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Abstract

Skilful flood forecasts have the potential to inform preparedness actions across

scales, from smallholder farmers through to humanitarian actors, but require

verification first to ensure such early warning information is robust. However,

verification efforts in data-scarce regions are limited to only a few sparse loca-

tions at pre-existing river gauges. Hence, alternative data sources are urgently

needed to enhance flood forecast verification to better guide preparedness

actions. In this study, we assess the usefulness of less conventional data such

as flood impact data for verifying flood forecasts compared with river-gauge

observations in Uganda and Kenya. The flood impact data contains semi-

quantitative and qualitative information on the location and number of

reported flood events derived from five different data repositories (Dartmouth

Flood Observatory, DesInventar, Emergency Events Database, GHB, and local)

over the 2007–2018 period. In addition, river-gauge observations from stations

located within the affected districts and counties are used as a reference for

verification of flood forecasts from the Global Flood Awareness System. Our

results reveal both the potential and the challenges of using impact data to

improve flood forecast verification in data-scarce regions. From these, we pro-

vide a set of recommendations for using impact data to support anticipatory

action planning.

KEYWORD S

disaster risk reduction, floods, forecast verification, humanitarian early action, impacts, non-
traditional verification data

1 | INTRODUCTION

Climate change, variability, and environmental changes
disproportionately affect the agricultural sector in Africa
with important implications for anticipatory action as
part of humanitarian response. In the agricultural sector,

these changes could force smallholder farmers who
depend on rain-fed crops or flood-recession agriculture to
significantly adjust their farm activities (Ficchì &
Stephens, 2019; Ochieng et al., 2016; Salack et al., 2015).
In Uganda, farmers need reliable and skilful information
on the rainy season onset and amount of rainfall, as well
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as flood occurrence, duration, magnitude, and severity
�1–2 months before the season onset to inform their cop-
ing strategies (Mitheu et al., 2022). Decision-makers and
humanitarian actors aiming to reduce risks and protect
livelihoods are also increasingly considering forecast
information to inform the early action mechanisms and
operational decisions (Coughlan De Perez et al., 2016;
Emerton et al., 2020; Hansen et al., 2019; Lopez
et al., 2020; Nidumolu et al., 2020). Given this, the skill of
any forecast information provided needs to be transpar-
ent and well understood if it is to inform preparedness
actions appropriately.

In the context of users' needs, forecasts should be
evaluated based on their potential to trigger early actions,
which can reduce expected losses if an extreme event
occurs (Lopez et al., 2020). The evaluation should also
consider the consequences of ‘acting in vain’, which are
particularly important in disaster risk reduction and
humanitarian actions (Coughlan De Perez et al., 2015).
Indeed, several studies have shown that verified and skil-
ful forecasts have the potential to improve preparedness
actions for both the agricultural and humanitarian sec-
tors (Coughlan De Perez et al., 2016; MacLeod
et al., 2021; Nidumolu et al., 2020; Nyadzi et al., 2019;
Paparrizos et al., 2020). However, this verification is car-
ried out only for regions with long-term historical hydro-
meteorological observations, typically from in situ sta-
tions such as river gauges. In forecast verification, these
observations are commonly known as conventional
observations (Marsigli et al., 2021).

In data-scarce regions, where conventional observa-
tions are limited (Coughlan De Perez et al., 2016; Ogutu
et al., 2017), less conventional verification data can be
derived from, for example, social media reports, citizen
volunteered information, impact/damage reports, and
insurance data. The resulting information can be used to
bridge the forecast verification gap through non-
traditional approaches as they provide a more direct rep-
resentation of the event (Marsigli et al., 2021). For exam-
ple, information from insurance databases (Bernet
et al., 2017; Cortès et al., 2018), as well as online tools
such as Google Trends and Twitter feeds (de Bruijn
et al., 2019; Thompson et al., 2022) have been used as ref-
erence information to evaluate the occurrence of floods.
Impact data have also been used with river-gauge obser-
vations to identify the magnitude of discharge that is
associated with flooding (Coughlan De Perez et al., 2016).
Notably, impact data offer an advantage in the verifica-
tion of forecast information, because they can be derived
from openly accessible data repositories containing quan-
titative and qualitative information across large spatial
areas that enable a better and direct representation of the
impacts of the extreme event. The use of impact data in

forecast verification can only be possible in areas with
exposure and vulnerability for the impact to be reported.

It is worth noting that global data repositories such as
the Emergency Events Database (EM-EM-DAT, 2020)
and the United Nations Disaster Inventory System
(DesInventar [DI]; UNISDR, 2018) are prone to biases
due to known limitations (Gall et al., 2009). These limita-
tions include under-reporting/over-reporting of the haz-
ards, aggregated spatial coverage, over-representation of
certain locations, and/or focus on the specific type(s) of
impacts. Furthermore, differences in the criteria for the
inclusion of events in the repositories may result in non-
uniformity in the estimates of the impacts reported in
each repository. In addition, if unverified, impact data
collection methods (e.g., from governments and media)
may lead to errors in the resulting information (Guha-
Sapir & Below, 2002). Despite these caveats, these data
repositories represent a potentially valuable source of less
conventional data for monitoring and verifying hazards.
For example, impact data can be integrated with other
geophysical parameters to sub-categorise flash floods
from the primary corresponding disaster type
(Kruczkiewicz, Bucherie, et al., 2021). Therefore, if the
limitations of impact data are appropriately understood,
with guidance on their interpretation and relevant rec-
ommendations, impact data can be improved to effec-
tively support anticipatory actions.

In this study, we assess the usefulness of flood impact
data to verify flood forecast information across Uganda
and Kenya compared with river-gauge observations. We
verify the river flood forecast from the Global Flood
Awareness System (GloFAS) of the Copernicus Emer-
gency Management Service (Harrigan et al., 2023) using
two reference observations. The river-gauge observations
and flood impact data were derived from several global
and national data repositories.

