher can be readily
calculated, but with diminishing returns on their usability. Their
amplitude is inherently smaller, implying lower signal-to-noise
ratios, with significant increase in analytical complexity, so we do
not consider them here.

The impedances for the full cell, including both electrodes and a
series resistance, are straightforwardly given in terms of the half-cell
impedances 43, 49, 56, using 22:
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Note that the series resistance Rs only enters the ( )z1
1 expression as it

is assumed to be a linear resistor.
The fundamental impedance ( )z1

1 is the usual linear one, measured
through conventional EIS, with dependence only on the series
resistance Rs and electrode quantities +

( ) ′U 0 , −
( ) ′U 0 , +

( )D 0 , −
( )D 0 , χ+,

χ−, β+, β−. The second order impedances, ( )z2
2 and ( )z0

2 , additionally

depend on the higher derivatives +
( ) ″U 0 , −

( ) ″U 0 , +
( ) ′D 0 , −

( ) ′D 0 . They also
have explicit dependence on β+ and β− via the kinetic asymmetry
terms +Zasym,

kin and −Zasym,
kin .

SPM including double-layer capacitance.—We now extend the
formulae of the previous Section to the more general case of the
SPM that includes double-layer capacitance, 15–24. One may repeat
the calculations of the previous section, starting from the full
equations, but the resulting impedance formulae may be expressed
concisely in terms of those already derived. The calculation of the
half-cell impedances, now employing an uppercase Z to signify the
inclusion of capacitance, is given in Section S1.2 of the supplemen-
tary material, and yields
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where ±
( )zn
m
, are the corresponding half-cell impedance formulae

assuming no capacitance (C± = 0), given by 43, 49 and 56. As
there is now more than one path the current can take through each
electrode, these formulae are no longer just a sum of individual
impedances as in 43, 49 and 56, but they are nonetheless still
explicit.

The linear impedances ±
( )Z1,
1 have the clear interpretation as being

the harmonic mean of ω( )±
−C i 1 and ω( )±

( )z1,
1 . This corresponds to a

capacitor in parallel with a charge transfer resistance that is in series
with a (finite) Warburg element—this is exactly the Randles circuit.
The nonlinear impedances do not have such a clear analogy with
traditional circuit elements. The expressions 61–63 arise from
nonlinearities in the charge transfer reaction and diffusion process
when they are placed in parallel with a capacitance, and therefore
had to be derived mathematically rather than from physical intuition.

The impedances for a full-cell are given, using 22, by
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The fundamental full-cell impedance then has the familiar equivalent
circuit analogy shown in Fig. 3, consisting of two Randles circuits
(one for each electrode) placed in series. We emphasise that Fig. 3
captures precisely how the impedance of the SPM is related to
equivalent circuit models. The resistances and capacitances in such
models are typically phenomenological and are found by fitting to
data. Our analysis here shows the processes that they correspond to
physically, and hence gives meaning to the resulting fitted parameter
values.

Simplifications: separation of capacitance and diffusion time-
scales.—Although the impedance formulae 61–63 are already
explicit, some further simplification is possible using common
assumptions about the physical timescales in the system. There are
two prominent timescales in 61–63, corresponding to capacitance
and diffusion effects. These are given by ±

( )
±R C0 and ±

( )D1 0 ,
respectively. Note that these timescales have been scaled by a
known reference timescale τ*. Here τ= (− )±

( )
± ±

( ) ′
±
( )D U c1 0

d,
0 0 can

be thought of as the local diffusion timescale, at this DoD, which is
more convenient to use here instead of τd,± directly. Typically the

Figure 3. Equivalent circuit diagram representing the linear response of the
full cell model, consisting of a Randles circuit for each electrode along with a
series resistor Rs.
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capacitance timescale (O(10−2) s) is much shorter than the diffusive
one (O(104) s), hence we can consider the well-separated limit of

≪±
( )

± ±
( )R C D10 0 .

Taking ≪±
( )

± ±
( )R C D10 0 in 61–63 gives different results de-

pending on the frequency ω. If the frequency is sufficiently low,
ω = ( )±

( )O D 0 (region (I)), then diffusion will dominate and the
effects of capacitance will be negligible, i.e. C± may be set to
zero. If ω = ( ( ))±

( )
±
( )

±O D R C0 0 (region (II)), the opposite is true and

we may take the high ω limits of ω( )±
( )zn
m
, , which are real and

given by
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Then approximations of 61–63 in both regions take the form
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There is a narrow region between region I and region II where
both capacitance and diffusive effects act with similar small
strength. This narrow region occurs for frequencies
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We can now create an approximation valid for all the frequencies by
forming a composite approximation made by summing the region I
and II approximations and subtracting the leading order solution in
the overlap region. This overlap solution is found by taking the
ω→ ∞ limit from region I (see 66–68) or the ω→ 0 limit from
region II (at the fundamental frequency, this is simply the charge
transfer resistance ±

( )R 0 ). The resulting composite solutions are
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Notice that these are close in form to the expressions 43, 49 and 56,
but with capacitance modifying only the first term. Looking at the
linear impedance 73, it now appears that the Warburg term is no
longer in parallel with the capacitance (as in Fig. 4a) but in series
(as in Fig. 4b). Since they each dominate at different frequency
scales, the diffusion process interacts minimally with the kinetics.
The same is true for the nonlinear impedances 74–75, where the
terms that depend on the diffusion process separate out, leaving only
the constant kinetic term ±Zasym,

kin (due to reaction asymmetry) in
“parallel” with the capacitance. This simplifies the structure and
interpretation of impedances, since the contribution of each non-
linearity can be more easily assessed.

Methods

Having introduced the model and analysed it in the frequency
domain, we now detail the numerical, experimental and parameter-
ization methods employed in the remainder of the paper to produce
the results given in the Results section.

