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To much perseverance



Abstract

Resurgence has been shown to be a powerful and even necessary technique to under-

stand many physical system. The study of perturbative methods in general quantum

field theories is hard, but progress is often possible in reduced settings, such as integ-

rable models. In this thesis, we study resurgent effects in integrable deformations of

two-dimensional σ-models in two settings.

First, we study the integrable bi-Yang-Baxter deformation of the SU(2) principal

chiral model (PCM) and find finite action uniton and complex uniton solutions. Under

an adiabatic compactification on an S1, we obtain a quantum mechanical system with an

elliptic Lamé-like potential. We perform a perturbative calculation of the ground state

energy of this quantum mechanical system to large orders obtaining an asymptotic series.

Using the Borel-Padé technique, we determine that the locations of branch cuts in the

Borel plane match the values of the uniton and complex uniton actions. Therefore, we

can match the non-perturbative contributions to the energy with the uniton solutions

which fractionate upon adiabatic compactification. An off-shoot of the WKB analysis,

is to identify the quadratic differential of this deformed PCM with that of an N = 2

Seiberg-Witten theory. This can be done either as an Nf = 4 SU(2) theory or as an

elliptic SU(2) × SU(2) quiver theory. The mass parameters of the gauge theory are

given in terms of the bi-Yang-Baxter deformation parameters.

Second, we perform a perturbative expansion of the thermodynamic Bethe ansatz

(TBA) equations of the SU(N) λ-model with WZW level k in the presence of a chemical

potential. This is done with its exact S-matrix and the recently developed techniques

[1, 2] using a Wiener-Hopf decomposition, which involve a careful matching of bulk and

edge ansätze. We determine the asymptotic expansion of this series and compute its

renormalon ambiguities in the Borel plane. The analysis is supplemented by a parallel

solution of the TBA equations that results in a transseries. The transseries comes with

an ambiguity that is shown to precisely match the Borel ambiguity. It is shown that the

leading IR renormalon vanishes when k is a divisor of N .
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Foreword

The task of computing exactly the values of observables in an interacting theory is

typically, and certainly in the absence of simplifications provided by supersymmetry or

integrability, a difficult problem. Perturbation theory may be the only viable recourse

to this and indeed can be capable of making predictions of astonishing accuracy [3, 4].

However, a fundamental limitation of such approaches is that the resulting perturbative

series will often have a radius of convergence of zero. Commonly, we consider some

coupling constant z = g2, and perform perturbation theory around z ≈ 0 for some

observable O:

O(z) =

∞∑
n=0

anz
n , (1)

where an will go like n!A−n with A > 0 for a very general class of systems. In quantum

field theories, the origin of this can sometimes be anticipated from the factorial growth

of the number of Feynman diagrams with the order of perturbation theory. This was

first argued by Dyson [5], see also [6–8]. However, not only the number of Feynman

diagrams can cause divergences. Sometimes, a particular sequence of diagrams can be

identified that is responsible for a divergence. Such divergences are called renormalons

[9, 10]. If divergence of asymptotic series is such a common phenomenon, the question

arises what meaning – if any – should be ascribed to formal asymptotic perturbative

expansions?

Starting with pioneering work of Dingle, Bogomolny and Zinn-Justin [11–13], it

has become clear that actually far from being meaningless, a great deal of informa-

tion is actually deeply encoded in the asymptotic expansion. For instance, a growth

an = n!(A)−n indicates that the theory contains a non-perturbative object (instanton,

renormalon, uniton etc) that enters with an action Sinstanton = A
2 . In this scenario,

the use of Borel resummation of the perturbative series leads to ambiguities if A > 0.

Crucially however, this ambiguity can be precisely cancelled by the inclusion of a leading

order contribution arising from the non-perturbative saddle.

Now sub-leading, in 1
n , contributions to an encode information about fluctuations

around this non-perturbative saddle. With sufficient dedication one could then estab-

lish, from the perturbative saddle alone, that the perturbation series around the non-

perturbative saddle will itself typically be asymptotic with a growth indicative of further

non-perturbative sectors. Ambiguities in resummation here will be cancelled by a higher
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non-perturbative sector. These ideas are further explored for an audience not familiar

with high-energy physics in the Section “Resurgence for Laymen”. It is explained with

more mathematical depth in Chapter 1.

The cancellations behave in a very specific way. The perturbative sector saddle [0] is

void of any instantons, but receives contributions from instanton-anti-instanton events

[IĪ] and their higher order cousins [InĪn]. The single instanton [I] is to interact with

the members of its conjugacy class {[In+1Īn]}. This information is also often captured

using the “resurgence triangle” [14, 15]. Two instanton configurations that cancel each

other’s ambiguities are said to be in the same sector and are hence put in the same of

column of the resurgence triangle.

This leads to the idea of resurgence; that deeply encoded in the perturbative ex-

pansion lies all the non-perturbative information. Physical observables appropriately

combine contributions from the perturbative sector and relevant non-perturbative sec-

tors into a transseries in such a fashion that all ambiguities are cancelled. The relative

weighting of the contributions to the transseries can undergo discrete jumps as z is

varied - this is the Stokes jump phenomenon.

In the context of quantum mechanics, the interrelation between Borel resummation

and the Stokes phenomenon are crucial in the understanding of the WKB approximation.

The study of asymptotic series in this context commenced with the seminal work of

Bender and Wu [16] and was further expanded on by Voros [17] and Silverstone [18]. On

a higher level, Stokes jumps of ‘Voros symbols’ are encoded by the Delabaere-Dillinger-

Pham [19] formula. This information can be visualised by understanding the mutations

of Stokes graphs [20–23] (detailed in Sections 1.2.3 and 3.3.4). Algebraically, we can

capture this information using a Stokes automorphism.

However, modern physics has attempted to stretch the application of these techniques

to wider settings in QFTs. The celebrated work by Gaiotto, Moore and Neitzke [24,

25], connects the very same information to the wall-crossing phenomena in N = 2

four-dimensional gauge theories. The ideas of resurgence have by now been applied

beyond quantum mechanics, to include string theory, gauge theory, Kondo Problems,

hydrodynamics and matrix models [14, 26–41]. This sampling of works inevitably does

not do justice to the large body of work on this topic and we recommend the reader to

consult the review articles of [42–45] both for their pedagogical presentation and wider

bibliography.

It is the aim of this thesis to bring more models into the fold of resurgent analysis.

The setting of general QFT still proves to be a very hard one, and many of the papers

cited above employ some sort of reduction to a simpler system where more traction can

be gained. One area where a particularly high level of understanding has been achieved

is that of 2d integrable models, which shall be the theatre of this thesis. This field of

study is properly introduced in Chapter 2.

In Chapter 3, we consider a two parameter deformation of such an integrable model,

the bi-Yang-Baxter model, which is discussed at more length in Section 2.2. A technique

was developed by [46, 47] in which the 2d model is adiabatically reduced to a 1d quantum
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mechanics through a twisted boundary condition. We show that the 2d model exhibits

some finite action classical solutions called (complex) unitons. It is shown how a WKB

analysis of the 1d QM recovers the finite action of these unitons. This makes it tempting

to think of unitons as the 2d analogue of the 1d instantons. Moreover, we show how the

potential can be related to N = 2 Seiberg-Witten curves.

In Chapter 4 we take a different approach. We continue the work of [1, 2, 48,

49] (see also the recent papers [50–59]) and study the thermodynamic Bethe ansatz

(TBA) equations of the integrable models which depend on the exact S-matrix. We

study the scattering of a particular particle in the presence of a chemical potential.

Our model of choice here is the λ-deformed model which is discussed in Section 2.3.

This model is particularly interesting as it is asymptotically a conformal field theory

(CFT) and such models were not previously investigated in this context. In this model

we obtain a perturbative series through careful comparison of an ‘edge’ and a ‘bulk’

regime. We derive an asymptotic expansion of this series and find its ambiguities. A

separate, but related solution to the same problem was developed using Wiener-Hopf

decomposition techniques [49]. This alternative solution gives a transseries with a built-

in ambiguity. We perform this computation in the case of the λ-model and show that

the two ambiguities match. This mirrors the well-known ambiguity cancellation [12, 13]

in a 2d setting.
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Resurgence for Laymen

This Section is written for a wider, non-scientific audience to give a small teaser of what

this thesis is about. I will assume the reader is familiar with basic calculus (differentation

and integration of basic functions and basic algebraic manipulations), but no specific

technical knowledge is required.

First, I will introduce what perturbation theory is, followed by a discussion of per-

turbation theory in a physics context. I will then explain how perturbation theory in

a double well potential causes problems, before finishing off with a discussion of how

resurgence can alleviate the problem.

Perturbation Theory

Suppose you have an equation you know how to solve. For example,

x2 − 1 = 0 . (2)

This has the solutions x1 = 1 and x2 = −1, but we shall focus on the positive solution

here. Now, let’s suppose we have an equation that looks a lot like it, but has an extra

term, for example

x2 + ax− 1 = 0 . (3)

If you remember how to solve quadratic equation, then this still an equation we can

solve exactly. However, let’s for a moment forget about the quadratic formula. Instead,

we will assume that a is a very small number, like 1
100 . In that case, the Equation (3)

looks a lot like Equation (2).

The basic idea of perturbation theory is to exploit this similarity. We know that if

a = 0, then x = 1 is a solution to Equation (3). As such, we might expect that if a is

a very small number, that x = 1 is almost a solution to (3). Let’s try to be a bit more

systematic and propose

x1 = 1 +Xa . (4)

This is a guess of what the solution might look like, but we do not know yet what the

number X is going to be.1 We just know that if a is small, that x1 is very close to 1.

1Such an educated guess is in physics also called an ansatz, which is German for a beginning, or an
attempt.
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Let us substitute our guess (4) into (3):

x2 + ax− 1 = (1 +Xa)2 + a(1 +Xa)− 1

= 1 + 2Xa+X2a2 + a+Xa2 − 1

= a(2X + 1) + a2(X2 +X)

≈ (2X + 1)a .

(5)

In the calculation I have sorted the expression powers of a. I have done this because if

a is a very small number, then a2 is an even smaller. In the last line, I have thus done

something strange: I have removed the a2 term because it is smaller than the a term

and therefore not as important. If we now wish to solve x2 + ax− 1 = 0, we should set

2X + 1 = 0, which is satisfied by X = − 1
2 . This gives us an approximate solution to

Equation (3):

x1 ≈ 1− 1

2
a . (6)

Let us now check how good our guess is. If you remember how to solve quadratic

Equations, like (3), you would find that

x1 = −a
2

+

√
1 +

a2

4
, x2 = −a

2
−
√

1 +
a2

4
. (7)

We will then use the special formula

√
1 + y = 1 +

1

2
y − 1

8
y2 +

1

16
y3 + . . .

≈ 1 +
1

2
y ,

(8)

for the case y = a2

4 . If we apply this to our exact solution (7), we get that

x1 = 1− a

2
+
a2

8
≈ 1− a

2
, (9)

which is exactly what we found in Equation (6)!

But what if I had wanted to make a better approximation? Well, we could have

gone back to Equation (4), and instead make a slightly more sophisticated guess x1 =

1 + Xa + Y a2. Because a2 is smaller than a, we call this term with Y sub-leading.

Because a2 is so much smaller, it does not contribute as much to the solution as the

term with X. However, we could still substitute it back into the solution (3). If we

would then look at the term proportional to a2, and set it to 0, we would find that

Y = 1
8 , as was predicted by Equation (9)!

To summarise, the basic approach of perturbation theory is

1. Start with a difficult equation that has a term in it which is very small.

2. Solve the difficult equation when the small term is completely gone. This should

hopefully be easier.

xii



3. Make a guess for the full solution as the sum of the solution of the previous step,

and a small correction.

4. Put the guess back into the difficult equation and find out precisely what the small

correction is.

5. Write down the approximate solution with the small correction.

The formula used in Equation (8) is a special case of a technique called the Taylor

series. We start with a function f(x) that is sufficiently nice2. Its nth derivative I will

denote as f (n)(x) ≡
(

d
dx

)n
f(x). If we want to calculate the function close to zero, that

is x ≈ 0, we have the formula

f(x) = f(0) + f ′(0)x+
1

2!
f ′′(0)x2 +

1

3!
f (3)(0)x3 + . . .+

1

n!
f (n)(0)xn + . . . , (10)

The formula (8) is the case f(y) =
√

1 + y for the Taylor series (10). It turns out,

that when we do perturbation theory to many orders, so we consider terms a, a2, a3, . . .,

the solution we find is precisely the Taylor series of the exact solution. The power of

perturbation theory is that we can use the technique in a lot of cases where the main

equation is too difficult. That is why we first consider it in the case where some part is

very small. However, if we consider more and more corrections, we will get closer and

closer to the real answer: the exact solution to the difficult problem.

Divergences

Unfortunately, this is not where the story of perturbation theory ends. It turns out that

for many problems in physics, making increasingly precise approximations causes certain

problems. A reason for this is that often we have to solve differential equations rather

than algebraic equations such as (2). A differential equation is an equation for a function

rather than for a number. Typically, the equation involves one or more derivatives of

the function that is being solved for. An example is d
dxy(x) = y(x) which has solution

y(x) = Aex, for any constant A.

Suppose we are calculating the solution of some differential equation using perturb-

ation theory, like we did with Equation (6), and the successive terms go like this:

x = 1 + a+ 2a2 + 6a3 + 24a4 + 120a5 + . . .+ n!an + . . . . (11)

Let us look at the quantity bn = n!an and how it grows as n becomes bigger, as it does

when we make more precise approximations. To do this, we compare consecutive terms:

bn+1

bn
=

(n+ 1)!an+1

n!an
= an . (12)

2‘sufficiently nice’ is what mathematicians say when they do not want to engage with details of
precise conditions.
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Figure 1: The harmonic oscillator potential V (x) = x2 is drawn is red, and the double
well potential V (x) = x2(1 − x/4)2 is drawn is blue. We see that the two potentials
share a minimum at x = 0, but the double well has a second minimum at x = 4.

We are assuming a is a small number, so for any fixed value of n, the quantity an is also

small. However, in principle we could make a lot of better approximations and then n

could be arbitrarily big. This would mean that bn+1 is a lot larger than bn. However,

if we want a better approximation to x, we had better hoped that bn is very small for

large n so that the extra approximations do not change the result. If the extra terms bn

at large n are sufficiently small, we would obtain a convergent sequence for x. However,

we have just argued that the sum (11) becomes large, therefore it is not convergent: it

is divergent.

An example where this problem occurs is when we study the ground state energy

of a quantum mechanical particle in a double well potential. This is described by the

Schrödinger equation, which is a differential equation. The ground state energy is simply

the scenario in which the particle has the least amount of energy possible. The double

well potential has been drawn in Figure 1, and shows two possible minima for the

particle. The ground state of a particle, where it has little energy, is determined such

that the particle is trapped in one of the two minima. A particle trapped in a potential

with just one minima (also drawn in Figure 1), also called the harmonic oscillator, is

easily solved. This is the base case of step 2 of the plan for perturbation theory outlined

above. We can then do the perturbation theory by considering the double well potential

as a small change compared to the single well potential.

However, the method is only partially successful because we obtain a divergent se-

quence similar to the one outlined above. The theory of resurgence has been developed

to remedy this problem. We will not go into mathematical detail here, but instead refer

to Chapter 1. However, we can give a sketch of where the solution lies. A classical

particle with low energy would be trapped in the well, as it would not have enough

energy to overcome the barrier separating the two minima. However, a quantum mech-

anical particle is not bound to these rules as strictly as it can exhibit quantum tunnelling.

This means that its wave function extends into regions where it is classically forbidden

because it does not have enough energy. As such, a quantum mechanical particle feels
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the existence of the second minimum more strongly. Even more, it can suddenly appear

in the other minimum. If a particle behaves like this, it is called an instanton.

It turns out that such instanton effect manifest in the system by virtue of an e−1/x-

function. This function is particularly nasty as it does not have a well-defined Taylor

series (10). Because our perturbation theory was meant to calculate the Taylor series,

it makes perfect sense that it would not be sensitive to e−1/x-like instanton effects! The

central claim of resurgence is that these instanton-like effects, which are conventionally

not picked up by perturbation theory, are still hiding somewhere in the series (11). The

price we have to pay, however, is that we can only find these instanton-like effect by com-

puting many terms (at least twenty or thirty, but ideally hundreds) of the perturbation

theory, which is difficult. However, using these instanton effects, we can also remedy

the apparent divergence of the perturbative series.

xv



Chapter 1

Introduction to Resurgence

This first Chapter shall serve to survey the landscape of resurgence and, secondly, will

be introducing some techniques to analyse asymptotic series. We will be expanding on

the qualitative introduction of resurgence in the foreword and fill in the mathematical

details. Reflecting the more mathematical nature of this Section, we shall sometimes be

using the theorem-lemma-proof style of writing.

In Section 1.1, we will start with reviewing the techniques of Borel transforms and

Borel re-summations which are at the centre of resurgent analysis. Section 1.2 is devoted

to the more physical setting of WKB approximations. This will show us a more geometric

picture of the problem with Stokes lines and saddle points. Section 1.3 expands on the

WKB approach by considering a particular type of WKB problem, the uniform WKB

which is well-studied [15]. In Section 1.4, we discuss a particular example, the Airy

equation, at length. In Section 1.5, we consider another physical example, the Sine-

Gordon equation, and demonstrate on a practical level the techniques discussed before.

1.1 Borel Techniques

As a starter let us recall some basic techniques developed first over a 100 hundred years

ago by Emile Borel [62]. The material is quite well-known, but, at the same time, it

is crucial for the remainder of the thesis. In fact, the exact examples discussed in this

Section shall prove relevant in real physical systems, such as those in Sections 4.2.5 and

3.3.3.

1.1.1 Borel Transformations

Let us set some conventions and write ϕ̃(z) for an asymptotic expansion around z =∞:

ϕ̃(z) =

∞∑
n=0

anz
−n−1. (1.1)

1



I will generally assume that an grows factorially. This means ϕ̃(z) is generically not

convergent and for the moment we shall think of it as a formal power series. The goal of

the resurgence programme is in fact to extract from this data a meaningful well-defined

function. The Borel transformations of ϕ̃(z) is defined as an expansion around ζ = 0:

ϕ̂(ζ) = B(ϕ̃(z)) =

∞∑
n=0

an
n!
ζn , (1.2)

with the same coefficients an.

Example 1. Consider the following asymptotic expansion for a ∈ R

ϕ̃(z) =

∞∑
n=0

Γ(n+ a)

Γ(a)An
z−n−1 =

∞∑
n=0

a(n)

An
z−n−1, (1.3)

where a(n) is the Pochhammer symbol. The Borel transformation is given by

ϕ̂(ζ) = B(ϕ̃(z)) =
1

(1− ζ/A)a
, (1.4)

which can be confirmed by Taylor expanding ϕ̂(ζ). We thus see that removing the

factorial growth of the asymptotic expansion has created a holomorphic function around

the origin. However, it does exhibit a singularity at ζ = A. If a is an integer we are

simply dealing with a pole. If a is not an integer, there is a branch cut singularity.

In this section, I will try to consistently denote asymptotic expansions as ϕ̃(z) and

their Borel transformation as ϕ̂(ζ). Firstly, we observe that the Borel transformation

is a linear operator on formal power series. Often we will need to understand how an

operation on a function ϕ̃(z) will translate to an operation on its Borel transform ϕ̂(ζ),

or the other way around. A good summary of this is found in Table 1 of Dorigoni [42].

The most important example is discussed in the following proposition:

Proposition 2. Taking the product of two functions ϕ̃1(z), ϕ̃2(z) corresponds to taking

the convolution of the Borel transforations. That is, if ϕ̃3(z) = ϕ̃1(z)ϕ̃2(z), then

ϕ̂3(ζ) = (ϕ̂1 ∗ ϕ̂2)(ζ) =

∫ ζ

0

dw ϕ̂1(w)ϕ̂2(ζ − w). (1.5)

Proof. Let the asymptotic expansions be given by

ϕ̃1(z) =

∞∑
n=0

anz
−n−1,

ϕ̃2(z) =

∞∑
n=0

bnz
−n−1.

(1.6)
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It follows that

ϕ̃1(z)ϕ̃2(z) =

∞∑
n=0

cnz
−n−1, cn =

∑
p+q=n−1

p,q≥0

aqbp. (1.7)

For the convolution we see that

(ϕ̂1 ∗ ϕ̂2)(z) =

∞∑
n,m≥0

anbm
n!m!

∫ ζ

0

dω ωn(ω − ζ)m

=

∞∑
n,m≥0

anbm
n!m!

B(n+ 1,m+ 1)ζn+m+1

=

∞∑
n,m≥0

anbm
(n+m)!

ζn+m+1

=

∞∑
n=0

cn
n!
ζn,

(1.8)

Here, the coefficients cn are given precisely by Equation (1.7), and we have used the

integral form of the Euler-Beta function 1 B(n,m) = Γ(n)Γ(m)
Γ(n+m) . We can thus conclude

that indeed

B(ϕ̃1ϕ̃2) = ϕ̂1 ∗ ϕ̂2 (1.10)

■

Among Borel transforms ϕ̂(ζ), the convolution product ∗ given by Equation (1.5)

plays an analogous role to the multiplication product among expansion ϕ̃(z). Therefore,

ϕ̃(z) is sometimes refereed to as living in the multiplicative model, and ϕ̂(ζ) as living

in the convolutive model. The precise algebraic structure of these models is further

discussed in [42, 45, 63].

1.1.2 Borel Resummations

Given an asymptotic expansion ϕ̃(z) and its Borel transform ϕ̂(ζ) = B(ϕ̃(z)), I will

define the Borel resummation as2

Sθϕ̃(z) =

∫ eiθ∞

0

ϕ̂(ζ)e−ζzdζ . (1.11)

The significance of the Borel resummation is demonstrated in the next Example.

Remark 3. Let us closely study what happens for S0ϕ̃(z) when we consider the expan-

1The Euler-Beta function can be given as an integral representation by

B(x, y) = z−x−y−1

∫ z

0
dw wy−1(z − w)x−1. (1.9)

2Essentially, if θ = 0, the Borel resummation is the Laplace transform of its Borel transformation.
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sions (1.1) and (1.2) for z →∞:

S0ϕ̃(z) =

∫ ∞

0

dζ ϕ̂(ζ)e−ζz

=

∞∑
n=0

∫ ∞

0

dζ
an
n!
ζne−ζz choose s = ζz

=

∞∑
n=0

an
n!
z−n−1

∫ ∞

0

ds sne−s

=

∞∑
n=0

an
n!
z−n−1Γ(n+ 1)

= ϕ̃(z) .

(1.12)

In other words, we retrieve the original expansion. However, although the original

expansion may be divergent, the Borel transform need not be, and its holomorphicity

in certain regions may tell us something about the analytic structure of ϕ̃(z).

The Borel resummations are well defined under the assumption that ϕ̂(ζ) is well

defined along the integration contour. This is the original motivation for introducing a

non-zero θ in Equation (1.11) as it allows to probe further into the complex plane of

the expansion parameter. If ϕ̂(ζ) has a singularity or a branch cut in the direction θ,

it may be advantageous to define lateral Borel resummation, that is, we shall integrate

just above and just below the singular direction:

Sθ± := Sθ±ϵ , (1.13)

where we take ϵ to be small. Of particular interest is the contour Sθ+ −Sθ− that lets us

study the discontinuity around the simple pole or branch cut. The next two examples

will form the core archetypes that will return in Chapters 3 and 4.

Example 4. Let us re-visit Example 1 and compute the discontinuity Sθ+−Sθ− . First,

we will write the Borel transform as ϕ̂ = exp[− log(1− ζ/A)a]. Observe that there is no

ambiguity,

ϕ̂(ζ + iϵ)− ϕ̂(ζ − iϵ) = 0 ,

if ζ < A. In the case ζ > A, we use the fact that for a positive real number x, the

logarithm has a discontinuity given by log(−x± iϵ) = log(x)± iπ which leads to

ϕ̂(ζ + iϵ)− ϕ̂(ζ − iϵ) = 2i(ζ/A− 1)−a sin(aπ) , ζ > A . (1.14)

This discontinuity vanishes for integer a because there is no branch cut in this case.
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Calculating the Borel resummation of this yields

(S+ − S−)ϕ̃(z) =

∫ ∞

0

[
ϕ̂(ζ + iϵ)− ϕ̂(ζ − iϵ)

]
e−zζ

=

∫ ∞

A

2i(ζ/A− 1)−a sin(aπ)dζ

= 2iAa sin(aπ)e−Az

∫ ∞

0

e−xzx−adx

=
2πi

Γ(a)
Aaz−1+ae−Az , a /∈ Z .

(1.15)

In the case that a = 1, we find that ϕ̂(ζ) has a simple pole. In this case we can evaluate

the later Borel resummation by selecting the residue. This leads to

(S+ − S−)ϕ̃(z) = 2πiAe−Az , (1.16)

which is incidentally the a = 1 case of Equation (1.15).

Example 5. Let us briefly discuss the case of a cut in the Borel plane on the negative

real axis. We start with a perturbative series for A > 0

ϕ̃(z) =

∞∑
n=0

Γ(n+ a)

Γ(a)(−A)n
z−n−1 , (1.17)

which has a Borel transform

ϕ̂(ζ) = B(ϕ̃(z)) =

∞∑
n=0

Γ(n+ a)

Γ(a)Γ(n+ 1)(−A)n
ζn = (1 + ζ/A)−a , (1.18)

that has a cut along ζ ∈ (−∞,−A). The Borel discontinuity across this cut is given by

ϕ̂(ζ − iϵ)− ϕ̂(ζ + iϵ) = 2i(−ζ/A− 1)−a sin(aπ) , ζ < −A . (1.19)

The borel re-summation of the contour of interest is thus given by

(Sπ+ϵ − Sπ−ϵ)ϕ̃(z) =

∫ −∞

0

[
ϕ̂(ζ − iϵ)− ϕ̂(ζ + iϵ)

]
e−ζ/zdζ

=
2πiAa

Γ(a)
(−z)−1+aeAz .

(1.20)

Remark 6. More generally, one may consider series that grow more wildly. A series is

called a q-Gevrey series if it grows like

ϕ̃(z) ∼
∞∑
k=0

(k!)qz−k (1.21)
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In that case we define a sum in the q-Borel plane by

ϕ̂(s)q ∼
∞∑
k=0

sk. (1.22)

The Borel resummation is obtained by applying q inverse Laplace transforms. The case

q = 1 retrieves the original Borel plane which has been explored above. However, it is

good to note that higher Gevrey-degree series may appear in physics. A paper by Caval-

canti [64] explores a set of diagrams obtained by concatenating cat eye diagrams in a

massless scalar λϕ4/4!-theory that give a (n!)3 renormalon contribution. By introducing

the k-Borel transform, constructed by dividing out (n!)k, we can say that the 3-Borel

transform has singularities, or that the expansion has singularities in the 3-Borel plane.

Remark 7. Suppose we have an asymptotic expansion ϕ̃(z), its Borel transformation

ϕ̂(ζ) which is singular in the direction θ and we want to evaluate (Sθ+ − Sθ−)ϕ̃(z).

However, let us assume we do not have a closed form for ϕ̂(ζ), either because the

expansion is not one that is known, or because it is difficult to compute the coefficients

an. This means that ϕ̂(ζ) is a polynomial, hence holomorphic which means that the

closed loop integral (Sθ+ − Sθ−)ϕ̃(z) is trivial. To combat this situation, it may be

advantageous to artificially introduce poles and approximate ϕ̂(ζ) =
∑n

k=0
ak

k! ζ
k by a

rational function

PDnϕ̂(ζ) :=

∑n/2
k=0 pkζ

k∑n/2
k=0 qkζ

k
, (1.23)

called the Padé Approximant3. We fix q0 = 1 while the other coefficients qk, pk are fixed

by requiring that in the Taylor series approximation4

PDnϕ̂(ζ)− ϕ̂(ζ) = O(ζn+1) . (1.24)

1.1.3 Stokes Automorphism

When the borel transformation has singularities along a direction θ, we expect jumps

as we cross this line. These effects may be conveniently captured by the lateral Borel

transformations (1.13). I will repackage this in terms of the Stokes automorphism Sθ,

which is defined by the following equation:

Sθ+ = Sθ− ◦ (Sθ). (1.25)

3Really what I have presented is the diagonal Padé Approximant, which is where the orders of the
polynomials in the denominator and the numerator are equal. In general, one may use a set-up in which
these are not the same.

4One particularly pleasing behaviour of the Padé-approximant is that applying it to the Taylor
approximation of a rational polynomial, returns the original rational polynomial. Concretely, if

r(x) =

∑n/2
k=0 pkζ

k∑n/2
k=0 qkζ

k

is a rational polynomial and r̃(x) =
∑n

k=0 bkx
k is its Taylor series at nth-order, then PDnr̃(x) = r(x).
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I will define the discontinuity as Discθ = Id−Sθ. In other words,

Sθ+ − Sθ− = −Sθ− ◦Discθ. (1.26)

However, with abuse of language, we will often refer to Sθ+ − Sθ− as the discontinuity.

A more thorough first principles approach to the Stokes automorphism can be carried

out using Alien calculus which Appendix 1.A is devoted to. However, in this thesis we

shall be more concerned with physical origins of Stokes automorphism as they appear

for example in WKB approximations.

1.2 WKB Analysis

We will now shift gears and turn to the question of how to obtain perturbative series

in quantum mechanics. The main tool for this is WKB analysis, which we will discuss

below. The key take-away is that when we study the resurgent structure of a WKB

problem, we can interpret the Stokes automorphism in a geometrical sense as a topolo-

gical change of the paths of steepest ascent. This translates the algebraic and analytic

problem of the previously discussion into a more geometric picture.

Similar to analyses as presented in [23] Section 2 and [43] Appendix B, I will here

discuss the connection between WKB analysis in ordinary quantum mechanics and stokes

phenomena. Ordinary WKB approximation is an approximation in the ℏ→ 0, meaning

quantum fluctuations are small. In the exact WKB method we shall also consider non-

perturbative contributions in ℏ.

1.2.1 WKB Ansatz

Consider the time-independent Schrödinger equation for a wavefunction Ψ(q) in a po-

tential5 V (q) with a mass m = 1.

EΨ(q) =

(
−ℏ2

2

∂2

∂q2
+ V (q)

)
Ψ(q). (1.27)

Let p(q) =
√

2(E − V (q)) be the semiclassical momentum, hence the turning points are

now the zeroes of p(q). We may now write the Schrödinger Equation (1.27) as

ℏ2
∂2

∂q2
Ψ(q) + p2(q)Ψ(q) = 0. (1.28)

5In this section, I will try to make all dependencies on ℏ explicit. I should thus warn that in general
one may consider the case where the potential V (q) also depends on ℏ. In this case one can consider a
general potential of the form V(q, ℏ) =

∑∞
n=1 ℏnVn(q). Such is done by Iwaki and Nakanishi [23], but

because we want to study the system to leading order in ℏ, I will not make the generalisation here. A
particular example with such a quantum deformed potential is studied by [65]
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Proposition 8. The ansatz

Ψ(q) = exp

(
i

ℏ

∫ q

q0

dz S(z, ℏ)

)
(1.29)

will solve Equation (1.28) if the function S(z, ℏ) satisfies the Ricatti Equation6

S2(z, ℏ)− iℏS′(z, ℏ) = p2(z). (1.30)

Proof. First compute derivatives of the wave function (1.29):

Ψ′(q) =
i

ℏ
S(q, ℏ)Ψ(q), (1.31)

Ψ′′(q) =
i

ℏ
S′(q, ℏ)Ψ(q) +

(
i

ℏ
S(q, ℏ)

)2

Ψ(q). (1.32)

Therefore, assuming Equation (1.30),

ℏ2
∂2

∂q2
Ψ(q) + p2(q)Ψ(q) =

[
ℏ2
(
i

ℏ
S′(q, ℏ)− 1

ℏ2
S2(q, ℏ)

)
+ p2(q)

]
Ψ(q) = 0. (1.33)

■

We shall think of S(q, ℏ) as a power series in ℏ:

S(z, ℏ) =

∞∑
k=0

ℏkSk(z). (1.34)

The terms Sk(z) are fixed by the requirement that S(z, ℏ) solves Equation (1.30) order

by order in ℏ, leading to the following recursion relation [43]:

S0(q) = ±p(q).

Sn(q) =
1

2S0

(
iS′

n−1(q)−
n−1∑
k=1

Sk(q)Sn−k(q)

)
.

(1.35)

Definition 9. Define the solutions S+(q) and S−(q) of Equation (1.30) as those that

behave as S±(q) = ±p(q) + O(ℏ) to leading order in ℏ. Define the odd and the even

part as

Seven(q, ℏ) =
1

2

(
S+(q, ℏ)− S−(q, ℏ)

)
Sodd(q, ℏ) =

1

2

(
S+(q, ℏ) + S−(q, ℏ)

) (1.36)

6Here the prime on the function S(q, ℏ) denote a derivative with respect to the first variable z (or
later q).
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Proposition 10. Seven(z, ℏ) and Sodd(z, ℏ) are related by

Sodd(z, ℏ) =
iℏ
2

∂

∂z
logSeven(z, ℏ). (1.37)

Proof. Firstly, we see that S±(z, ℏ) = Sodd(z, ℏ) ± Seven(z, ℏ). Plugging S±(z, ℏ) into

Equation (1.30), yields two equations. Taking their difference and re-writing gives

Sodd(z, ℏ) =
iℏ

2Seven(z, ℏ)

∂

∂z
Seven(z, ℏ) , (1.38)

which is equivalent to Equation (1.37). ■

Proposition 11. Seven only contains even powers of ℏ and Sodd only contains odd

powers of ℏ.

Proof. First, we need to prove that S+
n = (−1)n+1S−

n . This can be done easily by

using the principle of strong induction and the recursion relation (1.35). It follows

that Seven,n = 1
2 (S+

n − S−
n ) and Sodd,n = 1

2 (S+
n + S−

n ) vanish for n odd and n even,

respectively. ■

The two solutions S±(z, ℏ) give rise to two solutions Ψ±(z, ℏ) for the wave function.

Substituting Equation (1.37) into Equation (1.29) gives

Ψ±(q) = exp

(
i

ℏ

∫ q

q0

dz (Sodd(z, ℏ)± Seven(z, ℏ))

)
= exp

(
−1

2

∫ q

q0

dz ∂z(logSeven(z, ℏ))

)
exp

(
± i

ℏ

∫ q

q0

dz Seven(z, ℏ)

)
= [Seven(q, ℏ)]−1/2 exp

(
± i

ℏ

∫ q

q0

dz Seven(z, ℏ)

)
.

(1.39)

Computing this expression order by order in ℏ will give what is conventionally known

as the WKB solutions. However, if we wish to compute the integral over paths of

stationary phase in complex z-plane, i.e. paths of steepest ascend which are also known

as thimbles, we may encounter Stokes phenomena as the coupling constants change.

This is where we can see the source of the resurgent phenomena in the WKB method,

which will be discussed in more detail below.

Remark 12. Often, one will immediately transition to an ansatz of the form Ψ(q) =

U(q, h)−1/2 exp
(
iℏ−1

∫
dq U(q, ℏ)

)
. In this case, we need to demand that U(q, ℏ) satisfies

a modified Ricatti equation:

U(q, ℏ)2 − p(q)2 = ℏ2U(q, ℏ)1/2
d2

dq2
(U(q, ℏ)−1/2) (1.40)

This approach is for example taken in [17] or [15]. However, in this case we should re-

member we can still solve the Ricatti equation by expanding U(q, ℏ) =
∑∞

n=0 ℏ2nS2n(q),

where the Sn(q) can be computed recursively using Equation (1.35).
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1.2.2 WKB as a Semi-Classical Limit

In this section we shall show how one can obtain the WKB approximation up to leading

order from the action formalism. Consider a classical path xc(t) starting at xc(t0) = x0,

with momentum pc = ∂txc(t) The action for the path going from (t0, x0) to (t, x) is

given by7

S(x, t) =

∫ t

t0

dt

[
(pc(t))

2

2m
− V (xc(t))

]

=

∫ t

t0

dt

[
(pc(t))

2

m
−

(
(pc(t))

2

2m
+ V (xc(t))

)]

=

∫ t

t0

dt
dxc(t)

dt
pc(t)−

∫ t

t0

dt E

=

∫ x

x0

dx pc(x)− E(t− t0).

(1.41)

Define

T (x, t) =

∫ x

x0

dx pc(x), (1.42)

hence
∂T (x, t)

∂x
= pc(x),

∂T (x, t)

∂E
= t− t0. (1.43)

The quantum path integral is obtained by integrating the exponent of the classical

action over all possible paths: ∫
D[x(t)]e

i
ℏS(x,t). (1.44)

In the semi-classical limit, we know that the leading contribution comes from paths that

extremise the action. Such classical paths have phases that add constructively. If we

connect to Proposition 8 by taking an ansatz for S(x, t) by setting

T (q, t) =

∫ q

q0

dzS(z, ℏ), i.e. pc(q) =
∂T

∂q
= S(q, ℏ), (1.45)

we essentially are considering the contribution of the classical path. To leading order

in ℏ, the ansatz (1.45) solves the Ricatti equation (1.30), which reproduces the result

given by Equation (1.35) that S0(q) = ±p(q). The crux is that we may understand the

WKB method as an approximation around the classical path.

1.2.3 Stokes Curves

Let us go back to the WKB solution Equation (1.29):

Ψ(q) = [Seven(q, ℏ)]−1/2 exp

(
i

ℏ

∫
γ

dz Seven(z, ℏ)

)
. (1.46)

7Please note that this action S(x, t) is different from the ansatz S(z, ℏ) from the previous section.
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In this section, we shall more carefully consider the types of possible integration paths

γ. Although I have not been explicit about this before, really we should think of pc(q)

as a complex valued function of the complex variable q. With this in mind, let P0

denote the roots of the complex function pc(q), which I will also refer to as (classical)

turning points, for they denote the boundary between classically allowed and classically

forbidden regions. The poles of pc(q) will be denoted by P∞. In both cases, we may also

consider what happens as q →∞ which may be a pole or a root. In other words, I am

considering q as a variable on the Riemann sphere CP1. Finally, we let let P := P0∪P∞.

In particular, we will consider paths of stationary phase, in other words we demand

that the imaginary part of the exponent is constant (with respect to q):

Re

(∫ q

dz pc(z)

)
= constant, (1.47)

up to the leading order pc(z) of S(z, ℏ). Employing the terminology of [23] we will call

paths that satisfy (1.47) trajectories. We may also consider paths that start at a turning

point a ∈ P0 in which case Equation (1.47) becomes

Re

(∫ q

a

dz pc(z)

)
= 0. (1.48)

These trajectories are called Stokes curves or Stokes trajectories. The Stokes graph is

graph whose vertex set is P and whose edges are the Stokes curves. The interiors of the

faces of the Stokes graphs are called Stokes regions.

Remark 13. The paths that satisfy (1.47) are also known as paths of steepest ascent

(or descent depending on orientation). Assume z(t) is a path through a complex space

with a constant imaginary part. Therefore

∂tRe(z(t)) = ∂tz(t)− i∂tIm(z(t)) = ∂tz(t).

Use the freedom in parametrisation of t of the path z(t) to choose a path that is traversed

at constant speed. In other words |∂tz(t)| = constant, hence ∂t∂tRe(z(t)) = 0, which

means z(t) is a path of steepest ascent or descent.

Example 14. Around a simple turning point q0 ∈ P0, we may write

p2c(q) = 2(E − V (q)) ≈ a(q − q0) + . . . (1.49)

to leading order. In effect, this means we are considering the Schrödinger equation

ψ′′ + a(q − q0)ψ = 0. (1.50)

After a transformation of q this is known as the Airy equation, which will be studied in

detail in Section 1.4. For now, let us consider the Stokes curves of (pc(z))2 = −z. The

11



Figure 1.1: Stokes trajectories around a simple pole (pc(q))
2 = −q in the complex q-

plane. The root is the purple dot and together with the pole at infinity (not displayed
due to logistical concerns) and the blue lines they form the Stokes graph. Note there is
a branch cut along the negative real axis.

only root is found at z = 0, so let us compute∫ q

0

pc(z) dz = i
2

3
z3/2

∣∣∣∣q
0

= i
2

3
q3/2. (1.51)

Write q = reiθ. Hence imposing Equation (1.48) gives 3
2θ = nπ for some n ∈ Z. Taking

θ ∈ [0, 2π) gives three possibilities: θ = 0, 23π,
4
3π, see also Figure 1.1.