The study addresses two research questions:

1. How suitable are impact data for verifying flood fore-
casts compared to river-gauge observations?

2. Where river-gauge observations are limited or una-
vailable, how best can impact data be used to verify
flood forecasts and ensure anticipatory actions are
informed?

Through focussed case studies in two East African
countries, we investigate the non-traditional approach of
forecast verification using impact data relative to the tra-
ditional way of verification using river-gauge observa-
tions. Consequently, we provide recommendations on
how best impact data can be used in areas with no or lim-
ited river-gauge observations to increase confidence in
the use of forecast products in data-scarce regions.
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2 | CONTEXT

In this section, we describe the case study regions and
the datasets used for the analysis, that is, the GloFAS re-
forecast discharge data, river-gauge observations, and the
impact data from several data repositories.

2.1 | Case study regions

The Netherlands-based IKEA Foundation is supporting
the Uganda and Kenya Red Cross Societies (URCS and
KRCS, respectively) to develop early warning mecha-
nisms to prepare for floods through the Innovative
Approaches for Response Preparedness (IARP) project.
In Uganda, several high-risk areas were identified using
vulnerability and risk layers developed by the National
Emergency Operations and Coordination Centre
(NECOC), including a total of 15 districts, for the early
action protocol (EAP) development. These regions are
prone to flooding and waterlogging across the two rainy
seasons between May and November (April–May, Long
Rains; September–November, Short Rains). In Kenya,
flood-prone river basins including Tana, Nzoia, and Athi
are considered for the implementation of flood early
actions. Examples of early actions include community
awareness, distribution of cash and shelter kits, dissemi-
nation of early warning information among others (see
KRCS, 2021; URCS, 2021).

The case study regions in Uganda and Kenya were
selected based on locations with available river-gauge
observations. In Uganda, the districts of Katakwi and
Amuria on the Akokorio river (hereafter ‘Katakwi’), Tor-
oro (Butaleja), and Mbale (Bududa and Manafwa) on
Manafwa River (hereafter ‘Manafwa’), and Kiboga,
Mubende, and Hoima on the Mayanja River (hereafter
‘Mayanja’) are considered. In Kenya, the county of Tana-
river and Garissa on Tana River (hereafter ‘Tana’), Busia
and Siaya on Nzoia river (hereafter ‘Nzoia’), and Taita-
taveta and Kilifi on Athi river (hereafter ‘Athi’) have
been considered. Figure 1 shows the locations of the
river-gauge stations and the affected counties/district in
Kenya and Uganda, respectively.

2.2 | GloFAS flood forecasts

GloFAS is an operational global ensemble flood forecast-
ing system developed jointly between the European Com-
mission's Joint Research Centre (JRC), the European
Centre for Medium-Range Weather Forecasts (ECMWF),
and the University of Reading researchers (Alfieri
et al., 2013). The system provides probabilistic extended
range discharge forecasts for up to 45 days and seasonal
outlooks up to 4 months lead time (Emerton et al., 2018)
over the entire globe at a resolution of 0.1�. From GloFAS
v3.1 (current operational version), the LISFLOOD hydro-
logical model (van der Knijff et al., 2010) is forced by an

FIGURE 1 Flood occurrence maps for Kenya and Uganda show the study counties/districts and the river gauge locations. The map was

created using impact data collated from four different data repositories from 2007 to 2018. The colour scheme represents the number of years

out of the 12 years considered when floods occurred ranging from low (1–3 years), moderate (4–6 years), high (7–9 years), and very high

(10–12 years).
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ensemble of medium to extended range meteorological
forecasts from the ECMWF Integrated Forecast System to
produce 51 ensemble members of daily streamflow at var-
ious lead times. LISFLOOD has been calibrated using
daily streamflow data at over 1200 river basins worldwide
(Hirpa et al., 2018).

GloFAS v3.1 hydrological performance was evaluated
for the period 1979–2019 for over 1500 verification sta-
tions across the world using various verification metrics
(Kling Gupta Efficiency, Bias, variance, etc). Prudhomme
and Zsoter (2021) provide details on the hydrological
assessment methodology and further discussion on Glo-
FAS performance evaluation. GloFAS provides daily dis-
charge amounts [m3/s] from which probabilities of flood
threshold exceedance can be derived. For flood detection,
these forecasts time series are compared against a set of
flood thresholds that are derived from the same model
climatology (Zsoter et al., 2020) to avoid the impact of
systematic biases in the GloFAS climatology on flood
forecast probabilities. In this study, we use daily GloFAS
v3.1 reforecast discharge data from 2007 to 2018 extracted
for the gauge locations in Kenya and Uganda, respec-
tively (Figure 1).

2.3 | Flood thresholds

In the 30-day operational GloFAS forecast interface
(https://www.globalfloods.eu/), four different flood
return periods (2, 5, 10, and 20 years) are provided and
can be used as the thresholds for severe flood events. Zso-
ter et al. (2020) provide a detailed explanation of how
these return periods are computed using GloFAS ensem-
ble reforecasts. Furthermore, thresholds computed as
percentiles of the daily river flow time series can also be
used to define various hydrological conditions (e.g., high/
low river flows) and have been used by several authors to
evaluate forecasts from GloFAS or similar forecasting sys-
tems (see Alfieri et al., 2013; Arnal et al., 2018; Emerton
et al., 2018; MacLeod et al., 2021). For example, high per-
centiles (90th percentile or greater) have been used to
show a high likelihood of floods when the river flow at a
gauging station is above that percentile (MacLeod
et al., 2021). In the broad hydrological literature, the
notation for flow percentiles is not always consistent or
clear, so when percentiles are used, the definition needs
to be specified clearly.