Numerical solution in the time domain for generation of
synthetic data.—Here we describe the numerical methods for
solving the SPM in the time domain and the procedure for
generating synthetic impedance data from a known set of parameter
values—this is useful for parameter identifiability and error sensi-
tivity analysis (the Results section) because “ground truth” para-
meters are known exactly. Synthetic data was generated by solving
the full nonlinear model Eqs. 15–24 in the time domain numerically
given a sinusoidal input current of dimensional frequency ω* and

amplitude ˆ*I2 (or peak-to-peak amplitude ˆ*I4 ). This was then
converted to the frequency domain with a Fourier transform. The
radial dimension within the electrode particles was discretized using
a finite volume scheme, and the time integration was performed
using the adaptive explicit stiff ODE solver ode15s in MATLAB.
To ensure sufficient relaxation of initial transients and convergence
of the output voltage to a periodic profile, 20 periods were simulated
and only the final 2 were selected to be fast Fourier transformed
(FFT) with 20 equispaced samples per period. This procedure was
performed for 30 frequencies logarithmically spaced from
ω* = 0.1 mHz to 100 Hz, i.e. 5 frequencies per decade. The para-
meter set used corresponds to a LCO/LiC6 cell, with values modified
from Refs. 15, 29, summarized in Tables SI, SII of the supplemen-
tary material. Simulations were performed at three DoDs (30%, 50%
and 70%) with a fixed current amplitude of 50 mA.

Zero-mean Gaussian noise was added to the simulated voltages in
the frequency domain (n= 1, 2)

Figure 4. Equivalent circuit diagrams representing the linear response of
each electrode, but corresponding to different impedance formulae. (a)
Formula 61, with no assumption on the diffusion and capacitance timescales.
(b) Composite (approximate) formula 73, where the timescales are assumed
well-separated and the Warburg impedance acts in series with the kinetics.
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and the standard deviations were chosen to give similar signal-to-
noise ratios to those seen in our experiments, i.e. σ σ* = * = −101 2
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The synthetic impedances were calculated from
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,data
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Experimental measurements.—Experiments were undertaken
using a bespoke test rig to create an NLEIS dataset to parameterize
the model. All measurements were collected in the time domain,
then post-processed in MATLAB. A bipolar power source/sink
(Kikusui PBZ60-6.7) was connected in series with an NMC/graphite
pouch cell (Kokam SLPB533459H4, 740 mAh30) and a 0.1 Ω
precision shunt resistor as shown in Fig. S1 in the supplementary
material. Voltage measurements were made across the test battery
and the shunt respectively using a 24-bit analog-to-digital converter
(National Instruments 9239). Two cells were tested.

Prior to NLEIS experiments, the discharge capacity of each cell
was measured at 19 °C and found to be 720 mAh and 729 mAh
respectively. For capacity measurements, first a constant-current
charge of 500 mA to 4.2 V was applied followed by a constant-
voltage charge until the current dropped below 50 mA. Then, after a
30 min rest period, a constant-current discharge at 500 mA to a
voltage of 2.7 V was conducted followed by a constant-voltage
discharge to a current below 50 mA.

Nonlinear EIS measurements were collected at 10% DoD to 90%
DoD (equivalently 90% SOC to 10% SOC), in steps of 10%. At each
DoD, zero-mean sinusoidal currents of 1 A peak-to-peak were
applied and voltage measurements taken at frequencies from
0.1 Hz to 10 kHz, with 10 measurements per decade. The length
of the measurement was taken as the larger of 2 s or 20 cycles at
each frequency. For more details on the procedures, including
thermal limits, data acquisition and processing, see Section S4 of
the supplementary material.

The measured voltage and current signals were each multiplied
by a Hann window function, and then fast-Fourier transformed using
MATLAB’s built-in FFT function, giving the components  ω( ˆ)V I,n
of the voltage as per 35.

OCP functions and electrode balancing.—Individual electrode
OCPs *±U for the Kokam SLPB533459H4 cells were determined
from 3-electrode measurements by McTurk et al.,28 who inserted a
minimally invasive lithium reference electrode into cells of the same
model. This data for *±U is given in terms of normalised discharge
capacity Q= DoD/100 with Q ∈ [0, 1]. For use with our model,
analytical expressions (S4.6 of supplementary material) were fitted
to the data, shown in Figs. 5a–5b. Figure 5c demonstrates that the
resulting full-cell OCV agrees with the measured OCV of the cells
used in this paper.

To balance the electrodes, the stoichiometry limits ±c
0% and ±c

100%

corresponding to 0% and 100% DoD (Q= 0 and 1) were chosen
using knowledge of the electrode chemistries. The resulting stoi-
chiometry limits (and values of ξ± that follow from 33) are given
later in Table I. Then *±U is expressed in terms of c± using 32. When
it is required, the first derivative of *±U is calculated from the
analytical fits, but the second derivative is calculated numerically
from the OCP data. The OCP expressions and further details of the
fitting procedures and electrode balancing are given in Section S4.6
of the supplementary material.

Parameter estimation.—To identify parameters and analyze their
uniqueness, we consider fitting the (dimensional) model impedances

* = Φ* ( *)( ) ( )Z Z Jn
n

n
n n, to measured or simulated data *Zn

,data across a
range of frequencies at a given DoD. The parameter estimation
problem takes the form

θ θˆ = ( ) [ ]
θ

largmin , 78

where θ is the vector of parameters to fit, and l is a loss function
describing the goodness of fit. It is not obvious what loss function to
use for NLEIS data since more than one impedance (i.e. *Z1 and *Z2 )
is fitted simultaneously, and higher harmonics are typically smaller
in magnitude but also more sensitive to some parameters. A
straightforward choice of the total squared error across both
harmonics would not account for this difference in scale or
magnitude. Therefore, the relative weighting of the error across
each harmonic merits consideration.

We take the approach of maximum likelihood estimation
(MLE), assuming zero-mean Gaussian measurement noise added
to the voltage harmonics, as in 76. Notably, we assume in general
that the noise variances of the first and second harmonics are not
the same. The details can be found in Section S5 of the
supplementary material, and the resulting MLE for θ given
NLEIS data *Z j1,

,data, *Z j2,
,data at frequencies ωj, j = 1, 2,…,Nω, is

reduced to

θ θ θˆ = ( ( ) + ( )) [ ]
θ

l largmin , 79NLEIS 1 2

where

⎛

⎝
⎜

⎞

⎠
⎟∑ * *θ θω( ) = ∣ ( ) − ∣ [ ]

=

( )
ω

l Z Zlog ; , 80
j

N

j j1

1
1

1
1,

,data 2

⎛

⎝
⎜

⎞

⎠
⎟∑ * *θ θω( ) = ∣ ( ) − ∣ [ ]

=

( )
ω

l Z Zlog ; , 81
j

N

j j2

1
2

2
2,

,data 2

are the (negative) log-likelihoods, up to a scaling factor, from each
harmonic. We will refer to their sum as the total loglikelihood
l12(θ)= l1+ l2. The form of l12, which is the sum of the logarithm of
the squared error of each harmonic, originates from the MLE process
and has the advantage of being independent of the scale of each
harmonic, as desired. That is, rescaling
( * * ) ↦ ( * * )Z Z aZ aZ, ,n

n
n n

n
n

,data ,data for any a only changes l12 by an
additive constant, leaving θ largmin 12 unchanged. Given only linear

EIS data, consisting of *Z j1,
,data, the corresponding MLE is

θ θˆ = ( ) [ ]
θ

largmin , 82EIS 1

where the loss function is simply l1.
The minimization problem 78 was solved using nonlinear

optimization routines (local and global) in MATLAB employing
bound constraints as described in Section S5 of the supplementary
material.

