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Abstract
Coronaviruses are types of viruses that are widely spread in humans, birds, and other mammals, leading to hepatic, respiratory,
neurologic, and enteric diseases. The disease is presently a pandemic with great medical, economical, and political impacts,
and it is mostly spread through physical contact. To extinct the virus, keeping physical distance and taking vaccine are key. In
this study, a dynamical transmission compartment model for coronavirus (COVID-19) is designed and rigorously analyzed
using Routh–Hurwitz condition for the stability analysis. A global dynamics of mathematical formulation was investigated
with the help of a constructed Lyapunov function. We further examined parameter sensitivities (local and global) to identify
terms with greater impact or influence on the dynamics of the disease. Our approach is data driven to test the efficacy of the
proposed model. The formulation was incorporated with available confirmed cases from January 22, 2020, to December 20,
2021, and parameterized using real-time series data that were collected on a daily basis for the first 705 days for fourteen
countries, out of which the model was simulated using four selected countries: USA, Italy, South Africa, and Nigeria. A
least square technique was adopted for the estimation of parameters. The simulated solutions of the model were analyzed
using MAPLE-18 with Runge–Kutta–Felberg method (RKF45 solver). The model entrenched parameters analysis revealed
that there are both disease-free and endemic equilibrium points. The solutions depicted that the free equilibrium point for
COVID-19 is asymptotic locally stable, when the epidemiological reproduction number condition (R0 < 1). The simulation
results unveiled that the pandemic can be controlled if other control measures, such as face mask wearing in public areas and
washing of hands, are combined with high level of compliance to physical distancing. Furthermore, an autonomous derivative
equation for the five-dimensional deterministic was done with two control terms and constant rates for the pharmaceutical and
non-pharmaceutical strategies. The Lagrangian and Hamilton were formulated to study the model optimal control existence,
using Pontryagin’s Maximum Principle describing the optimal control terms. The designed objective functional reduced the
intervention costs and infections. We concluded that the COVID-19 curve can be flattened through strict compliance to both
pharmaceutical and non-pharmaceutical strategies. The more the compliance level to physical distance and taking of vaccine,
the earlier the curve is flattened and the earlier the economy will be bounce-back.
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1 Introduction

A group of patients from Wuhan, China republic, with
unknown cause of pneumonia were in recent year observed
[1,2]. A previous novel betacoronavirus, otherwise known
as 2019-ncov, SAR-COV-2, or COVID-19, was discovered
in samples from this group of patients through the use of
unbiased sequencing [1,2]. A few weeks after, the virus was
reported to have had spread to all round the world, making it
a pandemic. Currently, over 2,034,000 established cases and
death of about 134,500 documented in 213 nations around
the globe, with report of new cases each day (WHOCOVID-
19 dashboard, [3]). Viruses are smallest infectious disease
agents, apart from prions—agents of diverse neurodegen-
erative diseases. Viruses are made up of small genome,
contained a single nucleic acid type (either DNA or RNA),
which may be double stranded or single stranded in either
case [4]. This genetic makeup is usually coated with a pro-
tein, and some viruses are further encased by a lipid envelope
[5]. Viruses, unlike other infectious organisms, are the only
group of organisms that cannot replicate outside of a host
cell. In other words, viruses cannot reproduce and survive
without a host cell. They lack ribosomes, which is required
for the synthesis of proteins; instead, they use the ribosomes
of their host’s cells to translate viralmRNA into viral proteins
[5–7].

Viruses also lack the ability to produce or store its own
energy in the form of ATP. Nevertheless, they make use
of a host cell to secrete their energy and to perform other
metabolic activities via the process known as self-replicating
mechanism [4,6]. Coronaviruses are types of viruses that are
encased by RNA and are widely spread in humans, birds, and
other mammals, leading to hepatic, respiratory, neurologic,
and enteric diseases [1,2]. There are six known coronavirus
species that are disease-causing agents inman, namelyOC43,
229E, HKU1, NL63, MERS-CoV, and SARS-CoV, while
OC43, 229E, HKU1, NL63 are widespread and responsible
for commoncold or severe pneumonia symptoms in immuno-
competent persons [1,8], MERS-CoV and SARS-CoV are
responsible for acute severe respiratory syndrome, middle-
east respiratory disorder and coronavirus, respectively, their
origin is zoonotic, and they have been associated with fatal
illnesses[1]. With the emergence of 2019-nCoV, SAR-CoV,
or COVID-19, a new strain of coronavirus undergoes self-
replication machinery by using the protease secreted from
the host cell to form a viral replication complex.

Some of the symptoms resulting from the infection of
this virus include diarrhea, sore throat, tiredness, dry cough,
fever, runny nose, nasal congestion, pain, aches, loss taste
or smell sense, and even death, depending on the patients
[1,2]. Although the transmission of the virus is not well
understood„ several studies have reported some possible
ways of transmission, such as importation and human-to-

human transmission in Vietnam [9] and person-to-person
transmission [10]. Other studies in which the transmission
of COVID-19 has been investigated include the transmission
of the infection from an asymptomatic contact [11], predic-
tion of international and domestic blowout of 2019-nCoV
outbreak from Wuhan [12,13], and early dynamic spread
of pneumonia coronavirus disease in Wuhan, China [14].
A fractional approach to modeling this complex system was
proposed in [15] where contact tracing, among others, was
a key factor in mitigating the spread of the virus. Based on
clinical expertise and currently available information, people
of any age with underlying medical conditions (asthmatic,
HIV-AIDS, tuberculosis patients, cancer among other seri-
ous illnesses) and the elderly may be at serious hazard of
COVID-19 (CDC, 2021).

Even with the identification of specific treatments and
vaccines to contain, there is the exponential increase in
this disease; hence, other preventive measures, such as self-
isolation, quarantine, and immune booster, are to be put in
place. Quarantine plays an essential role in disease control
mechanism and also acts as a preventive measure during
imperfect vaccines or treatments. This implies that individu-
als who are exposed and infected are isolated in a secure area,
in order to lessen the dispersion of the disease. This approach
has been recently reported by several studies [16–20]. It is a
common knowledge that the rapid, efficient, and ultrasensi-
tive discover of the SARS-CoV-2 is critical for the prevention
and/or control of the outbreak [21,22]. Hence, the rush for
information on surveillance and diagnostic machineries for
SARS-CoV-2 has been triggered globally. In order to effec-
tively deal with the outbreak, timely diagnostics are critical.
With proper diagnostics in place, healthcare workers can be
well informed on where and how to channel both resources
and efforts to treat/isolate patients.

Thus, all the technologies needed to rapidly detect
COVID-19 (SARS-CoV-2) are highly invaluable to the front-
line policy makers and health care workers who strive in the
joint efforts to ameliorate the scourge of the disease and/or
bring to a halt its spread. Since the onset of the COVID-19
in the China Province of Hubei, different approaches have
been adopted, globally, for its detection. Among the reported
methods are themicroscopy electron transmission, employed
to detect the SARS-CoV-2morphology[2]; genome sequenc-
ing, adopted to establish the virus identity [23,24]; and data
sequence, for the eventual detection [25]. The unfolding of
new variants of acutely severe respiratory disorder coron-
avirus type-2 (SAR-CoV-2), particularly the clinical concern
cases, has impacted the spreadability and infectivity of the
virus, as well as the diagnostic measures and efficacy of vac-
cines employed as mitigation strategies, though most of the
SARS-CoV-2 mutated variants are either quite harmful or
neutral, clearing up rapidly. It has also been observed that
some of the variants severely affected exposed humans while
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possibly altering infection rates and/or symptoms severity
along the way, thus perturbing the immune system.