In this study, we adopt the traditional definition of
percentiles used in statistics where a kth percentile (with
k in the range of 1–100) for a time series is the level
below which (or at which) a k percentage of values in its
distribution falls (the inclusive definition of percentile is
adopted). For example, a 90th percentile is equal to or

>90% of the river discharge recorded during the specified
period. In flood-related studies, a percentile flow can also
be referred to in terms of ‘percent exceedance’ to indicate
the percentage of time that the discharge value is likely
to be equalled or exceeded (see; Flow, Excedance and
Percentiles, 2023; National River Flow Archive, 2023).
Thus, in this study we use the 90th, 95th, and 99th per-
centile calculated from the re-forecast (all ensemble
members) or observed time series of daily discharge, cor-
responding to high-flow levels exceeded only by a minor
portion of the days in the data, that is,10%, 5%, and 1%
respectively.

Due to data availability, we followed a percentile-
based method to compute flood thresholds for forecast
verification similar to previous authors (e.g., Alfieri
et al., 2013; Arnal et al., 2018; Emerton et al., 2018;
MacLeod et al., 2021). The choice of using these thresh-
olds and not higher Return Periods (e.g., 5-year or
20-year return periods computed from annual maxima) is
motivated by the need for robust statistics, given the
short data periods available (2007–2018). For the fore-
casts, these thresholds are lead-time dependent (Zsoter
et al., 2020), that is, calculated from the reforecast time
series at each given lead time available.

2.4 | River-gauge observations

Observed point-based discharge time series for the river
gauges considered here were provided by the Department
of Water Resources Management (DWRM) in Uganda
and by the Kenya Water Authority (WRA) for Kenya.
The time series consists of daily discharge values over
long periods with all stations having at least 5 years of
daily discharge data over the study period. The river-
gauge observations corresponding to the period of the
impact data (2007–2018) have been used for the subse-
quent analysis.

2.5 | Flood impact data

Flood impact data have been used to extend our capabil-
ity to verify GloFAS flood forecasts beyond conventional
observations from sparse gauge networks. The flood
impact data contain semi-quantitative and qualitative
information on the location and number of reported
flood events derived from five different data repositories:
(1) Dartmouth Flood Observatory (DFO) Archive
(Brakenridge, 2015), (2) DI (UNISDR, 2018), (3) EM-
DAT (EM-DAT, 2020), (4) the Global Hazard Weekly
Bulletin (PHE, 2015), and (5) local sources (URCS,
KRCS, media, etc.) for the 2007–2018 period. These data

4 of 19 MITHEU ET AL.
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were collated for Uganda and Kenya for the study
regions (districts/counties) for further analysis. The char-
acteristics of these data repositories are summarised in
Table 1.

In an ideal situation, an impact would be defined as a
combination of the number of people affected and the
quantitative estimate of any loss of property and liveli-
hoods. However, the used repositories do not have
enough quantitative loss and damage information disag-
gregated to sub-national administrative units to enable
the quantification of impacts and the severity of the flood
events. We, therefore, consider the number of flood
events reported as a proxy to the impact with an assump-
tion that flood events that result in considerable impacts
would be reflected in the data repositories used. The
flood events are then classified as either 1 or 0 if the event
was reported or not, respectively. The assessment of the
number of flood events from the various sources, as well
as the overlap (events that are common across the reposi-
tories used here), would help understand which data
repository is used to identify the highest number of flood
events for each study location.

3 | METHODOLOGY

Here, we outline the comparative analysis of river-gauge
observations and impact data and the verification of Glo-
FAS flood forecasts using two reference data sets through
a set of skill scores. To assess the usefulness of flood
impact data in verifying flood forecasts, first, the ade-
quacy of the impact data in supplementing the river-
gauge observations is evaluated using Type I and Type II
error indices. Second, the flood forecast data are verified
using river discharge and impact data as reference, and
the verification outcomes based on the probability of
detection (POD) and false alarm ratio (FAR) are
compared.

3.1 | Comparison of river-gauge
observations and impact data

In this part of the analysis, we compare the river-gauge
observations and impact data. River-discharge value
(Q) that has the potential to cause flooding is defined
using the 90th and 95th percentile as the threshold, that
is, a flood event (binary) occurs when Q is above the
threshold, and it does not occur if Q is below the thresh-
old. The total flood events from impact data are derived
from the data repositories while considering the overlaps
using the timestamp to avoid duplication in the total
events. This means that an event that occurs across all

the data repositories for the same timestamp is consid-
ered one event. The total flood events from impact data
(binary) are then compared with river-gauge observations
(binary).

Here, we assess the consistency of impact data false
positive and false negative outcomes using a window of
7 days (from the day of the observed event up to 7 days
ahead) against the flood events picked from the river-
gauge observations. Using a 2 � 2 contingency table, the
false-positive outcome is used to compute the ‘Type I
error’ which represents the ratio of the flood events
detected by river-gauge observations with no impacts
divided by the total flood events (from gauge observa-
tions). Additionally, the false negative outcome is used to
compute ‘Type II error’ which represents the ratio of
flood events detected in the impact data and not by river-
gauge observations divided by the total number of flood
events (from impact data). We first compare the river-
gauge data (binary) with the impact data (binary) from
the various sources across the locations. Next, we com-
pare the river-gauge observations against impact data
from a single data repository to assess if impact data from
some repositories are better than others in detecting flood
events. Type I and II errors are calculated according to
the equations in Table 2.

3.2 | Flood forecast verification using
river-gauge observations and impact data

A set of skill scores were used to evaluate the occurrence
of forecasted floods from the GloFAS system against
river-gauge observations and impact data. The ability of
the forecast to discriminate between events and non-
events is commonly measured using skill metrics calcu-
lated from a 2 � 2 contingency table. Two skill scores
were used to quantify the occurrence of flood events
(Wilks, 2006): (1) POD or hit rate, which measures the
fraction of observed events that were correctly predicted
(perfect score of 1) and (2) FAR, which indicates the frac-
tion of the predicted events that did not occur (perfect
score of 0). Table 3 shows the equations used to calculate
the skill scores.