Example 15. Here we will take a look the stokes trajectories of (pc(q))
2 = −a2

q2 for

some nonzero a ∈ C. This potential has no turning points and is as such is a little

pathological. It falls outside the assumptions of [23] and is thus considered purely for

pedagogical reasons. I will normalise integration cycles by taking z = 1 as starting

point, hence ∫ q

1

pc(z)dz =

∫ q

1

i
a

z
dz = ia ln q. (1.52)

Recall that ln q = log(|q|) + iArg q. If a ∈ R, then condition (1.48) is satisfied by

Arg q = constant. If a ∈ iR, then condition (1.48) is satisfied by |q| = constant. If a

is not on the real or the imaginary axis, some combination of the argument and the

norm of q must be constant which leads to Stokes trajectories spiralling in and out of

the singularity, see figure 1.2. Often one chooses a normalisation such that the integral

(1.52) vanishes which leads to a zero of the action.

The vocabulary of [23] prescribes the following:

(i) A generic trajectory flows into P∞ at both ends.

(ii) A saddle trajectory is a trajectory that flows into P0 at both ends.

(iii) A Separating trajectory flows on one end into P0 and on other end into P∞.

12



(a) a = 1 (b) a = i (c) a = i+ 1

Figure 1.2: Stokes trajectories of (pc(q))
2 = −a2

q2 for several values of a.

(iv) A closed trajectory is simply a closed curve that does not intersect with P .

Critically, trajectories cannot flow towards local maxima, because these are forbidden

per the maximum modulus principle of holomorphic functions. We can subdivide saddle

trajectories into ones that flow into distinct point in P0 and those that flow into the same

point, respectively called regular saddle trajectories and degenerate saddle trajectories.

It follows from the definition that a Stokes curve is either a saddle trajectory or a

separating trajectory.

In this section I will assume that there is at most 1 saddle trajectory in the Stokes

graph. It is a lemma proven by [23] that under this assumption all trajectories can be

classified as one of the trajectories (i)-(iv).

1.2.4 Borel Resummation

Let us take a look at the WKB solutions (1.39)

Ψ(q) = [Seven(q, ℏ)]−1/2 exp

(
i

ℏ

∫
γ

dz Seven(z, ℏ)

)
. (1.53)

through another set of glasses: we should recall that Seven(z, ℏ) =
∑∞

n=0 ℏ2nS2n(z) is a

power series of even powers of ℏ. Carrying these powers of ℏ through the integral we see

that in the exponent of Equation (1.53) there is only one term with negative power of ℏ,

which is equal to the classical path integral i
ℏT (z, t) – see Equation (1.45). It is a well

known fact in real analysis that the function f(x) = e−1/x does not have a well-defined

Taylor series at x = 0. This is an indication that a power series of Equation (1.53), the

resulting series is divergent and we shall need to perform a Borel resummation in ℏ.

In Section 1.1.2, I did not only define the Borel resummation along the real axis, but

in fact we can define Borel resummations along any direction θ (assuming summability).

Instead of choosing a non-zero angle θ, we can equivalently consider the system where

we perform a Borel resummation along θ = 0, but with ℏ → ℏe−iθ [23, 45]. This then

13



(a) θ = −π/10 (b) θ = 0 (c) θ = +π/10

Figure 1.3: Here, we demonstrate the Stokes phenomenon by considering the classical
momentum (pc(q))

2 = eiθ(q − 1)(q + 1). This is equivalent to considering a classical
momentum (pc(q))

2 = (q − 1)(q + 1), but performing a Borel resummation along the θ
direction. Again, the purple dot indicates the roots q = ±1 and the blue lines are the
Stokes curves. We can clearly see that there a unique (regular) saddle trajectory when
θ = 0, but that the topology of the Stokes graph changes discontinuously as we vary θ.

amounts to considering trajectories with

Im

(
eiθ
∫ q

a

dz pc(z)

)
= 0. (1.54)

These trajectories are the Stokes curve in the direction θ, which form the Stokes graph

Gθ[pc(q)] in direction θ.

Given a system with classical momentum pc(q), we we will consider a situation for

which the Stokes graph Gθ0 has precisely 1 saddle trajectory. Furthermore, we assume

there exists some ϵ such that Gθ, where θ ∈ (θ0 − ϵ, θ0 + ϵ) has a saddle trajectory only

if θ = θ0. In other words, if θ ∈ (θ0− ϵ, θ0)∪ (θ0, θ0 + ϵ), then Gθ does not have a saddle

trajectory. Hence, as θ varies over (θ0 − ϵ, θ0 + ϵ), the topology of the corresponding

Stokes graph can change. This is what is known as the Stokes phenomenon or the

mutation of Stokes graph and is at the core of much of this field. An archetypical

example of this can be seen in Figure 1.3.

Iwaki and Nakanishi [23] give a number of technical theorems about Borel resum-

mability which I will here summarise. To be precise, we will be considering the Borel

resummability of the power series expansion of

exp

(
i

ℏ

∫
γ

dz Sreg(z, ℏ)

)
, (1.55)

where Sreg = Seven−S0, to extract the regular part of the exponent. The first proposition

states that if we integrate over a path that is contained in D ∪ {p} for a single Stokes

region D and a pole p ∈ P∞, the WKB solution is resummable. In particular such a path

cannot cross any Stokes curves. However, if we consider a path that crosses a separating

trajectory, we can deform the path such that it crosses through the pole, thus paths

that cross separating trajectories are also resummable. A further corollary stipulates

14



that if we integrate along paths in a Stokes graph that is free of saddle trajectories, the

solutions are Borel resummable everywhere. Given some θ1, θ2, a final proposition states

that if we integrate along a curve whose endpoints do not lie on a Stokes curve for all

θ ∈ [θ1, θ2] and for these values of θ the path never crosses or touches a Stokes curve,

then the Borel resummations of the WKB solutions in the θ1 and θ2 are identical.

1.3 Uniform WKB

In this Section I will be mostly be following the approach taken by Dunne and Ünsal

[15] (see also [66–69] and [70]), which provides an alternative way of understanding

the WKB approach. Their approach applies to any potential with locally harmonic

degenerate vacua. That is, a minimum that looks like V (x) = x2 + O(x3). Such

quantum mechanics include the well-studied double well (DW) and sine-gordon (SG)

potentials

VDW(x) = x2(1 + gx)2 ,

VSG(x) =
1

g2
sin2(gx) .

(1.56)

The main advantage of their approach is that it provides a systematic approach to

understanding transseries terms in the expansion. Moreover, they are able to show

“strong resurgence”, in the sense that all non-perturbative information is contained

within the perturbative expansion.

In this section I will discuss the solutions and in particular the energy levels of the

double well system. Although I will not prove all the results in detail, the purpose of

this Section is rather to illustrate their techniques and results. Let us start with the

Schrödinger equation (1.27). We start by re-writing the problem by using g2 = ℏ2

2 and
1
g2V (q) = V (y), so that now we solve

−g4∂2yΨ(y) + V (y)Ψ(y) = g2EΨ(y). (1.57)

We make a slight modification to standard WKB ansatz (1.29) by making instead the

ansatz

Ψ(y) =
Dν( 1

gu(y))√
u′(y)

, (1.58)

where u plays an analogous role previously performed by
∫
S. Dν(z) is the parabolic

cylinder function which satisfies the harmonic oscillator problem, with energy E =

ν + 1/2:

∂2zDν(z) +

(
ν +

1

2
− z2

4

)
Dν(z) = 0 (1.59)

For the ansatz (1.58) to solve Equation (1.57), we need to demand the following Ricatti
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equation is satisfied

g2E +
1

4
(u′)2u2 − g2(ν +

1

2
)(u′)2 − g4

2

(
u′′

(u′)3/2

)′

(u′)1/2 − V (y) = 0. (1.60)

Here the prime naturally denotes a derivative with respect to y. We follow the now

standard method of making perturbative expansions in g2:

E(ν, g2) =

∞∑
k=1

g2kEk(ν)

u(y) =

∞∑
k=1

uk(y)g2k.

(1.61)

We will determine the functions un(y) and En(ν) by plugging the expansions back into

(1.60) and solving it order by order in g2. For example, at zeroth order we find the

equation

u20(u′0)2 = 4V. (1.62)

With this, we may solve for u0

(u0(y))2 =

∫ y

0

dy
√
V (y) . (1.63)

In the g2 → 0 limit, we have that ν is almost an integer. To be precise, we can write

the ν(N, g2) = N + δν(N, g2) and we consider the expansion

E(ν, g2) = E(ν = N, g2) + δν

(
∂E

∂ν

) ∣∣∣∣
ν=N

+O((δν)2) . (1.64)

Here, E(ν = N, g2) is the usual perturbative expansion in Rayleigh-Schrödinger per-

turbation theory. In this same g2 → 0 limit, using8 Dν(y) = yνe−y2/4, leads to the

usual non-perturbative term of the WKB [71]

ψ(y) = exp

(
− (u0)2

4g2

)
. (1.67)

Another crucial step in the uniform WKB is the setting of a global boundary con-

dition. The goal of this is to relate separate vacua. By connecting the separate vacua,

8To see this approximation for the parabolic cylinder function, we could use the following asymptotic
series [15]:

Dν(z) ≈ zνe−z2/4F1(z
2) +

√
2π

Γ(−ν)
e±iπνz−1−νez

2/4F2(z
2), (1.65)

with

F1(z
2) =

∞∑
k=0

1

k!

Γ(k − ν/2)Γ(k + (1− ν)/2)

Γ(−ν/2)Γ((1− ν)/2)

(
−2

z2

)k

,

F2(z
2) =

∞∑
k=0

1

k!

Γ(k + (1 + ν)/2)Γ(k + 1 + ν/2)

Γ((ν + 1)/2)Γ(1 + ν/2)

(
2

z2

)k

.

(1.66)

16



we can construct resurgent relations. The precise boundary condition depends on the

model being studied. This global boundary condition can be shown [15] to be similar to

the quantisation conditions set by ZJJ [72, 73].

In the case of the SG potential, we impose a global boundary condition based on the

periodicity of the potential

Ψ(θ + L) = eiαΨ(θ), (1.68)

where L is the periodicity and α ∈ [0, π] is the Bloch angle. In addition we demand a

Bloch condition that relates the values of the wave function at some midpoint of the

potential θmidpoint.

In the case of the double well potential, the system is symmetric around y = −1/2 the

midpoint potential energy barier. We can thus impose a condition on the wavefunction

at this point. If the wavefunction is even (respectively odd) around y = −1/2, we

may impose Ψ(−1/2) = 0 (respectively Ψ′(−1/2) = 0). This situation for example

corresponds to the ground state (respectively the first excited state). We may now limit

the problem to the domain −1/2 ≤ y ≤ ∞ with a Dirichlet (respectively Neumann)

boundary condition at y = −1/2 and a Dirichlet boundary condition at y = ∞ and

symmetrically extend to the other well.

It is possible to use the uniform WKB ansatz to determine the precise asymptotic

form for ESI
n . The procedure is detailed in [15] but we shall give a brief overview here.

Expanding the boundary condition in terms of ν = N + δν + (δν)2 + . . . allows us to

determine δν in terms of g2. The setting of global boundary conditions shows that δν

is a series expansion of an instanton fugacity ξ = 2SI

πg2 e
−SI/g

2

, where SDW
I = 1

6 and

SSG
I = 2 are the instanton actions. These are related to the global boundary conditions

through S = 1
2 (u0(ymidpoint)

2. This can be used to compute the N th energy level

E(v, g2) = E(ν = N, g2) + δν

[
∂E(ν, g2)

∂ν

]
ν=N

+O((δν)2) . (1.69)

The first ambiguity of E(v, g2), at order ξ2, is the imaginary part of δν
[
∂E(v,g2)

∂ν

]
ν=N

.

As this lies thus in the instanton-anti-instanton section, we write this as

Im

(
δν
∂E(ν, g2)

∂ν

)
ν=N

= ±ξ2
(
aIĪ0 + aIĪ1 g

2 +O(g4)
)

(1.70)

By considering dispersion relations at the ground state9,

Ek(N = 0) =

∮
C

E(N = 0, g2)

(g2)k+1
d(g2)

=
1

iπ

∫ +∞

0

Disc0E(N = 0, g2)

(g2)k+1
d(g2) ,

(1.71)

9C denotes a counter-clockwise closed contour around g2 = 0. The first equality is simply a restate-
ment of (3.42) using Cauchy’s theorem. Next we deform the contour up and down the positive real axis
and around infinity to obtain the second equality.
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for the coefficients Ek(N = 0), it is possible to determine an asymptotic form [15]

En(N = 0) = − 2

π

n!

(2SI)n

(
aIĪ0 + aIĪ1

2SI

n
+O(k−2)

)
. (1.72)

This gives the leading late order (large n) behaviour of the perturbative expansion of

the ground series.

1.4 Airy Function

As a foundational exercise, in this section we discuss at some length the Airy function

with a particular eye towards asymptotic expansions and resurgence. The Airy function

is a nice example because all the resummations are completely known. This material is

covered in for example [44, 74, 75] and similar toy functions are studied in [46, 76].

Although Airy’s original area of application of this function was optics [77], it is

interesting to note that a generalised “matrix Airy function” has been studied by Kont-

sevich [78] and Witten [79, 80] in the context of intersection numbers of stable classes

on the moduli space of curves.

The Airy function Z(κ) is described by a differential equation

Z ′′(κ)− κZ(κ) = 0. (1.73)

In integral form this can be formulated as

Z(κ) =

∫
γ

dz e−S(z), S(z) = −κz + z3/3 , (1.74)

where we shall in the next Section try to be a bit more precise as to the nature of the

path γ.

1.4.1 Saddle Points

Equation (1.74) will only solve Equation (1.73) if the boundary terms of the integral

vanish. However, we are free to choose a path. This freedom shall be used to integrate

over paths of steepest ascent only (see Section 3.3). The saddle points can be found by

solving dS
dz = 0 which will yield

z± = ±
√
κ (1.75)

The saddle point can be connected by a stokes line if when ImS(z+) = ImS(z−) which

gives Argκ = 2πn
3 for n ∈ N. For these values of κ there is a thimble that passes through

both points. If we cross a stokes line by moving θ := Argκ, the thimbles that go through

the points z± discontinuously switch its asymptotic direction.
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Let us try to solve Equation (1.73) with a (single!) instanton ansatz:

Z(κ) = e−
1
2Aκα

κβ
∞∑
l=0

alκ
−αl (1.76)

After reparametrising some of the dummy variables (l→ l−1 or l→ l−2), substituting

into the differential equations yields

e−
1
2Aκα

κβκ2α−2
{ ∞∑

l=0

α2

4
A2alκ

−αl

−
(α

2
(α− 1)A+Aαβ

) ∞∑
l=1

al−1κ
−αl

+ β(β − 1)

∞∑
l=2

al−2κ
−αl

− αA
∞∑
l=2

al−1(−α(l − 1))κ−αl

+ 2β

∞∑
l=3

al−2(−α(l − 2))κ−αl

+

∞∑
l=3

al−2(−α(l − 2))(−α(l − 2)− 1)κ−αl
}

− κZ(κ) = 0 .

(1.77)

To solve this equation, all terms involving summations with al−1 or al−2 need to vanish,

leaving only the first and the last line to cancel each other. However, I will start by

matching the overall exponents of κ: this is done by demanding 2α− 2 = 1, hence α =

3/2. To match the overall coefficients we will need that α2A2/4 = 1, hence A± = ±A,

A = 4/3. Of the ensuing lines, the second one is the only one to contribute a factor of

κ−α (since the other summations start at l = 2 or higher). Therefore, it is necessary

to demand α
2 (α − 1)A + Aαβ = 0, which gives β = −1/4. The remaining lines give a

recursion relation that will need to be satisfied:

an =
an−1

An

[ 5

36
+ n(n− 1)

]
, (1.78)

which is solved by

an := A−n 1

2πn!
Γ(n+ 5/6)Γ(n+ 1/6). (1.79)

It is easy to see that this indeed satisfies the recursion relation. Again, I note that the

coefficients diverge factorially for large n behaviour: an ∝ A−nn!.

Remark 16. Although, it may not look like it at first sight, the coefficients (1.79) are

actually rational numbers. For example, a0 = 1 and a1 = 5/48. (The reason for this are

special properties of the gamma functions, such as Γ(x)Γ(1− x) = π/ sin(πx).)

Remark 17. In Section 1.2, we discussed how the Airy function can be obtained as a
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WKB approximation around a turning point with a classical momentum pc(κ) = κ. To

be precise, we will also need to set ℏ = i in the WKB approach. In this formalism we

can calculate the non-perturbative part:∫ κ

0

S0(z)dz = ±
∫ κ

0

pc(z)dz =
2

3
κ3/2, (1.80)

which agrees precisely with the exponential factors found using the above transseries

ansatz. Furthermore, using formula (1.35), we can compute that S1(z) = i
4z , hence its

contribution to the wavefunction is

exp

(∫ q

iS1(z)

)
= exp

(
−1

4
log(q)

)
= q−1/4, (1.81)

which precisely reproduces β = −1/4. The higher order of S(z) will contribute only

higher orders of x = q−3/2 Performing a series expansion around x ≈ 0 will yield a series

with coefficients in Q, which agree precisely with those of Equation (1.79). A numerical

computation of this is presented in Appendix 1.B.2.

1.4.2 Borel Analysis

If we take into account the two choices in the transseries A± = ±A above, a general

solution to the equation (1.73) be a combination of the form

Z(κ) = AZ−(κ) +BZ+(κ), (1.82)

where A and B are constants to be fixed by boundary conditions and

Z± =
1√

2πκ1/4
e±

1
2Aκ3/2

Φ±(κ) . (1.83)

The perturbative sectors are given by

Φ±(κ) =

∞∑
n=0

a±n κ
− 3

2n, (1.84)

where

a±n = ∓(±1)nan, (1.85)

and the coefficients an are given by Equation (1.79). Traditionally, the function Z−(κ)

has been called the Airy function Ai(κ) whereas Z+(κ) is the “Bairy” function Bi(κ). It

is at this stage natural to work in the variable z = κ3/2. If one takes away the constant

a0,

Φ̃± = Φ± ± a0, (1.86)
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the Borel transforms are known in closed form and are given by10

B(Φ̃±)(s) = − 5

48
2F1(7/6, 11/6, 2| ± s/A). (1.87)

This hypergeometric function has a branch cut singularity at s = ±A. Around the

singularity it takes a special form [44]:

B(ϕ̃±)(s)|s≃±A =
i

2πi(s∓A)
+ iB(ϕ̃∓)(s∓A)

log(s∓A)

2πi
(1.88)

This means that upon crossing the stokes lines, we pick up terms related to the other

sector. We can capture this information in terms of the Stokes automporphism from

Section 1.1.3. However, the Alien calculus developed in Appendix 1.A very naturally

applies to Equation (1.88) as well. The Alien calculus attempts to isolate the discon-

tinuity of the Borel resummation of individual singularities in the Borel plane. In terms

of Alien derivatives we have

∆±AΦ± = −iΦ∓. (1.89)

In all other cases the Alien derivative vanishes. We can hence also conclude the Stokes

factors are given by S± = −i. The technology presented in Appendix 1.A was developed

to quantify these statements. We calculate the Stokes automorphism and the alien

derivative as [44]:

S0Φ+ = Φ+ − ie−AzΦ− S0Φ− = Φ−

SπΦ− = Φ− − ieAzΦ+ SπΦ+ = Φ+.
(1.90)

Hence the discontinuities are given by

Disc0Φ+ = ie−AzΦ−

DiscπΦ− = ieAzΦ+

(1.91)

Remark 18. Referring back to the WKB approach of this problem as in Remark 17,

choosing pc(q) =
√
q reproduces the series Φ+, whereas pc(q) = −√q gives Φ−. We may

thus understand that the solutions Φ+ and Φ− correspond to solutions with different

orientations of the potentials, which is the same thing as living on a different sheet of

the Riemann surface.

1.4.3 Large Order Relations and Resurgence

In this section I will show how one can relate the coefficients of one sector to the other

sector. We see that the coefficients at large n in one sector are related to those at small

n in the other sector. In this section I will work in the variable x = z−1 = κ−3/2,

following [44]. Start by writing down Cauchy’s theorem away from the discontinuity for

10Here the variable s is the variable in the Borel plane, a role which in Section 1.1 was fulfilled by ζ.
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Φ+:

Φ+(x) =
1

2πi

∮
Cx

dw
Φ+(w)

w − x
. (1.92)

Here, the contour Cw is a small circle around w traversed counter-clockwise. I shall

blow up the contour to infinity where the function is not singular. Along θ we integrate

along the discontuinity, hence

Φ+(x) = − 1

2πi

∫ ∞

0

dw
Disc0Φ+

w − x
. (1.93)

The minus sign in simply due to the definiton (1.26). We shall now employ Equation

(1.91), and plug in the asymptotic expansions for Φ± (1.84).

∞∑
n=0

a+nx
n = − 1

2π

∫ ∞

0

dw

w − x
e−A/w

∞∑
k=0

a−k w
k

= − 1

2π

∫ ∞

0

dw
∞∑
l=0

xl
∞∑
k=0

e−A/wa−k w
k−l−1,

(1.94)

By comparing powers of x, we must conclude that

a+n = − 1

2π

∫ ∞

0

∞∑
k=0

dw a−k w
k−l−1e−A/w

= − 1

2π

∞∑
k=0

a−k Γ(n− k)Ak−n

= − Γ(n)

2πAn

∞∑
k=0

a−k A
k

k∏
j=1

1

n− j
.

(1.95)

In the second line I have used∫ ∞

0

e−A/wwk−l−1dw = Γ(l − k)Ak−l . (1.96)

Γ(n− k) has been rewritten into Γ(n) removing excessive factors. We can now rewrite

the sum as Taylor series in the variable n−1:

a+n ∼ −
iΓ(n)

2πiAn

∞∑
k=0

ck
nk

(1.97)

The coefficients a−n and A have been repackaged into cn. For the first few coefficients

we have c0 = a−0 , c1 = Aa−1 , c2 = Aa−1 + A2a−2 and c3 = Aa−1 + 3A2a−2 + A3a−3 .

From Equation (1.97) we can hence also see how the coefficients of different sectors are

related. Should n be chosen large, on the LHS we relate the Φ+ sector at high order

to the Φ− on the RHS at small orders (because the first terms dominate more easily

for large n). The fact that the asymptotic expansion in one perturbative sector may

contain information about other sectors is called resurgence.
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Figure 1.4: We compute the left hand side of Equation (1.100) for m = 3 - given by the
blue dots. It is shown that the it converges to b3 = − 5

36 . The first, second and fourth
Richardson Transformations are given respectively in orange, green and red.

In Equation (1.97), we have used the value of the Stokes constant S+ = −i. If

this information is not at our disposal we may still try to extract information from the

large-order relations by considering the series

A

n

a+n+1

a+n
=

∑∞
k=0 ck/(n+ 1)k∑∞

k=0 ck/n
k

. (1.98)

We shall perform the same trick and re-expand in the variable n−1:

A

n

a+n+1

a+n
=

∞∑
k=0

bk
nk
. (1.99)

To find bk we will need knowledge of c0, . . . , ck. In particular, b0 = 1, b1 = 0, b2 = − c1
c0

,

b3 = 1
c20

(c0c1 + c21 − 2c0c2) Taking the large n limit of Equation (1.99), we easily see the

right hand side converges to b0. However, with knowledge of b0, . . . , bm−1 it is also easy

to create a series that converges to bm:

nm
(
A

n

a+n+1

a+N
−

m−1∑
k=0

bk
nk

)
=

∞∑
k=m

bk
nk−m

= bm +
bm+1

n
+ . . . . (1.100)

The point here is that, even without knowledge of the Stokes constant, we can compute

large n limits of the left hand side of Equation (1.100) using a+n . On the other side,

knowing just a few coefficients a−n we can predict its limit. For example, this should

predict11 that the left hand side of Equation (1.100) converges to = − 5
36 . This is verified,

using the Richardson Transformation - see Remark 19 below, in Figure 1.4.

Remark 19. There is a trick to accelerate convergence of series such as the RHS of

Equation (1.100) called the Richardson Transformation. To explain this let us start with

11The series bb seems to have the simple behaviour bn = (−1)n 5
36

for n ≥ 2.
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a series

s(n) =

∞∑
k=0

sk
nk
, (1.101)

which is convergent as n → ∞. Following [44], define the N -Richardson Rs(n,N)

transformation of the series s as

Rs(n, 0) = s(n),

Rs(n,N) = Rs(n+ 1, N − 1) +
n

N

(
Rs(n+ 1, N − 1)−Rs(n,N − 1)

)
.

(1.102)

I have written some simple stand-alone code that converts a sequence of numbers in

Mathematica into its Richardson transform, and conveniently plots it. This code is

widely applicable and given in Appendix 1.B.1.

Proposition 20. One will see that in the large n expansion Rs(n,N) has no terms

proportional to 1
n , . . . ,

1
nN , i.e. it takes the following form:

s0 +
s′N+1

nN+1
+
s′N+2

nN+2
+ . . . (1.103)

where s′N+k are some new coefficients that depend linearly on sN , . . . , sN+k.

1.5 Practical Resurgence: The Sine-Gordon Poten-

tial

To contrast the previous Section, where we made heavy use of closed form expression for

the perturbative expansions that enabled precise and exact situations, in this Section we

take a different approach. We shall start with relative naivety and study the coefficients

of a perturbative series. We demonstrate how to analyse this and find the leading terms

in an asymptotic expansion.

The setting for this Section shall be QM mechanics with the Sine-Gordon potential,

briefly mentioned in Section 1.3. A more general version of this model shall be found in

the analysis of the bi-Yang-Baxter model in Chapter 3. This model is more completely

treated in [34, 46], but we shall give a basic analysis here.

V (x) =
1

g2
sin2(gx) . (1.104)

We use the package [81] to compute the perturbative series for energy of the ground

state of this model:

E0 =
1

2
− 1

8
g2 − 1

32
g4 − 3

128
g6 − 53

2048
g8 +O(g10) =

∞∑
n=0

ang
2n . (1.105)

The first 100 terms (to order g200) of this series are easily obtained on a laptop in under

20 seconds. Relying on the package, the code to compute this sequence, as well as the
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Figure 1.5: We consider the series cn in blue, its second Richardson transformation, in
orange. It clearly converges to 1

2S = 1
4 , in grey.

Figure 1.6: We consider the series dn in blue, its second Richardson transformation, in
orange. It clearly converges to A = − 2

π , in grey.

code to analyse its asymptotics, is very simple. I have given it in Appendix 1.B.3. To

find the location of its Borel pole we define bn = an+1

an
and cn = bn+1− bn. If we had an

asymptotic series an ∼ A(2S)−nΓ(n+1), as one could expect from Equation (1.72), then

cn should thus converge to 1
2S . This convergence is shown in Figure 1.5 and indicates

that S = 2, which is precisely the instanton action of the Sine-Gordon model.

To determine the overall coefficient A, we simply compute the series dn = an

(2S)−nΓ(n) .

The convergence of this series is shown in Figure 1.6 and indicates that A = − 2
π .

Now that we know the leading behaviour of this series, we can subtract it and define

en = an + 2
π4n Γ(n + 1). In figure 1.7, we show that the sub-leading behaviour is given

by en ≈ 5
π4n Γ(n).

Combining these numerical results gives an asymptotic expansion which matches

that of the literature [15]

an = − 2

π

Γ(n+ 1)

4n

(
1− 5

2

1

n
+O(n−2)

)
. (1.106)

To avoid the 1
n divergence, we define a new asymptotic series that removes the constant

part

ϕ̃(g2) =

∞∑
n=1

ang
2n =

∞∑
n=0

an=1g
2n+2 ≡

∞∑
n+0

bng
2n+2 (1.107)

This is a relatively simple asymptotic expansion that falls in the category that was
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Figure 1.7: We define the series fn = en
5π−14−nΓ(n) and show it converges to 1. Colours

as in 1.6 and 1.5

discussed in Examples 4 and 1. We simplify adapt it to a = 2, A = 4 and g2 = z−1 for

the leading term, and a = 1 for the sub-leading term. We conclude that

(S+ − S−) ϕ̃(g2) = − i
4

1

g2
e−4/g2 (

1− 10g2 +O(g4)
)
. (1.108)

1.A Alien Calculus

In this Appendix, we will discuss some of the more mathematical inquiries into the struc-

ture of the Stokes automorphism. However, for the remainder of the thesis, this Section

shall not be immediately invoked and as such it thus serves more as a foundational

exercise.

The field of study of resurgent function was found by Écalle [82], but this section

shall mostly draw from the notation of Dorigoni [42]. We shall introduce the framework

of alien calculus to consider general power series ϕ̂(z). By considering their Borel trans-

formations around its singularities, we uncover, and make precise their rich analytic

structure.

1.A.1 Alien Derivatives

Whereas the stokes automorphism Sθ captures the full information as we cross a stokes

line θ, the alien derivative will tell us about the contribution of the individual singular-

ities that lie on the stokes line. Denote the set of singularities along the direction θ by

Singθ. We may now introduce operators called alien derivatives ∆ω as

Sθ = exp

( ∑
ω∈singθ

e−ωz∆ω

)
. (1.109)

At this stage it is unclear why we should refer to the operator ∆ω as a derivation. Firstly,

I would like to draw an analogy to the momentum operator, which is also a derivation

and upon exponentiation generates translations. In the same spirit we may treat the
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alien derivative. Furthermore, it satisfies the Leibniz rule of differentiation12, which in

a simple case will be demonstrated in Example 22.

Example 21. In this example we look at the simple case in which the Borel transform

ϕ̂(ζ) of ϕ̃(z) has a single simple singularity at ζ = ω:

ϕ̂(ζ) =
a

2πi(ζ − ω)
+
ψ̂(ζ − ω)

2πi
log(ζ − ω) + f(ζ − w), (1.110)

where ψ̂ and f are holomorphic around the origin. In fact, an asymptotic expansion

ϕ̃(z) is said to be a simple resurgent function precisely if its Borel transform ϕ̂(ζ) locally

around a singularity can be put in form as in Equation (1.110). Let us first focus on

what happens if ϕ̂(ζ) is globally of the form as in Equation (1.110).

ψ̂(ζ) is naturally the Borel transform of some other function ψ̃(z). We will study the

singular structure around θ := Arg(w) = 0 by looking at the lateral resumations. By

changing variable to ζ ′ = ζ − ω, I may conclude 13to evaluate the logarithmic integral.

(Sθ+ − Sθ−)ϕ̃(z) = −ae−ωz − e−ωz

∫ ∞

0

dζ ′ e−zζ′
ψ̂(ζ ′). (1.112)

The first term picks up a minus sign because the contour given by Sθ+−Sθ− is clockwise.

When there is only one singularity in the direction θ, Equation (1.109) simplifies heavily.

Plugging this into (1.25), gives

(Sθ+ − Sθ−)ϕ̃(z) = Sθ−(e−ωz∆ωϕ̃(z)) (1.113)

Comparing Eqations (1.112) and (1.113) will give us the alien derivative:

∆ωϕ̃(z) = −a− ψ̃(z). (1.114)

Example 22. This example is taken from [44] and [42] and is to demonstrate the Leibniz

rule in a simple example. Let

ϕ̂1(ζ) =
a

2πi(ζ − ω)
, ϕ̂2(ζ) =

b

2πi(ζ − ω)
, (1.115)

where a, b, ω are non-zero parameters. Looking back to the previous example it is easy

to see that

∆ωϕ̃1 = −a, ∆ωϕ̃2 = −b. (1.116)

12By the Leibniz rule of differentiation we mean that d
dx

(f(x)g(x)) =
(

d
dx

f(x)
)
g(x)+f(x)

(
d
dx

g(x)
)
.

13Here I have used
1

2πi

∫
γ
f(z) log(z)dz = −

∫ ∞

0
f(z)dz (1.111)
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To calculate ∆ω(ϕ̃1ϕ̃2) we must transition to the convolutive algebra:

B(ϕ̃1ϕ̃2)(ζ) = (ϕ̂1 ∗ ϕ̂2)(ζ) =
ab

(2πi)2

∫ ζ

0

dξ
1

ξ − ω
1

ζ − ω − ξ

=
ab

(2πi)2
1

ζ − 2ω

∫ ζ

0

dξ
( 1

ξ − ω
+

1

ζ − ξ − ω

)
=

ab

(2πi)2(ζ − 2ω)
2[log(ζ − ω)− log(−ω)]

(1.117)

The factor of 2 arises because the integrals coincidentally take the same value. We find

that the convolution exhibits a simple pole at ζ = 2ω and a logarithmic singularity at

ζ = ω. To find ∆ω(ϕ̃1ϕ̃2) we must focus on the latter singularity, hence I will write

B(ϕ̃1ϕ̃2)(ζ) = ψ̂(ζ)
log(ζ − ω)

2πi
, (1.118)

where

ψ̂(ζ) =
2ab

2πi(ζ − ω)
. (1.119)

Incidentally,

ψ̂(ζ) = bϕ̂1(ζ) + aϕ̂2(ζ) (1.120)

Because performing a Borel transformation is linear, we are free to change from the

convolutive model ϕ̂(ζ) to the multiplicative model ϕ̃(z) in Equation (1.120). I shall

now use Example 21 on Equation (1.118):

∆ω(ϕ̃1ϕ̃2)(z) = −ψ̃(z)

= −bϕ̃1(z)− aϕ̃2(z)

= (∆ωϕ̃1(z))ϕ̃2(z) + ϕ̃1(z)(∆ωϕ̃2(z)).

(1.121)

In this simple example, we have thus verified the Leibniz rule of differentiation. It is also

worth discussing the singularity at ζ = 2ω. If we were to apply the Leibniz rule to ϕ̃1ϕ̃2,

we would find ∆2ω(ϕ̃1ϕ̃2) = 0 because ϕ̃1,2 do not have singularities at ζ = 2ω. However,

Equation (1.117) clearly indicates a singulary. This does not show any inconsistencies:

it just shows that to study a singularity we must include all possible ways to get there.

In the present case

∆ω∆ω(ϕ̃1ϕ̃2)(z) = −∆ωψ̃(z) = 2ab ̸= 0. (1.122)

Example 23. This neat example is taken from [36] and shows how it possible to con-

struct the Stokes automorphism from alien derivatives. Consider the following asymp-

totic expansion:

ϕ̃(z) =

∞∑
n=0

n!

(n+ 1)An
z−n−1. (1.123)

28



Its Borel transform is given by

ϕ̂(ζ) = −A
η

log(1− s/A). (1.124)

This can be rewritten as

ϕ̂(ζ) = −ψ̂(ζ −A) log(ζ −A) + log(−A)
A

s
, (1.125)

with

ψ̂(ζ) =
A

ζ +A
. (1.126)

Hence, we can use our previous result of simple resurgent functions as in Example 21

and conclude that

∆Aϕ̃(z) = 2πiψ̂(z). (1.127)

Moreover, using Example 1, we can deduce that

ψ̃(z) =

∞∑
n=0

n!

(−A)n
z−n−1. (1.128)

We can even go on to compute the Stokes automorphism. Let us again place the singu-

larity on the positive real axis: θ = Arg(A) = 0. Observe that the Borel transformation

has only one singularity along this direction. Therefore higher power of the alien deriv-

ative vanish. Thus, using the definition of the Stokes automorphism:

S0ϕ̃(z) = ϕ̃(z) + 2πie−Azψ̃(z) (1.129)

This behaviour is very typical for what one tends to see in resurgent analyses. If the

singularity A ∈ R>0 is on the real line, the ambiguity is imaginary and exponentially

suppressed.

1.A.2 Bridge Equation

In practice, one will need a clever way to find the alien derivatives to allow us to calculate

the Stokes automorphism and hence the discontinuity. An important tool to this end

is finding and solving the Bridge equation which will relate the alien derivates and the

ordinary derivatives ∂z = ∂
∂z and ∂σ = ∂

∂σ . In this section we focus on the case of a

1-parameter transseries, meaning we only consider 1 symbol that is non-perturbative in

the perturbative parameter.

We shall start by observing that ∂z commutes with Sθ± . From Equation (1.25) it is

clear that Sθ+ = Sθ−Sθ, hence

Sθ−Sθ∂z = Sθ+∂z = ∂zSθ+ = ∂zSθ−Sθ = Sθ−∂zSθ. (1.130)
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Therefore, ∂z commutes with Sθ. Define the pointed alien derivative as

∆̇wϕ̃(z) = e−wz∆wϕ̃(z). (1.131)

Written in terms of pointed alien derivative Equation (1.109) becomes

Sθ = exp

( ∑
w∈Singw

∆̇w

)
, (1.132)

hence ∂z commutes with ∆̇w. Imagine F(z, σ) is some transseries solution to an ODE.

Because ∂σ and ∆̇w commute with ∂z, applying them to the ODE ensures that ∂σF and

∆̇wF solve the same ODE (which may be different from the initial one). This means

they must be proportional. This statement is better known as the bridge equation:

∆̇wF = Aw(σ)∂σF , (1.133)

where Aw(σ) is a complex number and in general a power series in σ:

Aw(σ) =

∞∑
n=0

A(w)
n σn. (1.134)

The coefficients Ak
w can be identified as the Stokes constants, also known as Stokes

coefficients or Stokes multipliers.

Example 24. Let us study the Bridge equation for a single parameter transseries

F(z, σ) =
∑∞

l=0 σ
lFl(z) which might look like

∆̇wF(z, σ) = S1∂σF(z, σ), (1.135)

for a single Stokes constant S1. Next, suppose there is only a single singularity in the

Stokes direction θ = arg(w). Consequently

SθF(z, σ) = exp(S1∂σ)F(z, σ) = F(z, σ + S1). (1.136)

Let us now study an extended example, which in many ways functions as the ar-

chetype for resurgence: the instanton ansatz. For concreteness, one might consider the

Ricatti equation for some a > 0

∂f

∂z
− af +

1

z2
f2 +

1

z
= 0. (1.137)

It can be shown [42] that we may expect singularities of the solution at −na for n ≥ 1,

hence we can solve this equation by taking an Ansatz of the form

F(z, σ) =

∞∑
l=0

σlF (l)(z), F (l)(z) = e−lazϕl(z), (1.138)
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where ϕl is a formal power series in z−1. σ is a resurgence parameter to keep track of

the orders of the different instanton sectors. Applying ∆na and ∂σ to Equation (1.137),

gives respectively

∂z(∆naf)− a(∆naf) +
2

z2
f(∆naf) = 0

∂z(∂σf)− a(∂σf) +
2

z2
f(∂σf) = 0

. (1.139)

Note that ∆na
1
z = 0 because 1

z is not singular around z = na. We can thus see explicitly

that ∆naf and ∂σf satisfy the same ODE, so that they must be proportional and we

can posit the bridge equation:

∆̇naF(z, σ) = Ana(σ)∂σF(z, σ), Ana(σ) =

∞∑
k=0

A
(n)
k σk. (1.140)

Plugging in Equation (1.138) yields

∞∑
l=0

∆naσ
le−(n+l)azϕl(z) =

∞∑
l=0

∞∑
k=0

A
(n)
k (l)σk+l−1e−lazϕl(z). (1.141)

Matching powers of eaz yields

∆naσ
lϕl(z) =

∞∑
k=0

A
(n)
k (l + n)σk+l+n−1ϕl+n(z). (1.142)

Next, we must demand that the power of σ match on both sides, hence we need only

the contribution for k = 1− n. This gives the bridge equation14:

∆naϕl(z) = A
(n)
1−n(l + n)ϕl+n(z). (1.143)

Because A
(n)
k is defined only for k ≥ 0 we must chose n ≤ 1. We may define the Stokes

constants as An := A
(n)
1−n and since the instanton action is S0 = a we can connect with

Equation 6.21 from [42] and Equation 4.10 from [44]:

∆naϕk(z) = An(n+ k)ϕn+k(z) for n ≤ 1 (1.144)

Or, in other words

∆̇naF(z, σ) = Ana(σ)∂σF(z, σ), Ana(σ) = Anσ1−n for n ≤ 1. (1.145)

For completion, it should be mentioned that in the above equation we set ϕi(z) = 0

if i < 0. Because the alien derivative ∆na vanishes for n > 1, the computation of the

14An observant reader may have noticed that the derivation of the bridge equation was dependent on
the transseries ansatz Equation (1.138), but not directly on the Ricatti equation(1.137). This means
that, for example, the MIS model (See [44] Section 4 for an introduction of the MIS model and refences
therein.) which has the same transseries ansatz, has structurally the same bridge equation. However,
the Stokes constants An are model-dependent.
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Stokes automorphism along the positive real axis simplifies:

S0 = exp

( ∞∑
l=1

e−laz∆la

)
= exp(eaz∆a) = 1 + eaz∆a +

1

2
e2az∆2

a + . . . . (1.146)

By using Equation (1.143) k times, we find

∆k
aϕn = Ak

1

k∏
i=1

(n+ i)ϕn+k = Ak
1

(
n+ k

n

)
ϕn+k. (1.147)

Therefore

S0ϕn =

∞∑
k=0

Ak
1e

−kaz

(
n+ k

n

)
ϕn+k. (1.148)

We can even compute the action of the Stokes automorphism on the whole transseries:

S0F(z, σ) =

∞∑
l=0

σle−lazS0ϕl(z)

=

∞∑
l=0

∞∑
k=0

σle−(l+k)azAk
1

(
n+ k

n

)
ϕn+k

=

∞∑
l=0

(σ +A1)le−lazϕl

= F(z, σ +A1)

(1.149)

Remark 25. The bridge equations is also interesting on a conceptual level as it shows

first signs of resurgence. This can be seen in the sense that action of the alien derivative

returns data which was already present in the transseries. Hence, the non-perturbative

ambiguities which are associates with the Stokes jump (as codified by the alien derivat-

ives) depend on other properties of the original function. This can already be seen in

Equation (1.133), but it is even more evident in the bridge equation (1.143) for the in-

stanton transseries. It shows that alien derivatives (and thus the Stokes automorphism)

connect different sectors of the transseries with each other.