In late 2020, SARS-CoV-2, evolved from the previous
year, was marked by the advent of new variants that were
characterized with viral traits changes such as antigenic-
ity and transmissibility, mainly due to the compromise in
human immunological system upon infection by the new
viral pathogen. As a “variant of interest,” the Delta vari-
ant was first discovered in India at the end of 2020. By
mid-2021, Delta variant infections were recorded in over
163 countries. The World Health Organization (WHO) then
declared the Delta strain as the most widespread and domi-
nant strain in the world, thereby branding it as a “variant of
concern (VOC)”[26].According to clinical data and epidemi-
ological surveys, the Delta VOC SARS-CoV-2 is potentially
highly transmissible at 40–60 percent (%) rate than theAlpha
or Beta strains, with a substantial risk of causing illnesses
that is largely responsible for the high rate of hospitaliza-
tion [27,28]. Thus, the Delta VOC mostly endangers those
that are unvaccinated, with fewer casualties reported in vac-
cinated people [26,29,30]. Despite the fact that the Delta
variant emerged during the second wave of Indian’s SARS-
CoV-2 invasion, this strain dominated internationally with
new clinical data knowledge still emerging from around the
world.

Toward the end of 2021, WHO announced that another
mutant strain of SARS-CoV-2, the B.1.1.529 variant, had
been discovered and quickly named it Omicron. This variant
exhibited several mutations that could affect its proper-
ties [26,30,31]. Although knowledge of the extent of the
transmissibility and infectivity of Omicron variant is slowly
emerging, it is already considered a VOC due to the multiple
mutation sites on the spike protein. This is likely to affect
how quickly the Omicron is dispersed or the harshness of the
caused illness. The variation in the spike protein is charac-
terized by more than 30 mutations, of which is happen at the
recombinant binding site, as well as 1 minor insertion and 3
minor deletions [26,29,31]. The Omicron strain was report-
edly discovered in South Africa and Botswana on November
2021, but before the end of 2021 November, travel-related
incidents have also been documented in Israel, Hong Kong,
Belgium, the UK, USA, and Netherlands [26,29,32]. The
Omicron variant appears to be a quite diverse variant and
thus raised concerns likely higher transmissibility and vac-
cine resistance, coupled with a high tendency of re-infection.

Overall, the number of countries that have reported
Omicron VOC SARS-CoV-2 disease spread continues to
increase, with highest daily average cases of 799,000 (Omi-
cron) and 164,000 (Delta) confirmed in over 30 countries
at the start of 2022 [32,33]. However, it remains ambiguous
whether or not the existing Omicron SARS-CoV-2 variant
could deleteriously cause clinical crises and hospitalizations
compared to the dreaded Delta strain. It is hoped that various

studies underway are able to establish a solid understand-
ing of the clinical and epidemiological effects of Omicron
and Delta variants compared to the Wuhan-Hu-1 strain that
emerged in 2019. Both variants are spread from person to
person through physical contact. Thus, maintaining physi-
cal distance and taking the COVID-19 vaccine can help to
reduce the spread and its effects on persons.

Thus, this present study focused on the influence of immi-
gration, person-to-person transmission, quarantine individu-
als who has been tested with no clinical symptoms, social
distancing of susceptible individual, vaccinated individuals,
and effect of loss of immunity, usingmathematical and statis-
tical approach. This approach is an important tool in getting
insights into transmission of diseases, and it is applicable in
making decisions in regard to intervention machineries for
infectious disease mitigation [34].

1.1 Related works

Recently,[35] used dynamic model approach to analyze the
influenceof isolation andquarantine in dynamics of transmis-
sion of the MERS-CoV in relation to latent immigrants. The
authors revealed that instant isolation, close monitoring of
quarantining, and contacts of individual asymptomatic immi-
grants can be helpful in MERS-CoV control. The numerical
simulations in their study further revealed that the combina-
tion of a great reduction in the number of immigration, as
preventive measures, can help to contain MERS-CoV. Simi-
larly, Dighe and co-workers investigated the transmission of
MERS-CoV in Camelus dromedaries, dromedary camels. It
was shown that MERS-CoV in camels have moderate trans-
missibility. It was also revealed by a metapopulation model
of MERS-CoV transmission that camel populations in the
Arabian Peninsula and Africa have the long-term persistence
of MERS-CoV, and this can be helpful in the simulation of
camel vaccination strategies. Khan and Atangana[13] traced
COVID-19 disease to the seafood market when the bats and
other hosts are unknown, and this was done to give insight to
the dynamic of the novel coronavirus. The fractional model
revealed the stability of the disease to be asymptomatic when
R0 < 1, and the statistical data showed the basic reproduc-
tion to be R0 = 2.4829 in all. The results generated in their
study can be helpful in minimizing the infection.

Zhao and co-workers [36] used a data-driven and mathe-
matical approach to analyze the early stage outbreak of the
COVID-19 by estimating the basic reproduction number in
China from 2019 to 2020. The findings revealed R0 to be
greater than 1, which is a possible indication of the virus out-
break as predicted by their findings. Zhang et al. [37] also
employed a data-derived analysis to investigate the reproduc-
tive number of COVID-19 in the Diamond Princess cruise
ship and predicted the early stage outbreak size. Social dis-
tancing (SD) practices can be described as the reduction in
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the rates of contact between vulnerable and individuals that
are already infected with a disease and who may transmit the
disease [38]. SD is a change in behavior aimed at reducing the
severity of an epidemic, or in this case, pandemic. Buttress-
ing this, Valdez et al. [39] add that SD is a recurrent social
distancing strategy in which healthy persons are encouraged
to prevent contact with their neighbors for a period of time.
However, Reluga [38] observed that the advantages of social
distance are determined by the extent to which individuals
comply, as most people are sometimes reluctant to pay the
costs, which in turns reduces its effectiveness as a control
measure.

In their study, Valdez et al. [39] successfully used perco-
lation tools to show that SD is a strategy that can put a stop
to the spread of epidemics [39]. In the same vein, Shim [40]
adopted vaccination and social distancing optimal strategies
and proved that SD is effective against the spread of seasonal
influenza [40]. The optimization of a dynamical objective of
a nonlinear system for the measures of time varying con-
trol described control theory offers [41]. This approaches
have been most employed in the study of various diseases
transmission dynamics such as [40,41]. The latter inves-
tigations depict that the non-pharmaceutical interventions
level depends on the entrenched terms, and its application is
required for a long duration and high level without vaccine.
Here, an optimal control technique is implemented to exam-
ine the non-pharmaceutical interventions optimal strategies
on the COVID-19 control: case study of USA. The weighing
of the relative cost ofCOVID-19mortality and control is opti-
mized in strategy, and determine a technique, minimize, and
control combined cost. Other analysis of COVID-19 optimal
control begins to emerge [42–44], though these are given less
attention on a geographic particular location.

Abbas et al. [45] presented a fractional model and per-
formed some simulations, which validated their analytical
findings using a discritizationmethod. [46] presented anddis-
cussed someapproaches used inmodeling and surveillance of
infectious diseases dynamics, by considering asymptomatic
and symptomatic stages of infections. After they had high-
lighted the conceptual ideas and the mathematical tools
needed for the modeling, they computed basic reproduc-
tion number and investigated the qualitative behaviors of
the disease via simulation study. [47] presented the popu-
lation migration model for n-cities and applied the model for
migration between two and three cities. They computed their
reproduction number, analyzed the effect of the migration
rate, and simulated a protocol of repeated lock-downs that
limits the resurgence of infections, and observed a damped
oscillatory behavior with multi-modal for some periods
under reveal. [48] proposed a SEIQR (Susceptible–Exposed–
Infected–Quarantined–Recovered) mathematical model and
its control measurement. They computed the basic reproduc-
tion number for Russia and India and concluded that future

predictions from mathematical model and the LSTM based
model are compared to generate reliable result.