In this study, the verification of flood forecast events
is based on the need to provide reliable flood forecast
information to inform anticipatory actions taken by the
communities and humanitarian actors. The preferred ver-
ification outcome will therefore depend on the decision-
making strategies the actors are willing to take. For
example, humanitarian actors might need to decide if
actions should be taken based on any forecast probability
which might be costly due to the number of events but
would ensure reduced losses if the events materialise.
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The second alternative would be if actions should be
taken based on a forecast that shows a high likelihood of
event occurrence to minimise the expenses that would be
incurred if the actions turn out to be in vain (see Lopez
et al., 2020).

Various factors identified from the EAPs developed
by URCS and KRCS have been adopted in this study.
First, a flood forecast with a 60% chance of happening
triggers early actions. Hence, we consider forecasts that
indicate a forecast probability of 60% and above to corre-
spond to a flood forecast event, and below 60% to corre-
spond to a ‘no-flood’ event. Second, in the calculations
of events correctly forecasted, an action lifetime of
7 days, is considered. ‘Action lifetime’ is defined as the
length of time during which action will remain effective
in reducing impacts (Coughlan De Perez et al., 2016). In
forecast verification, the action lifetime is commonly
known as the ‘margin of error’ and it is used to give
more tolerance to the forecasts such that even if the fore-
cast is late but materialises within the duration of the
action lifetime, the actions will still be considered suc-
cessful. For example, if an action is taken and a flood
occurs up to 7 days after the forecasted date, this will
still be considered a ‘hit’ if the action lifetime is >7 days

(see Figure 2 for a visual description of the action life-
time and margin of error). Depending on the type of
action, the action lifetime can range from 7 to 90 days.
This can also vary depending on a specific country's flex-
ibility on the actions to take and the acceptable number
of times the stakeholders are willing to ‘act in vain’. For
Uganda and Kenya, the stakeholders set the probability
of ‘action in vain’ to 50%, indicated using the FAR.
From Figure 2, We have considered a margin of error of
5 days and action lifetime of 10 days. However, these
parameters can still vary depending on the type of
action.

Using distinct flood discharge thresholds (i.e., 90th
and 95th percentile) calculated from the GloFAS refore-
cast data and river-gauge observations, we verify flood
forecast using river-gauge observations and impact data
as a reference. This study was therefore not meant to
evaluate the hydrological performance of GloFAS (cali-
bration and validation of GloFAS time series) but to
assess the usefulness of the two reference datasets in fore-
casts verification. Using a 7 days-action lifetime and 60%
probability of flooding, we compute the differences in the
skill scores (POD and FAR) for forecast-observed data
and forecast-impact data pairs, respectively. Here, if the

TABLE 2 Type I and Type II error equations for the comparative analysis.

Index name Equation Score range Perfect score

Type I error (TI) Number of gauge observed flood events

withno impacts reported
Total number of flood events

from river gauge observations

0–1 0

Type II error (TII) Number of flood events detected by impact data,

with nogauge observations
Total number of flood events from impact data

0–1 0

TABLE 3 Skill scores used for the

verification of forecasts.
Skill score Equation Values range Perfect score

probability of detection (POD) POD¼ H
HþM

0–1 1

false alarm ratio (FAR) FAR¼ FA
HþFA

0–1 0

Abbreviations: FA, false alarms; H, Hits; M, Misses.

Ac�on life�me

Readiness
triggers

Ac�ons
triggered

Margin of Error
Event
occurs

Forecasted
�me

–5days –4days –3days –2days –1day +1day +2days +3days +4days +5days +6days +7days +8days +9days +10days

Forecast Lead �me

FIGURE 2 Visual representation of the action lifetime and margin of error based on early warning and action triggers.
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difference between the ‘POD observed’ and ‘POD
impact’ is negative and the FAR difference is positive,
impact data are more favourable in skill assessment than
river-gauge observations and vice versa. Additionally, if
the river- gauge observations or impact data (or both)
report a flood event for the same days as in the GloFAS
flood forecast (within the action lifetime of 7 days from
the warning), the reference data (observed or impact) are
favourable in skill assessments.

4 | RESULTS

4.1 | Impact data from the data
repositories

In Uganda, in two districts (Katakwi and Manafwa) the
reported impacts from the data repositories show a
higher number of events reported in 2007, 2010, 2011,
2012, and 2018 from DI and DFO as compared with other
years. However, the flood events for Mayanja from all the
data repositories across the years are low. Table 4 shows
the number of events across Uganda and the three loca-
tions from 2007 to 2018. The number of flood events from
each repository presented in Table 4 is independent, that
is, it does not consider any overlap across the
repositories.

The analysis of the number of flood events from mul-
tiple and single data repositories shows that in Katakwi
there are 434 flood events where DI recorded the highest
number of events at 36%, followed by DFO at 19%
(Table 5). Data collected across Katakwi by URCS also
provide a substantial contribution (14%) to the flood
events in the area. The overlap from multiple data reposi-
tories (EM-DAT, DI, and DFO) contributes to 11% of the
total flood events. In Manafwa from a total of 304 events,
the highest number of events are from single source DI
and overlap between EM-DAT and DFO, at 33% and 28%
respectively. EM-DAT alone contributes 14% of the total
events. In Mayanja, only two data repositories contribute
to the flood events. These are the DI at 23% and EM-DAT
at 77% totalling 102 events.

In Kenya, many flood events were reported in 2007,
2010, 2011, 2013, 2015, and 2018 across the country and
the three study locations (see Table 4). EM-DAT also
records the highest number of flood events across the
three locations contrasting with findings in Uganda,
whereas DI reported the lowest. For example, in Nzoia
EM-DAT represents 69% of the total flood events, local
sources contribute 12%, whereas DI covers 6%. The over-
laps between the various sources contribute marginally
across the locations. For example, EM-DAT and DI
together contribute <1% in Tana, 3% in Nzoia, and 1% in
Athi (Table 5).

4.2 | How adequate are the impact data
in supplementing river-gauge observations
in identifying flood events?