So far, we have only considered the ambiguity along the positive real axis. Along

the negative real axis we encounter a more difficult situation, since there are infinitely

many non-vanishing alien derivatives ∆na for n ≤ −1. In this direction we find for the
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Stokes automorphism

Sπ = exp
( ∞∑

l=1

elaz∆−la

)
= 1 + eaz∆−a + e2az(∆−2a +

1

!
∆2

−a)+

+ e3az(∆−3a +
1

2!
(∆−a∆−2a + ∆−2a∆−a) +

1

3!
∆3

−a) + . . .

= 1 +

∞∑
m=1

emaz
n∑

k=1

1

k!

∑
l1,...,lk≥1∑k

i=1 li=k

k∏
i=1

∆−liA

(1.150)

It should be noted that the order of the product

k∏
i=1

∆−lia = ∆−l1a ·∆−l2a · . . . ·∆−lka (1.151)

is relevant because alien derivatives at different singularities do not commute. Let us

act with the stokes automorphism on the asymptotic expansions and use the bridge

equation (1.143) and find [36, 83]:

Sπϕn = ϕn +

∞∑
m=1

emaz
n∑

k=1

1

k!
f(n, k)ϕn−k, (1.152)

where I have isolated a numerical factor

f(n, k) =
∑

l1,...,lk≥1∑k
i=1 li=k

k∏
i=1

A−li(n−
i∑

j=1

lj)

=
∑

γ∈Γ(k,l)

k∏
j=1

(n− γj)S−dγj .

(1.153)

Here the summation is over k-partitions of l: Γ(k, l) = {γi ∈ Z : 0 = γ0 ≤ . . . ≤ γk ≤ l}.
The transitions to the second line is performed by setting γi = li − li−1 and γ0 = 0.

Moreover, I have defined dγj = γj − γj−1(= lj).

1.B Numerics

1.B.1 Richardson Transformation

The following modular block of code take in a sequence of numbers that one expects to

converge and calculates its Richardson transforms

RichardsonDat [ SerDat , Rorders ] := Module [{ rt , RTDat , TotDat } ,

r t [ s , n , m ] := r t [ s , n , m] =

r t [ s , n + 1 , m − 1 ] + n/m ( r t [ s , n + 1 , m − 1 ] − r t [ s , n , m − 1 ] ) ;
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r t [ s , n , 0 ] := SerDat [ [ n ] ] ;

RTDat [ m ] := Table [ r t [ SerDat , n , m] , {n , 1 , Length [ SerDat ] − m} ] ;

TotDat = Table [ RTDat [ Rorders [ [ i ] ] ] , { i , 1 , Length [ Rorders ] } ]

] ;

Notice that the recursive definition as implemented here saves the results for first

Richardson Transformation and uses it for the second, which is used for the third , etc.

This is important with recursive definition as otherwise this coefficients are calculated

multiple times causing inefficiencies. However, in many circumstances the goal is to

create plot or compute the final value of its convergence. This done using another

simple function

PlotRTDataGuess [ Data , Orders , Guess , OptionsPattern [ L i s t P l o t ] ] :=

Module [{ lp , l i n e } ,

lp = L i s t P l o t [ Data , PlotRange −> OptionValue [ PlotRange ] ] ;

l i n e = Plot [ Guess , { t , 0 , 2 + ( Data [ [ 1 ] ] // Length ) } ] ;

Show [ l i n e , lp ,

PlotRange −> {{0 , ( Data [ [ 1 ] ] // Length )} , {0 .8 Guess , 1 . 2 Guess }} ]

]

When experimenting, and one does not wish to gain a quick insight, one can use

QuickRT [ Li s tDat ] := Module [{MyDat} ,

MyDat = RichardsonDat [ ListDat , {0 , 1 , 2 , 3 } ] ;

{MyDat[ [ −1 , −1] ] , PlotRTDataGuess [ MyDat , {0 , 1 , 2 , 3} ,

MyDat[ [ −1 , −1 ] ] ]}
]

To gain more control over the exact presentation, the following code was used to generate

the plots of this thesis

PlotRT [ ListDat , Orders , Guess , yp l t range , y a x i s l a b e l ] :=

Module [{RTDat , l i n e p l t , l i s t p l t } ,

RTDat = RichardsonDat [ ListDat , Orders ] ;

l i n e p l t = Plot [ Guess , { t , 0 , 2 + ( ListDat // Length )} ,

P l o tS ty l e −> {Gray } ] ;

l i s t p l t = L i s t P l o t [ RTDat ,

PlotRange −> {{0 , 1 + Length@ListDat } , yp l t range } ,

P l o tS ty l e −> D i r e c t i v e [ Po intS i ze [ 0 . 0 2 ] ] ,

AxesStyle −> D i r e c t i v e [ Thick , Black ] ,

T i ck sSty l e −> D i r e c t i v e [ Thick , Black , Larger ] ,

AxesLabel −> { Sty l e [ ” n” , 16 , Bold , Black ] ,

S ty l e [ y a x i s l a b e l , 16 , Bold , Black ]} ,

AxesOrigin −> {0 , yp l t range [ [ 1 ] ] } ] ;

Show [ l i s t p l t , l i n e p l t ]

]
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1.B.2 Airy Function

In this appendix I present the code that produced Figure 1.4. Our first task shall be to

convert the coefficients a−k into the coefficients ck which in turn need to be converted to

coefficients bk:

rhs [ n , end ] := Sum[ am[ i ] Aˆ i Product [ 1 / ( n − r ) ,

{ r , 1 , i } ] , { i , 0 , end } ]

c [ k ] := SeriesCoefficient [ rhs [ 1/ x , k ] , {x , 0 , k } ]

s e r i e s [ n , k ] := Sum[ c [ i ] nˆ(− i ) , { i , 0 , k } ]

b [ k ] := SeriesCoefficient [

s e r i e s [m + 1 , k ] / s e r i e s [m, k ] , {m, Infinity , k } ]

We will furthermore need the following details:

A = 4/3 ;

a [ n ] := N[ 1 / ( 2 Pi ) Aˆ(−n)

Gamma[ n + 5/6 ] Gamma[ n + 1/6 ]/ n ! ] ;

ap [ n ] := −a [ n ]

am[ n ] := (−1)ˆn a [ n ]

To obtain Figure 1.4 one runs

f [ n ] := ap [ n + 1 ] A/( ap [ n ] n)

approx3 [ n ] := ( f [ n ] − b [ 0 ] − b [ 2 ] / nˆ2) nˆ3

dat = N@Table [ approx3 [ n ] , {n , 1 , 3 0 } ] ;

PlotRT [ dat , {0 , 1 , 2 , 4} , −5/36 , {−0.15 , −0.1} , ” ” ]

Here, f[n] is the LHS of Equation (1.99), approx[n] is the LHS of Equation (1.100) for

m = 2, s[n] is the RHS of Equation (1.100) and srt is its 5-Richardson transformation.

1.B.3 Sine-Gordon Potential

For the plots of Section 1.5, I used the BenderWu package [81]

Needs [ ” BenderWu ‘ ” ]

Coefs = BWProcess@BenderWu [1/2 Sin [ x ] ˆ 2 , x , 0 , 1 0 0 ] ;

To find the convergence of the action 1.5 it is simply

d i f s = Differences@Ratios@N@Coefs ;

QuickRT@difs

For Figure 1.6, one needs

f [ n ] := (1/4)ˆ n Gamma[ n + 1 ]

Asymp = Table [ f [ n ] , {n , 0 , Length@Coefs − 1 } ] ;

QuickRT@N [ Coefs /Asymp ]
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And lastly for Figure 1.7:

subcoe f s = N[ Coefs + 2/ Pi Asymp ] ;

g [ n ] := (2/ Pi ) (5/2) (1/4)ˆ n Gamma[ n ]

SubAsymp = Table [ g [ n ] , {n , 0 , Length@Coefs − 1 } ] ;

QuickRT [ subcoe f s /SubAsymp ]
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Chapter 2

Integrable Sigma Models

2.1 Integrability

This Chapter shall serve to introduce the models that will be discussed for the remainder

of the thesis. We will be considering 2d models and discuss their integrable structures.

In particular, some of these models may be considered σ-models with a particular target

space.

In this first Section we shall focus on these integrable structures. In Section 2.2, we

shall discuss in more depth a 2-parameter deformation of one of these models, called

the Yang-Baxter deformation, that preserves the integrable structure of its parent. This

shall form the basis of Chapter 3 in which we discuss certain instanton-like solutions

of this model which will feature some resurgent aspects. Section 2.3, we consider the

λ-deformed σ-model which will be extensively studied in Chapter 4. However, in this

analysis we shall also be relying on the S-matrix of the model. The study of S-matrices

of integrable models is particularly rich and is discussed in Section 2.4.

As a last stop before discussing the integrable structure of these models, let us briefly

introduce the types of models that shall be discussed.

The most well-studied integrable models include the SU(N) Gross-Neveu (GN)

model, the SU(N) principal chiral model (PCM) and the O(N) vector model. Of all

these models, the exact S-matrix is known which establishes the quantum and classical

integrability of these models. We will give a brief introduction and definition. As all the

models to follow are defined on a two-dimensional world-sheet, we generically paramet-

erise their space-time coordinates by (t, x). The SU(N) GN is a theory of N Majorana

fermions ψ

SGN =
1

t

∫
d2x

[
iψ̄ · /∂ψ +

t2

8
(ψ̄ · ψ)2

]
. (2.1)

For a Lie group G, we can define the principal chiral model as a theory of a G-valued
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field g. Typically, we will take G = SU(N).

SPCM =
1

2πt

∫
d2xTr

(
∂µg∂

µg−1
)
. (2.2)

The O(N) vector model consists of a set of fields n valued in RN constrained by |n| = 1

with an action

SO(N) =
1

2t

∫
d2x ∂µn∂

µn . (2.3)

These theories are similar in the sense that the key input parameters include a coupling

parameter t2 and a size of the global symmetry group N . Moreover, all these theories

are asymptotically free, which means their large energy scale dynamics can be studied

perturbatively. At low energies, it is known these theories develop a mass gap. This is

all to say, that despite their somewhat artificial 2d construction, they exhibit many of

the features associated with 4d Yang-Mills theory.

For an extensive review of classical Liouville integrability in Hamiltonian systems

and 2d integrable models we refer the reader to the lecture notes [84–88]. However, we

will highlight some aspects here relevant to the remainder of the thesis.

Let us first introduce classical Liouville integrability of a finite dimensional sys-

tem. Here we take the viewpoint of a classical phase space M endowed with a Poisson

bracket1. A distinguished function H : M → R on the phase space plays the role of

the Hamiltonian and governs time evolution for other functions F,G : M → R on the

phase space. Such functions are thus said to be a conserved charge (also called integral

of motion) if they satisfy
d

dt
F := {F,H} = 0 . (2.4)

Finding such conserved charges is not always easy but constitutes the main task of en-

quiries into integrable systems. Noether’s theorem guarantees that any global symmetry

of the system will generate such a conserved charge. However, some conserved charges

are generated by symmetries that are not manifest from the on-set.

More generally from (2.4), two functions F,G on the phase space are said to be in

involution (or involutive) if they satisfy {F,G} = 0. A 2n-dimensional system is then

said to be Liouville integrable if there exist n independent conserved charges Fk that

are all mutually in involution. Rather than studying its equations of motions, integ-

rable systems may be solved using some integrals and auxiliary equations. Moreover,

1In a 2n-dimensional phase space, one might choose canonical variables qi, pi with i = 1, . . . , n. The
Poisson bracket for arbitary functions F,G : M → R is given by

{F,G} =
∂F

∂qi

∂G

∂pi
−

∂G

∂qi

∂F

∂pi
.

The canonical coordinates satisfy {qi, pj} = δij and {pi, pj} = {pi, pj} = 0. The Poisson bracket is
anti-symmetric and satisfies the Jacobi relation.

A more general approach might be taken through endowing the phase space with a symplectic form
ω, which is a closed, non-degenerate 2-form. In terms of the canonical coordinates it is given by
ω = dqi ∧ dpi. The non-degeneracy means that for any 1-form β, we can find a unique vector field
Vβ such that iVβ

(ω) = β. We use this to define for any function F the vector field XF = XdF . The

Poisson bracket is then given in terms of the inner product {f, g} = ω(Xf , Xg) = (iXf
ω)(Xg).
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integrability is generally associated with an absence of chaos.

However, for this thesis we shall be interested in integrability in the (Quantum)

Field Theory setting. As Field Theories have an infinite number of degrees of freedom,

this means we will need to construct an infinite number of involutive conserved charges.

We will first consider the classical integrability of these models before moving to the

quantum (S-matrix) integrability in Section 2.4.

Although we shall restrict ourselves to 2d integrable models, it is good to note that

integrability also exists in higher dimensional models. In particular, there is a lot of

evidence of integrability in N = 4 YM theory in 4d - for reviews see [89, 90] and

references therein. Although its integrable structure, through Heisenberg spin chains,

is different from the one that applies to 2d models, its holographic dual AdS5 × S5 is

again integrable as a σ-model.

Finally, we will now turn to the discussion of integrability in 2d QFTs. The motto

shall be the same as in the finite dimensional case. However, because our systems now

exhibits infinitely many degrees of freedom, our goal shall be to construct infinitely

many conserved charges.

The main object of interest is the Lax connection L(z) = Lx(z)dx + Lt(z)dt which

is a matrix-valued 1-form that depends on a spectral parameter z. Recall that (t, x) are

the coordinates on the world-sheet. We require that the Lax connection satisfies a zero

curvature condition

dL(z)− L(z) ∧ L(z) = 0 , (2.5)

or concretely

∂tLx(z)− ∂xLt(z) + [Lx(z), Lt(z)] = 0 . (2.6)

In addition, we demand that the zero-curvature condition of the Lax connection encodes

the equations of motion and any Bianchi identities of the system. We will use the Lax

connection to construct a Lax pair. Its construction is not unlike that of a Wilson line.

The flatness of the Lax connection guarantees that the construction is invariant under

continuous transformations. We compactify a spatial direction by imposing a boundary

condition ϕ(x + L) = ϕ(x) for all the fields and construct the Wilson line around the

spatial S1 defined by

T (z) =
←−
P exp

∫ L

0

Lx(z) ,

M(z) = Lt(z)
∣∣
x=0

.

(2.7)

Notice that the Lax still depends on t, it satisfies

d

dt
T (z) = [M(z), T (z)] . (2.8)

This allow us to define a set of conserved charges

Fk = Tr(T (z)k) . (2.9)
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The crucial point is that these charges are conserved for any value of the spectral para-

meter. Hence expanding around a particular value of the spectral parameter yields an

infinite tower of conserved charges.

To guarantee that these conserved charges are in involution one requires the con-

struction of a classical r-matrix. To explain its role we employ a tensor product notion

where we take tensor product of the algebra in which the Lax pair lives. We use a

subscript notation letting A1 = A⊗ 1 and A2 = 1⊗A and r12 = rijti⊗ tj , where ti are

generators of the Lie algebra. Using this tensor notation for T (z) in Equation (2.7), we

introduce T1 and T2. The classical r-matrix then satisfies

{T1(z1), T2(z2)} = [r12(z1 − z2), T1(z1)⊗ T2(z2)] . (2.10)

Moreover, the classical r-matrix is anti-symmetric r12(z) = −r12(−z) and satisfies the

classical Yang-Baxter equation

[r12, r23] + [r12, r13] + [r13, r23] = 0 , (2.11)

where I have abbreviated rij = rij(zi − zj). A large portion of the study of integrable

systems in fact through the different types of solutions of classical r-matrices and their

classifications - see [86] and references therein.

In sections 2.2 and 2.3 we shall review two such integrable models in more detail.

The two models discussed will then form the main topic of investigation in Chapters 3

and 4 respectively. In Section 2.4 we will review some aspect of quantum integrability

with a focus towards those models treated more in depth.

2.2 Bi-Yang-Baxter Deformed PCM

In this section we shall review some basic properties of the principal chiral model (PCM)

and the Yang-Baxter (YB) deformations.

2.2.1 Lagrangian

The action of the undeformed PCM is

SPCM =
1

2πt

∫
d2σL [g] , L [g] = Tr

(
g−1∂+gg

−1∂−g
)
. (2.12)

Here, g is a map from the world-sheet into a group manifold G. The integral is over

some world-sheet, which is spanned by light cone coordinates σ± = 1
2 (t ± x). We will

later transition to a Euclidean signature with holomorphic coordinates z = 1
2 (t+ix) and

z̄ = 1
2 (t−ix). Derivatives with respect to light cone coordinates are denoted respectively

by ∂±. Note that ∂±g lives in the tangent space and is a Lie algebra g valued form such

that g−1∂±g is the pull back to the world sheet of the Maurer-Cartan one-form.

We will be considering a system with a bi-Yang-Baxter deformation. To define this
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theory we introduce the Yang-Baxter operator R, which satisfies the modified Yang-

Baxter equation

[RA,RB]−R([RA,B] + [A,RB]) = [A,B] , ∀A,B ∈ g . (2.13)

Studies of the solutions to this Equation have been conducted by [91, 92]. The existence

of the operator R implies that we can define a new Lie bracket which satisfies the Jacobi

identity and is anti-symmetric (i.e. it defines a homomorphism of Lie algebras)

[A,B]R := [RA,B] + [A,RB] . (2.14)

In this paper, we will specialise to the special case G = SU(2) and we choose a basis

ti = 1√
2
σi of the algebra. A concrete solution for the Yang-Baxter operator can then be

given by [87, 93, 94]

R =

0 −1 0

1 0 0

0 0 0

 . (2.15)

Furthermore, we let Adg(u) = gug−1 denote the adjoint operator and we define Rg =

Adg−1 ◦R ◦Adg. The action with deformation parameters η and ζ, which we sometimes

combine into χ± = ζ ± η, is given by

Sζ,η =
1

2πt

∫
d2σL [g] , L [g] = Tr

(
g−1∂+g

1

1− ηR− ζRg
g−1∂−g

)
. (2.16)

We will use the shorthand notations

R± = g−1∂±g

O± = (1± ηR± ζRg)−1,

J± = ∓O±R±,

(2.17)

so that the Lagrangian could be compactly understood as

L = Tr(R+J−). (2.18)

Moreover, we find the field equations can be formulated as [95]

∂+J− + ∂−J+ + η[J−, J+]R = 0. (2.19)

Under a (t, x) → (t,−x) transformation on the world sheet, ∂± → ∂∓. In addition

we get a minus sign appearing from the metric and lastly R → −R. We can therefore

see that the following Action is equivalent

Sη,ζ = − 1

2πt

∫
dz2 Tr(R−J+). (2.20)
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In other words, O− = OT
+. The sign that comes with this dual description is the reason

for including a sign in the definition of the current J+ in (2.17).

2.2.2 Classical Lax Structure

Klimč́ık showed in [96] first that the 1-parameter Yang-Baxter deformed model (i.e.

the case where ζ = 0) was integrable, before showing in [95] the integrability of the

2-parameter deformation. They found the following Lax pair with spectral parameter,

λ,

L±(λ) = η(R− i)J± +

(
2iη ± (1 + η2 − ζ2)

)
λ± 1

J± , (2.21)

which satisfies a zero-curvature condition

∂+L−(λ)− ∂−L+(λ) + [L−(λ), L+(λ)] = 0 , ∀λ ∈ C . (2.22)

This condition both follows from and implies the equation of motions and the Bianchi

identity corresponding to the action (2.16).

2.2.3 The Critical Line

As already noted by Klimč́ık [95], the above formulation hides a certain symmetry

between η and ζ. In particular, when η = ζ ≡ κ, a situation that we shall refer to as

the critical line, there is a restoration of a g → g−1 symmetry. Using the definitions of

Adg and Rg, it is easy to verify the Lagrangian for the action (2.16), can be written in

two equivalent ways. Either it can be written in terms of left invariant forms, g−1∂±g,

as

L L
ζ,η[g] = Tr

(
g−1∂+g

1

1− ηR− ζRg
g−1∂−g

)
, (2.23)

or else in terms of right invariant forms, ∂±gg
−1, as

L L
ζ,η[g] = L R

ζ,η[g] := Tr

(
∂+gg

−1 1

1− ηRg−1 − ζR
∂−gg

−1

)
. (2.24)

However, if we perform the transformation g → g−1 of the left acting Lagrangian, we

see that

L L
ζ,η[g−1] = Tr

(
∂+gg

−1 1

1− ηR− ζRg−1 ∂−gg
−1

)
= L R

η,ζ [g] = L L
η,ζ [g] . (2.25)

Therefore we see that along the critical line L L
κ,κ [g−1] = L L

κ,κ [g]. This enhanced

symmetry has profound effects on the physics, and we shall revisit this scenario many

times in the rest of the paper. We shall see in particular that the perturbative structure

changes discontinuously on and off the critical line.

The critical line also has a second important feature: the SU(2) model on the critical

line η = ζ is equivalent to the single parameter η-deformation of the sigma-model on

S3 viewed as a coset SO(4)/SO(3) following the construction in [97, 98]. This is quite
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useful since it allows the current study, restricted to the critical line, to have relevance

to the behaviour of the deformations of general η-deformed cosets, and potentially to

the full η-deformation of the AdS5 × S5 string.

The case of η = −ζ, which we describe as the co-critical line, will be discussed shortly

in the context of the SU(2) model.

2.2.4 Classical Symmetries

The undeformed PCM Lagrangian with group G has a global GL×GR symmetry acting

as g 7→ hLghR. The two deformations break this symmetry down to an abelian subgroup.

We shall not be going into depth on the topic of quantum algebras. However, it is

good to know, that the breaking of the classical symmetry is augmented by non-local

charges that furnish a Possion-bracket realisation of the q-deformed quantum group

UqL(g) × UqR(g). For the single parameter Yang-Baxter, or η-deformation, for which

only GL is q-deformed and GR is preserved, this was demonstrated first in the context

of G = SU(2) in [99] and shown in general [100]. The quantum group structure in the

case of two-deformation parameters studied here was described in [97]. Although beyond

the current scope, it would be remiss not to mention that Lagrangian descriptions exist

for quantum group deformed symmetries of the full AdS5 × S5 superstring viewed as a

Z4 graded super-coset [98]. Here q is real, but somewhat parallel to this have been the

construction of q a root-of-unity integrable deformations of the AdS5 × S5 superstring

[101] which extend the bosonic λ-deformations introduced in [102].

Let us study this in detail for G = SU(2) in Minkowskian signature. We will para-

metrise the group element through Euler angles by

g =

(
cos(θ)eiϕ1 i sin(θ)eiϕ2

i sin(θ)e−iϕ2 cos(θ)e−iϕ1

)
, (2.26)

where θ, ϕ1 and ϕ2 are fields taking values in [0, π], [0, π] and [0, 2π] respectively. Under

the U(1)L × U(1)R action δg = ϵLt3 · g + ϵRg · t3 , such that δϕ1 + δϕ2 = ϵL and

δϕ1 − δϕ2 = ϵR.

The charges are then given by

Q3
L/R =

∫
dσj3L/R , (2.27)

with

j3L =
1

∆(θ)

(
−η sin(2θ)θ′ + cos(θ)2a+(θ)ϕ̇1 + sin(θ)2a−(θ)ϕ̇2

)
,

j3R = − 1

∆(θ)

(
ζ sin(2θ)θ′ + cos(θ)2b+(θ)ϕ̇1 + sin(θ)2b−(θ)ϕ̇2

)
,

(2.28)

the corresponding currents. Here primes and dots denote spatial and temporal derivat-
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ives respectively and for convenience we have defined

a±(θ) = ζ2 + η(ζ ± η) cos(2θ)± ζη + 1 ,

b±(θ) = ζ(ζ ± η) cos(2θ) + ζη ± η2 ± 1 ,

∆(θ) = ζ2 + η2 + 1 + 2ζη cos(2θ) .

(2.29)

We will later return to these Noether currents when we perform a twisted reduction of

the theory.

Whilst these U(1) currents define the only local Noether charges Q3
L/R, a crucial

property of these models [100] is that they exhibit some non-local conserved charges

Q±
L/R which furnish the algebra under Poisson brackets

{Q+
L/R,Q

−
L/R} = i

qQ
3

L/R − q
−Q3

L/R

qL/R − q−1
L/R

, {Q±
L/R,Q

3
L/R} = ±iQ±

L/R ,

qL = exp
2π

σζ
, qR = exp

2π

ση
,

(2.30)

where ση,ζ are given by Equation (2.36). In this way the full GL × GR symmetry is

recovered, but deformed to have the structure of (a classical version of) a quantum

group.

2.2.5 Maillet Algebra, Twist Function and Classical Symmetries

To understand how the above charge algebra arises it is useful to consider the gauge

transformed Lax

L̃±(λ) = gL±g
−1 + ∂±gg

−1 , (2.31)

from which we define its spatial component L̃ ≡ L̃+ − L̃−, for which we will compute

its Maillet algbera (we work here with the “right” Lax). We employ the same Tensor

notation as in the end of Section 2.1.

{L̃1(x1, λ1), L̃2(x2, λ2)} = [r12(λ1, λ2), L̃1(x1, λ1)]δ12 − [r21(λ2, λ1), L̃2(x1, λ1)]δ12

−(r12(λ1, λ2) + r21(λ2, λ1))∂1δ12 ,

(2.32)

where r12 is the classical r-matrix. The term proportional to the Delta function is the

non-ultra local piece.

Here the Lax is not of the form in which the r12 is prescribed by a twist function, in-

deed r12 in the above has non-trivial dependence on the canonical coordinates, although

it can be thought of as a gauge fixing of a Lax that does have a twist function.

The non-ultra local piece however is independent of coordinates and special features

are present at locations where λ1 = λ2 = λ⋆ such that the non-ultra local piece vanishes.
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In the case at hand we have

(r12(λ1, λ2) + r21(λ2, λ1)) = f(λ1, λ2)
∑
i

Ti ⊗ Ti + g(λ1, λ2)
∑
i

Ti ⊗R(Ti) (2.33)

with

f(λ1, λ2) =
4πt

(
ζ2 − (η + iλ1) (η + iλ2)

) ((
ζ2 + 1

)
(λ1 + λ2)− η (η (λ1 + λ2) + 2i (λ1λ2 + 1))

)
(λ21 − 1) (λ22 − 1)

g(λ1, λ2) =
4πtζ (λ1 − λ2)

((
ζ2 + 1

)
(λ1 + λ2) + η2 (− (λ1 + λ2))− 2iη (λ1λ2 + 1)

)
(λ21 − 1) (λ22 − 1)

(2.34)

for which the special values λ1 = λ2 = λ⋆± = i(η ∓ ζ) are such that f = g = 0.

We evaluate now the Lax at these special points to discover

L̃(x, λ⋆±) = ∓2iαLj
3
L(x)T3 + 4αLj

±
L (x)T± (2.35)

such that we recover the currents entering in the above. The flatness of the Lax at these

values of the spectral parameter allows one to establish the conservation laws that lead

to the dressed currents J±.

2.2.6 RG Equations

The sigma-model is renormalisable in the couplings t, η, ζ with RG invariants [103],

ση =
1

tη
, σζ =

1

tζ
, (2.36)

and a non trivial flow2 (at one-loop)

d

d logµ
t = −1

2
t2(1 + (η + ζ)2)(1 + (η − ζ)2) , (2.37)

whose parametric solution is given by

logµ/µ0 =
σζ + ση

2
arctan

(
σησζt

σζ + ση

)
− σζ − ση

2
arctan

(
σησζt

σζ − ση

)
. (2.38)

There is a single real fixed point at the origin t = η = ζ = 0 but in the complex plane

there are lines of fixed points

η + ζ = ±i , η − ζ = ±i . (2.39)

The critical line is preserved by the RG flow and, analytically continued, intersects these

at a special fixed point

η = ζ =
i

2
. (2.40)

2Here we are presenting the result for SU(2) but the change to SU(N) simply introduces a factor
of the the quadratic Casimir on the right hand side of the flow.
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To understand the significance of the RG flows and the imaginary fixed points it

is helpful to consider the case of the SU(2) model. The analysis of [97] makes three

important observations relevant to us.3 The bi-Yang-Baxter Lagrangian can be viewed

as a non-linear sigma model in a target space equipped with a pure gauge B-field and

metric given by

ds2 =
1

1 + χ2
+(1− r2) + χ2

−r
2

[
dr2

1− r2
+ (1− r2)(1 + χ2

+(1− r2)dϕ22

+r2(1 + χ2
−r

2)dϕ21 + 2χ−χ+r
2(1− r2)dϕ1dϕ2

]
,

(2.41)

in which we have used the Euler angles of Equation (2.26) and defined r = sin θ
2 . The

first observation is that demanding that the metric be regular and real allows not only

χ± = ζ ± η ∈ R but also pure imaginary4 χ± = ik± with | k± |< 1.

Next we can see from the metric that there is, in addition to the Z2 action g → g−1

with η ↔ ζ, a second Z2 invariance

θ → θ + π , ϕ1 → ϕ2 , ϕ2 → ϕ1 , (ζ, η)→ (ζ,−η) . (2.42)

In the case of real parameters, which we will mostly consider here, this allows us to

restrict our attention to η ∈ R+. Note also that this transformation maps the critical

η = ζ line to the co-critical η = −ζ line.

Finally, and most remarkably, along the imaginary RG fixed points, the target space

geometry coincides5 with that of an SU(1, 1)/U(1) gauged WZW CFT together with a

free U(1) boson. The interpretation of this fixed point is the same on the critical line6

(which recall matches the η-deformation of S3 viewed as a coset) at the point η = ζ = i
2 .

When considered in the context of the η-deformation of the AdS3 × S3 superstring, the

same limit of imaginary deformation parameter is shown to give rise to the Pohlmeyer

reduced theory by [104].

Although outside of our present concerns, we note that when the bi-Yang-Baxter

deformation is combined with an appropriate AdS3 factor and RR fields, it has been

given a supergravity embedding [105].

2.3 λ-Deformations

Although the λ-deformed theories have been around for a long time [106–108], it is only

more recently that they have received more attention. Although the early works were

computationally hard, and even then only applied to an SU(2) case, it is the construction

3We thank Ben Hoare for communications on these points.
4In general such imaginary parameters would result in an imaginary two-form, but in the SU(2) case

this two-form is pure gauge.
5With χ± = ik± this limit is obtained by setting k− = 1 and shifting Φ → Φ′ + k+Ψ, such that Ψ

parameterises the free U(1) factor.
6Even if η and ζ are complexified, we will refer to η = ζ as the critical line in the complex sense,

rather than the critical plane.
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of Sfetsos [102] that shed more light on the theory in a more general case. There is now

a quantum group structure understanding of the theory, we know its S-matrix and it

seems to lead to consistent world-sheet theory at the quantum level [101, 109, 110].

Moreover, its RG-flow equation is known [111–113]

At its heart, the λ-model provides an integrable interpolation between the conformal

WZW-model [114] and the non-abelian T-Duality of the PCM. The non-abelian T-

dual of a theory, despite its abelian cousin, is not a true duality of the string theory.

However, it does provide a way to generate new super-gravity backgrounds and has

been very successful as such [115–117]. In this spirit, it was also that the λ-model was

understood as a super-gravity with RR-fluxes [118]. In fact as was shown by a series of

papers [103, 119–122], the λ-model is the (analytically continued) non-abelian T-dual of

the Yang-Baxter deformed PCM.

First we sketch the construction of the non-abelian T-dual of the PCM using the

Buscher procedure [123]. We start with the action of the PCM (2.2)78

SPCM[g] = − 1

4πt

∫
d2σTr

(
g−1∂+gg

−1∂−g
)

(2.43)

and upgrade the left symmetry g → hg to a gauge symmetry. This means we introduce

a gauge field A and we upgrade the derivative to a covariant derivative d→ D = d+A.

The gauged PCM has an action

SgPCM[g,A] = − 1

4πt

∫
d2σ Tr

(
g−1D+gg

−1D−g
)

(2.44)

We thus obtain a local symmetry g → h−1g and A→ h−1dh+h−1Ah. To fix the gauge

symmetry, we demand that the connection of the gauge field is flat (i.e. the gauge field

is pure gauge). This is implemented by introducing a Lagrange-multiplier gauge field ν

and adding a term −Tr(νF+−) to the Lagrangian. Integrating out the field ν enforces

that the field strength F+− vanishes and we recover the original PCM after gauge-fixing

g = 1. However, if instead we integrate out the gauge fields A, after gauge fixing g = 1,

we obtain the non-abelian T-dual. In this picture, the field ν becomes the fundamental

field.

We will now review the construction by [102] which is a modification of the Buscher

procedure. We will specialise to the case of SU(N) PCM. A more recent introduction

to the topic, in the context of non-abelian T-duality was provided by [88]. The key

modification is that instead of adding a Lagrange multiplier term, we add a gauged

7We use the same light cone coordinates σ± = 1
2
(t± x) as in Section 2.2.1. Derivatives with respect

to light cone coordinates are denoted by ∂±.
8In the literature, one typically uses κ instead of r. However, we will reserve the symbol κ for a

different purpose.
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WZW term. Recall that the WZW model is given by

SWZW,k[g] = − k

2π

∫
Σ

d2σ Tr
(
g−1∂µgg

−1∂µg
)
− ik

6π

∫
M3

H

H = Tr
(
g−1dg

)3
.

(2.45)

Here g is extended to a 3-manifold M3 with boundary ∂(M3) = Σ. It is possible to

extend this map because the homotopy group π2(G) is trivial for any compact Lie group

G. However, there is not a a unique extension. To ensure that the model does not

depend on the choice of extension, we use that the path integral is invariant under a

phase shift S → S+ 2nπi for integers n (thus explaining the need for the i in the action

of the WZW term). As an example, we take Σ = S2 and M3 = B its interior. If we had

two topologically different extensions g, g̃ (with 3-forms H, H̃), the difference of their

actions could be defined on two copies of B with the boundaries identified, which is

homeomorphic to S3. Letting Ĥ be that extension onto S3, we have that

i

2π
k

(∫
B

H −
∫
B

H̃

)
=
ik

2π

∫
S3

Ĥ = 2πink

The maps are hence characterised by π3(G) = Z. The 3-form H is integral, and a

different extensions gives a contribution of 2πnk to the action. The path integral is thus

single valued if k ∈ Z.

We will consider the diagonal symmetry g → h−1gh and gauge it [124, 125]. This

leads to an action SgWZW,k[g,A]. To construct the λ-model we combine a gauged PCM

and a gauged WZW model like

Sλ,k[g, g̃, A] = SgPCM[g̃, A] + SgWZW[g,A] (2.46)

Notice that the two models are coupled through the fact that they are gauged by the

same gauge field. The procedure is concluded by gauge fixing g̃ = 1 and integrating

out the gauge field A using its on-shell values as was done to construct the non-abelian

T-dual. The on-shell values of the gauge field are given by

A+ = λ(1− λAdg)−1R+ , A− = −λ(1− λAdg−1)−1L− , (2.47)

where we defined R± = ∂±gg
−1 and L± = g−1∂±g. The operator Adg, as in Section

2.2.1, is the adjoint action Adg(Ta) = gTag
−1. The namesake of the model λ is given by

λ =
k

k + t−1
. (2.48)

Integrating out the gauge field then yields the action

Sλ,k[g] = SWZW,k[g] +
kλ

π

∫
Σ

Ra
+(1− λAdg)−1La

− , (2.49)
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The equations of motion can be stated as

∂±A∓ = ±[A+, A−] . (2.50)

Here A± is the value of the gauge field in terms of g obtained by integrating out the

gauge field (2.47). The equations can re-cast by introducing a Lax connection

L±(z) = − 2

1 + λ

A±

1∓ z
, (2.51)

with zero curvature [102, 110]

∂+L−(z)− ∂−L+(z) + [L−(z), L+(z)] = 0 , ∀z ∈ C . (2.52)

This gives an integrable structure to the λ-deformed model.

The parameter λ given by Equation (2.48) varies from 0 to 1 and we shall now

discuss what happens in each of those limits. We will now study its flow under RG.

The β-equation of the SU(N)-model is known to all orders in λ, but leading in 1
k and

is given by [111–113]

µ
dλ

dµ
= β(λ) = −2N

k

(
λ

1 + λ

)2

. (2.53)

Let us study what happens in the limit as λ→ 0 and λ→ 1.

In the case of λ → 1, we can achieve this by taking k → ∞. If the group element

is expanded as g = 1 + i
kg

ata, the action SgWZW,k reduces to the Lagrange multiplier

term −Tr(νF+−). This recovers the Buscher procedure described above. Hence, in this

limit, we recover the non-abelian T-dual of the PCM. This limit constitutes the IR limit

of the model.

In the λ→ 0, or k ≪ r2, we obtain an action

Sλ,k[g] = SWZW,k[g] + λ

∫
Ra

+L
a
− +O(λ2) , (2.54)

which can be understood as a current-current deformation of the WZW model. However,

it is not a marginal deformation, but marginally relevant as it moves away from the

WZW theory located in the UV. This makes it different from the marginal current-

current deformations considered by [126]. In the quantum theory, the dimensionless

parameter λ is dimensionally transmuted into a mass gap mediated through a cut-off Λ.

2.4 Scattering Kernels

In this Section we study the scattering matrices of integrable sigma models. The study of

such S-matrices is a rich field. We shall start be revising some of the background material

of S-matrices in integrable sigma models before discussing some specific models. We shall

be relatively brief here as these S-matrices are familiar in the literature. However, we

will be more elaborate in the discussion of the S-matrix of the bi-Yang-Baxter model
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since this has not been found in the literature before.

We will consider a massive particle in 2 dimensions with Lorentzian momenta p0, p1

defined in terms of a rapidity θ given by

p0 = m cosh θ, p1 = m sinh θ . (2.55)

The S-matrix bootstrap programme, initiated by the seminal work of Zamolodchikov

and Zamoldchikov [127], is a way of establishing a unique form of an S-matrix that

is compatible with factorised scattering; integrable models have no particle production

or annihilation and thus n-body scattering can be obtained as a sequence of 2-body

scattering processes. The most famous requirement of the 2-body S-matrix is that is

satisfies the quantum Yang-Baxter equation9

S12(θ1 − θ2)S23(θ2 − θ3)S31(θ3 − θ1) = S31(θ3 − θ1)S23(θ2 − θ3)S12(θ1 − θ2) (2.56)

Here S12 is a schematic notation for the S-matrix in which particle 1 and 2 are scattered.

In general we consider that particles lie in some multiplets of global symmetries and so

that the two-particle scattering matrix has entries Skl
ij in which i, j label the incoming

flavour and k, l the outgoing.

Further physical constraints are placed on the S-matrix namely:

• Analyticity: the S-matrix should be an analytic function of (the complexified)

rapidity variable with poles along 0 ≤ Im θ < π associated to bound states.

• Hermitian Analyticity: Skl
ij (θ∗)∗ = Sij

kl(−θ)

• Real Unitarity:
∑

kl S
kl
ij (θ)Skl

mn(θ)∗ = δimδjn for θ ∈ R

• Crossing Symmetry: Skl
ij (iπ − θ) = Sij̄

k̄l
(θ). This stems from interchanging s and t

channel diagrams which rotates space and time directions by a π
2 angle.

On the subject of determining the S-matrix using the above constraints we can recom-

mend the lecture notes [128, 129].

However, in Chapter 4, we shall consider the scattering of only 1 type of particle.

This is achieved by introducing a chemical potential that freezes all other particles and

selects only a distinguished particular particle. In this case, the scattering “matrix”

reduces to a simple phase factor S(θ) that governs transmission and reflection. It shall

prove useful in this case to define the scattering kernel of this reduced S-matrix by

K(θ) =
1

2πi

d

dθ
logS(θ) , (2.57)

9In [86], it is shown how one recover the classical Yang-Baxter equation (2.11) by expanding S12(z) =
f(z)(1 + ϵr12(z)) and enforcing quantum Yang-Baxter equation at second order in ϵ.
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and its Fourier transform10

K(ω) =

∫ ∞

−∞
dθ eiωθK(θ) . (2.60)

In the case of this reduced S-matrix, the hermition analyticity can be stated simply as

saying S(−θ) = S(θ)−1. The consequence of this is that the function K(θ) is symmetric,

and hence so is K(ω).