In this study, reported cases are considered for the first
705 days, that is from January 22, 2020, to December 20,
2021. The study collected data on fourteen countries, out of
which themodelwas simulated using four selected countries:
USA, Italy, South Africa, and Nigeria. The first 12 countries
with the highest reported cases were selected, while South
Africa and Nigeria were selected based on authors interest.
The four countries are selected based on severity of disease
and interest. USA and Italy were selected because the had
the highest and second highest recorded deaths, while South
Africa and Nigeria were selected based on interest. Thus, the
study arrangement is as follows: In Sect. 2, we formulated a
dynamical COVID-19 mathematical formulation to parame-
terize themodel and presented the local stability analysis and
global stability, using Lyapunov function, while analysis of
both local and global sensitivities was carried out using elas-
ticity index and partial rank correlation coefficient (PRCC),
and in Sect. 3, we have the model numerical simulations and
parametric estimation. We further explored some fundamen-
tal properties of the model and discussions in Sect. 4, while
the findings and conclusion are presented in Sect. 5.

2 The description of mathematical model

The entire population of people is depicted by Nh , which
is classified into five subgroups such as Sh , Qh , Ih , Rh ,
and D, respectively, the Susceptible, Quarantines, Infected
(symptomatic), Recovered, and Death. The human suscepti-
ble population is recruited through the birth rate (at a constant
rate) � and immigration via (Air, Road & Sea) borders (at
the rate α m), where 0 ≤ m ≤ 1 denotes the migrants
inflow fraction into the susceptible countries, and individ-
ual recovery from the quarantine at δ0(1− p1) rate, who has
been tested without COVID-19 clinical symptoms, where
0 < p1 < 1 defined the probability of the infected individ-
ual transmits the disease to susceptible individual. Hence, the
population is decreasing by an acquired COVID-19 through
proper infectious human contact (at λ rate) where λ = p1β Ih

Nh
and β denotes rate contact sufficient (i.e., enough to cause
COVID-19 infection). The birth rate of the susceptible is
given by �h while the rate of natural death in each class is
given byμh . Here, the susceptible changing rate is expressed
as:

S′
h(t) = � + αm − (λ + μ + τ) Sh(t)

+δ0(1 − p1)Qh(t) + δ1Rh(t), (2.1)

The susceptible population Sh will be increase or generated
via birth and rate of immigration of αm & δ0(1 − p1) and
infection (at λ rate) and is reduced by τ fraction of people
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Table 1 Description of
entrenched terms in the model
(2.6)

Variable Symbol

Susceptible Sh(t)

Quarantine Qh(t)

Infected Ih(t)

Recovery Rh(t)

Death Dh(t)

who practice social distancing, also reduced by people that
developed of clinical symptoms.

Q′
h(t) = λSh(t) − (μ + θ + δ0(1 − p1)) Qh(t), (2.2)

The quarantine individual population rises following the
quarantine of persons in the susceptible class (at λ rate).
This population reduced by recovery δ0, progression rates
to infected class θ , and natural death.

I ′
h(t) = θQh(t) − (μ + σ + γ ) Ih(t) (2.3)

The infected compartment with clinical symptoms for
COVID-19 in Ih class rises going the development of clinical
symptoms in quarantine (at θ rate) class. This class reduced
by COVID-19 induced death (at a rate σ ), recovery (at a rate
γ ), and natural death.

R′
h(t) = γ Ih(t) + τ Sh(t) − (μ + δ1)Rh(t) (2.4)

The recovery class is generated by the recovered population
from infected class (Tables 1 and 2). In with the rate at γ

and fraction of susceptible population who practice social
distancing during the pandemic (at τ rate) and decrease as a
result of natural death.

D′
h(t) = σ Ih(t) (2.5)

The death population is generated by the COVID-19-induced
death with the rate at σ

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S′
h(t) = � + αm − (λ + μ + τ) Sh(t)

+δ0(1 − p1)Qh(t) + δ1Rh(t),

Q′
h(t) = λSh(t) − (μ + θ + δ0(1 − p1)) Qh(t),

I ′
h(t) = θQh(t) − (μ + σ + γ ) Ih(t),

R′
h(t) = γ Ih(t) + τ Sh(t) − (μ + δ1)Rh(t)

D′
h(t) = σ Ih(t),

(2.6)

where λ = p1β Ih
Nh

, Nh = (Sh + Qh + Ih + Rh + Dh)

3 The dynamic behaviors of the proposed
COVID-19model

The dynamic behaviors of the proposed COVID-19 model
are the focus of this section. Several qualitative analyses are
carried to examine how well the model formulated is able
to capture the dynamic nature of the deadliest infectious dis-
ease calledCOVID-19. Rigorous stability analysis results are
presented including the solutions boundedness and positivity
and the results of the steady-state model. For simplicity, we
denote the following parameters as:

�1 = δ0(1 − p1) ≥ 0

�2 = θ + μ + �1 ≥ 0

�3 = γ + σ + μ ≥ 0

�4 = τ + δ1 + μ ≥ 0

�5 = β p1(δ1 + μ) ≥ 0

�6 = δ1 + μ ≥ 0

3.1 Positivity and boundedness of solutions

Here, the system (2.6) is established to be epidemiological
realistic and well posed, when all terms in system (2.6) at all
times t are non-negative. Therefore, Lemma 1 is defined to
establish this.

Lemma 1 The solutions Sh(t), Qh(t), Ih(t), Rh(t), and Dh

(t) of the system (2.6) subject to initial conditions Sh(0) >

0, Qh(0) ≥ 0, Ih(0) ≥ 0, Rh(0) ≥ 0 and Dh(0) ≥ 0 are
positive for all t > 0.

Proof From the system (2.6), we have

dSh
dt

|Sh=0 = � + αm + �1Qh + δ1Rh ≥ 0

dQh

dt
|Qh=0 = λSh ≥ 0

dI

dt
|Ih=0 = θQh ≥ 0

dRh

dt
|Rh=0 = γ Ih + τ Sh ≥ 0

dDh

dt
|Dh=0 = σ Ih ≥ 0.

Thus, the rate defined above is non-negative on bounded
plane �5+; hence, it shows that the region is attracting and
positively invariant. In system (2.6), the attractive region is
expressed as

� =
{
(Sh, Qh, Ih, Rh, Dh) ∈ �5+ : Sh + Qh

+Ih + Rh ≤ � + αm

μ

}

(3.1)

123



S. I. Oke et al.

Table 2 Description of parameters, values, and their units

Parameter Symbol Value 95% CI Unit Refs.

Recruitment rate via birth � 0.01218 (0.0063, 0.0181) day−1 [35]

Human immigration recruitment rate α 0.00401 (0.0000, 0.0085) day−1 [35]

Immigrant fraction m 0.39152 (0.0000, 0.9886) day−1 Estimated

Probability that a susceptible will get infected p1 0.71981 (0.4085, 1.0000) day−1 Estimated

Natural death for all compartment μ 0.01277 (0.0107, 0.0148) day−1 Estimated

Recovery of quarantined
individuals who has been tested
of Covid-19 without clinical
symptoms

δ0 0.01130 (0.0000, 0.1850) day−1 Fitted

Progression rates to infected class θ 0.48022 (0.4556, 0.5049) day−1 Fitted

Recovery rates for infectious individual to recovery class γ 0.28185 (0.0000, 0.6099) day−1 Estimated

Rate of compliance to social distance practice τ 0.00058 (0.0000, 0.0015) day−1 Fitted

Rate at which recovered persons
losses immunity and progress to
Susceptible class

δ1 0.0001 (0.0000, 0.0003) day−1 Estimated

Covid-19-induced death rate σ 0.20704 (0.0000, 0.4420) day−1 Estimated

Effective contact rate β 0.98513 (0.4000, 0.9950) day−1 Estimated

Therefore, the sufficient system of dynamic (2.6) in Omega
is considered and it attracts all initiating solutions in the inte-
rior non-negative invariant. ��

Wenext prepare ground for stability analysis for the proposed
model (2.6) by considering the basic reproduction number is
denoted by R0 and the COVID-19-free equilibrium point.
The COVID-19 free equilibrium point for the system (2.6) is

E0 = (S∗
h , Q

∗
h, I

∗
h , R∗

h , D
∗
h)

=
(

�6 (α q + �)

μ�4
, 0, 0,

τ (α q + �)

μ�4
, 0

)

The calculation of basic reproduction number is done. The
Local stability analysis of the COVID-19 free equilibrium
(CFE) is carried out by adopting the next-generation opera-
tor technique [49,50] where necessary computations of the
matrices F and V are shown by:

F =
(
0 �5

�4

0 0

)

V =
(

�2 0
−θ �3

)

V−1 =
(

1
�2

0
θ

�2�3

1
�3

)

.