Results

Analysis of model impedances.—We begin with an illustration
of the form of the exact model impedances, up to second order,
given by the formulae 61, 62 and 63. The dependence of ±

( )Z2,
2 in

particular on the various model parameters will be demonstrated.
Then, the simplified (composite) formulae 73, 74 and 75 will be
compared to the aforementioned exact results.
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Typical Nyquist plots of the impedances +
( )Z1,
1 , +

( )Z2,
2 and +

( )Z0,
2 are

shown in Fig. 6, using the parameter values in Tables SI, SII in the
supplementary material. (Only the positive electrode impedances are
shown—negative electrode ones have a similar structure.) In Fig. 6a,

+
( )Z1,
1 consists of a high frequency semi-circular kinetic arc, and a low

frequency diffusive tail with a capacitive effect ( ω= ( )+
( )Z O 11,
1 ) as

ω→ 0. That is, the same as the well-understood Randles circuit with
finite-space diffusion. In Fig. 6b, we see the second harmonic
impedance +

( )Z2,
2 also consists of a high frequency kinetic arc and

diffusive tail, but this arc appears “spiral” in nature rather than
circular. Equation 70 (region II) describes this and, excluding the
factor of ω( + )±

( )
±R C1 2 i0 (which affects mainly the shape close to

the origin), shows that +
( )Z2,
2 is proportional to the square of the semi-

circular kinetics in ±
( )Z1,
1 , resulting in a cardioid-like shape. Lastly,

the second-order correction at the zeroth harmonic, +
( )Z0,
2 , contains

similar model information as +
( )Z2,
2 but with no imaginary component.

In Fig. 6c, we see ω= ( )+
( ) −Z O0,
2 2 at high frequencies (square of

Figure 5. (a) Negative electrode OCP, (b) positive electrode OCP, and (c) full-cell OCV for a Kokam SLPB533459H4 740 mAh pouch cell. Dot markers are 3-
electrode data from Ref. 28, solid lines are analytical expressions (Eqs. (S4.1), (S4.2) in supplementary material) that were fitted to individual electrode OCP
data. Panel (c) compares these fits to the measured full-cell OCV for the present cells from which NLEIS data was collected.

Figure 6. Nyquist plot of the fundamental (linear) impedance +
( )Z1,
1 , and the second-order nonlinear impedances +

( )Z2,
2 (second harmonic) and +

( )Z0,
2 (zero frequency

mode), as calculated from formulae 61, 62 and 63. Parameters in Table SII at DoD = 30% (i.e. c+ = 0.80). Frequency range is 10−4 ⩽ ω/2π ⩽ 102 [Hz], with 5
values (marked) per decade. Only the impedances for positive electrode shown.

Table I. Parameter group values estimated from EIS and NLEIS data, which are used for model validation in Fig. 17. The χ± parameters are
interpolated on the values in Figs. 15a, 15b for different DoDs (NLEIS estimates used are the red markers). From our impedance measurements the
series resistance is * =R 9.2s mV (Rs = 0.358), but for the model validation (Fig. 17) we use * =R 20s mV and Rs = 0.779.

Parameter groups
Negative (−) Positive (+)

EIS estimate NLEIS estimate EIS estimate NLEIS estimate

χ± Fig. 15a Fig. 15a Fig. 15b Fig. 15b
β± 0.5 0.496 0.5 0.482
C± 1.528 × 10−3 2.589 × 10−3 1.747 × 10−2 2.645 × 10−2

τd,± 1.571 × 104 1.570 × 103 1.227 × 105 1.185 × 105

ξ± 8.126 × 10−5 7.414 × 10−5

±c
0% 0.664 0.40

Journal of The Electrochemical Society, 2023 170 010514



double-layer capacitive effects) but also begin to see this behavior at
low frequencies (square of electrode “differential capacitive”
effects). However, in intermediate regions +

( )Z0,
2 appears relatively

flat and the various effects are difficult to delineate.
Next, we demonstrate in Fig. 7 how the various features of +

( )Z2,
2

(and therefore −
( )Z2,
2 ) depend on quantities in the model. Starting from

the values in Tables SI, SII and at 30% DoD, we varied +
( )R 0 , C+,

+
( ) ′R 0 , β+, τd,+, and +

( ) ″U 0 across a representative range (considering

both positive and negative values for the derivatives +
( ) ′R 0 , +

( ) ″U 0 ).
From Fig. 7 we observe that:

(a) +
( )R 0 affects the size of the kinetic arc (its “width” on the real

axis is β= ( − )( )+ + +
( )Z R1 2asym,

kin 0 2);
(b) C+ affects the frequency dependence of the kinetic arc, but not

its shape (just as for +
( )Z1,
1 );

(c) +
( ) ′R 0 affects the initial direction and magnitude of the diffusion

tail (due to +ZCD,
kin ) emanating from the kinetic arc;

(d) β+ affects the size (via the magnitude ∣β+ − 1/2∣) and orienta-
tion (via β( −+sgn 1 2)) of the kinetic arc (see point (a) above).
Important to note that as β+ → 1/2 the totality of the arc shrinks
to the origin. Thus β+ ≠ 1/2 is necessary to observe an arc at all
(this was first pointed out by Murbach et al.5);

(e) τd,+ affects the length and shape of the diffusion tail (via the
terms +ZCD,

kin and +Z OCP);
(f) +

( ) ″U 0 affects whether the diffusion tail ultimately diverges to
= −∞Re (when >+

( ) ″U 00 ) or = +∞Re (when <+
( ) ″U 00 ) as

ω→ 0.