The comparative analysis in the three locations in Uganda
using combined impact data from the various data reposi-
tories and observed gauge data show varied results across
locations and thresholds. For example, in Katakwi
(Figure 3a) by using the 90th percentile from the river-
gauge observations, the impact data capture 60% of all
gauged flood events, but 42% of the reported flood events
from the impact data do not correspond to flows above
the 90th percentile threshold. This could mean that either
the threshold is too high, with lower flows still causing
impacts or the impacts reported were a result of another
form of flooding like flash floods or waterlogging from
heavy rainfall. In Manafwa and Mayanja (Figure 3b,c),
Type I and Type II errors across the thresholds are high
(above 0.5) which could mean that the quality and quan-
tity of available impact data for these locations were not
adequate (Type I), and the impacts reported were not as a
result of riverine flooding (Type II).

The comparative analysis shows a high Type I error
across the 90th and 95th percentile in the Kenyan loca-
tions. This means that though the observations indicate
flood events, there were no impact data to correspond to
these events or the quality of the available impact data
was not good enough. On the other hand, the Type II
error is also high across the locations, suggesting that
impacts reported resulted from different forms of flood-
ing, such as flash floods. For example, in Tana at the
90th percentile, impact data capture only 40% of all
gauged flood events, but half of the reported flood events
do not correspond to flows above the 90th percentile.
Figure 4a–c shows the comparative analysis across the
thresholds for Tana, Nzoia, and Athi respectively.

The analysis using a single data repository shows an
increase in Type I error in all the locations in Kenya and
Uganda (Figure 5a,b). For example, in Katakwi using DI
alone results in a Type I error of 0.59 as compared to a
Type I error of 0.39 while using four data repositories
(DI, EM-DAT, local, and DFO). In Tana, EM-DAT results
in a Type I error of 0.79 as compared to 0.61 while using
data from all the repositories. Type II error fluctuates
across the locations (Figure 5c,d). For example, at the
90th percentile, despite Nzoia having almost the same
number of flood events from EM-DAT and local sources,
Type II error is higher while using local sources as com-
pared to using EM-DAT (Figure 5d). This shows that at
the same (higher) threshold for example at (90th percen-
tile) more events are likely to be missed out (events fall-
ing below the threshold) from the local source which
takes into consideration more localised events as com-
pared to a high-impact data repository like EM-DAT. In
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other words, a data repository that considers a low
threshold for inclusion of the event in their database may
require a low threshold based on gauge observation to
correctly identify the flood events as compared to a data
repository that considers high threshold for inclusion.

4.3 | Where river-gauge observations are
limited or unavailable, how best can the
impact data be used to verify flood
forecasts and ensure anticipatory actions
are informed?

We plotted the difference between the forecast skill scores
(POD and FAR) obtained using the river-gauge observa-
tions and impact data (i.e., PODobserved�PODimpact and
FARobserved�FARimpact) as a reference for verifying flood

forecasts across all the locations and two percentile
thresholds to assess their potential in forecast verification
(Figure 6). The results show that impact data gives a
more favourable assessment of skill as compared to the
observed data at the 90th and 95th percentile across lead
times in Katakwi (i.e., PODimpact > PODobserved and
FARimpact < FARobserved). For other locations at a lead time
of up to 15 days, the impact data underestimate the Glo-
FAS skill in terms of POD and FAR. At longer lead times
(>15 days), Nzoia shows a good assessment of skill in
terms of POD. These outcomes can be associated with the
quantity and quality of the impact data that were avail-
able for most locations (except Katakwi and partly Nzoia)
which also corresponds to the findings in Section 4.2. The
highest difference in the POD of up to 0.4 is seen in May-
anja at the 90th percentile while other locations show a
difference of below 0.2. The FAR is however spread out

TABLE 5 Percent of the total number of flood events from multiple (overlaps) and single source data repositories for the study locations

in Uganda and Kenya.

Uganda Katakwi Manafwa Mayanja

Number of reports 434 304 102

Sources Percent of total events in each location

Single source contribution

DI 36.41 32.57 22.55

EM-DAT 1.38 13.82 77.45

DFO 18.89 12.5 0

Local sources (URCS) 13.59 0 0

GWHB 0.00 2.30 0

Overlaps

EM-DAT, DI, and DFO 11.06 4.28 0

EM-DAT and DFO 6.91 28.29 0

DI and DFO 8.29 5.59 0

URCS and DI 3.46 0.00 0

EM-DAT and GWHB 0.00 0.66 0

Kenya Nzoia Tana Athi

Number of reports
316 359 251

Sources

Single source contribution

EM-DAT 69.94 70.75 72.11

DI 6.33 3.34 3.19

Local sources 12.03 19.22 19.92

Overlaps

EM-DAT and DI 3.48 0.56 1.20

EM-DAT and local 6.01 5.85 3.19

EM-DAT, DI, and local 2.22 0.28 0.40

Note: The first two sources that represent the highest percentage over each district/county are highlighted in bold.
Abbreviations: DFO, Dartmouth Flood Observatory; DI, DesInventar; EM-DAT, Emergency Events Database.
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FIGURE 3 Comparative analysis of the impacts (all sources) and observed data at three percentile thresholds (80th, 90th, and 95th) of

daily river flows from the gauged stations for (a) Katakwi, (b) Manafwa, and (c) Mayanja in Uganda.

FIGURE 4 Comparative analysis of the impacts and observed data at three percentile thresholds (80th, 90th, and 95th) of daily river

flows from the gauged stations for (a) Tana, (b) Nzoia, and (c) Athi in Kenya.
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FIGURE 5 Type I and Type II error at 90th percentile for all data repositories (including overlaps) and single source data repositories

for (a) Type I in Uganda locations, (b) Type I in Kenya locations, (c) Type II Uganda locations, and (d) Type II Kenya locations. DI,

DesInventar; EM-DAT, Emergency Events Database.

FIGURE 6 Differences in POD and FAR for locations in Uganda (Katakwi, Manafwa, and Mayanja) and Kenya (Tana, Nzoia, and Athi)

across lead times at the 90th and 95th percentiles. FAR, false alarm ratio; POD, probability of detection.