Lastly, it shall prove useful to write the Fourier transform of the scattering Kernel

as a Wiener-Hopf (WH) decomposition

1−K(ω) =
1

G+(ω)G−(ω)
, (2.61)

where G+(ω) is analytic in the Upper Half Plane (UHP) and G−(ω) = G+(−ω). This

does not fully determine the functions G±(ω). In particular we may multiply them by a

factor of eρ(ω) for any odd function ρ(ω). We shall fix the function ρ(ω) by demanding

that G+(ω) has polynomially asymptotic behaviour in the large ω limit11. We can also

fix the normalisation by setting G+(2is) = 1 +O
(

1
s

)
.

On a technical level, the WH decomposition is typically obtained by repeatedly

using Euler’s reflections formula Γ(z)Γ(1 − z) = π
sinπz . This can be rewritten as either

Γ(1+ iαz)Γ(1− iαz) = απz
sinh(παz) or Γ( 1

2 + iαz)Γ( 1
2 − iαz) = π

cosh(παz) . Because Γ(z) only

has poles along the negative real axis, we know that Γ(1− iαz) is analytic on the UHP if

α is positive. We take care of absolute value-functions by writing |ω|
ω = sgn(ω) = ω√

ω2
,

which is decomposed according to
√
ω2 =

√
iω
√
−iω.

In Chapter 4, it shall become clear that the quantity G+(ω) is the key-ingredient of

many of the computations. That is why in this section we will be presenting not only

the S-matrix of the relevant models, but also the WH-decomposition G+(ω).

We will now present several models and their scattering kernel. We start with the

Sine-Gordon model in Section 2.4.1, before moving to the PCM in Section 2.4.2, which

requires a block that scatters particles in the fundamental representation of an SU(N)

symmetry. Similar to how the Sine-Gordon model breaks a classical SU(2) symmetry

symmetry in favour of a quantum group symmetry, the A(N) Toda model in Section

2.4.3 breaks a classical SU(N)-symmetry and generates a quantum group symmetry.

The SU(2) bi-Yang-Baxter model studied by Fateev [130] is presented in Section 2.4.4

and consists of two Sine-Gordon blocks. The SU(N) bi-Yang-Baxter is then constructed

10There is an alternative way to encode the information in Equations (2.57) and (2.60) that is common
in the literature. We represent the S-matrix as

S(θ) = exp

[
iπ − 2i

∫ ∞

0
dω

sin(ωθ)

ω
(R(ω)− 1)

]
, (2.58)

where R(ω) = 1−K(ω). This representation makes it natural to compute the kernel as

K(θ) =
1

2πi

d

dθ
logS(θ) = δ(θ)−

1

π

∫ ∞

0
dω cos(ωθ)R(ω) . (2.59)

11To be precise, we mean large in the UHP.
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from two A(N) blocks in Section 2.4.5. Finally, we present a scattering Kernel of the

λ-model in Section 2.4.6 which will be important in Chapter 4.

2.4.1 Sine-Gordon Scattering

The classical sine-Gordon Lagrangian density is given as

L =
1

γ

(
1

2
(∂µu)2 −m2(1− cosu)

)
. (2.62)

The equations of motion are classically integrable and contain soliton (s) and conjugate

soliton (s̄) solutions. The soliton (anti-soliton) interpolates from the vacuum u = 0 to

u = 2π at late times (u = 2π to u = 0) and are according classified by a topological

charge I such that I[s] = 1 and I[s̄] = −1.

Interest in the quantum Sine-Gordon theory was ignited by the role it plays as a

bosonised version of the massive Thirring model (the theory of Dirac fermions with a

(ψ̄γµψ)2 Fermi interaction) [131, 132]. At the quantum level the fundamental exciti-

ations are the soliton and anti-soliton for which the S-matrix was obtained in the original

work of Zamolodchikov and Zamolodchikov [127].

An alternative derivation of this S-matrix by Bernard and LeClair [133] makes evid-

ent the connection to the underlying quantum group symmetry of the theory, and thus

will make direct contact with the bi-Yang-Baxter deformation shortly to be considered.

By considering the quantum (Euclidean) Sine-gordon theory as a relevant perturbation

of a free compact boson Φ of radius β̂−1, Bernard and LeClair construct a set of non-

local conserved charges Q± and Q̄±. The resulting soliton-soliton scattering phase to be

written as

SSG
γ = exp

[
i

∫ ∞

−∞

dω

2ω

sin(θω) sinh(π(γ − 1)ω/2)

cosh(πω/2) sinh(πγω/2)

]
= exp

[
i

∫ ∞

−∞

dω

2ω
sin(θω) (1− coth(πγω/2) tanh(πω/2))

]
.

(2.63)

This representation facilitates the computation of the Kernel KSG
γ (θ) = 1

2πidθ logSSG
γ

whose Fourier transform is given as

1−KSG
γ (ω) =

1

2
(1 + coth(πγω/2) tanh(πω/2)) (2.64)

Its WH-decomposition (2.61) is the given by

G+(ω) = eρ(ω)

(
1 + γ

2γ

) 1
2 B(−iω

2 , −iω
2 )

B(−iω
2 , −iγω

2 ))
, (2.65)

where B(a, b) = Γ(a)Γ(b)/Γ(a + b) is the Euler Beta and ρ(ω) is any odd function. To

fix ρ(ω) we demand that in the large s-limit we have polynomial behaviour G+(2is) =

1 + a1

s +O
(

1
s2

)
. This is achieved with ρ = αω and α = − 1

2 i(γ log(γ)− (γ + 1) log(γ +
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1) + log(4)).

An important feature to keep in mind is that, in contrast to the SU(N) invariant

block that enters in the PCM, this scattering kernel is fermionic which means that

Φ(s) = G+(2is) admits and expansion around s = 0 that is a regular polynomial in

integer powers of s (i.e. no
√
s factors) and there are no logs appearing in the expansion.

2.4.2 PCM Model

Suppose that we consider any theory (not the PCM) in which the fundamental states lie

in the fundamental representation of SU(N). The solution to the factorised scattering

equation is known to be [129, 134–136]

S̃(θ) =

(
P+ +

x− 1/N

x + 1/N
P−
)
S11(θ) , (2.66)

where x = iθ/(2π), P± = 1
2 (1±P ) are projectors on the symmetric and anti-symmetric

and

S11(θ) =
Γ (1 + x) Γ

(
1
N − x

)
Γ (1− x) Γ

(
1
N + x

) . (2.67)

For the PCM, which has a global SU(N)L × SU(N)R symmetry, the S-matrix is given

by the tensor product of two copies of the above SU(N) block

S(θ) = X(θ)S̃(θ)⊗ S̃(θ) , (2.68)

where

X1,1(θ) = −
sin(π( 1

N − x))

sin(π( 1
N + x))

= −
Γ( 1

N + x)Γ(1− 1
N − x)

Γ( 1
N − x)Γ(1− 1

N + x)
, (2.69)

is an additional dressing factor that is placed by hand to ensure the correct pole structure

of the S-matrix. At a technical level this factor removes a double zero in the symmetric

channel on the physical strip12, which is given by 0 ≤ Im(θ) ≤ π. The vanishing of such

double zeros is suggested to be a general requirement of an integrable S-matrix.

There is a rich structure of (heavier) bound states forming anti-symmetric tensor

representations of SU(N) × SU(N) whose S-matrices are determined by fusion [129].

However, such states are not important for the concerns of our future TBA analysis

which requires only the fundamental. In fact, with the appropriate choice of chemical

potential we need only consider the symmetric channel S-matrix entry

S(θ) = X1,1(θ)S11(θ)2

= −Γ(1 + x)2Γ(1− x−∆)Γ(∆− x)

Γ(1− x)2Γ(1 + x−∆)Γ(∆ + x)
,

(2.70)

where we defined ∆ = 1
N . This was first found in [137].

12The physical strip is the region in the rapidity variable θ to which all values of the centre of mass
energy s = 4m2 cosh2 θ

2
are mapped. It is thus somewhat of a misnomer as many regions of the physical

strip correspond to unphysical processes.
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It follows form the definition of the of the Fourier transform (2.57) and (2.60) that

1−K(ω) = 2csch(π|ω|) sinh(∆π|ω|) sinh(π(1−∆)|ω|) (2.71)

Its Wiener-Hopf decomposition (2.61) is given by

1−K(ω) =
1

G+(ω)G−(ω)
, G−(ω) = G+(−ω) , (2.72)

with

G+(ω) =
eiω((1−∆) log(1−∆)+∆ log(∆))Γ(1− i(1−∆)ω)Γ(1− i∆ω)√

2π(1−∆)∆
√
−iωΓ(1− iω)

(2.73)

2.4.3 A(N) Affine Toda

The classical affine sl(N) Toda theory can be thought of as a generalisation of the

sin(e/h)-Gordon theory where the fundamental field ϕ(x, t) is an N − 1 weight-vector

obeying the wave equation

□ϕ = −m
2

β̃

n∑
j=1

αje
β̃αj ·ϕ , (2.74)

where αj for j = 1 . . . N − 1 are simple roots and αN is the affine root. We consider

the case where β̃ = iβ is pure - imaginary. In analogy to the sine-Gordon, this admits

classical kink soliton solutions interpolating between x→ ±∞ constant vacua solutions

ϕ = 2π
β w for w a vector in the weight lattice Λ∗. The solitons are classified by a

topological charge

I =
β

2π

∫ ∞

−∞
dx∂xϕ ∈ Λ∗ . (2.75)

The one-soliton multiplet consists of solutions

ϕ =
i

β

N∑
j=1

αj log

[
1 + exp

(
σ(x− vt) + ξ +

2πia

N
j

)]
, (2.76)

and the topological charges are governed by the choices for the values of ξ and fill out

the weights of the ath fundamental representation. The classical mass of these solitons

is found to be Ma = 4mN
β2 sin(πa

N ) and even though the theory is complex the masses

are real. Now just as the sine-Gordon theory displays a Uq(ŝl2) symmetry it is natural

to expect this generalisation also encodes a quantum group symmetry. Indeed, in [138],

such an S-matrix representing soliton scattering was conjectured and shown to match

in the semi-classical limit the result coming from WKB quantisation.
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The S-matrix for transmission of non-identical particles is given by [138]

Sik→ki =

∞∏
j=1

Γ
(
j−1
Nλ − x− 1

N

)
Γ
(
j−1
Nλ + x + 1

)
Γ
(

j
Nλ − x + 1

N

)
Γ
(

j
Nλ + x + 1

)
Γ
(
j−1
Nλ − x

)
Γ
(

j
Nλ − x

)
Γ
(

j
Nλ + x + 1

N + 1
)

Γ
(
j−1
Nλ + x− 1

N + 1
) ,
(2.77)

where we again used x = iθ/(2π), P± = 1
2 (1 ± P ). λ is related to the quantum group

parameter by is related to the quantum group parameter by q = e−iπλ. The S-matrix

for identical particles, most relevant to our discussion, is dressed by

Sii→ii =
sin(πλ(1 +Nx))

sin(πλNx)
Sik→ki (2.78)

Next we use the Weierstrass representation of the pre-factor to express, with γ = λ−1,

Sii→ii =

∞∏
j=1

Γ
(

x + (j−1)γ
N + 1

)
Γ
(
x + jγ

N

)
Γ
(

x + (j−1)γ
N − 1

N + 1
)

Γ
(
x + jγ

N + 1
N

) / (x↔ −x) , (2.79)

The Fourier transform is given by taking Log’s and invoking the integral representation

of the Γ-function,

log Γ(z + 1) =

∫ ∞

0

dt

t
e−t

(
z − 1− e−zt

1− e−t

)
,Re(z + 1) > 0 , (2.80)

which yields

S = exp

−2i

∫ ∞

0

dω
sin(ωθ)

ω

sinh
(
πω
N

)
sinh

(
πω(−γ+N−1)

N

)
sinh(πω) sinh

(
πγω
N

)
 (2.81)

For the case of N = 2 the above reduces to the Sine-Gordon soliton-soliton scattering

S-matrix and associated kernel.

Analogously to Equations (2.59) and (2.58) we can extract K(ω) from (2.81) as

1−K(ω) = 1 +
sinh(π∆|ω|) sinh((1−∆− γ∆)π|ω|)

sinh(π|ω|) sinh(πγ∆|ω|)

=
sinh((1 + γ)π∆ω) sinh(π(1−∆)ω)

sinh(πω) sinh(πγ∆ω)
,

(2.82)

where ∆ = 1
N . This has a WH decomposition given by

1−K(ω) =
1

G+(ω)G−(ω)
, (2.83)
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where

G+(ω) = e−2iβω

√
γ

(γ + 1)(1−∆)

Γ(1− i(1−∆)ω)Γ(1− i(γ + 1)∆ω)

Γ(1− iω)Γ(1− iγ∆ω)

= e−2iβω

(
γ

(γ + 1)(1−∆)

)− 1
2 B(−i∆ω,−i(1−∆)ω)

B(−i∆ω,−iγ∆ω)

(2.84)

and G−(ω) = G+(−ω). To ensure G+(ω) is analytic on the UHP, we are assuming that

1 + γ > 0. Again, demanding that G+(ω) has polynomial series behaviour as ω → i∞
fixes

β =
1

2
(∆ [γ log(γ)− (1 + γ) log(1 + γ)] + (1−∆) log(1−∆)−∆ log ∆) , (2.85)

such that G+(2is) ∼ 1 +O(s−1).

2.4.4 SU(2) bi-Yang-Baxter Model

In the case of the bi-Yang-Baxter (bi-YB) deformation applied to the SU(2) PCM, we

are able to make direct contract with the results of Fateev [130] in which two parameter

deformations of the O(4) σ-model (i.e. the non-linear σ model with S3 target equivalent

to the SU(2) PCM) are constructed. This two parameter deformation can be equated

to the corresponding SU(2) bi-YB, where we recall we had introduced the deformation

parameters η and ζ. The two parameters p1, p2 of the Fateev [130] model are related,

after some algebra, to ones entering the bi-YB theory with

p1 =
2π

tζ
, p2 =

2π

tη
. (2.86)

In [130] the S-matrix of this theory was determined to be the product of two Sine-

Gordon S-matrices given in Equation (2.63)

Sp1,p2(θ) = SSG
γ=p1

(θ)⊗ SSG
γ=p2

(θ) . (2.87)

This is entirely natural; just as the principal chiral model has an S-matrix containing the

product of two SU(N) invariant factors reflecting the SU(N)×SU(N) global symmetry,

here the two sine-Gordon factors reflect the anticipated UqL(g)×UqR(g) quantum group

symmetry described in Section 2.4.5. Of course, the relation between the pi in the S-

matrix and the classical Lagrangian parameters could be modified by quantum effects

- a reasonable assumption is that one should perturbatively find corrections of p1 such

that it remains an RG invariant at higher loops.

The scattering kernel yields

1−K(ω) =
1

2
tanh(πω/2)

sinh(π(p1 + p2)ω/2)

sinh(p1πω/2) sinh(p2πω/2)
. (2.88)
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Equation (2.88) has a Wiener-Hopf factorisation

1−K(ω) =
1

G+(ω)G−(ω)
, (2.89)

where G−(ω) = G+(−ω) and

G+(ω) = eαω
(
p1 + p2
2p1p2

) 1
2 B(−iω

2 , −iω
2 )

B(−ip1ω
2 , −ip2ω

2 ))
. (2.90)

2.4.5 SU(N) Bi-Yang-Baxter Model

The SG model is to the SU(2) bi-Yang-Baxter model what the A(N) Toda models is

to the SU(N) bi-Yang-Baxter model. That is, to construct the SU(N) bi-Yang-Baxter

S-matrix, we take two copies of the A(N) Toda S-matrix given by (2.81) with different

deformation paramters

Sp,q(θ) = χ(θ)Sγ=p(θ)× Sγ=q(θ) . (2.91)

Here, χ(θ) is a dressing factor introduced by hand with the purpose to cancel any double

zeroes that arise in the physical strip after taking the square of the Toda S-matrix. The

physical strip is the region where 0 ≤ Im(θ) ≤ π. A critical point here is that any zeros

that depend on γ do not become double zeroes.13 The only double zero on the physical

strip is located at x = −∆.

Here we have a puzzle, when the dressing factor is chosen to be the inverse of of the

PCM model Equation (2.69) (i.e. χ(θ) = (χ1,1(θ))−1) we use Equation (2.80) to find

the kernel

K(ω) =
1

sinh(πω)

[
sinh(π∆ω)

(
sinh((p∆ + ∆− 1)πω

sinh(pπ∆ω)
+

sinh((q∆ + ∆− 1)πω

sinh(qπ∆ω)

)
+ sinh(π(1− 2∆))

]
,

(2.92)

or

1−K(ω) =
sinh((p+ q)π∆ω) sinh(π∆ω) sinh((1−∆)πω)

sinh(πω) sinh(pπ∆ω) sinh(qπ∆ω)
. (2.93)

This passes two strong consistency checks: first it agrees with the SU(2) bi-Yang-Baxter

kernel (2.88) for ∆ = 1/2, second if we take p, q → ∞, we recover the SU(N) PCM

kernel (2.71).

However, this choice of dressing factor is curious from the point of view of zeros of

the S-matrix. The S-matrix provided by Sγ=p(θ)× Sγ=q(θ) without the dressing factor

has a selection of zeros that at generic choices of p ̸= q ∈ R are simple. Ignoring such

13Some subtleties may occur when p = q as the roots of the functions will thence collide, which we
will not worry about here.
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factors that cannot contribute in general double zeros, we have that

Sγ=p(θ)× Sγ=q(θ) =
Γ(1 + x)Γ(1− x−∆)

Γ(1− x)Γ(1 + x−∆)
×
∏

. . .

The remaining p, q independent factor also has no double poles or zeros on the physical

strip. From this perspective there is no immediate motivation for the introduction of

any dressing factor. In contrast to the PCM case in which χ1,1(θ)) was introduced to

convert a double zero at x = −∆ to a single zero, here we are dressing with χ1,1(θ))−1

to create a single zero at x = −∆ where previously there was none.

The kernel (2.93) has the WH-decomposition

1−K(ω) =
1

G+(ω)G−(ω)
, (2.94)

with

G+(ω) = e−2iβω

√
(p+ q)(1−∆)

pq

B(−i∆ω,−i(1−∆)ω)

B(−ip∆ω,−iq∆ω)
(2.95)

and G−(ω) = G+(−ω). The constant β is fixed by demanding that the function has

polynomial series behaviour as ω →∞,

β =
1

2

(
∆(p log p+ q log q)−∆(p+ q) log(p+ q)− (1−∆) log(1−∆)−∆ log ∆

)
.

(2.96)

2.4.6 λ-Model

The S-matrix of the λ-model was given in [106] for the SU(2) case and conjectured in

general for the SU(N) case by [139] as the rank k representation of an SU(N) spin

chain [140]. A Restricted-Solid-On-Solid (RSOS) piece 14 features in the decomposition

of the S-matrix for λ-deformed model [140, 145, 146]. In the SU(2) case this means

that there are kinks going between k + 1 vacua labelled by the highest weight vector.

In the general case, it is explained in [145] how to take a certain middle anti-symmetric

highest weight vector ωN/2. We will later introduce a chemical potential such that only

the state corresponding to the vector ωN/2 will condense. It was remarked [145] that

this particular state does not form bound states with other asymptotic states. On an

intuitive level, other positively charged states should thus be repelled from condensing

into the ground state.

In summary, we will thus only be considering scattering between particular identical

14RSOS models are integrable models with integer variables at square lattice sites. The “restricted”
nature derives from an adaptation made by [141–143] to limit the integer to maximum “height”. A
similar procedure was performed by [144] in a lattice calculation of the Sine-Gordon model. They
obtained an S-matrix after transforming a vertex interaction to an interaction-round-vertices (IRF) and
reducing the phase space from an SOS to an RSOS model. This S-matrix is relevant currently.
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states. Its scattering kernel is then given by [145].

1−K(ω) =
sinh2(πω/2)

sinh(πω) sinh(kπω∆)
exp(k∆πω) , (2.97)

where ∆ = 1
N . This has a WH decomposition given by15

1−K(ω) =
1

G+(ω)G−(ω)
,

G+(ω) =
√

4κ
Γ(1− iω/2)2

Γ(1− iω)Γ(1− iκω)
exp (ibω − iκω log(−iω)) ,

(2.98)

and G−(ω) = G+(−ω) and we defined κ = k∆. The constant b is fixed by demanding

series behaviour as ω →∞ yielding

b = κ(1− log(κ))− log(2) . (2.99)

15Interestingly, for any complex value of κ, rather than just the physical region κ ∈ R>0, Equation
(4.71) is a good decomposition, i.e. G+(ω) is holomorphic in the UHP.
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Chapter 3

Resurgence in the

Bi-Yang-Baxter Model

Our main focus in this chapter is to understand how the ideas of resurgence can be

applied in quantum field theories. To retain a degree of control we choose to work in

the setting of 1+1 dimensional field theories, that happen to be integrable (although in

this work integrability will not be employed in a crucial fashion). The overall aim here

is to expose the interrelation between the asymptotic nature of perturbation theory and

the non-perturbative sector. With a direct study of the large order QFT using Feynman

diagrams not viable there are two directions one could follow here. First one could

exploit the exact integrability of these models and study the resurgent properties of the

TBA system as in [1, 147, 148] further explored in Chapter 4. A second approach, first

used by [46] and the one we adopt here, is to consider a reduction of the system to a

quantum mechanical system where a large order perturbative expansion can be carried

out directly. In this approach, adiabaticity, achieved essentially by including a twist

in the reduction, is used to argue that the lower dimensional theory still encapsulates

the key feature of the higher dimensional one. Following this approach, it is possible to

identify two-dimensional non-perturbative field configurations (so called unitons rather

than instantons in the cases we study) as the origin of the objects that give rise to

factorial behaviour in the reduced QM. This is a crucial first step in establishing the

resurgent nature of the QFT.

In this work we shall specialise to a particular QFT, called the bi-Yang-Baxter (bYB)

model. This theory, introduced by Klimčik [95], deforms the principal chiral model

(PCM) on a group manifold G with two deformation parameters, denoted by η and

ζ, whilst the underlying integrability is preserved. When G = SU(2), which will be

our specific concern here, it was shown in [104] that the theory is equivalent to one

already introduced by Fateev [130]. There are a few motivations for studying this

particular scenario. First from a resurgence perspective it offers access to having multiple

parameters that can be dialled to expose interesting features. Second, we shall see very
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explicitly that resurgent structure will require consideration of saddle configurations in

a complexified field space. Third, when the two deformation parameters are set equal

to each other, η = ζ = κ which we call the critical line, the deformed SU(2) theory is

equivalent [104] to the so-called η-deformation of S3 viewed as a coset SO(4)/SO(3).

This provides an entry point to consider similar deformations of AdS5 × S5 [97, 98,

101] which are of interest since they are thought to encode quantum group deformations

in holography. A resurgence perspective was given in [47] for the case with only one

parameter, i.e. ζ = 0. Here we find whilst some features remain, the inclusion of a

further deformation parameter enriches the story quite considerably.

Let us briefly summarise the findings of our study:

• The bi-Yang-Baxter model admits finite action field configurations that generalise

the uniton configurations introduced for the PCM by Uhlenbeck [149] and whose

role in resurgence was expounded in [46, 47]. In addition there are finite action

field configurations that take values in the complexified target space (i.e. consist

of complexified field configurations).

• Upon a certain twisted S1 reduction these configurations are seen, in specific

regimes of their moduli space, to break up, or fractionate, into distinct lumps that

resemble instanton-anti-instanton pairs or complex instanton configurations.

• The twisted spatial reduction of the model results in a quantum mechanics with

a potential consisting of Jacobi elliptic functions sd2(w|m) and sn2(w|m)

V (w) = sd2(w|m)(1 + (ζ − η)2sn2(w|m)) , (3.1)

with a modular parameter m = 4ηζ
1+(η+ζ)2 . Taking one of the parameters to zero,

the Whittaker-Hill potential studied in [47] is recovered. Moreover, along the

critical line η = ζ = κ, the potential reduces to that studied by [41]. Looking at

the co-critical line η = −ζ, we recover the potential studied by [35]. This new

system thus interpolates between already known systems.

• The large order behaviour of the perturbation theory of the ground state energy

gives rise, using a Borel-Padé transformation, to poles in the Borel plane that are

located precisely at the values of the action for the above uniton configurations.

Commensurate to this we find Stokes rays in the ϑ = 0, π directions of the Borel

plane, and these are reflected as flip mutations of the corresponding Stokes graph.

• The ζ = η = κ critical line is distinguished by a discontinuous jump in which

the Borel pole associated to the one-complex uniton disappears and instead the

leading pole in the ϑ = π ray corresponds to a two-complex uniton. At the special

point κ = 1
2 , which corresponds to an enhanced Z2 symmetry, the real uniton and

two-complex uniton have actions of equal modulus indicating a perfect cancellation

in which the perturbative ground state energy becomes a series in g4 rather than
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g2. This provides a nice field theory example of resonate behaviour in resurgence1.

• The WKB quadratic differential corresponding to the potential in Equation (3.1)

can be equated to the quadratic differential of N = 2 gauge theories in two real-

isations. First as the elliptic SU(2) × SU(2) quiver with one of the gauge coup-

lings sent to infinity and with the relative Coloumb branch parameter set to zero.

Second as the SU(2) Nf = 4 theory with pairwise equal flavour masses. In both

cases, the masses are described by the quantum-group parameters of the bi-Yang-

Baxter model.

The structure of this Chapter is as follows: in Section 3.1 we provide a summary of

the model under consideration before identifying the uniton configurations. We perform

the reduction to quantum mechanics in Section 3.2 and perform a detailed perturbative

analysis of this in Section 3.3. We end the story by establishing the linkage to the N = 2

gauge theory in Section 3.4. We close with a discussion of a number of possible future

directions.

3.1 Uniton Solutions

We now study non-perturbative field configurations, i.e. exact classical solutions of

the Euclidean theory with finite action, analogous to instantons. At first sight this

may seem counter intuitive since there is no obvious topological protection (recall that

π2(G) = 0) and it is far from obvious that these are good vacua to expand around in a

Quantum Field Theory. However in a seminal early work by Uhlenbeck [149], classes of

such solutions were found and classified for the principal chiral model. These solutions

are known as unitons due to the additional constraint g2 = −Id and have played a

prominent role in recent attempts [46, 47] to elucidate the resurgent quantum structure

of two-dimensional quantum field theories.

In this Section we shall study uniton solution of the deformed SU(2) sigma model,

but it is interesting to note that solutions have later been found on more general deformed

group manifold by [150]. In particular, they construct on the critical line η = ζ a Weyl

operator which reproduces the complex uniton. In general, they show the power of using

Hodge theory to study the classical dynamics of sigma model – see also [151].

3.1.1 Real Unitons

Let us briefly recall some basics of the bi-Yang-Baxter deformed model discussed in

Section 2.2. We introduced an action

Sζ,η =
1

2πt

∫
d2σL [g] , L [g] = Tr

(
g−1∂+g

1

1− ηR− ζRg
g−1∂−g

)
, (3.2)

1The potential Equation (3.1) at the critical line was indeed used as an proto-typical example to
study such resonances in a 0-dimensional toy example in [43].
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where g is a function of the world-sheet valued in the target-space group manifold G.

We defined the adjoint operator Adg(u) = gug−1 and we defined Rg = Adg−1 ◦R ◦Adg,

where R is a solution to the modified Yang-Baxter Equation (2.13). η and ζ are the

deformation parameters. Sending them to 0 bring us back to the PCM.

We will specialise to the G = SU(2) case and use Equation (2.15) as the solution of

the modified Yang-Baxter Equation. In the SU(2) case, which is geometrically an S3,

we used the Hopf angle fibration of the group manifold

g =

(
cos(θ)eiϕ1 i sin(θ)eiϕ2

i sin(θ)e−iϕ2 cos(θ)e−iϕ1

)
, (3.3)

In terms of the Hopf angles ϕ1, ϕ2, θ, we find a solution to the Euclidean equations of

motions (2.19) given by

ϕ1 =
π

2
, ϕ2 = π +

i

2
log

(
f

f

)
, θ(f, f) = θ(|f |2), (3.4a)

sin(θ(|f |2))2 =
4|f |2

(1 + |f |2)2 + (η − ζ)2(1− |f |2)2
=: P (|f |2) , (3.4b)

with f(z) any holomorhpic function of the Euclidean coordinate z = x+ti. Interestingly,

the solution can be obtained simply from that of the single deformed case constructed in

[47] by substituting η2 → (η − ζ)2, although this change is not at all apparent from the

equations of motion. The peculiarity of the critical line η = ζ = κ is apparent already

at this level: in this situation the uniton solution does not depend on the deformation

parameter at all (although the on-shell value of the action will of course depend on κ).

Usually, the topological classification of saddle points in non-linear sigma models

with target space M depends on π2(M). However, in the present case we have that

π2(SU(2)) = π2(S3) = 0. From the uniton solutions (3.4a), we see that the uniton is

the embedding of a Riemann sphere into a particular S2 ⊂ SU(2). The discretisation

of the uniton action can be connected to the homotopy group π1(M) of the field space

M = {g : S2 → SU(2)}. Therefore, the unitons are classified by π1(M) = π3(SU(2)) =

Z, see also [152]. Here this quantisation is reflected in the order of the polynomial f(z).

In Figure 3.1, we illustrate the Lagrangian density of this uniton configuration, for

the case that k, the degree of f(z), is one. That is, we take

f(z) = λ0 + λ1z , (3.5)

where λi are some moduli that become significant later. The uniton solution appears

as a lump of localised Lagranian density. The deformation parameters induce some

additional structure, qualitatively described by punching a depression and flattening

out the lump.

Whilst this uniton is not a bona-fide BPS protected solution, for the reasons de-
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(a) η = 0, ζ = 0 (b) η = 0.8, ζ = 0 (c) η = 0.8, ζ = 0.8

Figure 3.1: A plot of the Lagrangian density of the k = 1 real uniton on R2 illustrating
the flattening out as the deformation paramaters are tuned up. The moduli in Equation
(3.5) are fixed in these plots such that the uniton is centered at the origin: λ0 = 0, while
λ1 = 1/2.

scribed above, the solution does satisfy a first order ODE pseudo-BPS condition

4x2(θ′(x))2 = sin2 θ(x) + (η − ζ)2 sin4 θ(x), x = |f |2. (3.6)

By substituting the uniton solution into the action (2.16), we find

S =
2

πt

∫
d2z

|f(z)|2|f ′(z)|2(θ′(|f(z)|2))2

1 + η2 + ζ2 + 2ηζ cos 2θ(|f(z)|2)
. (3.7)

To proceed, the integration coordinate is switched from z to w = f(z). The order k of

the polynomial f(z) appears as it revolves k times around its integration domain. We

can integrate over the argument of w, which yields 2π. By changing the integration

variable to θ(|w|2), and by making use of Equation (3.6) the action evaluates to

S =
2k

t(1 + χ2
+)
SI , (3.8)

with2

SI =
2

m
(χ+arctanχ+ − χ−arctanχ−) , (3.9)

where we recall that χ± = ζ ± η, and we have defined

m =
4ηζ

1 + (η + ζ)2
, (3.10)

the significance of which will become clear later. Similarly, we have rather artificially

extracted a factor of 1 + χ2
+ from the action for reasons that will follow later. Observe

that SI is real and positive if η and ζ are real and positive.

Moreover, note that in this formulation, SI reduces to 1 + (η+ η−1) arctan(η) in the

single deformation limit ζ → 0, matching the result of [47].

Another way of describing the solution is through a projector Π obeying Π2 = Π.

2The notation SI is perhaps confusing, we have chosen this to be in keeping with other works in the
field in which the subscript I is meant to invoke instantons.
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We let

g = i(2Π− Id) , =⇒ g2 = −Id , (3.11)

and Π given by

Π =
v† ⊗ v
v† · v

, v =

 1√
f̄
f

1+
√

P (|f |2)√
1−P (|f |2)

 , (3.12)

where P (|f |2) is as in Equation (3.4b). This approach might be more amenable to higher

rank generalisations since it does not require an explicit choice of Hopf coordinates.

3.1.2 Complex Unitons

An important feature of this model is the existence of a second solution to the equations

of motion which lives in the complexified target space. We shall thus refer to this

configuration as a complex uniton, and, by contrast, the uniton discussed above shall be

referred to as the real uniton. For the complex uniton, the configuration of the fields ϕi

shall be the same as for the real uniton given by Equation (3.4a). For θ(|f |2), we obtain

θ(|f |2) =
π

2
+ i arctanh

(
1

2

(
|f |+ 1

|f |

)√
χ2
− + 1

)
. (3.13)

When this is substituted into the action we obtain

S =
2k

t(1 + χ2
+)
SCI , (3.14)

with

SCI =
2

m
(χ−arccotχ− − χ+arccotχ+) , (3.15)

χ± = ζ ± η and m is as in (3.10). Interestingly, the action of the real uniton and the

complex uniton arise as the integral of the same function. This leads to a surprising

connection

SCI(ζ, η)− SI(ζ, η) =
π(1 + (ζ + η)2)

4ζη
(|ζ − η| − |ζ + η|) , (3.16)

which is explained further in Appendix 3.A. Observe that SCI is real and negative if η

and ζ are real and positive.

Readers familiar with the undeformed PCM [46] might wonder why such complex

uniton configurations played no role there. The answer is simple: although it is still a

solution to the field equations, its action diverges and plays no important role.

In Figure 3.2, we show the (real part) of the Lagrange density of these complex

uniton lumps. This reveals a peculiar behaviour across the critical line of deformation

parameters. At generic values of deformation parameters, there is a secondary valley in

the Lagrangian density. This structure however disappears discontinuously across the

critical line.

Similarly discontinuous behaviour is visible directly in the value of the complex
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(a) η = 0.2, ζ = 0.1 (b) η = 0.2, ζ = 0.19

(c) η = 0.2, ζ = 0.2 (d) η = 0.2, ζ = 0.21

Figure 3.2: A plot of (the real part of) the Lagrangian density of the k = 1 complex
uniton on R2 as the deformation parameters are tuned to cross the critical line. In (a)
there is a clear concentric valley structure which is removed precisely at the critical line
in (c). The moduli are fixed in these plots at λ0 = 0, λ1 = 1/2.

uniton action eq. (3.15) which exhibits a cusp across the critical line as can be seen

from (
lim

η→ζ+
− lim

η→ζ−

)
∂ηSCI = − 4πζ2

1 + 4ζ2
. (3.17)

This a strong early hint for a feature that we will later see in detail, namely that the

quantum behaviour away from the critical line is rather different from that exactly on

the critical line.

3.1.3 Uniton Dominance Regimes

Whilst discussing the classical aspects of these solutions, let us preempt a little of what

is to follow. We have in the complex and real unitons two types of classical saddles,

and one should anticipate that both are important to define the full quantum theory.

However, which (classical) saddle is most important will depend on where we are in

(classical) parameter space. Because the configuration with the lowest action yields the

biggest contribution in perturbation theory, we divide the parameter space spanned by

η and ζ into different regions, based on inequalities among the actions (3.9) and (3.15).

This is displayed in Figure 3.3 where one can see that there are demarcations between

regimes when the absolute value of the real and complex uniton actions become equal

or integer multiples of each other. One should anticipate that perturbation theory will

behave differently in different regimes, and this will indeed be the case as will be seen

in Section 3.3.
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Figure 3.3: A plot in the η − ζ plane indicating the hierarchy of the various non-
perturbative configurations. In region 1 (blue) |2SI | < |SCI |; in region 2 (yellow)
|SI | < |SCI | < |2SI |; in region 3 (green) |SCI | < |SI | < |2SCI | and finally in region 4
(white) |2SCI | < |SI |. The dashed line indicates the critical line κ := η = ζ and the point
A is where κ = 1

2 and SI = −SCI = π and will be shown to exhibit interesting behaviour.
The critical line crosses from region 1 to 2 at κ = 1

2
√
3
, where 2SI = −SCI = 8π

4
√
3
. It

crosses from region 3 to 4 at κ =
√

3/2 where SI = −2SCI = 8π
4
√
3
.

3.2 Compactification and Fractionation

Our primary goal is to expose the quantum resurgent structure of these theories. We

shall do so in a slightly indirect fashion following the arguments proposed in [46], to

reduce the problem from a full 1+1 dimensional quantum field theory to a tractable

quantum mechanics. This is achieved by performing an adiabatic reduction on a spatial

S1 with a twisted boundary condition of the form3

g(t, x+ L) = eiHLg(t, x)e−iHR . (3.18)

However, it is more practical, instead, to work with a periodic boundary condition by

defining

g̃(t, x) = e−iHLx/LgeiHRx/L =⇒ g̃(t, x+ L) = g̃(t, x). (3.19)

Introducing a nonzero HL and HR is like turning on an effective background gauge field

in the untwisted theory with periodic boundary conditions. This can be subdivided in

a contribution from a vectorial twist and an axial twist HV,A = 1
L (HL ±HR).

By an adiabatic compactification, we mean that we are looking for a compactification

that has no phase transition as we send the compactification radius L of the S1 from

large to small. The contribution of [46] is the precise analysis of two compactifications:

one thermal and one spatial. It is shown that the thermal compactification has a phase

transition, whereas the spatial compactification under some additional constraints does

3It should be clear from the context if L refers to the compactification radius or if it serves as a label
for the left symmetry group, in contrast to R for the right symmetry group.
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not. The nature of the phase transition is measured by F/N2 in the N → ∞ limit,

where F is the free energy. This quantity has a sharp transition from O(1) to 0 for

thermal compactification as we go from large L to small L, whereas for the spatial

compactification it tends to 0 in the limit for all L. Of course here we are at finite

N (the target space is SU(2)) rendering some of this discussion moot in point but we

retain the strategy employed at large N with some post-hoc justification.

It was shown in [46] that to achieve adiabatic continuity one must impose two things.

Firstly, we need to set HA = 0. Secondly, one must minimise the contributions of the

Wilson line for the background gauge field, Ω = exp(i
∮
dxHV ) = exp(iLHV ), to the

free energy which occurs when

Ω = e
νiπ
N diag

(
1, e

2iπ
N , . . . , e

2iπ(N−1)
N

)
, ν = 0, 1 ifN = odd, even. (3.20)

For the SU(2) case this means we require

LHV = HL = HR =
π

2

(
1 0

0 −1

)
. (3.21)

We will paramterise the effective gauge field as

HL = HR =

(
ξ 0

0 −ξ

)
, (3.22)

so the maximal twist (3.21) is given by ξ = π/2.

The idea here is that this simplifies the theory considerably, retaining only a small

selection of modes from the full theory, but does so in a way that retains the salient

perturbative structure. Whilst this approximation is evidently not complete (for instance

the role of the renormalisation in the quantum field theory is somewhat obscured), rather

remarkably we will find that we can relate the features of perturbation theory in the

resultant quantum mechanics obtained after shrinking the S1 to the non-perturbative

saddles found in the full 1+1 dimensional theory.

To understand the twisted Lagrangian L [g̃], we shall consider the currents under

both the right and the left acting symmetries g → eiαLσ3ge−iαRσ3 of the untwisted

Lagrangian studied in Section 2.2.4. The Minkowkian current are given by Equation

(2.28). In terms of these currents, the twisted Lagrangian obtained by substituting the

field (3.19) with HL/R given by (3.22) into the lagrangian (2.16) is given by

L [g̃] = L [g] +
ξ

L
(j3L + j3R) +

8ξ2

L2∆(θ)
sin2(θ)[(ζ − η)2 sin2(θ) + 1] , (3.23)

where we recall ∆(θ) = 1 + ζ2 + η2 + 2ζη cos(2θ).

We will now perform a Kaluza-Klein reduction and discard all the spatial depend-

ence. Moreover, we will eliminate all total derivatives. In particular, this means the

contribution linear in currents j3L/R vanishes. In the resulting Lagrangian, the fields
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ϕi become non-dynamic, and thus we can focus on the low energy effective theory by

setting all momenta in these directions to zero.