It is clear that the possible behavior of +
( )Z2,
2 is much more varied than

+
( )Z1,
1 , with visible signatures of many quantities in the model that are

not visible with EIS, e.g. β+, +
( ) ′R 0 , and +

( ) ″U 0 . In addition,
dependence of +

( )Z2,
2 on +

( )R 0 , C+ and τd,+ gives further information
that may be used to improve their identifiability over traditional
linear EIS.

Finally, we remark on the accuracy of the simplified
(composite) expressions 73, 74 and 75, which assume that the
capacitive timescale ±

( )
±R C0 is much shorter than the diffusive

one, τ =± ±
( )D1d,
0 . Comparing these to the exact impedances

for a full-cell, we find them practically indistinguishable—
across all frequencies and each harmonic—with mean relative
errors less than 0.03% for the fundamental and 0.64% for the
second harmonic. Details are given in Section S6 of the
supplementary material. Consequently, these composite ex-
pressions are a useful and simple substitute for the full
expressions in practice.

Structural parameter identifiability.—Nine dynamical parameter
groups 34 are sufficient to fully parameterize the nonlinear SPM
15–24. However, these parameters are not necessarily able to be
determined uniquely (or at all) from the model structure. This
problem is referred to as structural parameter identifiability,31 and
we will consider the improvements that NLEIS provides relative to
linear EIS.24

Structural identifiability is typically defined for linear systems,
but here we will use a nonlinear extension. Consider a set of
nonlinear impedances θ θω ω{ ( ) ( ) …}( ) ( )Z Z, , , ,1

1
2

2 , characterising a
nonlinear model in the frequency domain, for parameters θ ∈ Θ. If
the system of Eqs. with θ θ̃ ∈ Θ,

θ θω ω( ) = ( ˜) [ ]( ) ( )Z Z, , , 831
1

1
1

θ θω ω( ) = ( ˜)
⋮ [ ]

( ) ( )Z Z, , ,

84
2
2

2
2

for all ω ∈ , has: (i) a unique solution for θ, then the model is
globally identifiable; (ii) a finite number of solutions for θ, it is
locally identifiable; (iii) an infinite number of solutions for θ, it is
unidentifiable.

Single electrode.—First, we will consider the parameter identifia-
bility of a single electrode (positive or negative) and restrict
ourselves to the accurate simplified formulae 73–74. For a single
( ± ) electrode, the relevant unknown parameters are χ±, C±, β±, τd,±,
but for convenience we will consider

Figure 7. Dependence of the second harmonic impedance +
( )Z2,
2 on quantities (a) +

( )R 0 , (b) C+, (c) +
( ) ′R 0 , (d) β+, (e) τd,+, (f) +

( ) ″U 0 . For each, we used the value in
Table SII (at DoD = 30%), shown in blue, and 2 other representative values.
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χ
=

( ) ( − )
[ ]

β β±
( ) ±

±
( )

±
( ) −± ±

R
c c

2

1
, 850

0 0 1

in place of χ±, and discuss identifiability of χ± subsequently.
For a single electrode, if only ±

( )Z1,
1 is given, 73 shows that

±
( )

±R C,0 have unique solutions (globally identifiable), and so does

τd,± provided ≠±
( ) ′U 00 . If =±

( ) ′U 00 , i.e. if the OCP slope is exactly
zero, the diffusive contribution to the impedance vanishes and τd,± is
unidentifiable—as per Bizeray et al.24 for Fickian diffusion.
However, the charge transfer coefficient β± does not appear in

±
( )Z1,
1 and is therefore always unidentifiable. In this case χ± cannot be

identified from 85, leaving only ±
( )R 0 identified.

However, if the second harmonic is also considered, i.e.,
{ }±

( )
±

( )Z Z,1,
1

2,
2 is given, then more information on each parameter is

provided. In particular, β± (and hence χ±) becomes globally
identifiable since it appears explicitly in ±

( )Z2,
2 . Regarding the

diffusion timescale τd,±: if =±
( ) ′U 00 (hence τd,± unidentifiable

from ±
( )Z1,
1 alone) but ≠±

( ) ″U 00 , then the terms ±Z OCP and ±Z ,2
W in

±
( )Z2,
2 do not vanish and in fact make τd,± identifiable. However, if

=±
( ) ″U 00 also, then τd,± remains unidentifiable.

Full two-electrode cell.—Given the impedances { }±
( )

±
( )Z Z,1,

1
2,

2 for a
single electrode, the full cell impedances are given by 64–65 and
they inherit each electrode’s structural identifiability since no
parameters appear in impedances from both electrodes. However,
they may have additional identifiability issues arising from cell
symmetries, i.e., “electrode swapping”, or inability to decide
whether a parameter refers to the positive or negative electrode.

If the full-cell linear impedance = − +( )
+

( )
−

( )Z Z Z Rs1
1

1,
1

1,
1 is given,

the series resistance Rs is unique (globally identifiable) and can be
extracted from the high frequency limit ω→ ∞ , where →( )Z Rs1

1 .
However, the identifiable kinetic parameters now have two solu-
tions: if ( )−

( )
− +

( )
+R C R C, , ,0 0 is a solution then so is

( )+
( )

+ −
( )

−R C R C, , ,0 0 . Hence they are only locally identifiable. A
similar symmetry exists for the diffusion timescales τd,± but only
for special values of the OCP slopes. Substituting 73 into condition
83, and keeping only the Warburg terms, gives (recall

τ= −±
( )

±
( ) ′

±
( )

±D U c0 0 0
d, ):

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛

⎝
⎜

⎞

⎠
⎟

⎛
⎝

⎞
⎠

ξ ω ξ ω

ξ ω ξ ω

+

=
˜ ˜

+
˜ ˜

[ ]

+ +
( ) ′

+
( )

+
( )

− −
( ) ′

−
( )

−
( )

+ +
( ) ′

+
( )

+
( )

− −
( ) ′

−
( )

−
( )

U

D
H

D

U

D
H

D

U

D
H

D

U

D
H

D
. 86

0

0 1 0

0

0 1 0

0

0 1 0

0

0 1 0

If the OCP slopes are nonzero and satisfy ξ ξ=+ +
( ) ′

− −
( ) ′U U0 0 , this

reduces to

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛

⎝
⎜

⎞

⎠
⎟

⎛
⎝

⎞
⎠

ω ω

ω ω

+

=
˜ ˜

+
˜ ˜

[ ]

+
( )

+
( )

−
( )

−
( )

+
( )

+
( )

−
( )

−
( )

D
H

D D
H

D

D
H

D D
H

D

1 1

1 1
, 87

0 1 0 0 1 0

0 1 0 0 1 0

The left hand side has the symmetry ↦−
( )

+
( )D D0 0 , ↦+

( )
−
( )D D0 0 ,

meaning there are always two solutions for ( )+
( )

−
( )D D,0 0 and hence

(τd,+, τd,−). This symmetry in terms of τd,± is

τ τ τ τ↦ ↦ [ ]+
+
( ) ′

+
( )

−
( ) ′

−
( ) − −

−
( ) ′

−
( )

+
( ) ′

+
( ) +

U c

U c

U c

U c
, . 88d,

0 0

0 0 d, d,

0 0

0 0 d,

This electrode symmetry of diffusion timescales in ( )Z1
1 was pointed

out by Bizeray et al.,24 which we extend here to the case of nonlinear
diffusion.