12 of 19 MITHEU ET AL.

 1753318x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jfr3.12911 by U

niversity of R
eading, W

iley O
nline L

ibrary on [26/04/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



across locations with a change of about 0.5 in Mayanja
and Athi. POD and FAR graphs for the study locations at
90th and 95th percentile using river-gauge observations
and impact data are provided in Figure S1.

5 | DISCUSSION

Using less conventional data such as impact data in fore-
cast verification are gaining interest among researchers
and practitioners. However, these data sources, just like
hydro-meteorological data, are subject to errors and biases
(Wilby et al., 2017). Despite these shortcomings, the impact
data have the potential to ensure early warning systems are
robust. In this section, we discuss the findings and implica-
tions of using impact data to verify flood forecasts and the
assumptions that have been considered. First, we discuss
the available impact data in the East African countries
(Uganda and Kenya). Second, we highlight the adequacy of
the impact data compared with river-gauge observations
and how that may influence forecast verification. Last, we
highlight the potential and challenges of using impact data
to verify forecast information in data-scarce regions and
provide recommendations that can be useful in improving
the impact data to ensure effective early actions.

5.1 | What does the available impact
data from Uganda and Kenya tell us?

Among the four main data repositories used in this study,
DI had the highest number of flood events in Uganda
(Katakwi and Manafwa districts), whereas across Kenya
and the three counties, EM-DAT reports the highest num-
ber of flood events (Table 4). The differences can be asso-
ciated with the criteria used for the inclusion of impact
data in these repositories as well as the country-specific
regulations on the collection and systematic reporting of
impact data (Osuteye et al., 2017). For example, in
Katakwi, if we consider a specific period from 1 August
2007 to 31 October 2007, EM-DAT reported a total of
11 flood events while DI reported 9 flood events (all con-
sidering the 7-day window, Section 3.1). Among the
events, seven flood events overlap across the repositories
while EM-DAT has four distinct events and DI has two
distinct events. Therefore, using DI alone will result in
fewer (�4) flood events while using EM-DAT alone will
result in fewer (�2) flood events. This is just one example
and the differences in flood events across data repositories
might increase or decrease. Due to such differences, using
only one repository can lead to a bias in the outputs gen-
erated (e.g., underestimation of event frequency).

Although we disaggregated the impact data into dis-
tricts and counties, we only used the qualitative

information classified as impact/no impact to guide the
analysis. This is because there are no direct quantitative
loss estimates available for these locations useful in
understanding the severity of each flood event. Quantita-
tive estimates are usually reported as aggregated quanti-
ties across a region, rather than disaggregated quantities
for smaller geographical areas within the region
(Gall, 2015). For example, in EM-DAT, the 2007 flooding
between August and October that impacted different
parts of Uganda are combined as one record (Disaster
number 2007-0408; EM-DAT, 2020) with the quantified
impact on, for example, the ‘number of people affected’,
also aggregated. The insufficient reporting of quantitative
estimates in areas of small spatial coverage can limit the
analysis and affect the robustness of any conclusion, espe-
cially from a livelihood perspective (Osuteye et al., 2017).
In addition, these repositories have differences in the
parameters used for reporting. For example, EM-DAT
reports only one parameter of ‘number of people
affected’, whereas DI reports the same using two parame-
ters; ‘directly affected and indirectly affected’. As also
noted in Below et al. (2010), this hinders the direct quan-
titative comparison between the two data repositories.

5.2 | How adequate are the impact data
in identifying thresholds for impactful
river flooding and in verifying flood
forecasts?

Setting up early warning mechanisms for floods often
depends on the thresholds derived from river-gauge data
to identify the level at which the river discharge may
result in impactful flooding. In data-scarce regions,
impact data can help to determine such thresholds
(Coughlan De Perez et al., 2016) but this requires a large
number of good quality impact data to reduce the chances
of over-representation/under-representation of impacts
(Ranger et al., 2011). We have found that even within the
same country impact data are not consistently available
across all locations (Barabadi & Ayele, 2018), which may
lead to bias in the outputs. Our analysis shows that using
more than one source of impact data reduces the chances
of a Type I error or situation where flooding occurs but
impact data are not available. For example, although EM-
DAT contributes to over 69% of all impact reported in
Tana, Nzoia, and Athi respectively, using this repository
alone results in an increase in Type I error (flood
observed in gauged data but not reported) compared with
using all three repositories (EM-DAT, DI, Local;
Figure 5b). This can be associated with the inclusion cri-
teria for the various data repositories. For example, for a
repository like EM-DAT, only high-impact flood events
are represented leaving out low-impact flood events.
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We have found that the consistency between impact
data and river-gauge data varies markedly across the
thresholds, but the variability is location-dependent. For
example, in Katakwi, there is good correspondence
between the river-gauge observations and impact data at
the 90th percentile. This suggests impact data can be used
to identify river discharge critical thresholds at which
impactful flooding occurs. These findings are consistent
with scientific literature where impact data have been
successfully used to define flood thresholds. For example,
Young et al. (2021) used impact reports to determine the
rainfall thresholds that resulted in flooding in the urban
city of Alexandria, Egypt.

Although we used the percentile-based method to
identify flood events, we acknowledge that high-impact
events are generally higher than the 99th percentile
(MacLeod et al., 2021), but to ensure robustness of the
statistical analysis, we adopted the 90th and 95th percen-
tile thresholds as several previous authors did (e.g., Arnal
et al., 2018; MacLeod et al., 2021). These percentiles may
include low-impact flood events that are likely to affect
local limited areas (with relatively high frequency,
e.g., 5% of days over a year for the 95th percentile) but
are useful in cases where impact data is used in the verifi-
cation due to the differences in the inclusion criteria of
flood events in the various data repositories (see Table 1).
In some previous studies, even lower thresholds are used
because of data availability limitations, to ensure robust-
ness in the verification. For example, Arnal et al. (2018)
used terciles (33rd and 66th percentiles) of the simulated
streamflow for the verification of seasonal streamflow
forecasts and discussed the need to consider high thresh-
olds such as the 95th percentile if more data were avail-
able. We therefore recommend that further studies with
possible longer data periods available, should look at the
representativeness of results across flood thresholds
higher than the 99th percentile.