The γ (FV−1) of the spectral radius is needed basic repro-
duction number of the system (2.6), expressed as

R0 = θ�5

�2�3�4

3.2 COVID-19 free equilibrium local stability, E0

The investigation of local stability of E0 is carried out by
adopting Theorem:

Theorem 1 The free equilibrium for COVID-19 E0 is asymp-
totically and locally stable for the system (2.6) when R0 < 1
or else unstable.

Proof Take the Jacobian matrix of Eq. (2.6) and evaluate at
(E0)

J (E0) =

⎛

⎜
⎜
⎜
⎝

−μ − τ �1 −�5
�4

δ1

0 −�2
�5
�4

0
0 θ −�3 0
τ 0 γ −�6

⎞

⎟
⎟
⎟
⎠

. (3.2)

According to Routh–Hurwitz condition,

(i) Trace(E0) < 0 (i i) Determinant(E0) > 0

Clearly,

Tr(E0) = −(μ + τ + �2 + �3 + �6) < 0
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Det(E0)

= − [β μ θ p1 + β θ δ1 p1 − �2�3�4] [(μ + τ)�6 − τ δ1]

�4

= −1

�4
((μ + δ1)(μ + τ) − τδ1)

((δ1 + μ)β p1θ − �2�3�4)

= −μ�2�3�4

(
(δ1 + μ)β p1θ

�2�3�4
− 1

)

= −μ�2�3�4(R0 − 1) > 0 i f R0 < 1.

This implies that the eigenvalues of the equation (2.8) are
negative and real when R0 < 1. Hence, CFE E0 is asymp-
totically and locally stable and unstable when R0 > 1. ��

3.3 Global asymptotically stable of CFE, E0

Given that the stability of CFE, E0 has nothing yo do with
the initial population size while the local stability of E0 did
not hold for the dominating conditions; therefore, global
asymptotic stability (GAS) is considered. To carry it out,
a Lyapunov function is established. This method has been
used by several authors [41] to prove the global stability of
epidemiological steady states. Assume a Lyapunov function
denoted as:

L(Q, I ) = θQh + �2 Ih (3.3)

Obtaining the derivative of equation (2.10) together with the
solutions of Eq. (2.6) gives

L ′(Q, I ) = θQ
′
h + �2 I

′
h

= θ [λSh − �2Qh] + �2 [θQh − �3 Ih]

= θλSh − θ�2Qh + �2θQh − �2�3 Ih

=
[

θ
β p1 Ih Sh

Nh
− �2�3 Ih

]

=
[

θ
β p1Sh
Nh

− �2�3

]

Ih

Hence, at CFE, E0, we have Nh = Sh+Rh , Nh = π + αm

μ
,

Sh
Nh

= (μ + δ1)

(μ + τ + δ1)
= (μ + δ1)

�4
, and m1 = θ .

so that

L
′
(Q, I ) =

[

θ
(μ + δ1)

�4
β p1 − �2�3

]

Ih

=
[
(μ + δ1)

�4
β p1θ − �2�3

]

Ih

= �2�3

[
θ�5

�2�3�4
− 1

]

Ih

Table 3 R0 sensitivity index in
respect to model (2.6)
parameters

Parameter Sensitivity index

β +1.00000

θ +1.00000

P1 +1.03648

δ1 +0.00034

μ −0.03994

σ −1.34124

τ −0.04312

δ0 −0.01420

γ −0.56183

Therefore,

L
′
(Q, I ) = �2�3 [R0 − 1] Ih ≤ 0 i f R0 ≤ 1 (3.4)

Thus, the CFE E0 is global asymptotically stable when R0 ≤
1 or else unstable. This could be summarized as:

Theorem 2 The CFE E0 is globally asymptotically stable if
R0 ≤ 1 or else unstable.

3.4 Themodel (2.6) local and global sensitivity
analysis

In this section, parameter sensitivities are investigated. Tak-
ing from [51,52], the local sensitivity of model parameters
is calculated by elasticity index. The local sensitivity analy-
sis is performed on the basic reproduction number R0. The
parameter R0 is employed to check the effect of COVID-19
pandemic in all selected countries. This above technique is
applied to determine the quantity parameter changes such as
τ , in respect to rate of change in quantity R(τ ). The elasticity
index or normalized sensitivity index of R(τ ) in respect to τ

is given below:

γ R0
τ = τ

R0
× ∂R0

∂τ
(3.5)

Table 3 shows that the probability that a susceptible per-
son get infected p1 has the first highest sensitivity index
(S.I = 1.03648), followed by the active contact rate β and
infected progression rate θ which indicates that increasing
(or decreasing) the parameters mentioned above, especially
probability that a susceptible person get infected p1 by 10%,
will decrease or increase the R0 by 10.37%. The secondmost
sensitivity index (S.I = − 1.34124) is the induced Covid-19
death, σ , followed by recovery rate of infected individual γ
and compliance rate to social distancing τ . All these parame-
ters can be increased (or decreased) R0 by 10% that is (13.4%,
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5.6% and 0.43%), respectively. Our analysis results show
that the p1 has the most sensitivity index; however, the prob-
ability of getting infected must be decreasing for R0 to be
reduce. Furthermore, the sensitivity index of compliance to
social distancing need to be enforcing that is increasing from
(τ = 0.43%) to a reasonable percentage in all the selected
countries for R0 to be reduced and also for recovery rate to
be increased. Thus, it is not medically reasonable to con-
sider COVID-19-induced death (σ ) as a control strategy to
reduce R0. However, the most effective control strategy is to
decreasing the effective contact rate (β) and increasing the
social distancing compliance enforcement in all the selected
countries.

Variation in terms for the global sensitivity analysis for
some estimated parameters by adopting baseline range values
of Table 2. The partial rank correlation coefficient (PRCC) of
the entrenched terms in the model is calculated and offered
in Fig. 1. Parameters are sampled and substituted by Latin
Hypercube Sampling (LHS) technique [41] (a valid statis-
tical scheme for multidimensional distribution to obtaining
parameter sample values). Total simulations of 1000 were
carried out.

The baseline parameter values of Table 2 were changed
in 25% range. Figure 1 offers PRCCs tornado plot versus
the homogeneous parameter values in R0 as the dependent
baseline variable. The terms aremomentously positively cor-
related with COVID-19 at p < 0.05 significance level being
β, θ & p1, while μ, γ, δ1, τ, σ & δ0 are momentously nega-
tively correlated. The infected class progression rate θ , active
contact rate β, infected susceptible probability reduce as
social distancing compliance is effective and supported with
hand washing, face mask wearing, and so on.