If the full-cell second harmonic is also considered, i.e.,
{ }( ) ( )Z Z,1,

1
2

2 is given, the above symmetries are removed in most

cases. Substituting 74 into condition 84, as H1, H1
2 and H2 are

distinct functions of ω, the diffusion symmetry ↦−
( )

+
( )D D0 0 ,

↦+
( )

−
( )D D0 0 only holds (using similar arguments to 86–87) if

ξ ξ= −+ +
( ) ″

− −
( ) ″U U2 0 2 0 and ξ ξ= −+ +

( ) ′
+
( )

− −
( ) ′

−
( )U c U c2 0 0 2 0 0 . But we al-

ready require ξ ξ=+ +
( ) ′

− −
( ) ′U U0 0 from ( )Z1

1 which, if ≠±
( ) ′U 00 ,

reduces the latter to ξ ξ= −+ +
( )

− −
( )c c0 0 , and this is not possible since

ξ+ and ξ− are both positive. If actually =±
( ) ′U 00 , then the symmetry

can persist so long as ξ ξ= −+ +
( ) ″

− −
( ) ″U U2 0 2 0 .

If the diffusion symmetry is removed, then the terms ±Z ,CD
kin (see

51) prevent the symmetry in ±
( )

±R C,0 too as they depend on both
kinetic and diffusive parameters. However, in the special case of

= =−
( ) ′

+
( ) ′R R 00 0 , i.e. both exchange current densities are indepen-

dent of concentration (at this DoD), then ±Z ,CD
kin vanishes and a

symmetry in the kinetic parameters does persist, given by
↦±

( )
∓
( )R R0 0 , C± ↦ C∓, β± ↦ 1− β∓.

In summary, including the second harmonic ( )Z2
2 , makes β± (and

hence χ±) globally identifiable, and improves the identifiability of
the diffusion timescales τd,± when an OCP is flat ( = )±

( ) ′U 00 but has

nonzero curvature ( ≠±
( ) ″U 00 ). In addition, it removes the electrode

swapping symmetries in general, except when both OCVs are flat
( = =+

( ) ′
−
( ) ′U U 00 0 ) or both exchange current densities are indepen-

dent of concentration ( = =−
( ) ′

+
( ) ′R R 00 0 ).

Parameter estimation from synthetic data.—With the structural
identifiability from the first two harmonics analysed, we move to
analyze the practical identifiability, i.e. parameter estimation from
data. In this section, we consider noisy synthetic data from a known
parameter set—see the Methods Section for the generation method
and parameter values. The parameter estimation algorithm from EIS
data ( *Z1

,data only) and NLEIS data ( *Z1
,data and *Z2

,data) was given in

the Methods Section and results in estimators θ̂EIS, θ̂NLEIS for the
parameter groups.

To test the consistency and noise sensitivity of our approach
we repeatedly applied the estimation algorithm to synthetic
data but each time with separate samples drawn from the noise
distribution (given in 76). This resampling, known as
“bootstrapping”,32 allows the construction of the distribution
of the estimators θ̂EIS, θ̂NLEIS. The distributions (histograms) and
their means for 200 resamples are shown and compared in
Figs. 8 (with data at 50% DoD) and 9 (at 70% DoD). Note
that the transfer coefficient β± is unidentifiable from EIS data
and thus only estimates from NLEIS data are shown. Also,
although NLEIS data can be used to estimate the typical non-
dimensional charge transfer resistance χ±, EIS data cannot, so
to compare methods we plot the charge transfer resistances ±

( )R 0

instead.
Figures 8 and 9 show that the mean and variance of the kinetic

parameter estimators ±
( )

±R C,0 are similar in all cases. The NLEIS-
based estimator of β+ has low variance, but that for β− has high
variance. This is due to the resistance of the negative electrode ( −

( )R 0 )
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being much lower than that of the positive, hence its kinetic cardioid
spiral in *Z2 is much smaller in magnitude, and affected more by
noise—see Figs. 8j–8k. The discrepancy between the means and the
true values (i.e. estimator bias) is due to the small-current-amplitude
approximation we used to derive the model impedances. We
determined this by fitting to synthetic data generated using smaller
current amplitudes and found that the bias reduced. This bias thus
represents model error rather than noise, as the data generation used
a finite amplitude.

The diffusion timescales τd,± are more influenced by noise, with
the NLEIS estimates showing larger variance than the EIS ones.
However, this variance is comparable to the model error—the EIS
estimates of τd,± can be overly confident (low variance), despite
having a similar model error to NLEIS (Fig. 9 for 70% DoD).

Log-likelihood analysis of diffusion timescales.—A clearer under-
standing of the practical identifiability of diffusion time τd,± can be
reached by looking at the log-likelihoods (i.e. the cost functions
associated with the parameter estimation problem) for each har-
monic directly, l1(θ), l2(θ) in the (τd,+, τd,−) plane. Figure 10 shows
these (and the full log-likelihood l12 = l1 + l2) at 3 DoDs, with
kinetic parameters fixed at their true values.