Other locations in Uganda and Kenya show an
increase in Type I (and Type II) error as the river flow
threshold decreases (increases). The increase in Type I
error can be related to the inadequacy or the low quality
of impact data used in this analysis, i.e. for both inade-
quate impact data (if the repository did not include an
observed event) and low-quality data (if the timestamp of
the impact data is incorrect) a false positive is produced.
Type II error could have resulted if impacts reported were
not because of riverine flooding but other subtypes of
flooding, and this can also be influenced by the inclusion
criteria which are specific to each data repository.
Although a repository like EM-DAT differentiates floods
using subtypes such as riverine and flash flooding, DI
does not include such subtypes. These subtypes would
help ensure that flood events are further categorised
before analysis to reduce the Type II error. In addition,

such differentiation can help in designing appropriate
preparedness and response interventions which vary
based on the sub-type of flooding (Nauman et al., 2021;
Paprotny et al., 2021). To further confirm the source of
increase in Type II error, data derived from satellite
imagery (e.g., Sentinel-1 and Sentinel-2) could be used to
identify if floods occurred as well as their spatial location
(with respect to rivers), which can help discriminate riv-
erine floods (Tarpanelli et al., 2022).

The differences in POD and FAR vary across the
study locations considered here. Except in Katakwi and
partly in Nzoia (>15 days lead time), where we get a
more favourable assessment of skill while using impact
data, other locations show that using impact data under-
estimate the GloFAS skill both in terms of POD and
FAR. Though the differences are minimal in the majority
of the locations, it still means that impact data cannot be
adequately used to verify flood forecasts in most loca-
tions, as highlighted previously by Gall (2015). However,
the available river-gauge observations and impact data
could be used to train the hydrological model used in the
GloFAS system through calibration and validation in spe-
cific locations that show poor detection of flood events.
In other words, the available historical impact data and
gauge observations can be used to assess the hydrological
skill of the GloFAS using scores such as Nash-Sutcliffe
efficiency which assesses temporal variability and agree-
ment between the modelled and observed data (see Teule
et al., 2020). Overall, being aware of uncertainties that
can result in using the available impact data can help
ensure the outputs are used appropriately in supporting
anticipatory actions.

5.3 | How best can the impact data be
used to verify flood forecasts in data-scarce
regions?

Our exploratory analysis has highlighted several factors
that are affecting the efficacy of impact data for verifying
flood forecasts in most of the study locations in Uganda
and Kenya. These are inadequacy of events records, poor
quality, and spatial resolution/granularity among others.
Therefore, using impact data may result in underestima-
tion of forecast skill, leading to reduced confidence in
using the forecast to support anticipatory actions. In
other words, if we use impact data to verify and it turns
out to be unwittingly underestimating the forecast skill,
we might discard a forecast that is good enough to sup-
port preparedness actions for vulnerable people. Never-
theless, positive results obtained for Katakwi in Uganda
and Nzoia in Kenya show that with some improvements,
the impact data could be used to determine critical
thresholds for flooding and inform the design of early
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warning mechanisms in data-scarce regions. For such
regions, the following improvements would increase the
usability of impact data.

5.3.1 | Characterising the gaps/uncertainties

The uncertainties in the impact data should be explicitly
stated, as well as the implications for the outputs, espe-
cially if the outputs are intended to inform actions. The
uncertainty around the estimate can be denoted using
standard error, which indicates how far the estimate is
from the mean. The standard error can be calculated by
dividing the standard deviation by the square root of the
sample size (Walker, 2018). From our analysis, the stan-
dard error in the FAR calculation varies from 0.02 to 0.05.
Therefore, if the recommended forecast FAR to trigger
humanitarian action is <0.5, using impact data will require
a FAR of <0.4 to minimise actions taken in vain. Continu-
ous operational evaluation of the forecasts is also required
in situations where real-time reference data are available.

5.3.2 | Combining databases

A combination of impact data from multiple data reposito-
ries should be explored especially if the data is scarce
(Barabadi & Ayele, 2018). This can help reduce the biases
and possibility of missed events in the reference datasets
for forecast verification, because of the differences in the
methods and criteria used in the compilation of the various
data repositories. For example, comparing river-gauge
observations with impact data from all repositories against
EM-DAT in Tana resulted in an improvement of the Type I
error from 0.8 to 0.6 (Figure 5b). However, the combination
should be carefully explored to avoid duplication of entries,
especially from repositories fed from the same primary
source or if there is a slight difference in the timestamp for
the same event. Some of these challenges of replication can
be handled by using a tolerance interval such that entries
that are within a certain interval are considered one event.
In this study, an interval of 7 days was used.

The combination should also consider the differences
in the indicators used in each repository. For example,
EM-DAT reports the ‘number of people affected’ as one
indicator while DI reports the same in two separate indi-
cators (i.e., ‘directly and indirectly affected’). In addition,
EM-DAT makes clear differentiations of the disaster type
and subtypes, such as riverine flood and flash flooding,
whereas DI does not have such differentiation. Such dif-
ferences make it challenging to combine and compare
the data and disaggregate further, for instance, if you
want to monitor only a subtype of the disaster. For exam-
ple, in our analysis, most Type II errors could have

resulted from impact data that were not necessarily from
riverine flooding.