4 Numerical simulations and data fitting

Here, we discuss the numerical solutions of Covid-19 for-
mulation of (2.6). The computational procedure of Eq. (2.6)
was using RKF45 Runge–Kutta–Fehlberg method viaMaple
solver, a member of explicit and implicit iteration schemes;
these include the Euler’s method that used an approximate
temporal discretization solution for ODEs of fourth order
with fifth-order error estimator (Fig. 2).
We consider four selected countries: USA, Italy, South
Africa, &Nigeria, as case studies. TheWorld Health Organi-
zation census datawere adopted to define the total population
for each country. It is assumed that people can move around
within the continent. This, assumption is made based on the
β, the sufficient rate of contact (i.e., COVID-19 infection
rate). It is also assumed that the entire individuals in a coun-
try under consideration must be in any of the five partition
(Susceptible, Quarantines, Infected (symptomatic), Recov-
ered, and Death). This implies that an individual who is not

dead and has never been infectedwith COVID-19must either
fall into the quarantined class or the susceptible class. In sim-
ple language, a person who is not COVID-19 infected is in
the susceptible class.

The rate of compliance to social distance practice (τ )
varies from county to country. Figure 3 shows that in USA, as
the rate of compliance to social distance practice increased,
susceptible individual numbers decreased faster, quarantine
individual numbers decreased, infected individual numbers
decreased significantly, and recovered individual numbers
increased significantly as well. Figures 4 and 5 and 6 depict
the same but clearer trend for Italy, SouthAfrica, andNigeria,
respectively. This is inline with Centre for Disease Con-
trol (CDC) and World Health Organization (WHO) that
compliance to social distance practice would decrease the
virus spread. So, increasing the rate of compliance to social
distance practice would significantly decrease the rate of
COVID-19 infection (Fig. 6).

Figure 7 (left) shows theCOVID-19 cumulative confirmed
laboratory cases of 5 chosen countries out of the 15 under
study. As at April 20, 2020, only China curve was flattened
as shown by the cumulative curve when compared to other
selected countries. There is intersection among USA, Italy,
and China at a point. At this point, USA and Italy surpassed
China cases. The log is used rather than actual values so
that all the curves are sighted. Figure 7 (right) shows the
COVID-19 active cases of 5 selected countries out of the 15
under study. As at April 20, 2020, only China active cases
curve is reducing and fast approaching zero. The active cases
are those individuals that still have the disease after closed
(recovery+death) cases have been subtracted from the cumu-
lative infected cases.

Figure 8 shows a component bar chart ofCOVID-19 active
cases, recovered, and death of 15 selected countries. At this
period, China has the highest recovered individuals when
compared with other countries. This is why the cumulative
curve of infected cases of China is flattened.

Figure 9 shows a component bar plot of confirmed
COVID-19 cases, active cases, recovery, and deaths of 5
selected countries out of the 15 under study. China is the only
country where cases of recovery is greater than active cases
during the period under study. The size of each component
of a bar is directly proportional to the quantity measured.

Figure 10 shows the histogram of confirmed cases of 4
selected countries. All the histograms show positive skew-
ness. This implies that at the initial start of COVID-19 all of
these countries have few cases of COVID-19 as compared to
subsequent days. The level of skewness varies from country
to country.

Figure 11 shows a box plot showingCOVID-19 confirmed
cases to buttress Fig. 10. USA and Nigeria have outliers,
South Africa as just one outlier while Italy has no outlier.
Outliers are extreme values that occur unusually. It makes the
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Fig. 1 Partial rank correlation coefficient (PRCC) graphs plots for different terms in COVID-19 formulation (2.6), taking values of R0 as the output
function from Table 2

Fig. 2 Simulations of the system (2.6) showing the free equilibrium point for COVID-19 and the epidemic equilibrium point

mean value to be overestimated or underestimated. The box
plot shows the maximum, 1st quartile, median 3rd quartile,
and minimum in that order from top to bottom.

Figure 12 shows a QQplot showing that the COVID-19
cumulative infected data are not normally distributed for all
the selected countries under study. Any test that depends on
normality assumptions cannot be carried out on the data in
their current for except they are normalized. However, the
cumulative infected curve shows that the curve is becoming
flattened for some countries like Italy and then USA. For
South Africa and Nigeria, the curves are still steeping up.

Figure 13 shows a scatter plot showing the relationship
between confirmed infected cases and active cases. For USA,

the linear relationship is almost perfect; for Italy the relation-
ship is encouraging. For South Africa, there are three change
points, which shows three different situations in the country
active cases tend to reduce but increase with new infected
cases. In Nigeria, it is not that regular. The ideal situation
is that as confirmed cases increase, closed cases should also
increase and reduce active cases. This situation is what we
have in Fig. 14 for China case.

Four plots depicted in Figs. 10, 11, 12 and 13 are all
embedded in Fig. 14 for China only. The histogram here
is negatively skewed as against that of other countries in this
study. This depicts the infected number cases in China was
very high at the beginning of the outbreak, but the rate of
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Fig. 3 Compliance effect of social distancing parameter τ on the
dynamics of COVID-19 model for USA. π = 1.24X10−1, α =
3.8e−2, β = 0.9894, γ = 6.51X10−1,m = 0.2599,μ = 1.27X10−1,

σ = 0.3765, θ = 0.4790, δ0 = 8.3X10−5, δ1 = 2.440X10−4,
p1 = 0.9449, S(0) = 329247215, Q(0) = 72361, I (0) = 784326,
R(0) = 72329, D(0) = 42094

increase reduces with time. This is also supported by the box
plot with outliers at the bottom as against USA, Nigeria, and
South Africa having outliers at the top. China cumulative
COVID-19 data are not also normally distributed, it has to
be normalized before any analysis that depends on normality
assumption can be carried out on it, but the cumulative curve
shows that it is flattened at the top. The scatter plot showing
the relationship between cumulative infected and active cases
depicts that at the initial stage of the China outbreaks, just
like any other country, both were increasing, meaning that
as the infected cases increase, the active cases also increase.
This continue until a peak is reached, so that little increase
in cumulative infected cases resulted to a great decrease in
active cases and bringing the active cases close to zero. If this
curve touches zero, it implies that if individual is infected

with the virus, then there is certainty that the individual will
recover in no time.
Figure 15 shows that our model fitted well with the selected
countries data (daily cumulative number of reported cases).

Figure 16 (upper left) shows that compliance to physi-
cal distancing in Italy will significantly decrease the active
number cases in the coming days and eventually eliminate
COVID-19 from Italy completely. Figure 16 (upper right)
shows that compliance to physical distancing in Nigeria
would reduce the active number cases in the coming days.
The COVID-19 active number cases would rise to the high-
est point. The current situation shows that active cases might
rise, but with compliance to physical distancing, COVID-19
would decrease to zero in as time increases. The active cases
are the number of individuals that are currently infected with
COVID-19 and are still alive. It is the cumulative infected
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Fig. 4 Simulations of the COVID-19 showing when the system is
Covid-19 free equilibrium point and when it is epidemic equilib-
rium point for Italy. π = 8.5X10−2, α = 3.6X10−2, β = 0.9873,

γ = 0.2199, m = 0.2754, μ = 1.20X10−1, σ = 0.3506, θ = 0.4571,
δ0 = 1.3X10−3, δ1 = 1.69X10−3, p1 = 0.7901, S(0) = 59956676,
Q(0) = 59307, I (0) = 181228, R(0) = 59273, D(0) = 24114

cases—closed cases, where closed cases are the number of
deaths and recovery. So, as the recovery number is raised,
the active number cases reduce. Italy active cases are far
below their maximum actives cases, but that of USA, South
Africa, and Nigeria have not reached their pick as at the
time of this report. Figure 16 (lower left) shows that com-
pliance to physical distancing in South Africa will reduce
the active number cases in the coming days. The COVID-19
active number cases would rise to a highest point, but may
not go beyond 17,000 active cases in the worst scenario after
which it decreases to zero as time increases. Figure 16 (lower
right) shows that compliance to physical distancing in USA
will reduce the number of active cases in the coming days.
The active cases of COVID-19would increase to amaximum
point, almost twice the current number for the period under
review, after which it decreases to zero with time.