Following this procedure we thus obtain the reduced Lagrangian

L =
1

t

θ̇2 − 8ξ2

L2 sin2(θ)[(ζ − η)2 sin2(θ) + 1]])

∆(θ)
. (3.24)

To put the kinetic term into canonical form it is necessary to redefine variables such

that the denominator factor ∆(θ) can be absorbed. This is achieved by defining

θ̃ = F (θ|m) , (3.25)

where F (θ|m) is the elliptic integral of the first kind. The modulus m was foreshad-

owed by Equation (3.10). Employing Jacobi elliptic functions4, the Hamiltonian of the

quantum mechanics takes the following form

H =
g2

4
p2
θ̃

+
1

g2
V (θ̃) , (3.26)

with

V (θ̃) =
4ξ2

L2
sd2(θ̃)(1 + χ2

−sn2(θ̃)) , (3.27)

where g2 = t(1 + χ2
+)5. Notice in the ζ → 0 limit, we have that m→ 0 , which implies

that am(u) → u , so sn(u) → sinu and dn(u) → 1 such that the potential degenerates

to a Whitaker–Hill type found for the single deformation in [47].

The approach to UV fixed lines, η−ζ = i and η+ζ = i in the complex plane displays

further striking behaviour. In elliptic variables these limits correspond to sending m→ 1

and m→∞ respectively. Using the the elliptic variables, when we set η − ζ = ±i, the

potential becomes tanh2(θ). Up to a shift, this is a Pöschl-Teller potential which has an

exactly solvable discrete spectrum in terms of Legendre polynomials. The m→∞ limit

is better understood without going to elliptic variables, indeed setting η = ζ = i
2 we see

that ∆(θ) → sin2 θ such that the Lagrangian (3.24) describes a free particle. In both

cases, one should not anticipate any asymptotic behaviour to be exhibited. However, any

small deformation away from these points will induce a non-trivial potential and a rich

resurgent structure will become manifest. This is rather reminiscent of the Cheshire cat

resurgence [27, 40, 153], as we obtain a theory that has energy eigenvalues that are not

asymptotic in g2, but rather are exact. It would certainly be interesting to understand

this directly at the two-dimensional level for which the fixed point is understood as a

SU(1, 1)/U(1) + U(1) gauged WZW CFT.

For the remainder of the Chapter, we shall be studying a quantum mechanical system

4The Jacobi amplitude am(u|m) = ϕ is the function such that ϕ satisfies u = F (ϕ|m) ≡∫ ϕ
0 dθ

(
1−m sin2 θ

)− 1
2 . We shall generally drop the argument m, unless it is unclear. The Jacobi

elliptic sine is sn(u) = sinϕ. The delta amplitude is dn2(u) = 1 − m sn2(u) and we make use of

sd(u) =
sn(u)
dn(u)

.
5Notice a similar rescaling was applied in Equations (3.8) and (3.14).
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(a) η = 0.0 (b) η = 0.5 (c) η = 1.0 (d) η = 0.5i

(e) η = 0.0 (f) η = 0.5 (g) η = 1.0 (h) η = 0.5i

Figure 3.4: The Lagrangian density of the real uniton on R× S1 with twisted periodic
boundary conditions. We have set ζ = 0.5 everywhere. In the top row, λ0 = e2 and
λ1 = e−4 and we cannot see a clear fractionation. In the bottom row we consider
λ0 = λ1 = e−5 and there is a clear fractionation.

with potential (3.27). Before doing so, let us remark on the fate of the uniton (real

and complex) under this twisted reduction. The first point to remark is that it is

straightforward to modify the uniton solutions to accommodate the twisted boundary

condition, this is done by simply by replacing the holomorphic function f(z) entering in

the minimal unitons (i.e. k = 1) on R2 with a twisted version f(z) = λ0e
−πz/L+λ1e

πz/L.

Recall that on R2 the unitons formed localised lumps of Lagrangian density (with

some non-trivial profile induced by the deformation parameters) and this is true across

the moduli space parameterised by {λ0, λ1}. In contrast, on the twisted cylinder a dif-

ferent behaviour emerges; there are regions of moduli space for which the real uniton

breaks up (or fractionates) into well separated and clearly distinct lumps of Lagrangian

density (see Figure 3.4). In this way we anticipate that a single real uniton makes a

contribution to the dimensionally reduced theory much like an instanton anti-instanton

pair. The complex uniton exhibits a similar fractionation (see Figure 3.5), but in addi-

tion we observe a strange phenomenon around the critical line: the additional valley in

the uniton density discontinuously vanishes.

3.3 WKB and Resurgence

In this section we study a Schrödinger Equation(
g4

∂2

∂θ2
− V (θ) + g2E

)
Ψ(θ) = 0 , (3.28)

with potential (to ease notation we now drop the tilde accent on θ)

V (θ) = sd2(θ)(1 + χ2
−sn2(θ)) (3.29)
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(a) η = 0.3 (b) η = 0.45 (c) η = 0.5 (d) η = 0.55

(e) η = 0.3 (f) η = 0.45 (g) η = 0.5 (h) η = 0.55

Figure 3.5: The Lagrangian density of the complex uniton on R × S1 with twisted
periodic boundary conditions. Here we have set ζ = 0.5 and zoomed in to study the
behaviour around the critical line η = ζ. In the top row, we show λ0 = e2 and λ1 = e−4,
which should be contrasted with the bottom row where λ0 = λ1 = e−5 and fractionation
is clearly evident. In both rows we clearly see, in (c) and (g), a sharp change in the
profile as the critical line is reached.

and g2 = t(1 + χ2
+). We employ the WKB method to obtain an expansion in g2 → 0.

We make an ansatz similar to Equation (1.29)

Ψ(θ) = exp

(
i

g2

∫ θ

θ0

dθ S(θ)

)
, (3.30)

in which, S(θ) is a function that still depends of g2. This will solve the Schrödinger

Equation (3.28) if the function S(θ, g2) satisfies the Ricatti Equation (1.30)

S2(θ)− ig2S′(θ) = p2(θ) , (3.31)

where p(θ) =
√
g2E − V (θ) is the classical momentum, as usual. We assume a power

series ansatz for S(θ)

S(θ) =
∑
n=0

g2nSn(θ) , (3.32)

for which there exists a recursive solution widely available in the literature [23, 43, 44].

At the same time we make a power series ansatz

E =
∑
n≥0

ang
2n . (3.33)

Here, an of course still depends on the parameters η and ζ.

In this section we will compute this perturbative series to a very high order. For

explanatory purposes, will mostly restrict our investigation to the behaviour along two

trajectories: along the critical line κ = η = ζ and along the line ζ = 1/5. We will study
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how the behaviour transitions as we cross the different regions shown in Figure 3.3.

Along these trajectories, we compute the Borel-Padé approximant. We show how its

pole structure suggests branch points that precisely match the value of the uniton actions

(3.9) and (3.15). By looking at the Stokes lines of the quadratic form associated to this

potential, we see that these contributions can be associated with saddle trajectories for

real values of the coupling.

Next, we use the uniform WKB ansatz [15] to find an asymptotic form for the

perturbative expansion. We show that the perturbative series converges rapidly to

its asymptotic form. This asymptotic form, however, depends on which regions of the

parameter space we analyse, as different unitons are dominant across the different regions

of Figure 3.3.

3.3.1 Borel Transform

We use the BenderWu package [81] to compute WKB expansion so that we obtain a

perturbative asymptotic expansion of the ground state energy (we will not consider

higher level states in this Chapter). Unfortunately, the script runs too slow for general

η and ζ so for most of the asymptomatic analysis to come we will be working with

explicit values for the deformation parameters. For specified values of η and ζ, we could

typically obtain 300 order of perturbation theory in 30 minutes on a desktop computer.

The first terms for the deformed model in the expansion come out as

E = 1− 1

4
g2 − 1

16
g4 − 3

64
g6 +O(g8), η = 0, ζ = 0 ,

E = 1− 1

16
g2 − 61

256
g4 +

777

4096
g6 +O(g8), η =

1

2
, ζ = 0 ,

E = 1− 69

1600
g2 − 360357

2560000
g4 +O(g6), η =

1

2
, ζ =

1

4
,

E = 1− 3

32
g4 − 39

2048
g8 +O(g12), η = ζ =

1

2
,

(3.34)

The fact that at η = ζ = 1/2 we obtain a perturbative series in g4 is very specific to this

point as is explained further in Figure 3.15. In essence, it is due to a perfect cancellation

of an alternating and a non-alternating series. This can be traced back to the equality

SI = −SCI = π, as can be explained through resonance, see also Figure 3.3.

Mimicking Section 1.1, we compute the Borel transform

Ê =
∑
n≥0

an
n!
ĝ2n (3.35)

of this series. We would like to understand something about the singularity and branch

cut structure of the ĝ2-plane, which is also called the Borel plane. We will sometimes use

z = g2, while s = ĝ2 is the variable in the Borel plane. When the Laplace transformation

can be done un-ambiguously this results in a finite re-summed value for the original

series. However, in many interesting cases Ê(s) has poles along the integration path
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s ∈ [0,∞] defining the Laplace transformation. As discussed in Section 1.1.2, to give

meaning to the integration one can instead deform the integration contour and define

the lateral resummation in the direction ϑ as

SϑE(z) =
1

z

∫ eiϑ∞

0

ds e−s/zÊ(s) . (3.36)

A ray, ϑ = ϑ0, is said to be a Stokes direction if Ê(s) has singularities along that ray. One

can then define two lateral summations Sϑ0+ϵE(z) and Sϑ0−ϵE(z) which have the same

perturbative expansion but differ by non-perturbative contributions, a change known

as a Stokes jump. The crucial idea of the resurgence paradigm in the quantum mech-

anical context, going back to [12, 72, 73] is that the inherent ambiguity between these

two perturbative resummations is precisely cancelled by a similarly ambiguous contribu-

tion from the fluctuations around an appropriate non-perturbative configurations in the

same topological sector. For instance, in quantum mechanic the path integral over the

quasi-zero mode separation between an instanton anti-instanton pair has an ambiguous

imaginary contribution that cancels that of the ground state energy ambiguity. The

first test of this programme is then that the location of the poles in the Borel plane

should be in accordance with the values of the on-shell action for non-perturbative field

configurations. When performing a numerical calculation, the summation defining the

Borel transformation has to be cut off at the order to which the perturbative expansion

was performed. Hence Ê(z) becomes a simple polynomial which has no poles. For this

reason, we employ the Padé approximant, which was introduced in Remark 7, which

is an approximation of the function by the ratio of two polynomials, where the coef-

ficients are determined by demanding that the Taylor series matches the original. By

calculating the roots of the denominator of the Padé approximant, we find its poles in

the ĝ2-plane. These are called the (Borel-)Padé poles. An accumulation of Padé poles

suggests a branch point in the Borel plane. These methods are expanded upon further

in [43, 44, 154, 155].

Critically, we find that those branch points can be identified precisely with the finite

action configurations found previously by the real and complex unitons (3.9) and (3.15)!

This is illustrated in Figures 3.6 and 3.7 demonstrating the behaviour across the critical

line and along it. We are thus able to relate non-perturbative contributions with these

instanton configuration. It is important to emphasise that what we have done is to

take a two-dimensional QFT and truncated to a particular quantum mechanics, but

the relevant non-perturbative saddles are coming from finite action solutions in the full

two-dimensional theory.

Beyond the headline matching of poles to non-perturbative saddles lies a more in-

tricate structure. In Figure 3.6 we show that for generic real values of η and ζ, the

Borel-Padé approximation suggests the existence of two Stokes rays. The first is at

arg(s) = 0 for which we see evidence of a branch cut terminating at the value of the

real 1-uniton action. The second is the arg(s) = π ray and with a cut terminating at

the complex 1-uniton action. However, as the parameters are tuned to the critical line
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η = ζ (see Figure 3.6 (c)) the location of the cut in the arg(s) = π direction jumps

from the complex 1-uniton to the complex 2-uniton action. Figure 3.6 confirms that all

along the critical ζ = η = κ line that arg(s) = π branch cut terminates at the complex

2-uniton action. This implies that for the entire range 0 < κ < 1
2 the leading pole (the

one nearest to the origin) continues to be that along arg(s) = 0 at the location of the

real 1-uniton action. At κ = 1
2 (see Figure 3.7 (c)), the action of the complex 2-uniton

coincides with that of the real 1-uniton; this is the non-perturbative feature correspond-

ing to the fact that the perturbative series in eq. (3.34) discontinuously jumps to being

a series in g4 rather than g2 when κ = 1
2 – see Equation (3.34).

Having established that it is essential to consider complexified field configurations

to understand the Borel pole structure, it is natural to now analytically continue the

deformation parameters η and ζ themselves into the complex plane.

Generically, as indicated in Figure 3.8, the branch cuts continue to match to the

values of the uniton actions, and now lie along angles governed by the phase of the uniton

action. In Figure 3.9 we show what happens as the phase of the critical parameter κ
is rotated; again we see that the direction of the branch cuts track the phases of the

unitons. These plots also hint, although the numerics are limited, at the existence of a

tower of poles located at multiples of the complex 2-uniton action.

Finally, we study the potential as it approaches the point η = ζ = i
2 which cor-

responds to the RG fixed point. Here, m has a pole, so the elliptic potential is not

well-defined (but recall that this is a consequence of the Jacobi variables; in the original

Euler angle variables this point was simply a free theory). The actions (3.9) and (3.15)

tend to zero6, as do the elliptic periods of the potential. As discussed in the previ-

ous section, though a different change of variable this point can be associated to a free

theory.

Firstly, we consider the behaviour as we rotate around η = ζ = i
2 on the critical line

by looking at

κ = η = ζ =
i

2
+ ϵeiθ . (3.37)

We find that there is an infinite tower of branch points located at

2SCI + 2n(SI − SCI), n ∈ Z . (3.38)

In particular, for n = 1 and n = 0 there are branch poles at the real and complex uniton

actions respectively. This is consistent with the previous analyses.

In addition we consider the behaviour as we rotate around η = ζ = i/2 slightly off

the critical line, that is, let

η =
i

2
, ζ =

i

2
+ ϵeiθ . (3.39)

6In general, we have chosen the branch cuts in the Borel plane to run from 2SI to +∞ and from
2SCI to −∞; here however a more natural choice would be to take a cut from 2SI to 2SCI such that
cut is removed entirely as the free theory point is approached. For this interpretation to make sense it
is necessary that the branch points at 2SI and 2SCI display the same behaviour - which they do (see
Equation (3.53) ).
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(a) η = 0 (b) η = 19/100

(c) η = 20/100 = 1/5 (d) η = 21/100

Figure 3.6: The complex Borel s-plane for ζ = 1
5 at different values of η with blue dots

indicating poles of the Borel-Padé approximation obtained from 300 orders of perturb-
ation theory in g2 (hence we computed a total of 150 poles). Accumulations of poles
are anticipated to encode branch cuts in the full Borel transform, and isolated poles
are expected to be residuals of the numerical approximation. The red dashed circle
indicates the magnitude of the the real uniton action located at |s| = 2SI . The green
dashed circles indicate the magnitude of the complex 1- and 2-uniton actions located
at |s| = |SCI | , |2SCI | respectively. For η and ζ real, the real and complex instanton
action have an complex argument of 0 and π respectively. We see a clear match to
the location of expected branch points with these values. At the critical line η = ζ,
we observe a curious discontinuous jump; the accumulation of poles at the 1-complex
uniton disappears entirely and instead, we get an accumulation point at the complex
2-uniton action s = 2SCI .
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(a) κ = 0 (b) κ = 1/5 (c) κ = 1/2
√
3

(d) κ = 2/5 (e) κ = 1/2 (f) κ =
√
3/2

Figure 3.7: The complex Borel s-plane along the ζ = η = κ critical line as we cross
different region of Figure 3.3. Colours, key, and numerical approximation as per Figure
3.6, but we have also plotted the action of the complex 4-uniton |s| = |4SCI | as a green
circle. In the undeformed model κ = 0 there is not complex uniton [46] since it has
infinite action. When κ = 1/5, we are in region 1. At κ = 1/2

√
3, we have 2SI = −SCI

and cross from region 1 to 2. Notice that a dashed red circles coincides with the inner
green circle. For κ = 2/5, we are in region 2. When κ = 1/2 we cross into region 3 and
SI = −SCI . If κ =

√
3/2 we cross from into 4 where SI = −2SCI . Consistent we the

results of Figure 3.6, we note that along the critical line, the branch points along the
negative real axis accumulate at 2SCI , not at SCI .
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Figure 3.8: The complex s Borel plane for ζ = 1/5, η = 2i/5. Colours, key, and
numerical approximation as per Figure 3.6 with in addition the argument of the real
(complex) uniton indicated by a red (green) dotted ray. The accumulation points still
gravitate towards the uniton actions and are direct with an argument matching precisely
that of the relevant uniton action. In this particular case, because Re(η) = Im(ζ) = 0,
we have that χ+ = χ− and therefore the ratio of the actions is real and negative. This
explains why the angle between the dotted rays is precisely π. We were unable to explain
the phases of the secondary branch point that have an absolute value equal to that of
the real uniton action.
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(a) θ = 0 (b) θ = π/3

(c) θ = 9π/20 (d) θ = π/2

Figure 3.9: Here, we consider the critical line κ = η = ζ and compute 300 order of
perturbation theory. We keep |κ| = 1/5 fixed, but vary θ = arg(κ). We suspect that
the tails splitting into 2 ends is due to numerics and could be resolved by going to
higher orders. Interestingly, it appears we can see towers of higher order states more
easily when η and ζ are analytically continued.
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(a) θ = 0 (b) θ = π/4

(c) θ = 2π/4 (d) θ = 3π/4

Figure 3.10: Here, we look at the behaviour around the special point κ = i
2 , paramat-

rised by Equation (3.37) with ϵ = 0.01. We observe that the branch poles, indicated
by purple triangles, are given precisely by Equations (3.38). Note also that we have
zoomed relative to other Borel plots shown since both the real and the complex uniton
action tend to 0 as κ → i

2 .

In this case we find a tower of branch points located at

SCI + 2n(SI − SCI), n ∈ Z . (3.40)

This in particular reproduces the the branch point at SCI for n = 0, which is consistent

with off-critical line behaviour. There are also hints off branch point of the tower given

by Equation (3.38), but the numerics are not as clean.

The relevant Borel plots are shown in Figures 3.10 and 3.11. We emphasise that

perturbations of the form ϵeiθ are not relevant for generic values of η and ζ. Only at

κ = i/2 do these have a substantial effect on the Borel poles.
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(a) θ = 0 (b) θ = π/4

(c) θ = 2π/4 (d) θ = 3π/4

Figure 3.11: Here, we look at the behaviour around the special point η = ζ = i
2 ,

paramatrised by Equation (3.39) with ϵ = 0.01. We find a very clear set of inner branch
point given by Equations (3.40). In addition, there are traces of the outer tower given
by Equation (3.38).
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3.3.2 Asymptotic Analysis

We now have the ingredients to investigate the asymptotic behaviour of the perturbative

series for the ground state energy. Let us first split the behaviour into three contributions

En ∼ ESI
n + ESCI

n + E2SCI
n + . . . , (3.41)

where E
kS(C)I
n is a contribution due to the (complex) k-uniton. To give an idea, for

the real uniton, this contribution will look like EkS
n ∝ (2kS)−nΓ(n+ a). We emphasise

that we cannot concretely decompose the perturbative coefficients. Rather, our object-

ive is to identify large order behaviour in different areas of the moduli space spanned

by the parameters (η, ζ) (recall figure 3.3). These different contributions to the large

order behaviour are what we try to sketch in Equation (3.41). We calculate Stokes

discontinuities of these large order behaviours more carefully in Section 3.3.3.

We use the uniform WKB-method in Section 1.3. This will be in particular useful

into giving the form of the ESI
n contribution. However, also on the critical line, we

can argue what E2SCI
n should look like. Our motivation for ESCI

n shall be of empirical

nature. We use the ansatz (1.72) and expand the energy E and the function u(θ) and

as power series in g2:

u(θ) =
∑
n=0

g2nun(θ), E(B) =
∑
n=0

g2nEn(B) , B = ν +
1

2
(3.42)

They will now satisfy a slightly modified Ricatti Equation (1.60) which can be solved

perturbatively. Integration constants are determined by demanding that u(θ) is regular

around θ = 0. En(B) is a polynomial of order n in B of definite parity: En(B) =

(−1)n+1En(−B). Of course, in our problem, it also depends on η and ζ. For u0(θ), we

find

(u0(θ))2 = 4

∫ θ

0

dθ
√
V (θ)

=
4

m

(
χ+ arctan(χ+)− χ+ arctan

 χ+cn(θ)√
χ2
−sn(θ)2 + 1

+

iχ−

(
log(1 + iχ−)− log

(√
χ2
−sn(θ)2 + 1 + iχ−cn(θ)

)))
,

(3.43)

where χ± = ζ ± η. For n > 0, we use a power series ansatz of un(θ) in θ which results
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in the following coefficients for the expansion of the energy at level B

E0 = 2B ,

E1 =

(
4B2 + 1

)
(−1 + χ2

− + χ2
+ + 3χ2

−χ
2
+)

8(1 + χ2
+)

,

E2 =
−1

8
B3
(
17χ4

− + 16mχ2
− + 2χ2

− + 1
)
− B

32

(
8m(1−m+ 7χ2

−) + 67χ4
− + 22χ2

− + 3
)
,

(3.44)

where we recall m is given by Equation (3.10). We also found E3, but the expression

is too long to be displayed usefully. As a consistency check, we note coefficients match

up perfectly with [47] upon setting ζ = 0. We impose a Bloch quantisation condition

(1.68) around the midway point. In the potential (3.29), this would be the half period

θmidpoint = K(m). We shall therefore need to compute u(θmidpoint). By using the

periodicities of the Jacobi elliptic functions we find7

u0(θmidpoint) =
√

2SI , (3.45)

and

u1(θmidpoint) =
log[SI(1 + χ2

−)/4]
√

2SI

, (3.46)

where SI is given by (3.9). This is our first evidence that the 2d uniton solutions have

a role to play in the reduced quantum mechanics that are studied in this Section.

The resulting asymptotic expansion from the uniform WKB method are as in Equa-

tion (1.72). In the regime where |SI | < |SCI |, the perturbative energy coefficients are

dominated by the following behaviour

ESI
n ≈ A(η, ζ)

(
1

2SI

)n+1

Γ(n+ 1)

(
1 + a1I(η, ζ)

2SI

n
+O

(
1

n2

))
, (3.47)

where

A(η, ζ) = − 1

π

16

1 + χ2
−
. (3.48)

Because Equation (3.46) is an η → η−ζ substitution compared to the single deformation

case, the same follows for Equation (3.48). Working in higher order in the wave function

allows a determination of the sub-leading contributions. E.g. a1I(η, ζ), which is a cor-

rection due to an instanton-anti-instanton [II] event, is determined from u2(θmidpoint),

which did not however prove easy to analytically evaluate.

Furthermore, from our numerical analysis, we predict that the 1-complex uniton and

7Note that because the Jacobi functions appear squared in the potential, we need not worry about
the fact that Jacobi functions are strictly speaking anti-periodic across the interval 2K(m).
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the 2-complex uniton behave as

ESCI
n ≈ B(η, ζ)

(
1

SCI

)n+1/2

Γ(n+ 1/2)(1 + a1CI(η, ζ)
2SCI

n
+O(n−2)) , (3.49a)

E2SCI
n ≈ −A(η, ζ)

(
1

2SCI

)n+1

Γ(n+ 1)(1 + a12CI(η, ζ)
4SCI

n
+O(n−2)) , (3.49b)

where

B(η, ζ) = −
√
A(η, ζ)

π
=

−4i√
π3(1 + χ2

−)
. (3.50)

We emphasise that these predictions for the asymptotic behaviour are not derivable

from any conventional uniform WKB for generic η and ζ, but are based on empirical

evidence.

However, on the critical line we can argue using the uniform WKB the validity of

the asymptotic expansion E2SCI
n Equation (3.49b). As established by Figure 3.6, there

is no complex 1-uniton contribution along the critical line and the ESCI
n contribution

(3.49a) vanishes. We can use the ellipticity of the potential and argue a second global

boundary condition along the secondary period of the potential. When evaluating u0(θ)

and u1(θ) at the complex midpoint iK(1−m), we obtain precisely Equation (3.45) and

(3.46) only with SCI instead of SI . Carrying through the argument of uniform WKB,

one arrives precisely at (3.49b).

This analysis is consistent with the results from [41] where the system along the

critical line is studied. It is observed that the potential respect a symmetry that sends

m→ m′, g2 → −g2 and θ → iθ. This Z2 duality interchanges the real and the complex

instanton solutions and therefore also interchanges their actions. It follows that m = 1
2

is the fixed point of the duality, which can be traced back to κ = 1
2 . We can also

reformulate the m → m′ transformation in terms of κ by sending κ → 1
4κ . Note that

the asymptotic expansion of the energy (3.41), (3.47), (3.49), respects this symmetry

only if we ignore the ESCI
n contribution, which is precisely what happens on the critical

line. Moreover, at the fixed point m = 1
2 , or κ = 1

2 , we have that ESI
n and ES2CI

n

contribute equally. Finally, understanding the interchanging of the two periods of the

potential as interchanging complex and real instantons, it is clear why we should expect

an expansion for the asymptotic energy of to the complex instanton when performing

uniform WKB along the imaginary axis.

That on the critical line we get a sudden disappearance of the complex 1-uniton is odd

when looking at the asymptotic formula (3.49b) as one might expect that B(η = ζ) = 0.

However, this is not the case. That we have sudden vanishing of the complex 1-uniton

action should however be clear from the Borel-Padé Figure 3.6. Possibly another way

to study this might be through quantum periods in exact WKB. It will be observed

in Section 3.3.4 that there are certain turning points that disappear on the critical

line, together with associated saddle trajectories. One might thus speculate that the

discontinuous shift in the value of the leading asymptotic instanton action is due to a
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Figure 3.12: Here we study the convergence of the perturbative coefficients to the asymp-
totic prediction (3.47). Their ratio is given by the blue dots. To accelerate the conver-
gence we employ the second Richardson Transformation, here given in green. In both
plots we follow the trajectory where ζ = 1/5. In the left plot η = 19/100, we obtain
virtually the same results for η = 1/5. Here, we are in the first region of Figure 3.3
where |2SI | < |SCI |. Therefore, the real uniton is dominant, both on and off the critical
line. In the right plot we show η = 2/5, which is in region 2. Using the same asymptotic
expansion, we see that the approximation fails, because the real uniton is not dominant
anymore.

Figure 3.13: Colours are as in Figure 3.12. We follow the critical line κ = ζ = η. In
the first plot κ = 1/2

√
3, which is on the border of regions 1 and 2 of Figure 3.3 where

SI = −SCI = 8π/3
√

3. In the second plot κ = 2/5, which is firmly in region 2. In
both cases |SI | < |2SCI |. Because along the critical line there is no complex 1-uniton
contribution, the real uniton is dominant.

different Stokes graph structure. This could also lead to a different instanton action.

In Figures 3.12, 3.13, 3.14 and 3.15 we compare the asymptotic expression ESI
n from

Equation (3.47) with the actual values Epert
n obtained from the perturbative calculation

with the BenderWu package. We plot the ratio and study its convergence to 1. Doing so

in Figure 3.12, we numerically verify Equation (3.47). The convergence of the raw data

(shown in blue in Figure 3.12) is somewhat slow – a situation that could be improved

by determining a1I(η, ζ).

However, convergence can be improved spectacularly by using a Richardson trans-

form (see e.g. [43, 44]). Indeed, with just the second Richardson transform (shown in

green in Figure 3.12) we see convergence between the 300th order perturbative data and

asymptotic predictions with a typical accuracy of between 4 · 10−7 and 9 · 10−7. This

is an impressive agreement approaching the theoretical uncertainty resulting from using
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Figure 3.14: Colours are as in Figure 3.12. In both plots we follow the trajectory where
ζ = 1/5. In the first plot η = 2/5, in the second plot η = 1/2. We are thus in the second
and third region of Figure 3.3. Because |2SI | > |SCI |, the complex uniton is dominant.

Figure 3.15: Colours are as in Figure 3.12. Here, we study the behaviour along the
critical line κ = η = ζ. In the first plot, κ = 1/2, the second plot κ = 2/

√
3. We

know that in regions 3 and 4 of Figure 3.3 along the critical line the complex 2-uniton
is dominant. This is verified by the second figure. However, κ = 1/2 is a very special
point indeed as it acquires equal contributions from the complex 2-uniton and the real
uniton. Because SI = −SCI = π, the only difference is that these contributions are
non-alternating and alternating respectively. These precisely cancel out, leading to a
series in g4, as already foreshadowed in Equation (3.34).

the second Richardson transformation (results should be accurate to O(1/n3), hence for

n = 300 this is 1/3003 ≈ 4 · 10−8 ). Further theoretical uncertainty arises from the

undetermined sub-leading terms in the asymptotic prediction. For the single deformed

potential in [47] we have a1I(η, ζ = 0) = 1
24

(
−23 + 77η2 + 8

1+η2

)
. Under the assump-

tion that a1I(η, ζ) is of the same order as a1I(η, 0), we can estimate the magnitude of this

uncertainty, which also matches well with the measured accuracy8.

As an additional remark, in Figure 3.6 we saw that the single complex instanton

contribution disappears at the critical line η = ζ. We suspect that a consequence of this

is that the 1-uniton behaviour of Equation (3.47) remains dominant until |2SI | < |2SCI |
if η = ζ. Therefore, the real uniton is dominant not only in region 1 of Figure 3.3, but

also in region 2 along the critical line. This is corroborated by the numerical analysis

displayed in Figure 3.13.

8To give an impression of the magnitude of this discrepancy, a1I(0, 0) = −15, a1I(1/5, 0) ≈ −12.2,
a1I(1/2, 0) = 2.65 and a1I(1, 0) = 58.
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The computations that support the predictions given by Equation (3.49) are exhib-

ited in Figures 3.14 and 3.15. Here, we investigate the regimes in which the 1- and

2-complex unitons are dominant. This corresponds to regions 3 and 4 and region 2 off

the critical line of Figure 3.3.

At the boundary between region 1 and 2 in Figure 3.3, we would expect from the

asymptotic expansions (3.47) and (3.49) that the real 1-uniton and the complex 1-

uniton interact approximately at the same order. For example, the point ζ = 0, ηc =

0.274, considered in [47], belongs to this family. However, because the asymptotic

expansions do not precisely match, there is not a perfect cancellation of alternating and

non-alternating terms like there is at κ = η = ζ = 1/2. The perturbative series along

this border is thus in g2 and not in g4.

We can also explain this scenario in terms of resonance. Generically, one speaks of

resonance phenomena when there are two tunable instanton actions at play, say S1 and

S2 such that they are linearly dependent over the integers [43], i.e. nS1 + mS2 = 0

for some n,m ∈ Z. In this case the n-instanton with action S1 and the m-instanton

with action S2 operate at the same non-perturbative level. In our setting this is most

clearly seen on the critical line at κ = 1
2 . In this case, the complex 2-uniton and the

real instanton have precisely opposite action. This results in a conspiracy where the

non-alternating and alternating large-order behaviour precisely cancel in the odd terms

of the odd expansion. This is the reason that the energy is an expansion in g4 rather

than g2.

Combining all the information in the analyses of Equations (3.47) and (3.49) and

Figures 3.12, 3.13, 3.14 and 3.15, we thus arrive at the following picture: across the

ζ = 1/5 trajectory, varying η, we find that the real uniton is dominant in region 1 of

3.3, while the complex 1-uniton is dominant in regions 2, 3, and 4. Along the critical

line, there is no 1-complex uniton, thus the real uniton is dominant in regions 1 and 2,

while the complex 2-uniton is dominant in regions 3 and 4.

Lastly, let us compare the perturbative calculation with the asymptotic expansion

(3.47) to say something about a1I(η, ζ). Equating the predicted asymptotic to the per-

turbative expansion and rearranging implies that

(2SI)n+1

Γ(n+ 1)A(η, ζ)
Epert

n − 1 ≈ a1I(η, ζ)
2SI

n
. (3.51)

By performing a Richardson transformation on the left hand side we can make pre-

dictions about a1I(η, ζ) in the regime where the real uniton dominates. The same can

be done for a1CI(η, ζ). Example results are given in Tables 3.1 and 3.2. In addition,

we can predict a12CI along the critical line for κ > 1/2. For example, we expect

a12CI = −0.0581325 for κ =
√

3/2. Whilst the a1I(η, ζ) can in principle be determined

from uniform WKB, there is not yet a systematic understanding of how to determine

the a1CI and a12CI .
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η a1I(1/5, η)
0 -0.509487
1/100 -0.497592
1/20 -0.444087
1/5 -0.157644

Table 3.1: Numerical predictions for a1I(1/5, η) for selected values of η and ζ. We used
the 10th Richardson transform and 300 perturbative coefficients. The η = 0 result
agrees with the exact result from [47].

η a1CI(0.4, η)
0.2 0.204395
0.38 7.20539
0.39 14.9317
0.395 34.06471
0.4 431.158
0.41 15.3672

Table 3.2: Numerical predictions for a1CI(0.4, η) for selected values of η and ζ. We used
the 10th Richardson transform and 150 perturbative coefficients. Notice the sudden
jump at the Critical point η = ζ, because the 1-uniton approximation brakes down at
this point. Had we used the EI approximation, we would have obtained a1I(0.4, 0.4) =
54.9459. This might suggest the coefficients a1I and a1CI have a simple pole at η = ζ.
However, it should be noted the numerics are quite unstable around the critical point
as the asymptotic series approximates the perturbative series much slower.

3.3.3 Stokes Discontinuities

In this section we will make a schematic attempt to show the significance of our results

and how this might be implemented to expose the resurgent structure of the system.

We make a simplification to further explain the significance of the coefficients A and B

in the asymptotic forms in Equations (3.47) and (3.49). Let us consider new asymptotic

expansions in z = g2 whose coefficients ESI
n , ESCI

n and ES2CI
n are, for all n and not

just large enough n, given by the leading behaviour of Equations (3.47) and (3.49) (the

sub-leading behaviour will be discussed later):

ẼI(z) =

∞∑
n=0

ESI
n zn , ẼCI(z) =

∞∑
n=0

ESCI
n zn , Ẽ2CI(z) =

∞∑
n=0

ES2CI
n zn . (3.52)

Their Borel transforms, using Equation (3.35) with s = ĝ2, are given by

ÊI(s) =
A(η, ζ)

2SI − s
, Ê2CI(s) =

−A(η, ζ)

2SCI − s
, ÊCI(s) =

B(η, ζ)
√
π√

SCI − s
. (3.53)

We remind the reader that SCI is a negative real number if η and ζ are real whereas SI

will be positive real, thus explaining the locations of the Borel poles in our preceding

Borel analysis.
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Recalling the re-summation, discussed in Section 1.1.2, in a direction ϑ of a series

ψ̃(z) is given by

Sϑψ̃(z) =
1

z

∫ eiϑ∞

0

ds e−s/zψ̂(s) , (3.54)

we can also see that the Borel resummation of ẼI is singular only along the positive

real axis (i.e. there is a Stokes ray along ϑ = 0), whilst the Borel resummations of ẼCI

and Ẽ2CI are singular only along the negative real axis (i.e. a Stokes ray along ϑ = π).

Resummations along these rays are inherently ambiguous. To study these ambiguities

we adopt lateral Borel resummations Sϑ± ψ̃(z) = Sϑ±ϵψ̃(z). We thus compute that

non-perturbative ambiguity due to the 1-uniton is9

(S0+ − S0−)ẼI(z) = −2πi

z
Ress=2SI

[
e−s/z A(η, ζ)

2SI − s

]
=

2πi

z
A(η, ζ)e−2SI/z. (3.55)

The sign after the first equality is due to the clockwise integration contour. Similarly

(Sπ+ − Sπ−)Ẽ2CI(z) = −2πiA(η, ζ)

z
e−2SCI/z. (3.56)

To resum ÊCI(z), we choose the branch cut to go from z = SCI to negative infinity.

(Hence the branch cut of the square root function lies along the positive real axis).

The integral from 0 to SCI does not contribute. For the remaining bit, we switch to

an integration variable x = SCI − s, and solve the integral. Performing the outlined

procedure then gives

(Sπ+ − Sπ−)ẼCI(z) =
1

z

∫
γ

ds e−s/zB(η, ζ)
√
π√

SCI − s
=

2B(η, ζ)
√
π√

z
e−SCI/z (3.57)

The reason we are interested in computing quantities such as (Sϑ+ − Sϑ−)Ẽ(z) is

that this might shed light on the nature of the Stokes automorphism Sϑ, introduced in

Section 1.1.3, which is defined by

Sϑ+ − Sϑ− = −Sϑ− ◦Discϑ = Sϑ− ◦ (Sϑ − Id). (3.58)

The Stokes automorphism describes the analytic structure of the ambiguities as a Stokes

ray is crossed [34, 44]. From Equations (3.55), (3.56) and (3.57), we can see that A(η, ζ)

and B(η, ζ) are directly related to the Stokes coefficients.

For the undeformed model [46], it was conjectured that the Stokes automorphism of

the perturbative sector is due to a contribution E[II](z) of the intantin-anti-instanton

sector. This means there would be some expansion around a secondary saddle point

that impacts the perturbative series E[0](z) of the perturbative sector [0] which was

calculated above. This intricate interplay of sectors from different saddle points is part

of the rich study of resurgence as it is the starting point of establishing large-order

9We should emphasise here that we consider the ambiguity of the found large order behaviour in
certain regimes, not for the perturbative series itself which we do not know completely.

88



relations.

On the field theory side, different contributions are ascribed to the fractons which

constitute the unitons. Although typically these contributions are combined in sectors

classified by π2, we re-emphasise that for the SU(2) PCM this group is trivial. Instead

we classify the sectors through π3. It is expected within the resurgence paradigm [12, 34,

43, 44, 46, 72, 73] that ambiguities should cancel within each sector. That means that

the fracton-anti-fracton event should carry an ambiguity that matches the ambiguity

obtained by resumming the perturbative sector given by Equation (3.55).

The contributions due to discontinuities along individual (branch) singularities w are

often described in terms of Alien derivatives ∆w, as introduced in Section 1.A.1. The

alien derivative is then expected [46] to look like

∆2SI
E[0](z) = s1E[II](z), (3.59)

where s1 is a Stokes constant.

3.3.4 Stokes Graphs

Stokes graphs provide a graphical method to understand the Borel resummability and

jumping phenomena associated to the WKB solutions of a Schrödinger equation as

encoded by the DDP forumla [19] for the behaviour of Voros symbols [17] across Stokes

rays. As parameters in the Schrodinger potential are varied, the Stokes graph can

undergo topology changes, or mutations, which have a rich mathematical structure [22,

23] and are captured by the Stokes automorphism (3.58) described above. From a

physics perspective, the seminal work [156] showed that the mutations of Stokes graphs

are intimately related to BPS spectrum of N = 2 four-dimensional gauge theory, where

the Stokes automorphism describes wall-crossing phenomena.

Let us review some terminology that was introduced in Section 1.2 required to explain

what is meant by Stokes graphs. We consider a Schrödinger equation defined over a

Riemann surface Σ with local coordinate w,(
d

dw2
− 1

g4
Q(w, g2)

)
Ψ(w) = 0 , (3.60)

where g2 is a small parameter in which we construct formal perturbative expansions. In a

general theory Q(w, g2) itself can be expanded in g, though we are interested here in the

case where Q(w, g2) ≡ Q0(w) is given by the classical momentum p(w) =
√
E − V (w).

Under coordinate transformations w → w̃(w), Q0 transforms holomophically with weight

2 and thus defines a meromorphic quadratic differential

ϕSch = p(w)2dw ⊗ dw . (3.61)

Trajectories of ϕSch are defined as curves γ of constant phase in the sense that if ∂t is
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tangent to γ then λ · ∂t = eiϑ where ϕSch = λ⊗ λ. Equivalently they can be defined by

Im

[∫ w

dw p(w)

]
= constant , (3.62)

and these provide a foliation of Σ. Generically these trajectories will start and end at

poles of p(w), but a special role is played by Stokes trajectories satisfying

Im

[∫ w

dw p(w)

]
= 0 , (3.63)

which have at least one end point at a zero of p(w), which is also called a turning point.

A Stokes trajectory is a saddle if both end points are located at zeros. It is regular if

these zeros are different and it is degenerate if it is a loop. Given ϕSch(w), we define the

associated Stokes graph, G[ϕSch], as a graph with vertices comprised of zeros and poles

of ϕSch and edges comprised of Stokes trajectories.

It is useful to consider the effect on the Stokes graph of rotating g2 into the complex

plane. An equivalent way to see this is to define the Stokes graph in a direction ϑ,

Gϑ[ϕSch] = G[e2iϑϕSch] whose edges satisfy

Im

[
eiϑ
∫ w

a

dw p(w)

]
= 0 , (3.64)

where a is a zero of p(w). The crucial linkage is that, if Gϑ has no saddles, then the

formal WKB solutions to the Schrodinger system are Borel summable in the direction ϑ

in the sense of Equation (3.54) (this is explained for general surfaces Σ in [23] reporting

on a result attributed to Koike and Schäfke [157]). Along Stokes rays, however, a saddle

will emerge. As ϑ is varied across the ray, the topology of Gϑ will undergo a transition

(known as a flip for a regular saddle or a pop for a degenerate saddle).