The shape of the l1 landscape (Figs. 10a, 10d, 10g) depends on
OCP slopes ±

( ) ′U 0 , as discussed in detail by Bizeray et al.24 (for
Fickian diffusion, but the structure is qualitatively the same). When

one of the OCP slopes ±
( ) ′U 0 is small, a valley in l1 appears through

the minimum, showing poor identifiability of the corresponding τd,±.
Of the results shown, the negative electrode OCP slope ∣ ∣−

( ) ′U 0 is
largest (≈17.9) at 50% DoD, where τd,− identifiability is best, and
smallest (≈0.36) at 30% DoD, where it is worst. But the positive
electrode OCP slope ∣ ∣+

( ) ′U 0 is largest (≈18.0) at 30% DoD and
decreases at 50% DoD (≈6.5) and 70% DoD (≈2.2), decreasing τd,+
identifiability. At 70% DoD, ∣ ∣ ≈ ∣ ∣−

( ) ′
+
( ) ′U U0 0 , giving electrode

symmetry (see the Structural Parameter Identifiability section), and
2 local minima in l1. The red line on the l1 plots is the relationship
between τd,− and τd,+ if both slopes →−

( ) ′
+
( ) ′U U, 00 0 , in which case

86 reduces to, at leading order,

τ τ

ξ

+ =

=
∣ ∣

[ ]

+ + − −

± ±
±
( ) ′

±
( )

A A

A
U

c

const.

where . 89

d, d,

0

0

This gives a visual guide to the predominant structure of the l1
landscape.

For the log-likelihood l2(θ) of the second harmonic (Fig. 10b,
10e, 10h), its landscape depends on ±

( ) ′
±
( ) ″U U,0 0 and ±

( ) ′R 0 and so is
more difficult to predict from the formulae, but crucially it is distinct

Figure 8. (50% DoD) Parameter distributions (histograms) for θ̂NLEIS from repeated fitting to synthetic NLEIS data, showing sensitivity to error (a)–(h).
Distributions for fitting θ̂EIS to just EIS data (fundamental only) also shown. Dashed lines are mean values, with true ones shown in green. Estimates for β± not
shown for EIS as they are not identifiable. Example impedance fit shown in (i)–(k), including blown-up plot (k) of Z2 near the origin.
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Figure 9. (70% DoD) Parameter distributions (histograms) for θ̂NLEIS from repeated fitting to synthetic NLEIS data, showing sensitivity to error. See caption for
Fig. 8.

Figure 10. Synthetic data: Log-likelihood plotted in the τd,+ and τd,− plane (other parameters fixed at true values). DoD (indicated) increases from top row to
bottom row. Left column is log-likelihood l1 for

( )Z1
1 only; middle column is log-likelihood l2 for

( )Z2
2 only; right column is the total log-likelihood l12 = l1 + l2.

For 30%, 50%, 70% DoD we have − ≈−
( ) ′U 0.4, 17.9, 1.60 , and − ≈+

( ) ′U 18.0, 6.5, 2.20 . Red line is 89.
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from the landscape of l1. Thus, when it is combined with l1 to
produce the total log-likehood l12, the identifiability of the pair (τd,+,
τd,−) is improved. For example, at 50% and 70% DoD, identifiability
of τd,+ is improved, and the second minimum (at 70%) eliminated.
In each case, including l2 moves the global minimum closer to the
true value. We make an additional remark that the minima of l1 in
Fig. 10 are further from the true value than the estimates in Fig. 8.
This is because, in the latter, the kinetic parameters were fitted
simultaneously which allowed a better estimate of the diffusion
times (i.e. reduced the bias due to the small current amplitude
expansion). As kinetic parameters were fixed at their true values in
Fig. 10, this bias is increased for the diffusion times. Using fitted
kinetic parameters in Fig. 10 instead, the minima move closer to the
true values. However, this highlights the high sensitivity of linear
EIS estimates to errors in the kinetic parameters.

Lastly, relevant for fitting to experimental data in the next
section, we consider the case where OCP curvature ±

( ) ″U 0 is not
known, due to measurement error and difficulties associated with
approximating second derivatives numerically from noisy data. In
this case, Fig. 11 shows l1, l2, l12 where, for each pair of values (τd,+,
τd,−), we have minimised over −

( ) ″U 0 and +
( ) ″U 0 —this corresponds to

constructing “profile likelihoods” where −
( ) ″

+
( ) ″U U,0 0 are nuisance

parameters that are not of interest.33,34 Note that l1 is unchanged
from Fig. 10 as it does not depend on ±

( ) ″U 0 . Even here, with no

knowledge of ±
( ) ″U 0 , the second harmonic provides enough informa-

tion to improve identifiability over the fundamental alone.
In Fig. 11, the dashed overlaid line corresponds to

τ τ= ( ) ( )− +
( )

+
( ) ′

+ −
( )

−
( ) ′c U c Ud,

0 0
d,

0 0 (or =−
( )

+
( )D D0 0 ) along which the

pair −
( ) ″

+
( ) ″U U,0 0 are unidentifiable. This was verified by investi-

gating the ( )−
( ) ″

+
( ) ″U U,0 0 plane when (τd,+, τd,−) are on this dashed

line. However, this only introduces small numerical irregularities
which are irrelevant if far from the global minimum.

Parameter estimation from experimental data.—We have ex-
plored the parameter estimation approach and advantages of NLEIS
using synthetic data, and now turn to experimental data collected
from an NMC cathode/graphite anode cell—see the Experimental
Methods Section for details. We consider data collected at 10%,
20%, ..., 90% DoD, at each of which we consider EIS ( *Z1 only) and
NLEIS ( *Z1 and *Z2 ) model fits.

The fits to EIS data are shown first, in Fig. 12, with the associated
parameter estimates in Fig. 15. The model is able to fit the semi-
circular reaction kinetics well, although we do not expect to capture
the very high frequency behavior as our model does not include
phenomena such as transport through SEI layers, relevant for
ω*  1 kHz. We can extract the series resistance as the high
frequency intercept with the real axis, giving * =Rs 9.2 mΩ (and
dimensionless Rs = 0.358). As discussed in the Structural Parameter
Identifiability section, estimating kinetics from EIS data suffers from
an inability to determine which electrode the parameters correspond
to. Hence, we made the assumption that the larger charge transfer
resistance (radius of semi-circle) was due to the positive electrode,
but this was arbitrary and did not affect the goodness of fit. Note also
that β− and β+ cannot be determined at all, so we set them equal to
1/2, as is typically done implicitly in other studies.