Harmonising and differentiating these parameters and
clarifying their meanings would help minimise these diffi-
culties (Below et al., 2010). This can be done by ensuring
that these subtypes are indicated during the data collec-
tion process or by applying index-based approaches to dif-
ferentiate between the various disaster sub-types (see
Kruczkiewicz, Bucherie, et al., 2021). In addition, satellite
data (e.g., from Sentinel-1 and Sentinel-2) can be used
alongside the impacts reports to identify the nature and
extent of flooding as well as the spatial location which
can help in complementing the impact reports for future
applications in forecast verification. The usefulness of sat-
ellite images in assessing flood event types and extent has
already been demonstrated in several recent studies,
although also these datasets have their own current limi-
tations that should be taken into account (see Landuyt
et al., 2019; Notti et al., 2018; Tarpanelli et al., 2022).

5.3.3 | Harmonising primary data collection
and information management processes

Primary data collection process
primary data collection in most countries is done through
normal government procedures. This is mainly done
using the damage and needs assessment approach at the
local level and the collected data analysed at the national
level (see The International Bank for Reconstruction and
Development & The World Bank, 2010). If the collected
information show that impacts are considerable, the
country may decide to seek external support. In this case,
the United Nations Office for Coordination of Humani-
tarian Affairs (UN-OCHA) may coordinate more rapid
needs assessments to collect more information using
approaches such as the Multi-sector Initial Rapid Assess-
ment (MIRA) framework (Inter-Agency Standing
Committee, 2015). Countries can, however, use their own
guidelines for collecting the data. In Uganda, the Office
of the Prime Minister is tasked with the collection and
uploading of impact data in the DI. However, recent
interviews in Uganda noted that rapid response assess-
ments and collection of impact data are carried out by
various institutions, including the Office of the Prime
Minister, the Uganda Red Cross Society, the Humanitar-
ian Open Street mapping team, local NGOs, and the dis-
trict office, among others (personal communication,
October 2020). There is a need to harmonise the data col-
lection process through clear guidelines and dedicated
institutions to avoid the probability of competing reports
of unknown credibility (Guha-Sapir & Below, 2006).

Furthermore, impact reporting can benefit from
improved weather and river-gauge networks. Improving
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gauge networks can be strategized such that it is done
alongside the improvement on impact data collection
(Baddour & Douris, 2018). This can ensure improvement
in the flood forecasting systems by providing key inputs
for hydrological model calibration and forecast verifica-
tion, as well as for further impact reports verification.

Information management process
impact data collected through primary sources such as
in-country institutions are often uploaded to data reposi-
tories such as DI. Due to a lack of resources, most coun-
tries might not be uploading the collected information
regularly. Therefore, the impact data collected are held in
internal disaster management systems and managed by
the primary institutions. National data repositories could
be explored to ensure that all impact data collected in-
country is stored in a central in-country repository for
ease of accessibility.

5.3.4 | Impact data outside the official public
sources

A broader and more accurate collection of temporal and
geospatial data on disaster occurrence would ensure
improved risk estimations (Bakkensen et al., 2018). An
extended search of impact data available at the in-
country archives, for example, in private institutions, and
insurance companies, but not yet available in the open
repositories would therefore help improve the quantity
and detail level (spatial–temporal data) of the available
impact data. For example, a study by Smith and Katz
(2013) shows that a significant under-reporting of disaster
loss estimates can occur due to reliance on only public
sources because of their ease of accessibility.

5.3.5 | Use of new technologies

New technologies such as artificial intelligence can be
used to expand impact data (van den Homberg
et al., 2018). Initiatives to expand the impact data, for
example, through web scraping, text mining (Margutti &
van den Homberg, 2020), and application of earth obser-
vation data (Kruczkiewicz, McClain, et al., 2021; Nauman
et al., 2021) and social media platforms should be
explored. For example, social media platforms like Goo-
gle Trends and Twitter have shown promising results in
the detection and reporting of flood events (de Bruijn
et al., 2019; Rossi et al., 2018; Thompson et al., 2022). In
addition, an ongoing study by van den Homberg et al.
(2022) has shown that flood impact data generated from
news articles can complement data from global reposito-
ries such as DI both geographically and temporally,

improving the usefulness of the data. Ensuring that any
new data are interoperable with data from these reposito-
ries will require clear technical guidelines and protocols
(Wirtz et al., 2014) such as the WMO data standardisa-
tion initiative (see Baddour & Douris, 2018).

Overall, impact data represent an important source of
less conventional data for monitoring and improving early
warning and preparedness actions. There is also great
potential for improving these data quantity and quality
through strengthening in-country disaster monitoring
capabilities and ensuring standardised process of data col-
lection that captures all the relevant data features such as
flood extent, gauge level, contact information among others
are in place(Integrated Research on disaster risk, 2014).

6 | CONCLUSION

As the world faces an uncertain future due to climate var-
iability, environmental, and climate change, and an
increase in extreme hydrometeorological events, invest-
ing in early warning early action mechanisms can be an
effective way to prepare and adapt to these extreme
events. However, such an investment will require under-
standing how forecast information performs in detecting
these extreme events to ensure that anticipatory actions
are not taken in vain. While forecast verification has been
successful in regions where long-term hydro-
meteorological observations are available, this is very
challenging in data-scarce regions.

Verification of forecasts using non-traditional
approaches that use less conventional data would ensure
the development of these mechanisms even in locations
with scarce/no conventional observations. In this study,
we investigated the usefulness of flood impact data to ver-
ify flood forecasts. Our findings show that although exist-
ing impact data have shortcomings, they also have the
potential for flood event analysis and forecast verification
and can be used in regions with no long-term hydro-
meteorological observations. These impact data may, how-
ever, require improvement to enhance their utility and
make the forecast verification more acceptable and reli-
able. Among the recommendations outlined above, sup-
porting the national institutions to streamline impact data
collection, and expanding impact data using new technol-
ogies are of critical importance. Addressing these issues
will, however, require a recognition of the role that impact
data can play in verifying hydrometeorological forecasts
and in identifying trends in extreme events to inform risk
management. In addition, a collaborative effort among
international humanitarian actors, disaster management
institutions, the private sector, and local communities is
needed to ensure that quality impact data are collected
consistently and made available in near real-time.
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