Let us sketch the schematic structure of the Stokes graphs applied to the case at

hand for which we have

p(w)2 = E − sd2(w)(1 + χ2
−sn2(w)) . (3.65)

Because p(w) is an elliptic function with periodic identification w ∼ w + 2K(m) ∼
w + 2iK(m′), it will suffice to study it in its fundamental domain. For η ̸= ζ there are

two distinct poles located at w = iK(m′) and w = K(m)+ iK(m′). For E ̸= 0 and η ̸= ζ

there are generically four zero’s which are given by solutions of

r4(ζ − η) + r2(1 +mE)− E = 0 , r = sn(w | m) . (3.66)

In the range10 0 < E < Ec = 1 + (η + ζ)2, two of these zeros are located along the

Im(w) = 0 axis symmetrically distribute about the half period w = K(m), with the two

remaining zeros in the Re(w) = 0 axis symmetrically distributed about w = iK(m′).

10Here we view E as a parameter that can be continuously varied, and we find taking a small positive
E helps in regulating the diagrams.
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(a) ϑ = 0 (b) 0 < ϑ < π

(c) ϑ = π (d) π < ϑ < 0

Figure 3.16: Sketches of the directional Stokes graphs for generic values η ̸= ζ with
0 < E < Ec. Poles and are shown in orange and zeros in purple. We have shown one
fundamental domain per Figure, but note that the trajectories can of course cross into
neighbouring domains. In particular, in (a) and (c), horizontal and vertical trajectories
form saddles with the images of zero in the next domain.

When E = 1 + (η + ζ)2, the two reals zeros coalesce at w = K(m) and if the energy

increases still further this single zero proceeds to acquire an imaginary part and approach

the pole at K(m) + iK(m′)

Looking at E < Ec we sketch the directional Stokes graphs in Figure 3.16 and

3.17. In complete agreement with the discussion of the Borel pole structure, we see

two directions ϑ = 0, π for which the graphs contain saddles and over which the graphs

undergo flip transitions.

In the critical case of η = ζ an important modifications occurs. The two zeros on

the imaginary axis coincide at, and annihilate against, the pole at w = iK(m′) leaving

just two remaining zeros situated on the real axis (for E < Ec) and the double pole

at the centre of the fundamental domain. This topology change is the graphical reason

behind the jump in critical line behaviour such that the complex 1-uniton makes no

contribution. In this case however still saddles persist in the two directions ϑ = 0, π as

shown in Figure 3.18.
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Figure 3.17: The lattice formed in 4 fundamental domains by saddles in the Stokes
graph with η ̸= ζ with 0 < E < Ec for ϑ = 0 (left) and ϑ = π (right).

3.4 Connection to N = 2 Seiberg-Witten Theory

From the WKB treatment above we saw that Stokes graphs are a elegant way of visu-

alising the structure of the Borel plane. In a seminal work, Gaiotto, Moore and Neitzke

[24, 25] explained how the same structure plays a crucial role in the spectrum of BPS

states of d = 4, N = 2 gauge theories. The essential idea (going back to the construction

of Klemm et al [158] for SU(2) theories that will be relevant here) is that BPS states on

the Coulomb branch associated with M2 branes stretched on a curve γ between sheets of

the M5 brane carry charge Z = 1
π

∫
γ
λSW but have mass given given by M = 1

π

∫
γ
|λSW |.

The BPS bounds is saturated providing that λSW has constant phase along the curve,

i.e. λSW · ∂t = eiϑ. For certain values of ϑ these Stokes curves become finite and start

and end at the zero’s of λSW and the BPS state, in this case a hypermultiplet, has finite

mass.

It is natural to wonder if the integrable theories we consider here have an analogue

description in gauge theory. Stated more precisely, we are led to ask if there is a gauge

theory for which the quadratic differential obtained as the square of the Seiberg Witten

differential, ϕSW = λSW ⊗λSW , matches that defined by the quantum mechanics arising

from the reduction of the two-dimensional non-linear sigma model we consider.

This has been shown to be the case first for the undeformed PCM on S3. The

corresponding quantum mechanics had a trigonometric Mathieu potential [46] and for

which the corresponding gauge theory is SU(2), Nf = 0. The resurgent structure of the

Schrödinger equation corresponding to this quadratic differential was studied in [34].

An interesting connection with the TBA equations of the corresponding integrable SG

field theory was made by [159].

For the single parameter η-deformed theory it was shown in [47] that the quantum

mechanics has a Whittaker-Hill (or double sine-Gordon) potential and the corresponding

gauge theory is SU(2), Nf = 2 (in the first realisation of [156]) with equal masses for
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(a) ϑ = 0 (b) ϑ = π
2

(c) ϑ = π (d) ϑ = 3π
2

Figure 3.18: Here we plot the Stokes graphs in the directions ϑ = 0, π2 , π,
3π
2 . Here we

display the critical line κ = 0.2 and we set E = 0.4. Poles are shown in orange and
zeros in purple. As the direction crosses ϑ = 0, π saddles manifest themselves and a flip
mutation is seen.

the flavours. In this scenario an interesting connection is made between the masses of

the flavours and the RG invariant combination of tension and deformation parameter

parameter, namely that M = m1 = m2 ∝ ση = 1
tη .

Here we shall provide a similar correspondence for the potential with two deformation

parameters. We shall do so in two related ways, first linking to an SU(2) × SU(2)

quiver theory and secondly linking to SU(2) Nf = 4 theory. To begin it is convenient

to understand the form of the potential of the quantum mechanics considered above as

a generalised Lamé potential.

3.4.1 The Generalised Lamé Potential

First, we will rewrite the potential, V (w), in terms of Weierstrass functions ℘(z). We

shall denote the periods of the Weierstrass function as 2ω1 and 2ω2. The elliptic invari-

ants are given by g2, g3 and the constants ei denote the roots of corresponding cubic.
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The modular parameter of the torus τ = ω2/ω1 is given by

τ =
iK(m′)

K(m)
, (3.67)

where m = e2−e3
e1−e3

is the Jacobi elliptic parameter and m′ = 1−m. They are related to

the invariant cross-ratio as

ω =
(e3 − e1)2 − 9e22

(e3 − e1)2
= 4mm′ . (3.68)

In terms of11 w = z
√
e1 − e3, the potential can then be rewritten as

V (z) = (e1 − e3)
1
3 ((e1 − e2)(e1 − e3)− 3e1) + ℘(z)

(e2 − ℘(z))(e3 − ℘(z))
, (3.69)

when the elliptic moduli are fixed by

e1 =
2−m
m′ (1 + χ2

−) , e2 =
2m− 1

m′ (1 + χ2
−) , e3 = −1 +m

m′ (1 + χ2
−) . (3.70)

In particular, this means a relation between the z and w coordinate

w = z
√

(1 + χ2
+) . (3.71)

We can further rewrite Equation (3.69) as a generalised Lamé potential

V (z) = h+

3∑
i=0

ci℘(z + ωi) , (3.72)

where

h =
(e3 − e1)

(
e21 − 3e1 + 2e2e3

)
3 (e2 − e3) 2

c0 = c1 = 0

c2 =
(e1 − e3) (−e1 + e3 + 3)

3 (e2 − e3) 2

c3 =
(e1 − e2 − 3) (e3 − e1)

3 (e2 − e3) 2
,

(3.73)

and ω3 = ω1 + ω2 and ω0 = 0.

The Weierstrass form of the potential is also revealing about the nature of the

(η, ζ)→ (−η, ζ) transformation, which was given an interpretation in the PCM context

in Equation (2.42). From Equation (3.70) it is clear that in the Weierstrass descrip-

tion this corresponds to interchanging e2 ↔ e3. This has the effect of rescaling the

coordinate by z →
√

e1−e3
e1−e2

z and an overall scaling of the potential V → e1−e2
e1−e3

V . Such

transformations are easily absorbed in a rescaling of the coupling constant and do not

11At this point we are using z as a coordinate on the torus which we trust will not be confused with
the earlier usage as g2.
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alter the physics.

Let us study two special cases in this formulation. First, the critical line η = ζ ≡ κ
corresponds to e1 − e2 − 3 = 0, which implies that c3 = 0. In this situation, equation

(3.69) simplifies to

V (z) =
e1 − e3
℘(z)− e2

. (3.74)

We can also think about a co-critical point where η = −ζ. In this situation the potential

reduces to

V (z) =
1

3
− 1

12η2
(1− ℘(z)), (3.75)

which is similar to the Lamé potential studied in [35], identifying −4η2 = k2. We know

that this potential governs the WKB curve of the vacuum structure of SU(2) N = 2∗

Seiberg-Witten theory, which is a mass deformation of an N = 4 theory [160].

The ζ → 0 limit is quite delicate in this description as can immediately be seen from

the fact that the Jacobi elliptic parameter m → 0 and correspondingly the modular

parameter diverges as τ → i∞. In particular, in this regime not all ei are distinct which

is forbidden in the generic Weierstrass setting, because the determinant

∆ = g32 − 27g23 = 11664(1 + χ2
+)2(1 + χ2

−)2(χ2
− − χ2

+)2 (3.76)

of the polynomial 4t3 − g2t− g3 vanishes. However, if we consider the case in which we

blow up one of the periods ω2 →∞, we see that

g2 = 2× 60

∞∑
n=1

1

(nω1)4
=

4π4

3ω4
1

,

g3 = 2× 140

∞∑
n=1

1

(nω1)6
=

8π6

27ω6
1

,

(3.77)

where we have used that the Riemann ζ-functions takes the following values: ζ(4) = π4

90

and ζ(6) = π6

945 . This leads to ∆ = 0, thus we may identify the two limits. To conclude,

in this regime, ω2 →∞ and we break the finite double periodicity, i.e. the length of one

side of the torus has a pole. Moreover, e2 and e3 are not distinct anymore. In particular

this leads to a pole in c, c2 and c3.

3.4.2 Nf = 2 Elliptic SU(2)× SU(2) Quiver Theory

We now consider the SU(2)× SU(2) quiver gauge theory with two flavours. To extract

the relevant differential, we employ Witten’s string theory construction of the Seiberg-

Witten theories [161, 162]. On the M-theory side, we compactify along the x6 and the

x10 direction which creates a base torus E with modular parameter τ which is the base

Riemann surface. Let z be a coordinate on the torus. The Seiberg-Witten curve takes

the form [162]

F (v, z) = (v − v1(z))(v − v2(z)) ≡ 0 , (3.78)
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in which roots in v are the locations of the D4-branes. Let the locations z1 and z2 of

the 2 NS5-branes be marked points on the base torus. We require that vi(z) has a pole

at zi with residue mi parametrising the masses of the hypermultiplets. In addition, we

allow a fibration of the v-space over the base torus E around z = 0

z → z + 2πR, v → v +m1 +m2 . (3.79)

Using the double periodicity and the singularity structure of vi(z), we can completely

fix the form of the coefficients:

v1(z) + v2(z) = m1ζ(z − z1) +m2ζ(z − z2)− (m1 +m2)ζ(z) + c0

v1(z)v2(z) =
1

4
(m1 +m2)2℘(z) +B(ζ(z − z1)− ζ(z − z2)) + C,

(3.80)

where B, C and c0 are some moduli and ζ(z) is the quasiperiodic Weierstrass function

defined by ζ ′(z) = −℘(z) such that the combination
∑

i aiζ(z′ − z′i) = 0 is doubly

periodic if
∑

i ai = 0 and has a simple pole around z = 0 with a residue of 1.

The Seiberg-Witten differential is given by

λSW = v̂dz , (3.81)

in which

v̂ = v − 1

2
(v1(z) + v2(z)) . (3.82)

We can now use the definition of the curve equation (3.78) to determine that

v̂2 =
m2

1

4
℘(z − z1) +

m2
2

4
℘(z − z2) + u−(ζ(z − z1)− ζ(z − z2)) + u+, (3.83)

where

u± = ⟨TrΦ2
1 ± TrΦ2

2⟩. (3.84)

are Coulomb branch moduli.

We would like to match the quadratic differential

ϕSW = λSW ⊗ λSW (3.85)

to that of Schrödinger system given in Eq. (3.61).

By inspection this identification is achieved when the coordinates z and w are related

exactly as described in Equation (3.71) and when the Coulomb branch parameter u− = 0

with the locations of the five branes are fixed to the half-periods z1 = ω2 and z2 = ω3. To

complete the identification we must match the hypermultiplet masses to the parameters

of the Schrödinger the system and the result is quite striking; we find that they are

directly given by the parameters that control the underlying quantum group symmetry
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of the YB deformed PCM

ση =
m1 +m2

2ν
, σζ =

m1 −m2

2ν
, (3.86)

in which we have reinstated chemical potential and compactification radius in the com-

bination ν2 = 4ξ2

L2 . The final Coulomb branch parameter, u+, is related linearly to the

energy of the Schrödinger system (the exact coefficients do not appear very insightful

at this stage).

The two gauge couplings of the quiver are given in terms of the torus modular

parameter by [160]

z1 − z2 = τ1 =
4πi

g21
+
θ1
2π

,

τ − (z1 − z2) = τ2 =
4πi

g22
+
θ2
2π

.

(3.87)

Now since the roots of the elliptic curve are all real, and the five branes are located at

the half periods we concluded that z1− z2 = ω1 ∈ R and that τ is pure imaginary. As a

result we see that the coupling g1 →∞ with 4πi
g2
2

= τ finite whist the theta angles obey

θ1 = −θ2 = 2πω1. In this language the critical line is approached in the limit that the

mass m2 → 0.

3.4.3 Nf = 4 SU(2) Theory

In [71, 163], Ta-Sheng Tai recovers curves with the form (3.72) in some SW curve setting

via a duality to the Heun equation. We will now show how one obtains the appropriate

SW curve.

Let us now connect the Schrödinger system obtained above to the quadratic differ-

ential for the Seiberg-Witten curve of 4d N = 2 supersymmetric Yang-Mills with SU(2)

gauge group and Nf = 4 flavours. The theory is specified by a Coulomb branch para-

meter u, the four flavour masses mi and the marginal coupling τYM = 4πi
g2
Y M

+ θ
2π . The

UV curve of the theory is given by

F (t, v) = t2(v −m1)(v −m2) + b(v2 − u)t+ c(v −m3)(v −m4) = 0 , (3.88)

in which the parameters b and c are related to the elliptic invariants g2 = 1
12

(
b2 − 3c

)
and g3 = 1

432

(
9bc− 2b3

)
and moreover the roots of the polynomial (c + bt + t2) =

(t− t+)(t− t−) can be understood as relating to the M-theory lifting of the NS5 branes

in the IIA picture. The SW differential is obtained as

λSW = v̂
dt

t
, v̂ = v − c(m3 +m4) + (m1 +m2)t2

2(c+ bt+ t2)
, (3.89)

in which the shifted quantity ṽ is used to factor out the overall U(1) degree of freedom.
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We can define a change of coordinates

t = 4℘(z)− b

3
, (3.90)

by which we can bring the quadratic differential to the form

ϕSW = λSW ⊗ λSW =

[
h+

3∑
i=0

ci℘(z − wi)

]
dz ⊗ dz , (3.91)

where wi with i = 1 . . . 3 are the half-periods and w0 = 0. The coefficients ci in this

expression are slightly unedifying expressions depending to t±, the mass parameters and

for h also on u, but in particular c0 = (m1 −m2)2 and c1 = (m3 −m4)2.

We would like to match this to Schrödinger system of eq. (3.61).

Using the relation between coordinates z and w given by eq. (3.71), we find that the

matching is achieved with setting the flavor masses pairwise equal

m1 = m2 = M , m3 = m4 = M̃ , (3.92)

and relating them to the bi-Yang-Baxter parameters according to

ση =
2

ν

(
M̃ −M

)
, σζ =

2

ν

(
M̃ +M

) 1 +m′

m
. (3.93)

To complete the matching we also need to relate the parameter on the Coulomb

branch to the energy of the Schrödinger system which is achieved with

E =
ν2(1 +m′)(M2 − u)

M2(1 +m′ +m′2) + 2m′MM̃ −m′M̃2
. (3.94)

To close this section let us remark that along the critical line, parametrised by

κ = η = ζ, we find very particular behaviour in the matching. First we can note that

the masses are related via M̃ = −(1 + 4κ2)M , Using (3.67), we find that the elliptic

modulus of the torus is τ = iK( 1
1+4κ2 )/K( 4κ2

1+4κ2 ). When κ = 1
2
√
3

we encounter a point

for which the complex uniton action has exactly twice the magnitude as the real uniton

action, and at this point we have a relation between the masses M̃ = − 4
3M . At this

point we have the τ = iK( 3
4 )/K( 1

4 ). Continuing to increase the deformation we arrive

at κ = 1
2 when the complex uniton has the same magnitude as the real uniton for which

we find τ = i and M̃ = −2M . At κ =
√
3
2 , for which |SI | = 2|SCI |, we have M̃ = −4M

and τ = iK( 1
4 )/K( 3

4 ).

We remark that the previously discussed duality in [41] that sends m→ m′, results

in an S-duality sending τ → −1
τ . In addition we observe that κ = 1

2
√
3

and κ =
√
3
2 are

dual under this transformations, whereas κ = 1
2 , corresponding to τ = i, is self-dual.
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3.5 Conclusion and Outlook

We thus conclude our study of the bi-Yang-Baxter deformed SU(2) PCM. We have seen

that the model harbours two types of solutions which we have dubbed the real and the

complex uniton, both with a quantised finite action. By employing an adiabatic compac-

tification [46, 47] we obtained a reduced quantum mechanics whose non-perturbative be-

haviour is dominated by finite action configuration derived from the unitons. Moreover,

we were able to find an N = 2 Seiberg-Witten theory that gives rise to the same WKB

curve as that of our reduced quantum mechanics. By introducing a new example into

the framework of resurgence, we hope to expand the non-perturbative discourse. In

particular, we believe the complex saddle point in our system might elucidate more

advanced structures of resurgence. Possible future directions of study could include:

• In [15], Equation (108), it was observed that the following relation holds for both

the double well and the Sine-Gordon quantum mechanics

∂E

∂B
= − g

2

SI

(
2B + g2

∂A

∂g2

)
. (3.95)

A(B, g2) is a function that appears in the global boundary conditions of the uni-

form WKB and is determined by u(θmidpoint). It was first introduced by [72, 73]

and for the Sine-Gordon model it reads

ASG(B, g2) =
4

g2
− g2

2

(
B2 +

1

4

)
− g4

8

(
B3 +

B

4

)
+O(g6) (3.96)

It was shown in [35] that this relation in the undeformed limit is a consequence

of a generalised Matone’s relation [164] on the gauge theory side. In addition,

[15] attribute a great deal of importance to this relation as it explain a lot of the

resurgent behaviour. However, in the compactified Yang-Baxter deformed models

studied in this Chapter, there does not appear to be a related identity. It would

be interesting to understand how the relation (3.95) can be modified in systems

with a real and a complex saddle point.

• One concrete such avenue might be through further developing the uniform WKB

techniques [15] introduced in Section 1.3. A crucial ingredient were the Bloch

quantisation conditions that were inherited from the periodicity of the potential.

Is it possible to leverage the double periodicity of the elliptic potential studied in

this Chapter to study systems with a complex saddle more completely?

• In Figures 3.4 and 3.5 we observed that the uniton with twisted boundary con-

ditions fractionates into 2 separate lumps. In the undeformed model [46], it was

shown how solutions for these individual constituent fractons can be construc-

ted. These are not exact solutions to the equations of motions, but are rather

quasi -solutions, meaning that the equations of motion can be satisfied with para-

metrically good accuracy in some limit of the moduli λi. Critically, it was shown
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that the amplitude of a fracton-anti-fracton event carries an ambiguity that pre-

cisely cancels the Borel-resummation ambiguity of the perturbative sector given

by Equation (3.55). It would be an impressive check for the resurgence programme

to extent this analysis to the YB-deformed PCM which also harbours a complex

uniton fractionation.

• The Thermodynamic Bethe Ansatz (TBA) is a powerful technique to study integ-

rable field theories that exploits the exact scattering matrix of the model, which

will be a central character of Chapter 4. It was shown that the resurgent struc-

ture of the Sine-Gordon quantum mechanics can be reinterpreted in terms of TBA

equations [159]. It would be very interesting to generalise these ideas to the QM

found by reducing the bi-YB deformed PCM.

3.A Evaluating Uniton Actions

Here, we dwell upon the following observation. When integrating the action, in both

the real and the complex uniton we switch to w = f(z) coordinates. We transition to

polar coordinates w = reiθ. Because there is no θ-dependence we integrate it out. When

considering the real uniton we make the substition ρ = r2 − 1, for the complex uniton

we substitute ρ = −r2−1. Remarkably, in both cases we obtain the following integrand:

g(ρ) =
−2(2 + ρ)2

(4 + 4ρ+ (1 + (ζ + η)2)ρ2)(4 + 4ρ+ (1 + (ζ − η)2)ρ2)
, (3.97)

with the only difference that for the real uniton we integrate ρ from positive infinity to

−1, for the complex uniton, we integrate ρ from −1 to negative infinity.

On the interval (−1,∞), we can construct a continuous (i.e. without branch cuts)

anti-derivative:
(ζ + η)arctan( (ζ+η)ρ

2+ρ )− (ζ − η)arctan( (ζ−η)ρ
2+ρ )

4ζη
. (3.98)

This can be used to evaluate the real uniton action (3.9). It cannot be used to compute

the complex uniton action because it is in particular discontinuous at ρ = −2. On the

interval (−∞,−1), we can use

(ζ + η)arccot( (ζ+η)ρ
2+ρ )− (ζ − η)arcot( (ζ−η)ρ

2+ρ )

4ζη
(3.99)

as an antiderivative to compute the complex uniton action.

Jointly, they can be used to reconstruct
∫∞
−∞ g(ρ)dρ. This integral can be easily

computed using the Cauchy residue theorem. The integrand vanishes in all direction at

infinity, and it has 4 poles, two in the upper half plane and two in the lower half plane.

This yields (for η, ζ ∈ R)∫ ∞

−∞
g(ρ)dρ =

π

4ζη
(|ζ − η| − |ζ + η|) . (3.100)
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Via the above explanation or by using the identity 2x arctan(x) + 2x arccot(x) = π|x|,
we thus obtain the following relation between the complex and the real uniton actions

for η, ζ ∈ R

SCI(ζ, η)− SI(ζ, η) =
π(1 + (ζ + η)2)

4ζη
(|ζ − η| − |ζ + η|) . (3.101)
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Chapter 4

Resurgence from TBA

Equations

4.1 Introduction

The calculation of the mass gap in QFT is notoriously a difficult puzzle. In fact, proving

its existence in a general non-abelian 4d Yang-Mills theory has been named as one of

the seven millenium problems posed by the Clay Institute [165, 166]. However, in 2d

integrable models, powerful techniques have been developed to solve the puzzle in many

examples [167–174]. We shall give more details on these computation in Section 4.1.1.

Although in this Chapter we shall not be attempting to calculate mas gaps of new

theories, we shall be using and developing the same techniques. Our goal shall be

to study the system in a particular thermodynamic limit with a chemical potential

and calculate a perturbative series for some observable. Such a perturbative series

shall enable us to employ the machinery developed in Chapter 1 which will uncover

information about the non-perturbative effects in such theories.

At the heart of the techniques developed by [167–174] is the so-called Thermodynamic

Bethe Ansatz (TBA). We shall introduce these techniques in Section 4.1.3. The resulting

integrable equation, the TBA system, unfortunately, is still technically challenging to

solve. To write the TBA equations for a particular model, the key ingredient that is

needed is its scattering kernel which was introduced in Section 2.4.

One way to make the situation more tractable, is to consider a model with just

one type of particle in the presence of a chemical potential h. All particles carry the

same charge under the chemical potential, which means we adapt the Hamiltonian by

H → H − hQ, where Q is the charge of the particles under the chemical potential.

We might imagine that this charge arises in association with a global U(1) conserved

current. By turning on a background gauge field we can implement this charge as a

chemical potential. When dealing with a specific QFT we will specify more carefully

exactly which current is being used as it determines which states are dominant in the
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ensemble at large h, for now however we keep our considerations generic and assume

that there is a single type of particle carrying charge under this U(1).

That we can reduce the TBA system to involve just one species of particle from the

fundamental representation singled out by the applied chemical potential is of course

an assumption that makes the problem readily tractable. One anticipates that states of

higher mass and higher charge are energetically disfavoured, but properly speaking this

assumption ought to be proven starting from a complete nested TBA system (which we

do not attempt here).

In the regime of large chemical potential, the new techniques pioneered by [1, 2,

48, 52] (see also [50, 51, 53–59]) make it possible to recover a perturbative series and

compute the mass gap for finite N . In Section 4.2, we will explain how this new method

works. We will then reproduce known results for the SU(N) PCM, and apply the same

methods to the λ-deformed sigma model.

The choice of studying the λ-model (discussed in more detail in Section 2.3) is motiv-

ated by the desire to understand how integrable deformations are reflected in resurgent

structures, which is the central line of the thesis. There is however another more pro-

found reason for the study of the resurgence in the λ-model: all previous investigations

into resurgent structures in integrable 2d QFTs have considered asymptotically free

theories. Whilst such models mimic 4d non-Abelian gauge theory, there is another ap-

pealing RG trajectory in which the UV consist not of a free theory but of an interacting

Conformal Field Theory (CFT). The λ-model provides exactly such an RG flow as in the

far UV it is described by a relevant deformation away from the WZW CFT. One might

even suspect that such a UV completion puts significant constraints into the structure

of UV renormalon poles in the Borel plane. To put it snappily, by investigating the

resurgent behaviour of the λ model, we are examining “asymptotic behaviour in an

asymptotically CFT”.

We obtain a novel perturbative series for the λ-model, which we will study extensively

in Section 4.2.5. The series grows factorially, implying there is resurgent behaviour at

work. We can construct an asymptotic form which allows us to uncover the Borel-

structure of the expansion. We will give a concrete formula for the ambiguity of the

large-order behaviour of the asymptotic expansions we find.

Further developments, that encapsulate this information in more general transseries

[49], allows the computation of this ambiguity on a more fundamental footing. These

techniques are presented in Section 4.3 and applied to the λ-deformed model. We show

that this ambiguity matches the one found from the perturbative computation.

The headline of our findings, which are confirmed both by the analysis of the perturb-

ative expansion in Section 4.2 and the transseries setting in Section 4.3, is the existence

of certain non-perturbative objects. These seem to match the renormalons posited by

the Parisi-’t Hooft conjecture [175–177]1. This is contrast to the studies [2, 49], where

in e.g. the Gross-Neveu context, renormalons are found that do not fit into the frame-

work of Parisi-’t Hooft. However, one striking feature of our analysis is that the leading

1We thank M Mariño and T Reis for illuminating us on this point.
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renormalon vanishes when the WZW level k divides the rank of the symmetry group N .

We finish with ideas for future research in Section 4.4.

4.1.1 Mass Gap

As mentioned, the integrable models under consideration have mass gaps. To introduce

this, let us assume a usual β-function of an asymptotically free theory given by

µ
dg

dµ
= β(g) = −β1g3 − β2g5 − . . . (4.1)

In general the β-function coefficients may depend on the renormalisation scheme. How-

ever, the first two coefficients are scheme-independent [9] and the methods outlined

below heavily depend on them. This equation can be solved by [173]

1

g2
= 2β1 ln

µ

Λ
+

β2
2β1

ln ln
µ

Λ
+O

(
ln ln

µ

Λ
/ ln

µ

Λ

)
. (4.2)

Here, Λ is the scheme-dependent cut-off scale which appears as a constant of integration

in solving Equation (4.1). Λ further dynamically generates the scale of the mass gap.

We can also formulate these relations in terms of α = g2, in that case we get

µ
dα

dµ
= −2β1α

2 − 2β2α
3 − . . . (4.3)

This Equation is solved by a relation

1

α
= 2β1 ln(µ/Λ) +

β2
β1

ln ln(µ/Λ) + . . . , (4.4)

This is equivalent to
1

α
+
β2
β1

logα = 2β1 log
µ

Λ
. (4.5)

From this it is easy to determine that

Λ = µαβ2/2β
2
1e−1/2β1α(1 +O(α)) (4.6)

In terms of the β-function it is given by

Λ = µ exp

(
−
∫ g[µ] dg

β[g]

)
. (4.7)

Λ is the only relevant mass scale of these theories, it thus stands to reason that the mass

gap of these theories is proportional to Λ as

m = cΛ . (4.8)

Note that, because Λ is scheme dependent, the mass gap is also scheme dependent.
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The exact constant of proportionality between the mass gap was unknown for a

long time. Hasenfratz, Niedermayer and Maggiore [167, 168] showed in 1990 that it is

possible to calculate this constant in integrable models. By performing a perturbative

calculation of the free energy, the answer in naturally given in terms of Λ/h. How-

ever, when using the TBA methods, the answer is given in terms of m/h. Hence by

comparing the expression, the proportionality constant can be given. This computation

was intially performed for the O(N) model [167, 168], but was later also completed for

Gross-Neveu models [169, 170] and PCM models [171, 172]. A more concrete sketch of

this computation is given by [173].

4.1.2 Free Energy

As a brief interlude, let us call to the stage the key observables that we will be calculating

for the remainder of this Chapter. We recall that all models we are considering have

some symmetry group and we can consider their symmetry currents. We have introduced

an external field h coupled to such a charge Q. When the value of the external field

exceeds that of the mass gap, we get a finite density of particles ρ. When the external

field is strong, we are in a perturbative regime. If we know the free energy density F(h),

we can reconstruct the energy density e(ρ) through

e(ρ) = min
h

(F(h) + ρh) , (4.9)

or vice versa, from an energy density, we can reconstruct a free energy density:

F(h) = min
ρ

(e(ρ)− hρ) . (4.10)

We note that while F is a function of h, its Legendre transform e, is a function of ρ.

Their relation is given by

ρ = −F ′(h)

F(h)−F(0) = e(ρ)− ρh .
(4.11)

Polyakov and Wiegmann [178–180] showed in the 80s that it is possible to compute

the free energy of an integrable system with a chemical potential turned on using a

thermodynamic Bethe ansatz (TBA) technique. The procedure relies on knowledge of

the exact S-matrix and its factorisation. In the next section we will explain how to

obtain the system of equations that governs this model. Such a computation was done

in the large N limit of the Principal Chiral model by [181].

4.1.3 TBA Equations

To motivate the TBA equations, we begin not in QFT but with a collection of N

identical, bosonic, quantum mechanical particles on circle with length L. The continuum

TBA limit will be subsequent achieved by taking L → ∞ and N → ∞. Each particle,
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labelled by a number α = 1, . . . , N , carries a rapidity θα, as was defined in Equation

(2.55), such that the wave-function of the system can be written as ψ(θ1, . . . , θN ). We

demand that the wavefunction be periodic under translations, infinitesimally generated

by p1. As a specific particle α is translated about this circle, it picks up a scattering

phase S(θα−θβ) = exp iϕ(θα−θβ) each time it meets another particle β. This periodicity

is achieved by demanding that

exp(imL sinh θα)
∏
β ̸=α

S(θα − θβ) = 1 . (4.12)

Let us take the logarithm of this equation which yields

imL sinh θα +
∑
β ̸=α

logS(θα − θβ) = 2πikα . (4.13)

Here kα ∈ Z is a set of integers that describe on which branch cut the equation is. The

possible values of kα parametrise the possible states of the system.

In the continuum limit kα defines a density distribution χ(θ) of possible states. We

will split this into a density of occupied states f(θ) and a density of holes fh(θ), subject

to the constraint

χ(θ) = f(θ) + fh(θ) . (4.14)

The limit is taken by making the substitutions

1

L
δkα → χ(θ)dθ ,

1

L

N∑
n=1

→
∫ ∞

−∞
dθf(θ) . (4.15)

When taking the θ-derivative of Equation (4.13), we obtain

m

2π
cosh θ = χ(θ)−

∫ ∞

−∞
K(θ − θ′)f(θ′)dθ′ , (4.16)

where, as we did in Equation (2.57), we have defined the scattering kernel as

K(θ) =
1

2πi

d

dθ
logS(θ) . (4.17)

The total charge and energy densities are given by

ρ =
N

L
=

∫ ∞

−∞
dθf(θ) ,

e =

∫ ∞

−∞
dθf(θ)m cosh θ .

(4.18)

The free energy density is given by

F = F/L = e− hρ =

∫ ∞

−∞
dθf(θ)(m cosh θ − h) . (4.19)
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We assume that the free energy is minimised by configurations in which the support

of particle excitations, f(θ), has rapidity bounded by a Fermi surface θ ∈ [−B,B].

The support of fh(θ) lies in the complement so that for θ ∈ [−B,B] the density of

possible states χ(θ) coincides with the density of occupied states f(θ). We will rescale

χ̃(θ) = 2πχ(θ), and then with abuse of notation drop the tildes, such that the TBA

system becomes

m cosh(θ) = χ(θ)−
∫ B

−B

K(θ − θ′)χ(θ′)dθ′ , θ2 < B2 ,

e = m

∫ −B

B

χ(θ) cosh(θ)
dθ

2π
,

ρ =

∫ −B

B

χ(θ)
dθ

2π
.

(4.20)

There is a dual set of TBA equations to this form, which moves towards an equation for

a pseudo-energy density that determines the free energy density (rather than the total

energy as done above). This approach also explains how to achieve the minimisation

from Equation (4.10). The details are given in appendix 4.A. More comprehensive

introductions to the TBA equations can be found in [182, 183].

4.2 Perturbative Series from TBA Methods

In this section we will show how the thermodynamic Bethe ansatz can be used to com-

pute the free energy of thermodynamic systems. We shall focus towards the recent

developments pioneered by [1, 2, 48–50, 52, 53]. These techniques will be introduced

in Sections 4.2.1 - 4.2.3, after which we will reproduce these results in Section 4.2.4

for a simple model: the PCM. In Section 4.2.5, we shall present new results for the

λ-deformed model.

4.2.1 Resolvent

It will prove useful to recast the integral equation that determines χ(θ) in terms of a

resolvent function that is defined by

R(θ) =

∫ B

−B

χ(θ′)

θ − θ′
dθ′. (4.21)

The resolvent is analytical everywhere except around the interval [−B,B] where it has

an ambiguity given by

χ(θ) = − 1

2πi

(
R+(θ)−R−(θ)

)
, (4.22)

where we use the short hand notation R±(θ) = R(θ ± iϵ). This statement is proven

simply by using the residue theorem.

It is natural to express the average particle density ρ in terms of the resolvent,
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as we shall now explain. If we try to compute the residue of the resolvent, given by

Equation (4.21), at infinity, we can move the residue operator through the integral.

Using, resz=∞
1

z−a = −1, it follows from Equation (4.20) that

ρ = − 1

2π
Resθ=∞R(θ) . (4.23)

Let us introduce a shift operation D = exp(iπ∂θ), and let us use the formal definition

that [f(θ)]D = exp(D log([f(θ)]). In particular that means that θD = θ + iπ justifying

the name of the operator. Furthermore, we will use a power series to formally define

inversions such as 1
1−D =

∑∞
n=0 D

n.

Another useful way to encode the structure of the Kernel is through the shift operator

formalism as was done by [1, 48]. Although it will not be critical for the remainder of

the thesis, it can be used as a parallel method to [2] to verify the form of the edge

ansatz, which will be introduced in the next Section, for a specific model. We present

it for future reference. Let us write

K(θ) =
1

2πi
O

1

θ
, (4.24)

in such a way that O is given as a rational combination of shift operators D. Using

Equations (4.22) and (4.20) we recast the integral equation as

R+(θ)−R−(θ) + OR(θ) = −2πim cosh θ . (4.25)

4.2.2 Edge and Bulk Expansions

Our aim is to solve the above TBA systems in a “weak coupling” limit in which B is

large (and accordingly h is large). This will in general produce a perturbative evaluation

of e and ρ in 1
B and logB. A breakthrough was achieved by Volin [1, 48] using a clever

procedure of matched asymptotic expansions [184–187]. The idea is to analyse the

TBA equations in two different regimes, the bulk and the edge, in which they take a

simplified form. In each regime an ansatz for the resolvent can be given and partially

solved leaving some unknown coefficients. By subsequently matching the bulk and edge

ansätze all remaining coefficients are fully determined.

Edge limit

We begin first with the edge limit in which the weak coupling limit B → ∞ is taken

whilst holding z = 2(θ −B) fixed and small. This evidently scales to large θ and hence

probes the properties of χ(θ) around the vicinity of the Fermi energy, B.

This edge limit is best expressed in Laplace transformed variables,

R[z] =

∫ ∞

0

R̂[s]e−szds , R̂[s] =
1

2πi

∫ i∞+δ

−i∞+δ

eszR[z]dz . (4.26)
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We will typically use s for the variable before the (forward) Laplace transform, and

z for the transformed functions. Notice that, under the Laplace transformation, the

shift operator is realised as D 7→ e−2πis. The factor of 2 comes from the Jacobian going

between θ and z variable. Crucial to the method is that a small z expansion corresponds

to a large s expansion of the Laplace transformed quantities (i.e. the Lapalace transform

of zn ∝ s−(n+1)).

The density of roots has the following expansion2 around z ≈ 0

χ(z) = χ0 + χ1z + χ2z
2, . . . . (4.27)

which, by virtue of the the discontinuity relation (4.22), has a resolvent given by

R(z) = − log(z)

(
χ0 +

z

2
χ1 +

z2

4
χ2 + . . .

)
. (4.28)

By using an analytic continuation of the Laplace transform3 , we arrive at a large s

expansion for the inverse Laplace transform of the resolvent:

R̂(s) =
χ0

s
− χ1

s2
+
χ2

s3
− . . . . (4.30)

The analytical structure of R̂(s) can be more precisely established using the shift oper-

ator formalism applied to Equation (4.25) as was done by Volin [1, 48]. More expediently,

it was realised by [2, 52] that this analysis can be reproduced more generally using a

Wiener-Hopf method. The usage of Wiener-Hopf techniques was crucial in the original

calculation of the mass gap of integrable models [167, 168].

The Wiener-Hopf method refers to factorisation of the Fourier transform of the

scattering kernel. This was foreshadowed in Equation (2.60) and (2.61), but we shall

re-state them here. We have that the Fourier-Transform

K(ω) =

∫ ∞

−∞
dθeiωθK(θ) , (4.31)

can be expressed as

1−K(ω) =
1

G+(ω)G−(ω)
, (4.32)

such that G+(ω) and G−(ω) are analytic in the upper half plane (UHP) and the lower

half plane (LHP) respectively. Moreover, we require G−(ω) = G+(−ω). It will become

clear later in what way this factorisation is useful. The key result of [2, 52] is that in

2This is a consequence of the TBA integral equations and the analyticity of K(θ) on the real axis.
3Concretely, [52, 188] tell us what to do:

s−n ↔
(−1)n

(n− 1)!
log(z)zn−1 . (4.29)
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the edge limit the resolvent has the following form

R̂(s) = meBAΦ(s)

(
1

s+ 1/2
+Q(s)

)
, (4.33)

where

Φ(s) = G+(2is), A =
G+(i)

2
, (4.34)

and Q(s) is a series in large s and a perturbative expansion in 1
B in the form

Q(s) =
1

Bs

∞∑
m,n=0

Qn,m

Bm+nsn
. (4.35)

It should be noted that the coefficients Qn,m may still depend on logB. Because the new

approach based on the Wiener-Hopf method is more general, it can readily be applied

to many different theories. Moreover, the Wiener-Hopf composition of many scattering

kernels are well-known.

Let us now re-express the particle and energy densitities from Equation (4.20) using

the techonology of resolvents. We will work in a large B limit, and suppress terms

exponentially small in B. This means that we approximate cosh(B) ≈ eB/2. Because

the integral is symmetric in θ → −θ, we can write

e =
m

2π

∫ −B

B

χ(θ) cosh(θ)dθ

≈ m

2π

∫ −B

0

χ(θ)eθdθ

=
m

4π

∫ 0

−B/2

χ(z)eB+z/2dz

(4.36)

where we have switched the integration variable by θ = B+ z/2. As we take B large let

us pull the integration domain to (−∞, 0). By using the discontinuity formula (4.22),

we compute that

e ≈ meB

4π

∫ 0

−∞
χ(z)ez/2dz

= −me
B

4π

∫ 0

−∞

1

2πi

[
R+(θ)−R−(θ)

]
ez/2dz

= −me
B

4π

∫
C

1

2πi
R(z)ez/2dz ,

(4.37)

where C is the contour that goes
∫ iϵ

−∞+iϵ
dz +

∫ −∞−iϵ

−iϵ
dz. This contour can be trans-

formed into the contour of the inverse Laplace transform. By using Equation (4.26), we
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can thus write

e =
meB

4π
R̂(1/2)

=
m2A2e2B

2π

[
1 +Q

(
1

2
, B

)]
,

(4.38)

where in the second equality we used Equations (4.33) and (4.34).