The diffusion tails are fitted reasonably well. However the
corresponding timescales show extreme variation with DoD, up to

Figure 11. Synthetic data: Log-likelihood plotted in the τd,+ and τd,− plane. Same as Fig. 10, but at each (τd,+, τd,−) pair, we minimize l2 over +
( ) ″U 0 and −

( ) ″U 0 .
Dashed line is τ τ= ( ) ( )− +

( )
+
( ) ′

+ −
( )

−
( ) ′c U c Ud,

0 0
d,

0 0 (or D− = D+) where ±
( ) ″U 0 are unidentifiable.
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4 orders of magnitude—as is usually seen when estimating diffusion
parameters from EIS or GITT data.35–37 As we will see, NLEIS can
be a more sensitive tool for probing the validity of the underlying
diffusion model.

Next, fits to NLEIS data ( *Z1 and *Z2 simultaneously) are shown
in Fig. 13 (with parameters in Fig. 15). We consider two cases: (i)
using values of ±

( ) ″U 0 calculated from Fig. 5, and; (ii) fitting ±
( ) ″U 0 ,

assuming they are not known a priori, or are inaccurate. In both
cases, the reaction kinetics in each harmonic are captured very well
for each DoD, as shown by the semi-circles in *Z1 and cardioid
spirals in *Z2 . The resulting values for β±, C±, χ± also do not vary
appreciably across DoD except χ+, suggesting the functional form
of the exchange current density 6 is less appropriate for that
electrode. The charge transfer coefficients β± both only slightly
deviate from the symmetric value of 1/2 for these cells. Here β+
deviates most from 1/2 and is responsible for the predominant
cardioid in *Z2 . The cardioid from the negative electrode is small and
only visible by zooming in closer to the origin—see Fig. 14. The
effect of noise in the second harmonic becomes significant (signal-
to-noise ratio is low) above approximately 1 Hz, which is visible in
Fig. 14. Noise was negligible in the first harmonic measurements.

Regarding the low frequency diffusion tails, the model fits are
less convincing. When ±

( ) ″U 0 is assumed known, the tail in *Z2 may

point in the opposite direction (10%, 20%, 50% DoD) or have the
wrong length (30%, 40%). Also, the tail in *Z1 is now too short in
some cases (40%, 50%, 60%). However, if OCP curvatures ±

( ) ″U 0 are
allowed to be fitted instead, the fit to the tail in *Z2 is significantly
improved. Also, the tail in *Z1 and the fit to the kinetic portions are
improved; see the zoom-ins of Fig. 14. This suggests, even if only
the kinetic parameters are of interest, fitting ±

( ) ″U 0 may be better than
prescribing inaccurate values. The resulting diffusion timescales
(Figs. 15c, 15d) also show the least variation with DoD for NLEIS
data fits when ±

( ) ″U 0 is fitted (red), an improvement over the EIS data
fits (blue), and hence closer to the model assumption that it is does
not vary with DoD.

Supporting the conclusions presented above, the relative errors in
the real and imaginary parts of the model fits in Figs. 12 and 13 can
be found in the supplementary material (Section S7).

Log-likelihood analysis of diffusion timescales.—The fits of
diffusion times to experimental data can be further probed by
examining the underlying likelihood landscape in the (τd,+, τd,−)
plane. As we did for synthetic data, we plot here the log-likelihoods
in Fig. 16, minimising over ±

( ) ″U 0 . The DoDs chosen (50% and 60%)
are ones at which the timescale estimates from EIS vs NLEIS differ

Figure 12. Fits of the model fundamental impedance *( )Z1
1 to corresponding experimental fundamental impedance data. Units are in Ohms (VA−1). Fits

performed at each DoD in the range 10%, 20%,… 90% are shown, for the frequency range f* = 0.01 − 500 Hz. Parameter estimates are given in Fig. 15.
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significantly. The rest of the parameters are fixed at their estimated
values from Fig. 15.

The l1 landscape ( *Z1 ) clearly shows unidentifiability given by
the red line, i.e. 89. Here this is likely due to insufficient data at
lower frequencies, as 89 also holds if only the high frequency
approximation 48 is taken in the Warburg impedance. In the
experiments, we were limited to a minimum allowable frequency
of 0.01 Hz by the Kikusui PBZ60-6.7 power supply. This was
not an issue when estimating from synthetic data (Fig. 11) as we
were able to generate data at arbitrarily low frequencies—
observe that the diffusion tail in Fig. 8i becomes close to
vertical at the lowest frequencies. This unidentifiability valley
was therefore not present, with one (or 2) local minima present
instead.

The l2 landscape ( *Z2 ) in Fig. 16 has its minima considerably far
from where l1 predicts they should be. Further, the depth of l2
minima overwhelms those in l1 when combined in l12 = l1+ l2. This
differs significantly from the behavior for synthetic data where the
model exactly matches that used to generate the data, i.e. there is no
model error, only approximation error due to the expansion in Î , and
noise. In that case, the results showed that the fundamental is more
dominant, with deeper minima in l1 than l2.

This inconsistency between the minima of l1 and l2 suggests that
there may be deficiencies in the diffusion model even though the
model is able to to fit the data very well. Here we considered a
nonlinear diffusion model, but to alleviate these issues one may need
to consider other approaches, e.g. those incorporating phase-field
dynamics (such as Cahn—Hilliard) which have shown to better

Figure 13. Simultaneous fits of the model impedances *( )Z1
1 (fundamental) and *( )Z2

2 (second harmonic) to corresponding experimental data. * *Z Z,1 2 units are in
VA−1 (Ohms) and VA−2. Two cases, where U±″ is either fixed (assumed known) or chosen as a fitting parameter are shown. Fits performed at each DoD in the
range 10%, 20%,… 90% separately, increasing from top left to the bottom right panel. Parameter estimates are given in Fig. 15.
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represent lithiation in some electrode materials, e.g. graphite.38 On
the other hand, it may be that a single representative particle for each
electrode is inadequate, or that large-scale geometric effects are
important, or the inclusion of transport in the electrolyte is
necessary. These results suggest NLEIS could be a promising tool
for model selection. Other dynamics that may also relate to this
inconsistency are those in the electrolyte, e.g. diffusion and migra-
tion of lithium, which have been neglected here.

Model validation in the time domain.—We have parameterized
the nonlinear SPM using experimental NLEIS (frequency-
domain) data and now proceed to validate the model perfor-
mance and parameters by numerical solution in the time domain.
We considered a current demand based on an electric vehicle
drive cycle (see Ref. 39) with measurements taken on the same
model of Kokam cell. Current was specified at 1 second
intervals, with peaks reaching 4.4 A (or C-rates of 6), and
initiated at 0% DoD. The model 15–24 was solved using this
profile as an input, which was interpolated using piecewise-
cubic Hermite interpolating polynomials (PCHIP) to ensure no
overshooting of the data. Further details of numerical methods
are given in the Methods.