5 Optimal control problem setup

As presented in the earlier sections, the quarantine and com-
pliance to physical distancing play high roles in decreasing
the affected COVID-19 individual numbers. Meanwhile, it
was noticed that nationswith lowest compliancewill result to
increase recruitment rate. Hence, it is recommended that in a
case of rising inflow individuals, vaccinationmust be encour-
aged. Therefore, an optimal control is formulated to manage
optimal trajectories by embedding vaccination intervention
(i.e., pharmaceutical) in the model 2.6. As such, objective
functions J are developed containing u1(t) > 0, u2(t) > 0.
Our u1(t) represents the public health advise on the usages
of non-pharmaceutical intervention without or with vaccine
(such as wearing of face mask, social/physical distancing,
washing hands often, staying home when sick, canceling
or postponing mass gatherings, making sick leave poli-
cies more flexible, remote meeting or offering tele-work
options, self-isolation reduced COVID-19 spread). While
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Fig. 5 Compliance effect of Social distancing parameter τ on the
dynamics of COVID-19 model for South Africa. π = 2.10X10−1, α =
7.3X10−2, β = 0.4772, γ = 0.1629,m = 0.1341, μ =

1.56X10−1, σ = 6.22X10−1, θ = 0.4746, δ0 = 0.1364000, δ1 =
4.1X10−6, p1 = 0.8383, S(0) = 59605694, Q(0) = 1674, I (0) =
3300, R(0) = 1055, D(0) = 58

u2(t) is considered as the cost functional control variable, a
quadratic function for control and state is chosen,which takes
into consideration the infectious individual and vaccination
consumptionnumbers. Thus, theweight constant of theQuar-
antine Qh(t), and Infected Ih(t), is represented by A1 and
A2. Likewise, the weight constants ω1 and ω2 are related to
interventions cost different over a finite time period T, the
transmission decreasing rate due to non-pharmaceutical and
pharmaceutical. Now, using the control time-dependent, a
modified equation of the formulation 2.6 is gotten as

5.1 COVID-19model with control

dSh
dt

= � + αM + ρVh + δ0 (1 − p1) Qh + δ1Rh

−
(

(1 − u2) p1β Ih
Sh + Vh + Qh + Ih + Rh

+ u1 + τ + μ

)

Sh

dVh
dt

= u1Sh + u1Rh

−
(

(1 − ε) (1 − u2) p1β Ih
Sh + Vh + Qh + Ih + Rh

+ ρ + μ

)

Vh

dQh

dt
= (Sh + (1 − ε) Vh) (1 − u2) p1β Ih

Sh + Vh + Qh + Ih + Rh

− (θ + δ0 (1 − p1) + μ) Qh

dIh
dt

= θQh − (γ + σ + μ) Ih

dh
dt

= γ Ih + τ Sh − (u1 + δ1 + μ) Rh (5.1)
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Fig. 6 Compliance effect of social distancing parameter τ on the
dynamics of COVID-19 model for Nigeria. π = 3.80X10−1, α =
7.0X10−2, β = 0.5294, γ = 0.2204,m = 0.1374, μ =

1.85X10−1, σ = 0.1077, θ = 0.4559, δ0 = 3.59000X10−1, δ1 =
9.0X10−7, p1 = 0.7556, S(0) = 202376559, Q(0) = 505, I (0) =
665, R(0) = 188, D(0) = 22

with corresponding objective functional

J = min
∫ (

w1u
2
1 + w2u

2
2 + A1 Ih + A2Qh

)
dt

5.2 Determination of the necessary conditions for
optimality

The optimal control necessary conditions satisfy the adjoint
equations and optimality solutions, which come from Pon-
tryagin’s Maximum Principle [19,42,53]. This principle
converts systems 5.1 to a minimizing point-wise of Hamil-
tonian function H form that is obtained when each state
variables correspond to adjoint variables and combiningwith

the objective functional results.

J = min
∫ (

w1u
2
1 + w2u

2
2 + A1 Ih + A2Qh

)
dt (5.2)

where u1 ε U is Lebesque measurable, which can be defined
as

θ = {0 ≤ ui (t) ≤ 1, for i = 1, 2 and t ∈ [0, T ]} ,

The resulted equation is obtained

H(t, y, u, θ) = w1u
2
1 + w2u

2
2 + θ1B1 + θ2B2

+θ3B3 + θ4B4 + θ5B5 + A1ih + A2Qh

(5.3)
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Fig. 7 Time plot of cumulative COVID-19-confirmed cases (left) and active cases (right) of selected countries

Fig. 8 COVID1-19 active cases,
recovered, and death of selected
countries
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where
θi for i = 1, ..., 5 are the associated adjoint functionswith the
state equations of (5.1), on the RHS of the i th state variable
of the system of derivatives (5.1). The extended state of the
Hamiltonian function of (5.3) is expressed as

H(t, y, u, λ) = w1u
2
1 + w2u

2
2 + A1ih + A2Qh + θ1B1

+θ2B2 + θ3B3 + θ4B4 + θ5B5

+{� + αM + ρVh + δ0 (1 − p1) Qh + δ1Rh

−
(

(1 − u2) p1β Ih
Sh + Vh + Qh + Ih + Rh

+ u1 + τ + μ

)

Sh

}

θ1

+
{

u1Sh + u1Rh −
(

(1 − ε) (1 − u2) p1β Ih
Sh + Vh + Qh + Ih + Rh

+ρ + μ) Vh} θ2

+
{

(Sh + (1 − ε) Vh) (1 − u2) p1β Ih
Sh + Vh + Qh + Ih + Rh

− (θ + δ0 (1 − p1) + μ) Qh} θ3

+{θQh − (γ + σ + μ) Ih} θ4 (5.4)

+{γ Ih + τ Sh − (u1 + δ1 + μ) Rh} θ5 (5.5)

5.3 Hamiltonian partial derivative for obtaining the
adjoint variables in respect to each state
variables

In respect to the respective control variables (u1, u2), the
optimality equations are gotten through a partial differentia-
tion of the Hamiltonian function H. The adjoint equation θ ′
in time derivative is gotten by considering the non-positive

123



Optimal control of the coronavirus pandemic with both pharmaceutical and non-pharmaceutical...

US Italy China South Africa Nigeria

Countries

Lo
g 

of
 N

um
be

r o
f P

er
so

ns

0
10

20
30

40
Cum. Infected
Active cases
Recovery
Death
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of selected countries
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partial differentiation of H in respect to state variables y(t)
model so that θ ′ = −H.
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Fig. 13 Scatter plot of confirmed cases of selected countries
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Theorem 3 There exist a set (u∗
1, u

∗
2) of an optimal control

and their consequential state solutions S∗
h , V

∗
h , Q∗

h, I
∗
h and
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R∗
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with {λi (T ) f or i = 1, 2, ..., 5} = 0 transversality condi-
tions, and the control variable (u∗

1, u
∗
2), satisfies the following

optimality conditions:

u∗
1 = min

{
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0, − θ2Rh − Rhθ5 − Shθ1 + θ2Sh
2w1
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(5.12)

Proof Consider the optimal control u∗ = (u∗
1, u

∗
2) and

S∗
h , V

∗
h , Q∗

h, I
∗
h , and R∗

h is the respective state variablemodel.
Using thePontryagin’sMaximumPrinciple, adjoint variables
are satisfied as:

dθ1
dt
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∂Sh
, θ1(t f ) = 0

dθ2
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∂Vh
, θ2(t f ) = 0
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, θ3(t f ) = 0

dθ4
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∂ Ih
, θ4(t f ) = 0 (5.13)

dθ5
dt

= − ∂H

∂Rh
, θ5(t f ) = 0 (5.14)

with θi (t f ) = 0, for i = 1, 2, ...5 transversality conditions.
Therefore, at the optimal controls u1 and u2, the adjoint sys-
tem is determined and the respective state variables model
Sh, Vh, Qh, Ih, Rh is as given by
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with {θi (T ) f or i = 1, 2, 3, .., 5} = 0 transversality con-
ditions, and the optimal controls u∗

1, u
∗
2 characterized, the

optimality equations follow the conditions:

∂H

∂u1
= ∂H

∂u2
= 0 (5.16)

subject to (5.16), the optimality condition gives the control
Lebesque measurable set

θ = {0 ≤ ui (t) ≤ 1, for i = 1, 2 and t ∈ [0, T ]} ,

where the control variables u1, u2 are measurable functions
expressed as

∂H
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= − θ2Rh − Rhθ5 − Shθ1 + θ2Sh

2w1
∂H

∂u2
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(5.17)
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, 1
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(5.18)

Figure 17 shows that our model fitted well with the selected
countries data (daily cumulative number of reported cases).