Bulk limit

In the “bulk” limit we let B →∞ and θ →∞ but we keep u = θ/B fixed, we are hence

studying the regime where θ is in the bulk, between 0 and B. The rest of computation

is based on writing an ansatz for R(θ) in the bulk regime. By re-expanding this edge

ansatz in the bulk regime, we can recursively fix all the coefficients Qn,m as well as the

unknown coefficients in the bulk regime through a careful matching procedure. Because

the bulk ansatz is different depending on the theory under consideration, we shall give

more details about the bulk ansatz when we discuss the individual theories.

For example, for the Principal Chiral Model (and also the O(N) model) we take a

bulk ansatz with the following form

R(θ) =

∞∑
n,m=0

m+n∑
k=0

2A
√
Bcn,m,k(θ/B)e(k)

Bm−n(θ2 −B2)n+1/2

[
log

θ −B
θ +B

]k
, (4.39)

where e(k) is 0 if k is even and 1 if k is odd. This bulk ansatz is best understood as a

perturbative expansion in the bulk parameter u = θ
B .

R(u) =

∞∑
n,m=0

m+n∑
k=0

√
Bcn,m,k(u)e(k)

Bm+n+1(u2 − 1)n+1/2

[
log

u− 1

u+ 1

]k
. (4.40)

Let us take a moment to review the analytic properties of the bulk ansatz (4.39). In

particular, notice that for θ ∈ [−B,B], there is a branch cut. This is expected because

Equation (4.22) tells us that the discontinuity of R(θ) across this interval is given by

χ(θ). Let us study the dummy functions

f(x) = log
x−B
x+B

, g(x) =
1√

x2 −B2
. (4.41)

Notice that the argument of the logarithm and the the argument of the square-root

function are both negative on the real line precisely when x ∈ (−B,B). This means that

in both cases there is a branch cut running from x = −B to x = B. The discontinuity
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across this branch cut is given by4

f(x+ iϵ)− f(x− iϵ) = 2πi+O(ϵ) ,

g(x+ iϵ)− g(x− iϵ) =
−2i√
B2 − x2

+O(ϵ) .
(4.42)

However, these functions area analytic outside the interval [−B,B]. This is precisely

the analytic structure that was demanded when discussing Equations (4.21) and (4.22).

For a more detailed analysis of the bulk solution, see [188].

4.2.3 Matching and Determination of e/ρ2

If we re-expand the bulk ansatz (4.39) in an edge regime where z = 2(θ − B) is fixed,

we should recover the expansion in the edge regime given by (4.33). Here miraculous

feature occurs: upon comparing expansions order by order in large B, then order by

order in large z (which is small s) and then in log(z), we can solve for all the coefficients

cn,m,k and Qn,m.

Once this procedure is completed, we compute e and ρ. Using equations (4.38) and

(4.33) we can express e in terms of the coefficients by

e =
m2e2BA2

2π

[
1 +

∞∑
m=1

1

Bm

m−1∑
n=0

2n+1Qn,m−1−n

]
. (4.43)

We can do the same for ρ using Equations (4.23) and (4.39)

ρ =
A
√
B

π

(
c0,0,0 +

∞∑
m=1

c0,m,0 − 2c0,m,1

Bm

)
. (4.44)

The last step is to calculate the quantity e
ρ2 as an expansion in B. Because cn,m,k and

Qn,m in general depend also on log(B), it is convenient [1, 48] to define a new effective

coupling α in terms of which the perturbative expansion is free from logarithms as we

shall now illustrate for the PCM.

4.2.4 PCM Model

To illustrate the techniques in this Section 4.2, we first will consider the Principal Chiral

Model on SU(N). This model we serve as an example to show consistency with the

literature [2].

4We use the formulas log(−a± iϵ) = log(a)± iπ+O(ϵ) and
√
−a± iϵ = ±i

√
a+O(ϵ) for a, ϵ ∈ R>0.
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Kernel and Matching Procedure

The scattering matrix of the SU(N) PCM model was discussed in Section 2.4.2. It has

a WH-decomposition with a G+(ω) given by

G+(ω) =
eiω((1−∆) log(1−∆)+∆ log(∆))Γ(1− i(1−∆)ω)Γ(1− i∆ω)√

2π(1−∆)∆
√
−iωΓ(1− iω)

, (4.45)

where ∆ = 1
N . We can now use the techniques laid out in Section 4.2 to compute a

perturbative series for e
ρ2 . We calculate the quantity Φ(s) from Equation (4.34) using

(4.45) and obtain

Φ(s) = G+(2is) =
e−2s((1−∆) log(1−∆)+∆ log(∆))Γ(2s(1−∆) + 1)Γ(2s∆ + 1)

2
√
π(1−∆)∆

√
sΓ(2s+ 1)

(4.46)

Notice that this function has an expansion in small s with terms that look like sn−1/2,

for n = 0, 1, 2, . . .. Notably there are no log s terms.

For the matching procedure, we employ a bulk ansatz of the form (4.39), which we

re-expand in an edge regime as a power-series in large B. At any fixed order of B we

encounter a finite number of “divergent” terms zn+1/2, zn−1/2, . . . and then an expansion

in 1/z. The expansion in 1/z is truncated and compared against the edge ansatz in the

following way.

Because the Laplace transform of sn is Γ(n+1)
zn+1 we argue that the large z expansion

must arise as the Laplace transform of a small s expansion. At every order of 1
B , we

thus perform a small s expansion of the edge-ansatz (4.33) with Φ(s) given by (4.46).

After the Laplace transform becomes a large z expansion. The edge and bulk ansatz

are compared order by order in large B and then z. The resulting equations fix all the

coefficients cn,m,k and Qn,m. The coefficients cn,m,k are all proportional to me−B , but

neither the coefficients cn,m,k nor Qn,m depend on logB for this model. As a result,

when we calculate e
ρ2 , a pure series in B is obtained.

Let us contrast this procedure against its counterpart for the O(N) model and the

GN model. Although in the former case we use the same bulk ansatz (4.39), in the

latter case we use

R(θ) =

∞∑
m=1

A

Bm

m∑
n=1

m∑
k=0

cn,m−n,k
(θ/B)e(k+1)

(θ2/B2 − 1)n

[
log

θ −B
θ +B

]k
. (4.47)

This reflects the fact that the small s expansion in of the edge ansatz of the GN model

does not have square roots. i.e. at every order of 1
B there are are a number of divergent

terms s−n, s−n+1, . . . but otherwise it is a series in s.

One main difference between the O(N) and GN model on the one side and the

SU(N) PCM on the other, is the fact that the former models contain series in log(s) as

well as in s in the small s expansion of their edge ansatz. In should be noted here that

the order of the log(s)k terms is never higher than sn, i.e. k ≤ n in a certain term. The
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SU(N) PCM does not have log(s)k terms for any k > 0. This results in the coefficients

cn,m,k vanishing for k > 0 in the PCM model.

Another difference between the O(N) and GN model on the one side and the SU(N)

PCM on the other is the discarding of divergent terms in the matching procedure. In

the GN model this means that we ignore all terms with zk and k > 0. At order z0

we perform matching for the term with log(z), but the term that is constant in z is

ignored5. For the O(N) model, we do not consider the terms with k ≥ 3
2 . The “softest”

divergent term, with k = 1
2 is still matched at any order of log(z) and B.6

As an illustration the first few coefficients determined in this fashion for the SU(N)

PCM are

c0,0,0 = X , c1,0,0 = −X(1 + Υ) , c0,1,0 = − 1

16
X(3 + 4Υ)

Q0,0 =
1

8
, Q0,1 =

9

128
+

Υ

8
, Q1,0 =

9

256

(4.48)

where X = eBm(∆(1 − ∆))−
1
2 and Υ = ∆ log ∆ + (1 − ∆) log(1 − ∆). Because the

expansion of Φ(s) does not contain any terms with log(s) (whereas it does in the O(N)

model), the expansion in fact simplify quite a lot. In fact, we have that cn,m,k = 0 for

all k ̸= 0. Accordingly we have that

e

ρ2
=

1

B
+ (1−Υ)

1

B2
+O(B−3) . (4.49)

Coupling Constant Redefinitions

Notably in the series (4.49) there are no log(B) terms that we are compelled to remove

through a redefinition of the coupling (as was done O(N)-sigma model [167, 168, 189]

in which a coupling γ was introduced such that the quantity e
ρ2 was a pure power series

in γ).

Nonetheless in keeping with conventions elsewhere, we shall perform a coupling con-

stant redefinition. Let us motivate our choice starting from the coupling α which has

an RG-flow determined by

µ
dα

dµ
= −β(α) = −β1α2 − β2α3 + . . . , (4.50)

where

β1 =
1

16π∆
, β2 =

1

256π2∆2
(4.51)

such that ξ = β2

2β2
1

= 1
2 .

It turns out that the Free energy of the PCM (as well other bosonic models) has the

5At order B0 this term is matched for free, but at higher order in 1
B

it is ignored
6A more sophisticated explanation of the discarding of divergent terms can be done through the lens

explained in [188] Section 6.2.4. There the importance of z
B

→ 0 in the matching limit is explained.
Because z appears in the bulk only in the form z

B
, taking z → ∞ can be practically achieved by taking

z → 0. Using this perspective results in a series in large B and z without any terms of the form zk with
k ≥ 1.
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form[172]

∆F (h) = −h2(c−1
1

α
+ c0 + c1α+ . . .) , (4.52)

for some determinable coefficients cn. Because ρ = −∂∆F
∂h , we get that ρ = 2hc−1

α +

O(α0). It follows that e
ρ2 = α

4c−1
+O(α2) .

Instead of thinking of the coupling parameter as a function of µ (evaluated at the

scale µ = h), we will think of it as a function of ρ. This dependence is fixed by the

relation7 h = αρ
2c−1

+O(α2), which gives that 8

ρ
∂α(h(ρ))

∂ρ
= −β̃1α2 − β̃2α3 − . . . , (4.53)

where

β̃1 = β1 , β̃2 = β2 − β2
1 . (4.54)

The RG-equation (4.53) can be solved to leading orders by

1

α
+ c1 logα = c2 log(c3ρ) , (4.55)

if

c1 =
β̃2

β̃1
=
β2
β1
− β1 , c2 = β̃1 = β1 , (4.56)

where we used Equations (4.54). c3 appears as a constant of integration. Dividing the

entire equation by β1, and scaling α′ = β1α gives

1

α′ + (ξ − 1) logα′ = log(c3ρ) + (ξ − 1) log β1 = log(c4ρ) . (4.57)

In the last part we define c4 to absorb the constant of integration c3 and the other term

and the quantity ξ is given by9

ξ =
β2
β2
1

. (4.58)

The final coupling chosen is

1

γ
+ (ξ − 1) log γ = log

(
ρ

2Aβ1Λ

)
, (4.59)

7In principle, there will be additional terms in such as ∂α
∂ρ

, but these are subleading and can be

omitted in this discussion.
8To prove this relation, we first use h = αρ

2c−1
to calculate

∂h

∂ρ
=

α

2c−1
+

∂α

∂ρ

ρ

2c−1
=

α

2c−1
+

∂α

∂h

∂h

∂ρ

ρ

2c−1
,

which is solved for ∂h
∂ρ

. This is used to calculate ρ ∂α
∂ρ

= ρ ∂α
∂h

∂h
∂ρ

, after which we use the RG-equation

for h and perform a small α expansion.
This computation can be generalised to higher order. However, we should keep in mind that the coef-

ficients β3, β4, . . . are no longer scheme independent. Moreover, the equations that determine β̃3, β̃4, . . .
in terms of βi will also depend on the coefficients cn.

9[2] uses g2 in places of α with a β-function β(g) = −β̂0g3 − β̂1g5. Comparing with this language

gives 2β̂0 = β1 and 2β̂1 = 2β2 and ξ = β̂2

2β̂2
1

.
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and A = 4. The added benefit is here that this eliminates many logarithms of π,∆ or

2 and products thereof from the expression.

Using the leading expansion of ρ:

ρ =
meB

√
B(1−∆)−1+∆∆−∆

4
√

2π sin(π∆)

[
1 +

1

8
(4Υ− 3)

1

B
+O

(
1

B2

)]
, (4.60)

we can perform the reversion of Equation (4.59) to obtain

1

B
= γ + γ2

(
log c−Υ + log

∆
√
π√

8 sinπ∆

)
+O(γ3) , (4.61)

in which c = m/Λ. We now determined the expansion of e/ρ2 in terms of the new

coupling
e

ρ2
= 2π(1−∆)∆

[
γ +

(
1 + log

c
√
π∆√

8 sinπ∆

)
γ2 +O(γ3)

]
(4.62)

We now note that the term of order γ2 simplifies when we fix the mass gap ratio to be

c =

√
8

eπ∆2
sin(π∆) , (4.63)

in precise agreement with the value found by [171]. However, in this derivation there

is no strict necessity for this mass-gap as we are not comparing the mass to a concrete

cut-off scale. The choice of c in this derivation is thus strictly speaking aesthetic.

To check our methodology and implementation we calculate the next few orders

e

ρ2
= 2π(1−∆)∆

[
γ +

1

2
γ2 +

1

4
γ3 +

1

16
(5 + 6(∆− 1)∆ζ(3))γ4 +O(γ5)

]
, (4.64)

which do indeed agree with the results obtained in [2].

It was found by [1, 2, 48] that this perturbative series has IR-renormalons for finite

N . That is, at finite N , the Borel transform of (4.64) has singularities on the positive

real axis. It was argued by David in the 80s [190–192] that the PCM-model has these

IR renormalons due to ambiguities of the condensates of the operator

O = Tr ∂µg∂
µg−1 , (4.65)

where g is the field as in Equation (2.2). The map between the location of these renor-

malons and those of the series (4.64) was made more precise by [2]. However, the theory

also exhibits a UV renormalon (that is a Borel singularity on the negative real axis),

which is not so well understood.

The N = 3 and N = 4 cases were studied more in depth by [54] and [57–59]. In those

models, they respectively computed an astounding 336 and 2000 order of perturbation

theory for these models and were thus able to identify higher order renormalons than

previously known.
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4.2.5 λ-Model

In Section 2.3, we constructed the λ-deformed model with WZW level k and a PCM

model with coupling r2 on an SU(N) target space. The deformation parameter was

given by (2.48)

λ =
k

k + r2
. (4.66)

We recall its RG-flow with a β-function at all orders in λ, but to leading order in 1
k

given by [111–113]

µ
dλ

dµ
= β(λ) = −2N

k

(
λ

1 + λ

)2

. (4.67)

The leading order behaviour is given by

β(λ) = −β1λ2 − β2λ3 +O(λ4) , (4.68)

with

β1 =
2N

k
, β2 = −4N

k
, (4.69)

and hence

ξ =
β2
β2
1

= − k

N
. (4.70)

In this Section we shall use the techniques from the above Sections to obtain a

perturbative series from the TBA equation in the case of the λ-model. It was explained

in [145] that the vector symmetry of the λ-model can be gauged. By fixing this gauge

field to a certain charge operator with a chemical potential, we can isolate a certain state

to condense. We chose a certain state associated to the anti-symmetric highest-weight

vector ωN/2. Scattering between such states has a (Fourier-transformed) kernel with a

WH-decomposition given by (2.98).

G+(ω) =
√

4κ
Γ(1− iω/2)2

Γ(1− iω)Γ(1− iκω)
exp (ibω − iκω log(−iω)) , (4.71)

where G−(ω) = G+(−ω) and we defined κ = k
N and

b = κ(1− log(κ))− log(2) . (4.72)

We first observe that for small s, we observe G+(is) is a series in s and log s. In this

regard the λ-model reminds us of the Gross-Neveu model. We shall thus use similar

ansätze.
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Ansätze and Matching Procedure

The edge ansatz is given by

R̂(s) = mAeBΦ(s)

(
1

s+ 1/2
+Q(s)

)
,

Q(s) =
1

Bs

∞∑
m=1

∞∑
n=0

Qnm
1

Bm+nsn
,

Φ(s) = G+(2is) ,

A =
Φ(1/2)

2
.

(4.73)

The bulk ansatz is the same as for the Gross-Neveu model and is given by

R(θ) =

∞∑
n=1

∞∑
m=0

n+m∑
k=0

cnmk
(θ/B)e(k+1)

Bm−n(θ2 −B2)n

[
log

θ −B
θ +B

]k
. (4.74)

Just like in the Gross-Neveu model, we expand the edge ansatz in small s and take

the Laplace transform. We compare this against the bulk ansatz at large z = 2(θ −B).

We compare order by order in large B all the convergent terms, i.e. those with non-

negative exponents of 1
z . This procedure fixes all the coefficients cnmk and Qnm. It is

important to note that these coefficients still depend on log(B) as well as on κ.

Comparison to Mass Gap Calculation

In this section we recover the expansion found by [193] which determines the mass gap of

this theory. Using standard TBA techniques, they find an expansion for the free energy

given by

F(h)−F(0) = −2h2κ

π

{
1− 2κα+ 2κα2

[
2 + κ+ log 4 + +2κ log κ+ 2κ logα

]
− 8κ2α3

[
(−2 + 2κ+ log 4) + 2κ log(κ) log(α) + κ log(α)2

]
+O(α3)

}
.

(4.75)

The coupling α is here defined by

1

α
= 2 log

(
8h∆

m

√
2k∆

π

)
. (4.76)
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By using the Legendre transformation (4.11) we can compute the total energy e10. Doing

so, we obtain the expression

8k∆

π

e

ρ2
=1 + 2α∆k − 2α2(∆k(2∆k log(α∆k)−∆k − 2 + log(4)))

+ 4α3∆2k2(2 log(α)(∆k log(α)− 2 + log(4))

+ 4∆k(log(α)− 1) log(∆k) + 4− 4 log(2)) +O
(
α4
) (4.77)

We now perform a computation analogous to Section 4.2.3. From Equation (4.9), it

follows that to leading order e
ρ2 = χ0+O(α) where χ0 = π

8k∆ . Therefore h = ∂e
∂ρ = 2χ0ρ,

which leads to

ρ =
4hk∆

π
. (4.78)

Therefore, we might be inspired to define a coupling by

1

α
= 2 log

(
ρ

m

√
2π

k∆

)
. (4.79)

Using this coupling after our matching procedure recovers precisely the expansion (4.77).

This is an important consistency check for our programme, as we find the same expansion

that was was obtained from a different method.

A key result from [193] is obtained by comparing the series (4.77) against an expan-

sion in terms of log h
Λ . The expansions are shown to be equivalent if the mass gap is

given by

m = cΛ , c = e3/2∆1/2 . (4.80)

Log-free Perturbative Expansion

In this section we take inspiration from the Gross-Neveu treatment of [2] to create a

series expansions for e
ρ2 . This is appropriate because we have that to leading order

∆F ∼ −h2 +O(α), which leads to a coupling defined by11

1

γ
+ ξ log γ = log

2πρ

m/c
, (4.81)

where ξ is given by Equation (4.70). We could have chosen the right hand side to be

log 2πρ
ΛMS

, where ΛMS is the cut-off in the minimal subtraction scheme. This would then

be related to the mass gap by cΛMS = m. However, we shall leave the re-normalisation

10Because the free energy has the form δF(h) = −h2f(z), we can understand the Legendre transform
quite concretely. Firstly, we have that ρ = −F ′(h) = 2hf(z) and therefore

e(ρ) = δF(h) + ρh = h2f(z) ,

and hence
e(ρ)2

ρ2
=

h2f(z)

ρ2
=

1

4f(z)
= −

h2

4δF
.

11This is in contrast to the PCM calculation where the free energy has a structure ∆F ∼ −h2

α
+O(α0),

which leads to a coupling 1
γ
+ (ξ − 1) log γ ∼ log ρ.
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scheme unspecified and instead choose some “pseudo-mass gap” c of our own choosing.

A choice of c that simplifies the expression considerably is

c =
2−κΓ(κ)

π
. (4.82)

This leads to an expansion that is log-free in the coupling, given by

8κ

π

e

ρ2
=1 + κγ +

κ

2
(2− κ)γ2 +

κ

2

[
3− 5κ+ 2κ2

]
γ3

+
κ

8

[
3(8− ζ(3))− 61κ+ 52κ2 − 15κ3

]
γ4

+
κ

12
[46κ4 − 203κ3 + 355κ2 + κ(33ζ(3)− 288)− 18ζ(3) + 90]γ5 +O(γ6) .

(4.83)

It is important to note that other choices of c exists which retain the property that the

series is log-free. Let us write in general

8κ

π

e

ρ2
=
∑
n=0

an(κ)γn , (4.84)

where an(κ) is a polynomial in the variable κ. We have obtained this polynomial up to

n = 38 using computations in a Mathematica notebook over the course of several days

of running time on a desktop PC.

Let us meander a moment on some empirical observations of the polynomial an(κ).

Firstly, an(κ) is a polynomial of degree n, so that we can write it as

an(κ) =

n∑
m=0

a(m)
n κk . (4.85)

Although in the next section we shall analyse an(κ) for various values of κ, it is interest-

ing to remember that these are simply polynomials with known numerical coefficients.

These coefficients form an aesthetically pleasing curve, forming the basis of the cover of

this thesis - See Figure 4.1. We finish with some last observations:

1. The polynomial an(κ) has no constant part, unless n = 0, i.e. a
(0)
n = 0. In other

words, there is a root an>0(0) = 0.

2. an(κ) has no degenerate roots, i.e. it has precisely n unique roots over the complex

numbers.

3. We now consider the roots of an(κ) over the real numbers. If n is odd and n ̸= 3,

then κ = 0 is the only real root of the polynomial. For n = 3, there are 3 real

roots. Lastly, if n is even and positive, the polynomial only has one additional

root over the reals, other than κ = 0. This secondary root decreases strictly as n

increases.

4. The coefficients of a
(m)
n depend on ζ(k) in the following way. Given a positive
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Figure 4.1: We plot the numerical values |a(m)|
n , introduced in Equation (4.85), logar-

ithmically for each value of m. Each value of n is represented by its own colour, ranging
from the red n = 1 near the origin, to the green n = 34 away from the origin.

integer M we let

OP (M) = {(m1,m2, . . . ,mi)
∣∣∣ i∑
j=1

mj ≤M , mj ≥ 3 , mj is odd , mj ≤ mj+1} .

In other words, OP (M) is the set of (ordered) partitions of at most M such that all

constituent parts are odd and at least 3. We allow duplicates in the partitioning.

For example, OP (8) = {(3), (5), (7), (3, 3), (3, 5)}. We then observe that for m > 0

the coefficients take the form

a(m)
n = fn,m +

∑
x=(x1,...,xi)∈OP (n−m)

fn,m,x

i∏
s=1

ζ(xs) ,

and the numbers fn,m and fn,m,x are all rational. To illustrate an example, we

have12

a
(2)
10 =− 574461

16
+

381915ζ(3)

32
+

380511ζ(5)

64
+

1129383ζ(7)

512

− 23679

16
ζ(3)2 − 46197

64
ζ(5)ζ(3) .

Asymptotic Analysis

In this Section we will analyse the 38 orders of Perturbation series obtained in the

previous Section in a more quantitative way. The goal shall be to compute an asymptotic

formula for the growth of the coefficients as a function of κ. After obtaining such

a formula, we can compute its ambiguity, which can later be compared against an

ambiguity of a transseries. However, before we commence this more quantitative study,

12The fact that all the denominators are powers of 2 is not a generic feature. However, it does appear

to be true for the coefficients a
(2)
n and a

(1)
n .
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Figure 4.2: In these Figures we give the Borel-Padé poles for κ = 0.95, 1.0, 1.05 from
left to right. We can see two unmoving Borel-poles at ζ = ±2 on the outside Figures.
For κ = 1, the ζ = 2 pole disappears.

Figure 4.3: In these Figures we give the Borel-Padé poles for κ = 1.95, 2.0, 2.05. We
can see two unmoving Borel-poles at ζ = ±2 on the outside Figures. For κ = 2, the
ζ = 2 pole disappears.

let us start with a brief qualitative study of the Borel-Padé poles of the expansion.

Firstly, we will compute the Borel transform of the series (4.84) and then compute

its diagonal Padé-approximant. We compute the poles of this approximant by setting

the denominator to 0. An accumulation of Borel-Padé poles indicates a branch cut-

singularity of the Borel transform. As such, the poles of the Borel-Padé approximant

should give a good indication of the pole discontinuity structure of the Borel-transform.

We compute the Borel-Padé poles for a number of different values of κ. Our findings

are given in Figures 4.2 and 4.3.

In general, the Borel-Padé analysis seems to indicate that generically there are at

least two Borel branch points located at ζ = ±2. However, for integer values of κ, the

positive pole at ζ = 2 disappears. We will support these claims more quantitatively

below.

Although the Padé analysis is relatively sound for small values of κ (including neg-

ative ones), the radius of convergence of the Borel-series shrinks to less than 2 around

κ = 3, which makes the analysis less reliable for large κ. This is shown in Figure 4.4.

The unreliability of large κ analysis will be explained at a further stage.

In general, the non-alternating poles on the positive real axis will also be referred

to as IR renormalons ans they correspond non-resummability of the series for positive
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Figure 4.4: In these Figures we give the Borel-Padé poles for κ = −1.2, 0.01, 4.5. We
can clearly see two unmoving Borel-poles at ζ = ±2 on the first two figures. In the
first Figure, the fact that κ is negative seems to correlate with the fact that pole on the
positive axis is more pronounced than the one on the negative axis. The second Figure
shows the analysis works perfectly well for very small values of κ. In the last Figure,
the radius of convergence of the Borel-transform appears to be shrinking, which spoils
our analysis.

coupling constant. The alternating poles on the negative axis will be referred to as UV

renormalons. We will return to these renormalons in Section 4.3.4.

We now turn to a more quantitative analysis of the perturbative coefficients. The

central goal is to find a general large n-asymptotic formula for the coefficients, as a func-

tion of κ. The general approach shall be to keep in mind a certain ansatz and define an

auxiliary series that can determine certain parameters of the ansatz. Initally, we do this

for fixed values of κ, but by considering many different values, we can extrapolate and

find a functional form of the κ-dependence of the parameters. After we have determined

all the parameters, we can compare the asymptotic formula to the actual coefficients

and verify that they agree.

The first task is to compute the location of the Borel branch points. From the

analysis of Borel-Padé poles it looked like there were poles at ζ = ±2. We will now

verify this. If we assume the coefficients grow as

an ∼ A+Γ(n+ 1)/An +A−Γ(n+ 1)/(−A)n ,

we can consider the series

feven,n ∼ a2n =
A+ +A−

A2n
Γ(2n+ 1) ,

fodd,n ∼ a2n+1 =
A+ −A−

A2n−1
Γ(2n) .

(4.86)

We then find that

g+,n :=
feven,n

2n(2n− 1)feven,n−1
∼ 1

A2
, g−,n :=

fodd,n+1

2n(2n+ 1)fodd,n
∼ 1

A2
. (4.87)

By computing the series g±,n from our perturbative coefficients (4.84), we can thus find

the locations of our Borel branch points. We find that the series g±,n converge to 1
4 ,
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Figure 4.5: In these Figures, we consider the series g±,n from Equation (4.87). On the
top line we consider the even coefficients g+,n, on the bottom, we consider g−,n. Both
are are represented by the blue points, while in orange we give its second Richardson
Transformation. On the left we set κ = 0.6, on the right κ = 1.0. In all cases it is
evident that the series converges to 1

4 , given in grey. The second Richardson Transform
differs from this guess by 0.11%, 0.098%, 0.046% and 0.12%.

independent of κ. Therefore, we have poles at ζ = ±2. The numerics are shown in

Figure 4.5.

We now know that the perturbative series does indeed have Borel singularities at

ζ = ±2. This allows us to move forward towards a more general asymptotic formula to

fill in more details. Such a more general asymptotic formula for the perturbative series

is of the following form

an ∼ A+
Γ(n+ a+)

2n

(
1 +

∞∑
k=1

β+
k

nk

)
+A−

Γ(n+ a−)

(−2)n

(
1 +

∞∑
k=1

β−
k

nk

)
, (4.88)

or

an ∼
A+

2n

∞∑
k=0

β̃+
k Γ(n+ a+ − k) +

A−

(−2)n

∞∑
k=0

β̃−
k Γ(n+ a− − k) , (4.89)

where the parameters β̃±
k are determined in terms of the parameters β±

k by the large n
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asymptotics. For the first few coefficients

β̃±
0 = 1 ,

β̃±
1 = β±

1 ,

β̃±
2 = β±

1 (a± − 1) + β±
2 ,

β̃±
3 = β±

1 (a2± − 3a± + 2) + β±
2 (2a± − 3) + β±

3 .

(4.90)

Our central claim can be summarised by stating that the perturbative series has coeffi-

cients that grow as in (4.89), where the parameters a±, A±, β
±
n are given below. In the

rest of this Section, we support these result with numerical tools.

a+ = −2κ

a− = +2κ

A+ = − 8

π
sinπκ

Γ(κ)

Γ(−κ)
= − 8

Γ(−κ)Γ(1− κ)

A− =
1

8π
sin(πκ)

Γ(−κ)

Γ(κ)
= −1

8

1

Γ(κ)Γ(κ+ 1)

β̃−
1 = −4κ

β̃−
2 = 4κ

(4.91)

To support these claims, we will introduce auxiliary series that will determine the

coefficients a±, A± and β±
k for fixed κ of the asymptotic series (4.89). By computing

the parameters for many values of κ, we can extract a functional form. We shall define

the auxiliary series

cn =
2n

Γ(n+ 1)
an , (4.92)

which, assuming the ansatz (4.89), has large n asymptotics given by13

cn =
(
A+n

a+−1 + (−1)nA−n
a−−1

)(
1 +O

( 1

n

))
. (4.93)

Contributions from β±
k would appear as sub-leading corrections to these asymptotics.

We project to the alternating and non-alternating parts of the series by considering

f±k = c2k ± c2k−1 , (4.94)

which have asymptotics

f±n = 2A±(2n)a±−1
(

1 +O
( 1

n

))
. (4.95)

13We use that
Γ(n+b)
Γ(n)

= nb
(
1 +O

(
1
n

))
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Figure 4.6: We compute σ−
k using (4.96) and take the limit (4.97). The convergence

of this series is given by the blue points, whereas the orange points depict the second
Richardson transform of the sequence. On the left we have taken κ = 0.9. On the right,
we take κ = 1.6. We can clearly see that the sequences converge to the expected value of
a− = 2κ. The final error of the second Richardson Transforms are 0.012% and 0.073%

By defining a final auxiliary sequence

σ±
n = 1 + n log

f±n+1

f±n
, (4.96)

we can find a± by taking the limit

Lim
n→∞

σ±
n = a± . (4.97)

When we know a±, we can use this to find A± by computing

Lim
n→∞

f±n
2(2n)a±−1

= A± . (4.98)

However, from empirical observation we notice that this can only be done effectively

when the series is sufficiently leading. For example, we can only compute A± if a±

is (sufficiently) larger than a∓. After determining the leading term, however, we can

subtract it from the main series an and repeat the process to find a sub-leading term.

We will use the methods above and calculate the auxiliary sequences ck, f
±
k , σ

±
n

defined by (4.92), (4.94), (4.96). These are used to compute A± and a± using the limits

(4.97) and (4.98). The limiting procedure of taking n → ∞ is accelerated by using

Richardson accelerations.

The result for the non-alternating series (A+, a+, β
+
1 ) can only be verified in a κ < 1

regime. However, we will present other evidence to support the claim for higher values

of κ at a later stage. Moreover, we will be able to motivate why the analysis works less

well for large values of κ.

In the first stage, we focus on the alternating part of the series. We compute a−,

and show that the sequences converge in figure 4.6. Using this result we can compute

A−, which are given in figure 4.7.

The next stage is to subtract the now known alternating series from the total per-
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Figure 4.7: We take the limit (4.98). The convergence of this series is given by the
blue points, whereas the orange points depict the second Richardson transform of the
sequence. On the left we have taken κ = 0.9. On the right, we take κ = 1.6. We can
clearly see that the sequences converge to the expected value of A− = − 1

8
1

Γ(κ)Γ(κ+1)

indicated by the black line. The final discrepancies between the second Richardson
Transform and the expected result are 0.015% and 0.032%.

Figure 4.8: We performed a second Richardson transformation of the sequence (4.97) to
determine a± for various values of κ, put on the horizontal axis. The best estimates for
the alternating (non-alternating) pieces are given by the red (blue) points. Our claimed
analytic formula a± = ∓2κ is drawn as well and perfectly matches the predictions.

turbative series. This will give us more accurate results for a+ and A+. Because a+ is

numerically smaller these terms are otherwise sub-leading, which is why it is important

to do the subtraction. After this procedure, we can calculate a+ and A+ using the same

techniques as those for a− and A−.

By using these techniques for various values of κ we were able to claim the analytic

form of A± and a±. The data to support those claims is presented in Figure 4.8 and

4.9. Due to the sub-leading nature of the non-alternating parts, even after subtracting

leading and sub-leading alternating parts, the non-alternating parts can only be analysed

for small values of κ.

Because we now know both the leading alternating and leading non-alternating

asymptotics, we can start studying the sub-leading asymptotics. We construct a new

series ãn by subtracting the leading alternating and non-alternating terms. We proceed
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Figure 4.9: Using the result a± = ∓2κ, obtained in Figure 4.8, we performed a second
Richardson transformation of the sequence (4.98). This gives estimates of A± for various
values of κ, put on the horizontal axis. The best estimates for the alternating (non-
alternating) pieces are given by the red (blue) points. Our claimed analytic formulas for
A± in Equation (4.91) is drawn as well and perfectly matches the predictions.

Figure 4.10: We take the limit (4.97) after subtracting the leading alternating and non-
alternating asymptotics. The convergence of this series is given by the blue points,
whereas the orange points depict the second Richardson transform of the sequence. On
the left we have taken κ = 0.6. On the right, we take κ = 2.2. We can clearly see that
the sequences converge to the expected value of ã− = a− − 1 = 2κ− 1 indicated by the
black line. The discrepancies are 0.034% and 0.2% respectively.

as before and calculate the auxiliary series c̃n, f̃n and σ̃n using Equations (4.92), (4.94)

and (4.96). By taking the limits (4.97) and (4.98) we access ã± and Ã±. However, as

this is expected to be the subleading behaviour in Equation (4.89), we should have that

ã± = a± − 1 and Ã± = A±β̃
±
1 .

Unfortunately, we find that this analysis only works well for the non-alternating

series. We show these convergences at fixed κ in Figures 4.10 and 4.11. We extrapolate

to all values of κ in Figure 4.12. With this information in hand, we can go a step further

and use the same techniques outlined above, but now also subtract the sub-leading

alternating asymptotics. This allows us to access β−
2 - see Figure 4.13.
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Figure 4.11: We take the limit (4.98) after subtracting the leading alternating and non-
alternating asymptotics, and we divide the result by A−. The convergence of this series
is given by the blue points, whereas the orange points depict the second Richardson
transform of the sequence. On the left we have taken κ = 0.6. On the right, we take
κ = 2.2. We can clearly see that the sequences converge to the expected value of
β̃−
1 = −4κ indicated by the black line, with discrepancies of 0.022% and 0.15%.

Figure 4.12: We use the same method as in Figure 4.11, but now apply the second
Richardson Transformation to many values of κ, all represented as the blue points. The
grey line is the expected value β̃−

1 = −4κ

Figure 4.13: After subtracting leading alternating and non-alternating analytics, as well
as the sub-leading alternating analytics, we take the limit (4.98). We divide the result
by A− and take the second Richardson Transformation. By performing this analysis
for many values of κ, we can extract a functional form for β̃2, given by the blue points.
The grey line is the expected value β̃−

2 = +4κ. We can see that the analysis falls off for
larger values of κ.
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Large κ Asymptotics

Although the current non-alternating analysis does not extend to higher values of κ,

there is additional evidence to support our claim that A+ = 8
π sinπκ Γ(κ)

Γ(−κ) : we notice

that A+ vanishes if κ is an integer, which is the reason that there are no Borel-Padé

poles on the positive real axis for these values of κ. This was already seen in Figures

4.2 and 4.3.

By studying the asymptotics of (4.89) with parameters (4.91), we can also explain

why our asymptotic analysis is bad for large κ, but good for small κ. The critical

observation lies in the large n expansion (4.88). We recall this relies on parameters β±
k ,

which are related to β̃±
k by the dictionary in Equation (4.90). In particular, notice that

β+
2 = 8κ2 . We might then postulate that in general, the sub-leading coefficients β±

n

scale with κn. In either case, the sub-leading terms β+
1 and β+

2 become more dominant

as κ becomes larger. To compensate for this, one would have to go to higher order of

perturbation theory.

Another curiosity from the large κ limit can be found by taking the limit at the level

of the perturbation coefficients an(κ) in Equation (4.83) and (4.84). As mentioned, the

coefficients an(κ) are polynomials in κ of order n. Let us for a moment take the large κ

limit by discarding all terms in an, except the nth-order monomial. As an example, let

us apply this procedure for the first few coefficients given is Equation (4.83). In terms

of a new coupling γ̃ = κγ this gives

8κ

π

e

ρ2
= 1 + κγ − 1

2
(κγ)2 + (κγ)3 − 15

8
(κγ)4 +

23

6
(κγ)5 +O(κ6) =

∞∑
n=1

ãnγ̃
n , (4.99)

where ãn = a
(n)
n in the language of Equation (4.85). The first observations are that the

coefficients are all rational numbers (i.e. they do not depend on ζ(n)) and that they are

alternating14.

As a first analysis, we can consider the Padé-poles of this new series, given in Figure

4.14. The presence of an accumulation point of these poles indicates that the series has

a finite radius of convergence. In other words, there is no factorial growth. This can

also be seen by computing the ratios of the numbers bn = ãn

ãn−1
– see Figure 4.15. It

is observed that the ratios converge to some number α = −2.678. This indicates that

an asymptotic formula should contain a factor of αn, which explains the location of

the singular point 1/α = −0.3733 in Figure 4.14. In general, the asymptotic formula

14If one looks at these rational numbers a bit more closely, one finds a strange pattern when looking
at their prime number factorisation. The denominators seem to contain factors of n!, whereas the
numerators typically contain large prime numbers. As an example, consider

ã34 = −
1162400759590144333924690390484056829950082081

1386038976440854809111271833600000

=
236 × 39 × 55 × 74 × 112 × 132 × 17× 19× 23× 29× 31

872251× 216332159958569981× 6160178867635064734351

=
25 × 3−5 × 5−2 × 32!

872251× 216332159958569981× 6160178867635064734351
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Figure 4.14: We consider the Padé approximant of the series (4.99) and compute its
Padé poles in the γ̃-plane. We see a single branch point around γ̃ = −0.3733 (the red
cross) on the negative axis.

Figure 4.15: In this Figure, we consider the series bn = ãn

ãn−1
given with circles, and its

second Richardson Transformation, with squares. It converges to about α = −2.678378,
drawn in grey. The last and the second to last element of the sequence differ only in the
sixth decimal place.

could look something like aasymp
n = Bαnnβ . In Figure 4.16, we show that the sequence

cn = n log ãn

αãn−1
converges to − 4

3 , indicating that β = − 4
3 . Lastly, in Figure 4.17, it is

shown that the proportionality constant is given by B = −0.265.

Ambiguity

In this Section, we return to the full formula for the asymptotic expansion given in

Equation (4.89) with parameters given by Equation (4.91), which now have been motiv-

ated numerically. Our goal shall be to understand the Borel-structure of this abstract

series so that we can compute its Stokes ambiguity. This ambiguity will then later be

compared against a transseries computation.

Instead of analysing the Borel-structure of the full series (4.89), we start with a sim-

pler example. We will then build out from this to the full series. For Borel-resummation
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Figure 4.16: In this figure, we consider the series cn = n log ãn

αãn−1
, given by the circles,

and its second Richardson Transformation, with squares. It converges to β = − 4
3 , drawn

in grey, from which the last elements of the sequence differs by 0.18%.

Figure 4.17: In this figure, we consider the series ãn

ãasymp
n

, given by the circles, and

its second Richardson Transformation, with squares. We take ãasymp
n = αnnβ , with

α = −2.678 and β = − 4
3 . The sequence converges to B = −0.265, drawn in grey. The

last two elements of the sequence of the second Richardson transformation only differ
in the fourth decimal.
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techniques, we choose the conventions

ϕ(γ) =

∞∑
n=0

anγ
n ,

ϕ̂(ζ) = B[ϕ] =

∞∑
n=0

an
Γ(n+ 1)

ζn ,

Sθ[ϕ] =
1

γ

∫ ∞eiθ

0

dζB[ϕ]e−ζ/γ .