We compared the model performance using two parameter sets:
estimates from EIS data, and estimates from NLEIS data (see
Fig. 15). We used NLEIS parameters for the case where ″±U were
considered unknown. For β±, C±, τd,±, we chose single representative
values by averaging over the full range of DoDs (with the average of

τd,± taken on τ ±log d, ). For χ±, we converted Fig. 15 data from DoD
to stoichiometry c± and interpolated (PCHIP) to give the functions
χ+(c+), χ−(c−).

b The parameter values used are summarized in
Table I.

Comparison between the model and experiment is shown in
Fig. 17. In general, the model results with either parameter set (EIS
or NLEIS) agree excellently with the measured data over the full
duration (≈20 min), with no parameter tuning performed.c Even the
EIS predictions show an RMSE of only 15.2 mV and no overall drift
in error as time increases. This is a marked improvement over the
linear SPM of Bizeray et al.24 where, for the same cells and
validation data, they required the linearized OCPs to be adjusted
to correct for drift in the DoD . Our model exhibited no discernable
drift and we considered a longer drive cycle simulation than Bizeray
et al.24 (≈17 mins vs 9 mins).

The predictions from NLEIS, however, agree even better with the
measured voltage data, with a lower RMSE of 11.1 mV. We
conclude that NLEIS can provide better estimates of the reaction
kinetic parameters (χ±, β±, and C±). Looking at the stoichiometries
on the surface of electrode particles (Fig. 17d) we see appreciable
differences only in the negative electrode, but this has minimal effect
on the voltage since U−(c−) is mostly flat over the range of c−
operated in. Hence, diffusion timescale estimates from either method

Figure 14. Successive zoom-ins on selected *Z2 impedances in Fig. 13. The top row is at 10% DoD, and the bottom row is at 60% DoD.

bχ± were originally assumed constant in the model, but making them depend on c±
accounts for errors in the functional form of R±(c±), 24.

cThe series resistance *Rs was changed before simulation to 20 mΩ (taken from Fig.
4 of Ref. 24)) since the drive cycle measurements were performed using a different
test rig, but no subsequent changes to *Rs were made.
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are sufficient for good voltage accuracy in the time domain, but
predictions of internal states may differ greatly, which will have
consequences for degradation modelling.

Conclusions

In this paper, we presented a comprehensive study on the
application of NLEIS to a standard physical model of a lithium-

Figure 15. Parameter values from fitting to experimental EIS data ( *Z1 only) or NLEIS data ( *Z1 and *Z2 ) at different DoDs, from 10% to 90%. Kinetic parameters are
in the left two columns (a, b, e, f, i, j), with diffusion timescales and OCP parameters in the remaining two; β+ and β− were taken as 0.5 in the EIS fits.

Figure 16. Log-likelihoods in the diffusion timescale plane τd,+-τd,−, using experimental data. Same as Fig. 10 but now at each point we have minimised over
″−U and ″+U .
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ion battery: the single particle model. We derived a suite of
analytical formulae for the fundamental harmonic and second
harmonic impedances resulting from this model, and then interpreted
each contribution to the formulae physically. Signatures of various
processes and model nonlinearities were identified in the higher
harmonics, in particular: (i) asymmetric charge transfer in Butler—
Volmer kinetics; (ii) concentration dependence of the exchange
current density; (iii) nonlinearity of the electrode OCPs; and (iv)
nonlinearity of solid-state diffusion (i.e. concentration dependence
of the diffusivity).

From our nonlinear impedance formulae, we explored how the
second harmonic impedance in combination with the usual funda-
mental impedance can be used to improve parameter identifiability,
both structurally and practically, over the use of the fundamental
alone (EIS). Structurally, NLEIS can identify new parameters not
possible from EIS, e.g. charge transfer coefficients (usually assumed
to be 1/2 for Li-ion batteries), and improve the identifiability of the
remaining parameters.

To investigate the impact of NLEIS on practical identifiability,
we implemented maximum likelihood parameter estimation. First,
we demonstrated the procedure using synthetic data and bootstrap
resampling, showing that one can robustly determine all the model
parameter groups (kinetic and diffusive) from NLEIS data. The
second harmonic has a lower signal-to-noise ratio resulting in larger
variances for some parameters, but these uncertainties are compar-
able in magnitude to model error, e.g. due to the small excitation
amplitude approximation.

Finally, our parameter estimation procedure was applied to
experimental NLEIS data that was collected from a commercial

cell. We could fit the impedance data very well, capturing many
of the key features of both harmonics. All the kinetic para-
meters were determined, and the charge transfer coefficients
were found to deviate slightly from 1/2, albeit remaining within
10%. Validation of the model and its parameterization from
either EIS or NLEIS data was conducted in the time domain
with a drive cycle experiment, where an improvement in
accuracy was observed for the NLEIS parameterization,
showing that the technique is beneficial when the model is
used in practice.

Areas of further work could consider the impacts of several
physical mechanisms that were neglected here, such as transport
through SEI layers and in the electrolyte. To keep a similar level
of model complexity, one could consider the latter by extending
the current analysis to the single particle model with electrolyte
(SPMe).29 The electrolyte introduces additional diffusive effects
which may address the difficulties observed here with fitting the
diffusion tails in a consistent manner. Other solid-state transport
models, such as phase-field models,38 could also be considered,
and NLEIS used as a model selection tool. In addition, extending
the minimum frequency measured experimentally could improve
diffusion time estimates. Exploring the nonlinear frequency
response of higher capacity cells, other lithium-ion battery
chemistries, such as lithium-ion phosphate and lithium titanate,
at different temperatures and as batteries age, would be inter-
esting and valuable future work. Finally, metrics to quantify
model parsimony could be considered, i.e. to analyze whether
there are too many (or too few) parameters, and to compare
different model structures.

Figure 17. Model validation in the time domain, corresponding to a drive cycle of prescribed current (a). The terminal voltage from experiment39 and two model
simulations, using parameter values (Table I) from fitting to EIS or NLEIS data, are in (b). Also shown are (c) the absolute voltage error, and (d) surface
stoichiometries cs,± in each electrode for each simulation.
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