6 Discussion

We used selected countries, confirmed cumulative cases in
time series for the mortality data, recovered and infected
cases obtained from the 22nd of January to the 20th of
December 2021 by the Center for Systems Science and
Engineering at Johns Hopkins University (2021) [54], to
standardize the initial conditions of the model, the infective
contact rate, β, and other parameter values in Table 2 con-
sidered as an explicit time function. Parameter fitting was
established for the least squares nonlinear algorithm imple-
mentation in R software.

In this study, Fig. 3 depicts that compliance to social
distancing in the USA drastically reduced the number of
quarantined humans from February 20 to March 01, 2020
(days 30–40), when compared with the effect of non-
compliance that occurred from January 22 to February 19,
2020 (day 1–29). The number of quarantined continued to
decrease up until December 20, 2021, which is the 705 and
last day of the analyzed data. This may be an indication of
extensive efforts put in place by scholars to comprehend the
bases of the virus and the adherent to the precautionary mea-
sures and guides put in place by decision makers. Figure
3 (lower left) also takes similar pattern with Fig. 3 (upper
right), which indicates that the compliance of social distanc-
ing influences the number of infected humans after day 30.
Our findings also showed, Fig. 3 (lower right), that the rate
of social distancing compliance raises the recovery rate of
infected humans in the USA. The analysis also revealed that
the rate of human recovery started decreasing drastically after
February 20, 2020 (after day 30), which may be as a result
of reduction in compliance with social distancing. It is likely
that the awareness of reduction in the number of quarantine
led humans to relax in their observation of the social dis-
tance precaution. Also, this may be due to the development
of another opportunistic illness from the virus.

We investigated the impact of social distancing on
COVID-19 in Italy within January 22 to December 20, 2021
(day zero to 705), as shown in Fig. 4 (upper right and lower
left); our results show that the implementation and compli-
ance of social distance reduce the number of quarantines,
and the rate of infected humans in Italy increases. This
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Fig. 15 Fitting the cumulative number of reported cases of Selected Countries

approach of social distancing also influenced the recovery
rate of infected humans as shown in Fig. 4 (lower right),
although with reduction in the recovery rate after day 30 of
compliance. This may also be an indication of the people’s
negligence to social distancing or increase in the number of
opportunistic diseases caused by COVID-19 infection.

In South Africa, as depicted in our findings, Fig. 5 (upper
right) shows that all the rate of social distancing compliance
totally decreased infected quarantined individual numbers.
Also the number of infected humans totally reduced as
shown in Fig. 5 (lower left). The findings depicted that
the compliance of the people to social distancing ham-
pered and decreased the number of both the quarantined
and infected humans. And as shown in Fig. 5 (lower right),
social distancing also influenced the rate of human recovery
from COVID-19, but the reduction in the compliance and
adherence to the social distancing approach in South Africa
gradually reduced the recovery rate.

In Nigeria, the influence of social distancingwas observed
in the number of quarantined and infected humans, as shown

in Fig. 6 (upper right and lower left), respectively. It was
discovered that compliance with social distancing approach
declined the number of quarantined and COVID-19-infected
humans, which showed that the approach really worked in
containing the virus. On the number of recovered humans,
it was observed, Fig. 6 (lower right), that compliance with
social distancing regulation initially increased, but later
decreased from February 20, 2020 (after day 30), which may
be as a result of reduction in adherence to the regulation.

Figure 15 presents that the model is well fitted with the
selected countries data (cumulative daily reported). Figure 17
(uppermost left) depicts that daily reported cases of COVID-
19-infected individuals decrease but may not be eradicated
without control, but Fig. 17 (uppermost right) shows that it
may be eradicated with optimal control of both physical and
vaccination. The blue line approaches the horizontal axis but
does not touch it (asymptotic), but the pink line touched the
horizontal line after some days. This shows that with optimal
control the infected individuals can decrease faster to zero as
time increases. Figure 17 (lower left) also depicts that vac-
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Fig. 16 Projection of number of active cases of Selected Countries

cinated individuals decrease fast with time without control.
However, Fig. 17 (lower right) shows that with optimal con-
trol of vaccination consumption, the vaccinated individual
decreases slowly (lower right). This implies that when opti-
mal control is enforced, vaccinated individuals recorded per
day are more than when it is without control. Figure 18 (left)
shows that decrease quarantine individuals decreases slowly
without control, but Fig. 18 (right) shows that when opti-
mal control of social distance and vaccination is enforced,
quarantine individuals decrease faster with time. It should
be noted that infected individuals and quarantine individuals
decrease with time with the level of improvement in medi-
cal facilities, but it will decrease faster with optimal control.
On the other hand, individuals vaccinated are expected to
increase and then begin to decrease slowly when optimal
control is enforced, but if optimal control is not enforced, the
number of individuals vaccinated will decrease fast. People
are not willing to be vaccinated, but with optimal control,
more people will be vaccinated.

7 Conclusion

The entire world is recently faced with devastating novel
pandemic COVID-19 (coronavirus) that appeared inWuhan,
China, in December 2019. The fatal COVID-19 pandemic
spreads to over 215 countries, with over 5.5 million con-
firmed cases and 347,379 total global deaths, and over 2.3
million recovery recorded so far. There is no effective or
secure vaccine against COVID-19. Also, there are no pro-
tected and cogent antiviral drugs. Futhermore, to curb and
mitigate against COVID-19, there are total compliance mea-
sures, such as physical distancing (lockdownof cities, closure
of worship places, schools, malls, and other public gath-
ering), isolation of suspected or confirmed cases, contact
tracing, quarantining of established cases, and the public use
of face masks. In this article, a new mathematical model
formulated for the analysis with numerical simulation for
a better understanding of the transmission dynamics and
COVID-19 control in selected countries.
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Fig. 17 Effects of control strategies on the optimal control COVID-19 model

Fig. 18 Effects of control strategies on the optimal control COVID-19 model

Generally, the present study formulated a model by paramet
rizing COVID-19 data for the selected countries and their
populations. The model was used to evaluate the influence
of compliance (physical distancing) as intervention strategy.
Some fundamental findings of the study are:

• This work is on physical distancing and other con-
trol policies as a means of non-pharmaceutical and

also included pharmaceutical intervention. Our model is
designed to prevent re-occurrence of different variants of
the COVID-19 pandemic even if there are known vac-
cines.

• In this research, we have used statistical methods in esti-
mating parameters of a mathematical dynamic model to
adequately depict the real system under study, rather than
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just assuming values for the parameters, which might not
depict the real system under study.

• We have also shown how a parameter, which is the rate
of compliance with social distance practice, can be used
to flatten the curve in real situations.

• In some countries of the world, the fear of contracting
COVID-19 is now reducing because the curve is becom-
ing flat, while the fear of collapsing the economy that
has been built over the years is now increasing. Trying
to balance not being infected with the virus and at the
same time helping the poor state of the economy that is
already threatened by the coronavirus is the aim of any
responsible government. Therefore, it is necessary that
the curve is flattened and that economies re-open as soon
as possible.

• One of the ways to flatten the curve is through strict com-
pliancewith social (physical) distancing policy. Themore
the compliance level, the earlier the curve is flattened and
the earlier the economy is re-opened.

• This research has used empirical results (real data) to
show how compliance with social (physical) distancing
can help in flattening the curve.

• We, hence, recommend strict social (physical) distancing
policy by the government of countries already affected by
the virus to quickly flatten the curve for safe re-opening
of the economy in the nearest future

• Even if the economy is re-opened in the countries where
the curves are already flattening, it is recommended that
they still maintain the recommended physical distance of
1 meter, so that a second phase of the pandemic will not
reoccur.
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Appendix

Model parameter estimation

Themodel parameters are estimated from the real-time series
and demographic data of the selected countries, using some
simple estimation formula and least square estimation (LSE)
techniques.

The natural death rate, μ, is estimated by

μ̂ = 1

μ0
;μ0 > 0

whereμ0 is the life expectancy of a country before the break-
out ofCOVID-19gotten fromdemographic data of individual
countries.

Equation (2.5) can be written such that COVID-19-
induced death rate σ can be estimated from it as

σ̂

T∑

t=1

It =
T∑

t=1

D
′
t

where D
′
t is the change in COVID-19-induced death reported

per day by Center for Disease Control (CDC) in the country,
It is the confirmed laboratory reported cases per day (infected
compartment), and t , (t = 1, 2, ..., T ) represents time mea-
sured in days, T = 705 is the number of days covered in the
study, from 22nd January 2020 to 20th December 2021. This
shows that out of infected individuals, howmany individuals
died of COVID-19. This rate will be zero at disease-free, but
when there is disease, this rate increases as the number of
death increases. It is always less that 1, since I > D. It is a
fraction of infected individuals that are death.

The recovery rate γ for infectious individuals (I) to recov-
ery class (R) is given by

γ̂

T∑

t=1

Rt =
T∑

t=1

It
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where Rt is the reported recovered individuals fromCOVID-
19 per day. The recovery rate γ is a percentage of infected
compartment who recovered.

FromEq. (2.3) at steady state, it is easy to see that the quar-
antine compartment is directly proportional to the infected
compartment with k constant of proportionality, such that

k̂ = μ̂ + σ̂ + γ̂

θ̂
; θ̂ > 0

The value of k can easily be gotten from data using the rela-
tionshipQt = k̂ It byLSE, and thevalueof θ canbe estimated
easily.

Rate at which recovered individuals (R) losses immunity
and progress to susceptible class (S) denoted by δ1 is esti-
mated by

δ̂1

T∑

t=1

St =
T∑

t=1

Rt

It should be noted that rate δ̂1 is always less than γ̂ at any
time t since St > It .

At steady state, Eq. (2.4) can be written such that τ can
be derived from it as

τ̂

T∑

t=1

St = (μ̂ + δ̂1)

T∑

t=1

Rt − γ̂

T∑

t=1

It

At steady state, Eq. (2.2) can be written as

T∑

t=1

St = [μ̂ + θ̂ + δ0(1 − p1)]
λ

T∑

t=1

Qt

Every other parameters are estimated from the data, follow-
ing the relationship between the variables at steady state.
Real-time series data collected on a daily basis (equal time
sequence) for some days are used for estimating the parame-
ters of the dynamic COVID-19 mathematical model using
statistical estimation techniques. The parameters are esti-
mated from data using least square techniques. The 95%
confidence interval (CI) of each parameter is fitted using
the parameter estimate plus or minus an error bound. The
error bound is 1.96 times the standard error of estimate.
Some of the parameters are estimated using known static
formulas, while some are fitted using stochastic models.
Some important parameters are variedwithin its possible val-
ues and some within their confidence limits in the dynamic
modeling, such as rate of compliance with social distance
practice. This is possible, since all the parameters and vari-
ables are related in one way or the other, either linearly or
nonlinearly. The real data used, which are known variables,
are data on laboratory-confirmed COVID-19 reported cases,

Table 4 COVID-19 active, recovered, death, and cum. infected cases

Countries Active Recovered Death Cum. infected

US 669,903 72,329 42,094 784,326

Spain 98,771 80,587 20,852 200,210

Italy 108,237 48,877 24,114 181,228

France 97,601 37,409 20,265 155,275

Germany 50,703 91,500 4,862 147,065

Turkey 75,410 13,430 2,140 90,980

China 1,436 77,745 4,636 83,817

Iran 19,023 59,273 5,209 83,505

Brazil 16,026 22,130 2,587 40,743

Belgium 25,260 8,895 5,828 39,983

Canada 23„373 12,543 1,726 37,642

Switzerland 7,915 18,600 1,429 27,944

South Africa 2,187 1,055 58 3,300

Nigeria 455 188 22 665

Mean 85,450 38,897 9,702 134,049

Standard Dev. 172,688 32,244 12,415 198,069

Maximum 669,903 91,500 42,094 784,326

Minimum 455 188 22 665

I (t) for the selected countries, recovered cases R(t) and
total deaths D(t). The quarantine class, Q(t), are estimated
from the model based on their relationship with known vari-
ables (I (t), R(t) and D(t)). The susceptible class, S(t), are
estimated from the country’s population, N (t) and the rela-
tionship with known variables (I (t), R(t) and D(t)). It is
assumed that all individuals in a country selected are suscep-
tible, if they are not infected. So that N (t) = S(t) + Q(t) +
I (t) + R(t) + D(t). This relationship made it possible to
estimate the susceptible class.

COVID-19 exploratory data analysis
of selected countries

In statistics, exploratory data analysis (EDA) is an approach
to analyzing data sets to summarize their main characteris-
tics, often with visual methods [53,55]. A statistical model
can be used or not, but primarily EDA is for seeing the
story the data can tell us beyond the inferences (modeling
or hypothesis testing). EDA will expose the hidden features
inherent in a data dataset [56,57]. [58,59] promoted EDA and
mentioned that statisticians have placed too much emphasis
on inference (statistical hypothesis testing, that is, confirma-
tory data analysis), so, more emphasis needed to be placed
on using data to suggest hypotheses to test. In particular, he
held that confusing the two types of analyses and employ-
ing them on the same set of data can lead to systematic bias
owing to the issues inherent in testing hypotheses suggested
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by the data. So, EDA would help to identify the best model
to be fitted and the best hypothesis to be tested.
In this research, four countries are selected from 15 countries
for study. These countries are USA, Italy, South African, and
Nigeria. The data collected on these countries are compared
with that of China using different EDA plots such as multiple
timeplot, bar plots, histogramwith kernel density curves, box
plots, QQ plots, and scatter plots. These plots will help tell
the story behind each variable considered for the countries
under study. Actual values are used in most cases while in
few occasion log of the actual values were taken for better
comparison.
Table 4 shows that as at April 20, 2020, USA has the high-
est COVID-19-confirmed laboratory cases (cum. infected)
among the selected countries of the world, followed by Spain
then Italy. The figure of USA and Spain alone are more than
the total of the rest 13 countries under study. USA has the
highest active cases followed by Italy, then Spain. Germany,
Spain, and China in that order have the highest recovered
cases among the selected countries as at the time of this
report. USA, Italy, Spain in that order recorded the high-
est COVID-19-induced deaths among the selected countries
for the period under review. The standard deviation and range
(maximum - minimum) show that the incident of COVID-19
is very high in some countries and very low in some other
countries making the variability to be very high. As at the
time of this report, South Africa and Nigeria both in Africa
have the lowest confirmed cases of 3,300 and 665, respec-
tively.All the countries selected outsideAfrica havewell over
25,000 confirmed cases in the first 705 days of reporting the
virus.
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