(4.100)

These are good conventions because re-expansion of the resummation gives S0[ϕ] =∑∞
n=0 anγ

n. We can break down the asymptotic expansion 4.89 by decomposing it

as a sum of asymptotic expansions with coefficients an ∼ 1
(±2)n Γ(n + a± − k). These

asymptotic expansions were discussed in Examples 4 and 5, albeit with a slightly different

convention for the asymptotic expansion, and we shall import their results here, adapted

to the conventions (4.100). We will be specialising to the case A = 2 and a = a± − k.

The discontinuity around the positive real axis of (4.89) is hence given by

(S+ − S−)ϕ̃(γ) = 2πiA+

( 2

γ

)a+

e−2/γ
∞∑
k=0

β̃+
k

(γ
2

)k
= − 16πi

Γ(−κ)Γ(1− κ)

(γ
2

)2κ
e−2/γ [1 +O(γ)] .

(4.101)

We hence see that the corrections β±
k correspond to fluctuations around the transseries.

Across the negative real axis we find an ambiguity given by

(Sπ+ϵ − Sπ−ϵ)ϕ̃(γ) = 2πiA−

(
− 2

γ

)a−
e2/γ

∞∑
k=0

β̃−
k

(
− z

2

)k
= − πi

4Γ(κ)Γ(1 + κ)

(
−γ

2

)−2κ

e2/γ [1 +O(γ)] .

(4.102)

In the next section we shall develop techniques to calculate these ambiguities using a

very different approach.

4.3 Analytic Transseries

In this section we use techniques developed by [49] to compute an analytic transser-

ies which will decode the analytic structure of the discontinuities of the perturbative

expansion. In particular, we make a prediction of the Stokes coefficient.

Firstly, we review Wiener-Hopf techniques to re-write the TBA equations. We will

then specialise to the case where G+(0) is finite, which is the situation in Sine-Gordon,

Gross-Neveu and λ-deformed models.

After re-writing the integral equation we can solve them iteratively in both a per-

turbative and non-perturbative parameter up to an ambiguity. Because we are tracking

perturbative and non-perturbative corrections separately, this computation ultimately

133



yields a transseries solution. We will show that the ambiguity of the non-perturbative

part will precisely match the ambiguity of the Borel-re-summed perturbative series.

4.3.1 Wiener-Hopf Techniques

In this section we will be using the “free energy TBA” system, which was related to

the “total energy TBA” system in Appendix 4.A. The derivation in this Section is not

new [167–169, 171], but serves to flesh out some of the steps motivating our transformed

integral Equations. For θ ∈ I = [−B,B], we have that ϵ(θ) is determined by the

equations

ϵ(θ)−
∫ B

−B

dθ′K(θ − θ′)ϵ(θ′) = h−m cosh θ

∆F (h) = F (h)− F (h = 0) = −m
2π

∫ B

−B

dθ cosh(θ)ϵ(θ)

ϵ(±B) = 0 .

(4.103)

It is convenient to analyse this system in Fourier space15 where Wiener-Hopf factor-

isation techniques can be deployed [167–169, 171]. To perform the Fourier transform we

need to extend the limits on the convolution integral to ±∞ which we do by first letting

ϵ(θ) extend to the zero function outside of I = [−B,B].16 To soak up the remaining

contributions of the convolution outside of this domain we let

ϵ(θ)−
∫ ∞

−∞
dθ′K(θ − θ′)ϵ(θ′) = g(θ) + Y (θ −B) + Y (−θ −B) , (4.104)

now valid for θ ∈ R with Y unknown and g(θ) chosen such that it agrees with h−m cosh θ

on I. This can now be Fourier transformed

1

G+(ω)G−(ω)
ϵ̃(ω) = g̃(ω) + eiωBỸ (ω) + e−iωBỸ (−ω) , (4.105)

in which we used the Wiener-Hopf factorisation of the kernel

1−K(ω) =
1

G+(ω)G−(ω)
, (4.106)

where G+ is analytic in the UHP, G− analytic in the LHP and G−(ω) = G+(−ω) is

assumed. In what follows for a function f(ω) we define its analytic projections into the

UHP and LHP as

[f ]± = ± 1

2πi

∫ ∞

−∞
dω′ f(ω′)

ω′ − ω ∓ iδ
, (4.107)

15We use the Fourier transform conventions

f̃(ω) =

∫ ∞

−∞
dθeiωθf(θ) .

16This is not unlike the function ϵ+(θ) which appears in Appendix 4.A.
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such that f = [f ]+ + [f ]− and [[f ]+]− = 0 and [[f ]+]+ = [f ]+. Furthermore, it is useful

to employ the definitions

g±(ω) = e±iBω g̃(ω) , ϵ±(ω) = e±iBω ϵ̃(ω) , σ(ω) =
G−(ω)

G+(ω)
, (4.108)

Q+(ω) = G+(ω)Ỹ (ω) , Q−(ω) = Q+(−ω) = G−(ω)Ỹ (−ω) . (4.109)

We now take the equation (4.105) and multiply by eiωBG−(ω) to give

1

G+(ω)
ϵ+(ω) = G−(ω)g+(ω) + e2iωBG−(ω)Ỹ (ω) +G−(ω)Ỹ (−ω)

= G−(ω)g+(ω) + e2iωBσ(ω)Q+(ω) +Q−(ω) .

(4.110)

Taking the WH projections yields two equations:

0 = [G−g+]− + [e2iωBσQ+]− +Q− , (4.111)

ϵ+
G+

= [G−g+]+ + [e2iωBσQ+]+ . (4.112)

The first can be solved for Q (in principle, but of course not in general in closed form),

which seeds the second equation to determine ϵ+(ω) and hence the free energy at finite

density17. The relation between B and h is determined by the boundary conditions that

ϵ(±B) = 0.

In the case whereG+(0) is finite the analysis can be further streamlined by rephrasing

eq. (4.105) as

ϵ̃(ω) = eiωBṼ (ω)G−(ω) + e−iωBṼ (−ω)G+(ω) . (4.113)

This is achieved by making using of the explicit form

g̃(ω) = eiBω

(
− ih
ω

+
imeB

2

1

ω − i

)
+ e−iBω

(
ih

ω
− imeB

2

1

ω + i

)
. (4.114)

to relate Ṽ (ω) and Ỹ (ω) as

Ṽ (ω) = G+(ω)

(
Ỹ (ω)− hi

ω
− imeB

2

1

i− ω

)
. (4.115)

This implies in particular that Ṽ (ω) is not analytic in UHP, instead it has poles at ω = i

and ω = i0. Consequently, [Ṽ (−ω)]− ̸= Ṽ (−ω) but rather

[Ṽ (−ω)]− = Ṽ (−ω) +
hiG−(0)

ω + iδ
− imeBG+(i)

2

1

ω + i
. (4.116)

We could proceed to carry out the WH evaluation directly in terms of this function Ṽ ,

however it is more elegant to remove the pole at ω = i by defining Ũ(ω) = (1+ iω)Ṽ (ω).

17infinite volume and zero temperature.
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Multiplying eq.(4.113) by (1− iω)eiBω/G+(ω) yields

(1− iω)
ϵ+(ω)

G+(ω)
= e2iωBŨ(ω)ϱ(ω) + Ũ(−ω) . (4.117)

in which

ϱ(ω) =
1− iω
1 + iω

G−(ω)

G+(ω)
. (4.118)

Now the WH projections read

0 = [e2iωBŨ(ω)ϱ(ω)]− + Ũ(−ω) +
ihG−(0)

ω + iδ

(1− iω)
ϵ+(ω)

G+(ω)
= [e2iωBŨ(ω)ϱ(ω)]+ −

ihG−(0)

ω + iδ
.

(4.119)

We further refine by rescaling Ũ(ω) = hG−(0)u(ω) so that

u(ω) =
i

ω − iδ
+

1

2πi

∫
dω′ e

2iω′Bu(ω′)ϱ(ω′)

ω′ + ω + iδ
(4.120)

From the second of Equation (4.119) we have

(1− iω)
ϵ+(ω)

G+(ω)
= +hG−(0)

1

2πi

∫
dω′ 1

ω′ − ω − iδ
e2iω

′Bu(ω′)ϱ(ω′)− ihG−(0)

ω + iδ
.

Evaluating this at ω = i gives

ϵ+(i) =
h

2
G+(i)G−(0)

(
1− 1

2πi

∫
dω′ 1

ω′ − i
e2iω

′Bu(ω′)ϱ(ω′)

)
.

We can therefore compute the free energy

∆F (h) = − 1

2π
meBϵ+(i)

= − 1

2π
h2u(i)G−(0)2

(
1− 1

2πi

∫ ∞

−∞
dω′ e

2iω′Bu(ω′)ϱ(ω′)

ω′ − i

)
,

(4.121)

in the last step we invoked that the boundary condition ϵ(±B) = 0 can be reformulated

as

u(i) =
m

2h
eB

G+(i)

G+(0)
. (4.122)

It shall than be the goal of the coming section to solve the integral equation

u(ω) =
i

ω
+

1

2πi

∫ ∞

−∞
dω′ e

2iBω′
ϱ(ω′)u(ω′)

ω′ + ω + iδ
. (4.123)

4.3.2 Recursive Solution

We will now present the techniques pioneered by [49] and adapt them so that it can be

applied to the λ-deformed model. The goal is to solve Equation (4.123), which will be
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ω C′

C

Figure 4.18: The contour C = (−∞,∞) is deformed into C′ and as such picks up the
residues indicated by crosses.

done by a clever deformation of the contour. The resulting equation can be recursively

solved order by order in a perturbative parameter and a non-perturbative parameter.

Before jumping into the more difficult case which will apply to the λ-deformed model,

we consider a simpler case. For a moment, let us assume the function ϱ(ω) has just simple

poles, but no branch cuts, located at x1 < x2 < x3 < . . . with residues resω=ixn
ϱ(ω) =

ϱn. In this case, closing the contour in Equation (4.123) around the UHP (see Figure

4.18) thus pick up the residues as given by

u(ix) =
1

x
+
∑
n

e−2Bxnu(ixn)ϱn
xn + x

. (4.124)

Letting un ≡ u(ixn) we would obtain a set of algebraic equations

um =
1

xm
+
∑
n

e−2Bxnunϱn
xn + xm

. (4.125)

This scenario applies to the Sine-Gordon model and it is studied by [194] who found its

mass gap.

However, more generally, ϱ(ix) will have both poles and a branch cut across the

positive real axis. This is the case in the λ-deformed model. The idea is to move the

cut to the ray C± = {ξeiθ|θ = π
2 ± δ}. We can then pull the deformed contour around

this cut - see Figure 4.19. We let ϱn,± be the residues at x = xn with the cut moved to

C± . In this case we have that Equation (4.123) becomes

u(ix) =
1

x
+

1

2πi

∫ ∞e±iϵ

0

dx′
e−2Bx′

u(ix′)δϱ(ix′)

x′ + x
+
∑
n

e−2Bxnunϱn,±
xn + x

, (4.126)

where un ≡ u(ixn). For the discontinuity function, we use the convention

δρ(ω) = ρ(ω(1− iϵ)− ρ(ω(1 + iϵ)) . (4.127)

For x ∈ R>0, we can also write this as δϱ(ix) = ϱ(ix + ϵ) − ϱ(ix − ϵ). Notice that the

residues, as drawn in Figure 4.19, are sensitive to the choice of branch cut deformation.
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ω C−

C

ϱ−1

ϱ−2

ϱ−3
ω C+

C

ϱ+1

ϱ+2

ϱ+3

Figure 4.19: The contour C = (−∞,∞) is deformed into either of two ways. The branch
cut, represented by the curvy line is moved to either the ray C+ or C−. In those cases
respectively, the contour is deformed into C+ or C−. In both cases we pick up the
residues ϱ±n , but their values differ by the branch cut discontinuity.

That means we defined

ϱn,± = Resx=xn∓iϵϱ(ix) . (4.128)

This procedure should be non-ambiguous so in particular

0 =
1

2πi

∫
C+−C−

e−2Bx′
u(ix′)δϱ(ix′)

x′ + x
+
∑
n

e−2Bxnun(ϱn,+ − ϱn,−)

xn + x
. (4.129)

This is demanding that the residues of the discontinuity function are the same as the

discontituities of the residues. Schematically we have Resx=xn
δϱ(ix) = (ϱn,+ − ϱn,−).

We define the function P (η, v) by

e−2Bxδϱ(ix) = −2ive−ηP (η, v) , (4.130)

with a change of variables (x,B)→ (η, v) given by

1

v
+ a log v = 2B x = vη . (4.131)

Here, a is a constant determined by demanding that P (η, v) is regular in v. In partic-

ular, we need to remove any dependence on log(v). Typically, we have that δϱ(ix) ∝
eãx log x

∑
dnx

n, in which case this determines ã = a. In the Gross-Neveu model, we

have a = −2∆, whereas in the lambda-deformed model we have a = −2k∆. In general

we have that

P (η, v) = d1,0η + vη2(d2,0 + d2,1 log(η)) +O(v2) . (4.132)

In the new coordinates, Equation (4.126) becomes

u(η) =
1

vη
− v

π

∫ ∞e±iϵ

0

dη′
e−η′

P (η′, v)u(η′)

η + η′
+

1

v

∑
n

e−2Bxnunϱn,±
ηn + η

(4.133)

in which we abuse notation u(η) = u(iηv) and we define xn = vηn. Following [49], we
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define the integral operator

I[f ](η) = − v
π

∫ ∞eπiϵ

0

dη′
e−η′

P (η′, v)f(η′)

η + η′
(4.134)

such that Equation (4.133) can be re-written as

u(η) =
1

vη
+ I[u](η) +

1

v

∑
n

e−2Bvηnunϱn,±
ηn + η

. (4.135)

We shall here make a slight adaptation compared to [49] to suit our own model. We

shall assume that the residue locations are distributed xn = µn (later we shall set

µ = 2), whereas previously xn = 2n+1
Υ was considered for some constant Υ. We will

then evaluate Equation (4.135) at η = ηn = µn/v and define In[f ] ≡ I[f ](η = ηn) such

that we obtain

un =
1

µn
+ In[u] +

1

µ

∑
m

e−2Bvηnumϱm,±

m+ n
. (4.136)

Let us now solve this equation. We define the seed of the equation as

u(η) =
1

vη
+

1

v

∑
n

e−2Bvηnunϱn,±
ηn + η

. (4.137)

We can write Equation (4.135) as

u(η) = u(η) + I[u](η) (4.138)

which has a formal recurrence solution

u(η) =

∞∑
l=0

Ilu](η) ≡ J [u](η) (4.139)

Supposing that the poles are regularly distributed we can tidy up the residue term.

We recall that xn = µn and introduce the small parameter

q = e−2Bµ = e−µ/vv−µa . (4.140)

We will expand our solution as a series in q and solve it order by order. Firstly, we write

the residues as

un =
∑
s=0

u(s)n qs .

If we write the seed as a power series

u(η) =
∑
s=1

u(s)(η)qs ,
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we can compute its first terms18 using (4.137)

u(0) =
1

vη
, u(1) =

ϱ1,±u
(0)
1

vη + µ
, u(2) =

ϱ1,±u
(1)
1

vη + µ
+
ϱ2,±u

(0)
2

vη + 2µ
. (4.142)

We write the full solutions (4.139) as

u(η) =
∑

u(s)(η)qs , u(s)(η) = J [u(s)](η) ,

as the operator J crucially does not introduce factors of q. For the first terms of

Equation (4.142), at η = ηn, we thus have that

u(0)n = J [u(0)](ηn) =
1

µn
+ In[J [

1

vη
]] , (4.143)

u(1)n = In[J [
ϱ1,±u

(0)
1

vη + µ
]] +

1

µ

ϱ1,±u
(0)
1

1 + n
. (4.144)

Let us assume, and return later if not, that ϱ1,± ̸= 0, such that these two expressions

are governing the leading behaviour.

Suppose now we work formally to leading order in v and leading order in q (i.e. ig-

noring that q is exponentially smaller than higher order polynomial terms in v). Because

each application of I carries a factor v, to leading order it is sufficient to consider only

the identity operator J = 1 + . . . which results in19

u(0)n =
1

µn
− v

nπµ
d1,0 +O(v2) (4.145)

u(1)n =
ϱ1,±

µ2(n+ 1)
− d1,0ϱ1,±
µ2π(n+ 1)

v +O(v2) (4.146)

To compute u(η) to leading orders we takes

u(η) =
[
u(0) + I[u(0)] +O(v)

]
+ q

[
u(1) + I[u(1)] +O(v2)

]
+O(q2)

=

[
1

vη
− eηd1,0Γ(0, η)

π
+O(v)

]
+
qϱ1,±
µ2

[
1− v

πµ
(πη + 2µd1,0 − eηηµd1,0Γ(0, η))

]
+O(q2) ,

(4.147)

where Γ(0, x) =
∫∞
x
dt e−t

t is the incomplete Γ-function. To implement the boundary

18For n ≥ 1, we have in general

u(n)(η) =

n∑
m=1

ϱm,±u
(n−m)
m

vη + µm
. (4.141)

19the small v limit has to be taken also in the integral:

I
[

1

vη

]
(ηn) = −

v

π

∫ ∞

0

eη
′
d1,0η

vη′ + nµ
= −

v

π

∫ ∞

0

(
eη

′
d1,0

nµ
+O(v)

)
= −

vd1,0

nπµ
+O(v2) .
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condition we need to compute

u(i) = u

(
η =

1

v

)
=

[
1− d1,0

π
v +O(v2)

]
+

qϱ1,±
µ(1 + µ)

[
1− d1,0v

π
+O(v2)

]
+O(q2),

(4.148)

where we use that e1/vΓ(0, 1/v) = v +O(v2).

We are now in a position to compute the free energy given by (4.121). We shall

use the same technique as when going from Equation (4.123) to Equation (4.126). We

deform the contour and write the integral over ω as an integral over a discontinuity plus

the contributions from the residues. This results in

∆F (h) =− h2

2π
u(i)G+(0)2

(
1 +

v2

π

∫
e−ηP (η, v)u(η)

ηv − 1
dη

− e−2Bϱ(i± ϵ)u(i)−
∑
n≥1

qnϱn,±un
µn− 1

) (4.149)

We can evaluate the integral after making a small v expansion, which yields

∆F (h) =− h2

2π
G+(0)2

(
1− 2d1,0v

π
+O(v2)

)
×
(

1− ϱ(i+±ϵ)q
1
µ +

2ϱ1,±
µ(1− µ2)

q − 2ϱ1,±ϱ(i+±ϵ)
µ(1 + µ)

q1+
1
µ +O(q2)

) (4.150)

At this stage it is better to specialise for the model we are interested in. There are two

main reasons for this. Firstly, we need to fix µ in order to compare things like q2/µ to

q. The second reason is that we wish to define a new coupling to compare with the

perturbation result. However, the definition of the coupling is model-dependent.

4.3.3 UV Renormalons

In the above section we are working with a transseries in a transseries parameter q =

e−µ/vvµa. Although the calculation is not fully finished until a new coupling parameter

has been introduced, we can foreshadow that the transseries in the parameter q are due

to Borel singularities on the positive real axis. Currently, we can only say this would

be on the positive real axis of the Borel plane of v, but after the coupling parameter

redefinition, this will stay on the positive real axis of that parameter. Singularities on

the positive real axis are associated with IR renormalons. In this Section, we shall

slightly modify the method above to obtain a transseries than explains singularities on

the negative real axis in the Borel plane, which are associated with UV renormalons.

The calcuation above relies on moving the contour in Equation (4.123) into the UHP

leading to Equation (4.126) which picks up the discontinuity and singularities of ϱ in

the UHP. In this Section we strengthen the hypothesis of [49] that the UV renormalons

come from the singularities and discontinuities of ϱ is the LHP. To this end, we move
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the contour of (4.123) into the LHP which leads to20

u(−ix) = − 1

x
+

1

2πi

∫ ∞e±iϵ

0

dx′
e2Bx′

u(−ix′)δϱ(−ix′)
x′ + x

−
∑
n

e2BxUV
n uUV

n ϱUV
n,±

xn + x
(4.151)

Here, ϱUV
n,± are the residue at x = xUV

n > 0 of ϱ(−ix) for n = 1, 2, . . ..21 The convention

(4.118) now prescribes we use δϱ(−ix) = ρ(−ix− ϵ)− ρ(−ix+ ϵ).

Analogous to the coordinates η, v we introduce coordinates η, w given by

− 1

w
+ a logw = 2B , x = wη . (4.152)

We typically have that δϱIR(ix) = f(x)eax log x and that δϱUV (−ix) = f(−x)e−ax log x.

It then follows from Equation (4.130) that

e2BxδϱUV (−ix) = 2iwe−ηP (η,−w) . (4.153)

We will implement this in (4.151) leading to

u(−iwη) = − 1

wη
+
w

π

∫ ∞e±iϵ

0

e−η′
P (η′,−w)u(−iwη′)

η + η′
−
∑
n≥1

q
xUV
n

UV ϱUV
n uUV

n

wη + xUV
n

, (4.154)

where22

qUV = e2B = e−1/wwa . (4.155)

This integral equation can be solved with the same techniques as those from Section

4.3.2.

However, notice that we cannot use (4.154) to calculate u(i). Instead, we must go

back to (4.123) and deform the contour down. This pick up an additional residue at

ω = −i leading to

u(i) = 1+
w

π

∫ ∞e±iϵ

0

dη′
eη

′
P (η,−w)u(−iwη′)

η′ − 1/w
−
∑
n≥1

q
xUV
n

UV ϱUV
n uUV

n

xUV
n − 1

+e2Bϱ(−i∓ϵ)u(−i) .

(4.156)

The value u(−i), however, can be calculated from (4.154) by setting η = 1
w which leads

at leading order in qUV to

u(−i) = −1− d1,0
π
w +O(w2) +O(q

xUV
1

UV ) . (4.157)

20The sign in front of the residue term is different from [49]. However, we believe this to be correct,
as the contour is now traversed clockwise.

21We require the residue locations to be ordered xUV
n > xUV

n−1. In both the GN and λ-model we have

xUV
n = 2n+ 1.
22This convention is slightly different compared to qIR = q−2Bµ.
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We can therefore calculate

u(i) =
(

1 +
d1,0
π
w +O(w2)

)(
1− qUV ϱ(−i∓ ϵ) +O(q2UV )

)
, (4.158)

where the assumption is that xUV
1 > 1. Just like in the IR case, to take the computation

further, we must specialise to a specific model so we can write down a new coupling.

Moreover, we will need to make more assumption as to locations of the residues xUV
n .

Let us deform the contour of the free energy in (4.121) equation around the negative

imaginary axis, like we did with u(ω). Notice that in the IR calculation above, we picked

up a residue at ω = i. This is not picked up now and hence we find

∆F = −h
2

2π
u(i)G−(0)2

(
1+

w2

π

∫ ∞e±iϵ

0

e−η′
P (η′,−w)u(−iwη′)
−x′ − 1

+
∑
n

e2BxUV
n uUV

n ρUV
n,±

−xUV
n − 1

)
.

(4.159)

Plugging in the solution gives

∆F =
h2

2π
u(i)G−(0)2

(
1− d1,0

π
w +O(w2) +O(q

xUV
1 )

UV

)
. (4.160)

4.3.4 λ-Model

In this section we specialise the solution of the previous Section to the λ-model. We

first collect the analytic data required before defining a new coupling in which we will

re-expand the Legendre-transformed free energy. We will compare the transseries am-

biguity with that obtained from the perturbative analysis and show that they match.

Analytic Data

Let us recall the kernel (4.71) for the λ model in chemical potential

G+(ω) =
√

4κ
Γ(1− iω/2)2

Γ(1− iω)Γ(1− iκω)
exp (ibω − iκω log(−iω)) , (4.161)

where we defined b by (4.72). The case above where G+(0) is finite applies, as we now

have that G+(0) = 2
√
κ. We will define ϱ(ω) by Equation (4.118), which, using (4.161),

is explicitly given by

ϱ(ω) = −ω + i

ω − i
Γ
(
iω
2 + 1

)2
Γ(1− iω)Γ(1− iκω)

Γ
(
1− iω

2

)2
Γ(iω + 1)Γ(iκω + 1)

e−2ibωeiκω(log(iω)+log(−iω)) (4.162)

Noting that the reciprocal Gamma-function is entire, we conclude the only possible

location of poles in the UHP comes from the numerator term Γ(1 − x/2)2, i.e. at

x = xn = 2n with n a positive integer. The factor Γ(1− x) in the denominator reduces

these double poles to single poles. The pole structure of ϱ(ix) is hence determined by
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the combination of Gamma functions

Γ(1− x/2)2

Γ(1− x)Γ(1− κx)
.

However, it can be the case that some of these would-be simple poles at x = xn = 2n

are removed if they coincide with poles of Γ(1− κx). This pole removal happens when

κ is rational. Suppose we express κ ≡ k
N = p/q as a reduced fraction with p, q coprime

integers (i.e. q = N/gcd(N, k)), then the set of poles are located at x ∈ 2Z \ qZ. In

particular, when k is an integer multiple of a half, i.e. q = 1 or q = 2, all poles are

removed entirely.

The residue at these poles is found to be23

ϱ(±)
n = Res

x=xn±iϵ
ϱ(ix) = −2ie2n(2b±iπκ−2κ log(2n))n

2n+ 1

2n− 1

((2n)!)2

(n!)4
Γ(1 + 2nκ)

Γ(1− 2nκ)
(4.163)

The expression for ϱn evaluates to zero if 2n ∈ 2Z∩ qZ, and hence in the manipulations

that follow we can simply consider the full set of {xn} = 2Z, with ϱn only contributing at

non-removed poles. However, an important observation is that if ϱ1 = 0, then ϱn = 0 for

all n. Because ϱ1 will cause the leading contribution, and we will only do computations

to this leading order, we only need to consider two cases: Either, q = 1 or 2, and all

residues vanish, or q > 2, and the leading residue ϱ1 is non-zero.

In terms of the language of the previous Section, it means that we have µ = 2 for

the λ-model.

The ambiguity of the residue is given by

ϱ(+)
n − ϱ(−)

n = 4n1−4κne4n(b−κ log 2) 2n+ 1

2n− 1

((2n)!)2

(n!)4
Γ(1 + 2nκ)

Γ(1− 2nκ)
sin(2nπκ)

Notice that this vanishes if κ is half-integer.

We employ the convention that δf(ω) = f(ω(1 − i0)) − f(ω(1 + i0)). Hence, the

discontinuity function is given by24

23The term that gives the poles has residues

Res
x=xn

Γ(1− x/2)2

Γ(1− x)
=

4Γ(2n)

Γ(n)2
= 2n+1 (2n− 1)!!

Γ(n)
= 22n+1

Γ(n+ 1
2
)

Γ( 1
2
)Γ(n)

24To calculate the discontinuity of ϱ(ω) across the branch cut, which is located along the ray Arg(ω) =
π
2
, we will isolate the discontinuous part and define a toy function

g(ω) = exp [iκω(log(iω) + log(−iω))] (4.164)

We choose a new coordinate x = iω so that the branch cut is now at positive real x. If x is positive
and real we have log(−x± iϵ) = log(x)± iπ, this leads to a discontinuity

δg(ix) = g(ix+ ϵx)− g(ix− ϵx)

= exp (−2κx log x) [exp(−iπκx)− exp(iπκx)]

= −2i exp (−2κx log x) sin(κπx) .

(4.165)
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δϱ(ix) = 2i
x+ 1

x− 1
e2bxe−2κx log x sin(κπx)

Γ(1− x/2)2Γ(1 + x)Γ(1 + κx)

Γ(1 + x/2)2Γ(1− x)Γ(1− κx)
. (4.166)

Notice this has simple poles at x = 2n, which have residues that vanish for κ half-integer.

This is precisely the behaviour that we saw from the residues which is needed to make

this analysis non-ambiguous. Lastly we need the data

ϱ(i± 0) = 8e2b∓iπκ Γ(1 + κ)

Γ(1− κ)
=

8

πκ
e2b∓iπκΓ(1 + κ)2 sin(πκ) . (4.167)

This quantity is zero if and only if κ = 1, 2, 3, . . ..

We define the function

P (η) = −e−2Bx+ηδϱ(ix)
1

2iv
, (4.168)

which in the coordinates

1

v
− 2κ log(v) = 2B , x = vη (4.169)

is given by

P (η) = −e2vηκ log vδϱ(ivη)
1

2iv
. (4.170)

Notice that δϱ(ix) contains a e−2κx log x part. Splitting this into a log v and log η con-

tribution, we see that the former is anihilated by the construction (4.170), whereas the

latter term survives. This explains why P (η) has an expansion of the form

P (η) =

∞∑
n=1

n−1∑
m=0

dn,m(ηv)nv−1(log η)m . (4.171)

The coefficients dn,m are easily computable and the first few are given by

d1,0 = πκ , d2,0 = 2πκ(1 + b− γEκ) , d2,1 = −2πκ2 . (4.172)

We found that ϱ(ix) has poles at x = xn = 2n with n = 1, 2, 3, . . ., i.e. µ = 2. We

define an exponentially small parameter using the variable as in (4.140) using a = −2κ

giving

q = e−2Bµ = v4κe−2/v . (4.173)

Coupling Re-definition

The goal shall now be to define the coupling used in the perturbative expansion. We will

do the Legendre transform to calculate e
ρ2 from ∆F . This can then be used to compare
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against the perturbative calculation (4.81), namely

1

γ
− κ log γ = log

2πρ

m/c
, (4.174)

where the pseudo-mass gap c is given by (4.82). Because ρ ∝ h in the models we

are considering, we have that this coupling is leading order the same as the previous:

γ = γ̃ +O(γ̃2).

First we calculate

−ρ =
d∆F

dh
=
∂∆F

∂h
+
∂B

∂h

∂∆F

∂B
+
∂v

∂h

∂∆F

∂v

=
∂∆F

∂h
+

(
∂B

∂v

∂∆F

∂B
+
∂∆F

∂v

)
∂v

∂h
.

(4.175)

To calculate ∂v
∂h we use the boundary condition (4.122),

∂h

∂v
=

∂

∂v

(
meB

2u(i)

G+(i)

G+(0)

)
, (4.176)

and we evaluate u(i) using (4.148). Similarly, we use the boundary condition (4.122) to

substitute h in favour of as series in v and q. This gives

ρ =
G+(i)G+(0)m

12π2

(
π − d1,0v +O(v2)

)(
q−1/4 + ρ1q

3/4 +O(q7/4)
)
. (4.177)

We can then use this result to compute e
ρ2 as a series in v and q given by

e

ρ2
=

∆F + ρh

ρ2
=

6

G+(0)2

(
π + 2d1,0v +O(v2)

)(
3 + 3ρ(i)q1/2 + ρ1q +O(q3/2)

)
.

(4.178)

We introduce the perturbative coupling γ by substituting (4.177) back into the defin-

ition of the perturbative coupling (4.174). Let us introduce a parameter exponentially

small in γ, analogous to q being exponentially small in v, given by qγ = e−4/γ(γ/2)4κ.

We assume an ansatz

v = a1γ + a2γ
2 +O(γ3) + b1qγ(1 +O(γ)) +O(q2γ)

The coefficients a1 and b1 are consequently fixed by enforcing (4.174) at appropriate

orders. Using this expression for v and for q = q(v) we arrive at

8κ

π

e

ρ2
=
(

1 + κγ +O(γ2)
)
− 8e∓iπκ Γ(κ)

Γ(−κ)
q1/2γ (1 +O(γ))

+ 23−4κe∓2iπκ Γ(2κ)

Γ(−2κ)
qγ(1 +O(γ))

(4.179)

We see that the first two coefficient of the perturbative series match precisely (4.83).
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The presence of transseries parameters qγ = e−4/γ(γ/2)4κ provides concrete predictions

of the resurgent structure of the perturbative series.

We can make some initial observation. Firstly, we see that the leading transseries

series term with q
1/2
γ has a coefficient that vanishes if κ = 1, 2, 3, . . .. This behaviour

confirms our observation that the leading IR Borel-Padé singularity vansishes for κ ∈
Z>0.

This is slightly more restrictive than the general coefficients which also depend on the

residues (4.163). These vanish if κ is half-integer, in which case the renormalon structure

already simplifies. However, if κ is integer we predict that the theory is IR-renormalon

free.

Let us now compute the ambiguity of the transseries (4.179) due to the difference in

result if the branch cut is to left of or right of the poles. To leading order in qγ and γ,

it is given by

8κ

π

[(
e

ρ2

)
−
−
(
e

ρ2

)
+

]
= 8

Γ(κ)

Γ(−κ)
q1/2γ

(
eiπκ − e−iπκ

)
=

16πi

Γ(−κ)Γ(1− κ)

(γ
2

)2κ
e−2/γ

(4.180)

This is exactly the same ambiguity as obtained through the asymptotic analysis of

our perturbative calculation - see Equation (4.101). We thus observe that our Borel-

ambiguity of the perturbative sector can be cancelled precisely by a transseries ambi-

guity. Therefore, the large order non-perturbative behaviour is unambiguous up to the

order considered. This is the fabled Zinn-Justin ambiguity cancellation [13, 72, 73].

UV Renormalons

To calculate UV-renormalons we require the information

δϱ(−ix) = −2i
1− x
x+ 1

e−2bxe2κx log x sin(κπx)
Γ(1 + x/2)2Γ(1− x)Γ(1− κx)

Γ(1− x/2)2Γ(1 + x)Γ(1 + κx)
. (4.181)

Moreover, ϱ(−ix) has poles in the LHP at xUV
n = 2n+ 1 for n = 1, 2, . . .. However, just

as in the case above, this will turn out to be subleading.

However, there is another set of residues located at x̃UV
n := n

κ , for n = 1, 2, 3, . . .. Its

residue is given by

ϱ̃UV
n = Res

x=x̃UV
n

ϱ(−ix) = −i
(
n

κ

)1+2n
e−

2bn
κ

(n!)2
Γ(2− n

κ )Γ(1 + n
2κ )2

Γ(1− n
2κ )2Γ(2 + n

κ )
(4.182)

If κ is a reciprocal even number number, or n is even and κ is a reciprocal odd number,

the residue vanishes. It diverges if n is odd and κ is the reciprocal of an odd number

number, except if n = κ = 1, in which case the residue is finite. If κ is half-integer, and

n is a multiple of 2κ, the residue vanishes.

In particular the leading residue ϱ̃UV
1 diverges if κ is a reciprocal odd number bigger
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than 1, while ϱ̃UV
1 vanishes if κ is a reciprocal even number. In all other cases, ϱ̃UV

1 is

finite and non-zero.

However, we also observe that the residues ϱ̃UV
n do not have an ambiguity. This can

also be seen from the fact that δϱ(−ix) from Equation (4.181) is regular at x = x̃UV
n = n

κ .

Notice that this does not violates the mantra that δRes = Resδ (both sides are 0)

which was explained in Equation (4.129). This means that ϱ̃UV
n are not residues of real

interest as they will not cause ambiguities later on. This is further motivated by the fact

that these residues would cause leading Borel-Padé singularities for κ > 1. However, no

such poles were visible.

We will also need

ϱ(−i± ϵ) = −e−2b∓iπκ Γ(−κ)

8Γ(κ)
. (4.183)

We see that for generic positive κ this never vanishes. However, if κ is integer, this turns

into a residue

resω=−iϱ(ω)|κ=1,2,... = − ie−2b

8(κ!)2
. (4.184)

Notice that the ambiguity in the residue disappears in this case. However, a better way

to think about this as conspiracy leading to the observation that δϱ(−i) is regular at

κ ∈ Z. We should therefore consider

ϱ(−(i+ ϵ))− ϱ(−(i− ϵ)) = −ie−2b sin(πκ)
Γ(−κ)

4Γ(κ)
, (4.185)

which is finite and non-zero at κ = 1, 2, . . ..

We choose a coupling given by

1

γ
− κ log |γ| = log

2πρ

m/c
, (4.186)

which is an extension for negative γ of the coupling (4.81). We will again use the

boundary condition to determine h in terms of q and w which will allow us to perform

the Legendre transform. Putting this together, we arrive at

8κ

π

e

ρ2
= (1 +O(γ)) + qUV

γ (1 +O(γ))e±iπκ Γ(−κ)

8Γ(κ)
, (4.187)

where qUV
γ = e2/γ

(
−γ

2

)2κ
is the transseries parameter. The ambiguity of the first

transmonomial is given by

qUV
γ

Γ(−κ)

8Γ(κ)

(
e+iπκ − e−iπκ

)
= − πi

4Γ(κ)Γ(1 + κ)

(
−γ

2

)−2κ

e2/γ . (4.188)

This precisely matches the ambiguity found in the asymptotic form of the perturbative

coefficients - see Equation (4.102). This ambiguity matching in the IR mirrors the

ambiguity matching we found in the IR in Equation (4.180). We thus have ambiguity

cancellation not only in the IR, but also in the UV. This means that up to this order
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the large order behaviour of the perturbative series in non-ambiguous.

4.4 Outlook

In this Chapter we have studied the λ-model and brought it into the fold of resurgent

analysis of [1, 2, 49]. The model is particularly interesting, because, distinct from

previously considered models, has a CFT fixed point in the UV.

We have found a perturbative series in Section 4.2 with an asymptotic form which

generates an ambiguity in both the IR and the UV. This ambiguity has been carefully

matched by a transseries solution in Section 4.3. Of particular note is that the IR

renormalon vanishes for κ ∈ Z>0, i.e. when the WZW level k divides the rank N of the

gauge group SU(N).

Let us finish with some questions to ponder following the analysis of the λ-model in

this Chapter.

• In the λ-model, when we choose integer κ, all poles and residues disappear. The

resulting ρ(ω) only has a branch cut. Analysing such a system might be interesting,

as it might be easier than the the most general version of the current system. This

would be the reverse image of systems like the Sine-Gordon or the bi-Yang-Baxter

deformed PCM, which have residues, but no branch cuts. A deformation away

from such a special special point that creates new non-perturbative contributions

is reminiscent of Cheshire-cat resurgence [27, 40, 153] – see also [65] for similar

behaviour of disappearing singularities of integer values of a parameter connected

to quantum-mechanical reduction of a WZW model.

• Why is it that this analysis is sensitive to renormalon ambiguities but not uniton

ambiguities? Can we be more concrete, like [2] is, as to which operator con-

densates lie behind the renormalons? On a more general note, traditionally, the

renormalons come from a perturbative calculation involving Feynman diagrams.

In [53, 195] it was shown how to construct a series on diagrams which source the

renormalon ambiguities in 1/N expansion of the O(N) vector model, the GN and

the SU(N) PCM. It would be interesting to investigate if there are diagrams that

are responsible for the ambiguities in the λ-models.

• What role is played by any level-rank dualities this system might exhibit? In the

small κ = k
N limit, in which our analysis in well-behaved, we are probing the

small k regime which corresponds to the WZW side of the deformation parameter.

Level-rank dualities exchange SU(N)k and SU(k)N WZW models according to

[196]. They also studied this for U(N)k [197]. In our language, however, level-

rank dualities send κ↔ 1
κ .

• Are there ways in which we can better explore the large κ regimes? The large κ

limit is particularly interesting because the λ-deformed model becomes the non-

abelian T-dual of the PCM model. It would be interesting to make contact with
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the asymptotic series obtained for the PCM model obtained by [2] in this large κ

limit.

• Under a κ ↔ −κ transformation, the parameters of (4.91) act as a+ ↔ a− and

8A− ↔ A+

8 . This seems to hint that this transformation interchanges the UV

and IR regimes. Can this be understood better? We also observe that A+A− =

− sin2(πκ)
π2 , is this a coincidence?

• In the matched asymptotics approach of Section 4.2, the bulk and edge ansätze are

based on analytic arguments resulting in certain type of constraint series behaviour

in those regimes. Is it possible to enhance those ansätze to include transseries terms

resulting in a matching procedure for transseries rather than perturbative series?

Such an approach might form an alternative to the transseries computation of

Section 4.3.

Further to this, we can pose some question regarding more generally the application

and interpretation of the techniques discussed in this Chapter.

• At the quantum level, the parameter λ dimensionally transmutes into the mass

gap. If would be interesting to explore if it is possible to do a dimensional re-

duction as in Section 3.2 with twisted boundary conditions for the λ-model. This

compactification should be adiabatically connected to the original theory. What

is the fate of λ under the dimensional reduction?

• It was found by [49] that the UHP and LHP of ρ(ω) control the IR and UV

behaviour of the model respectively. This was confirmed in the analysis in this

Chapter. Is it possible to construct a first principles understanding of why this

behaviour can be expected?

• Is it possible to perform this analysis when multiple deformation parameters are

involved? Or, perhaps we can do this analysis for λ-deformed co-set models. Such

models were studied in [118, 198–200].

• The S-matrix is constrained by a number of analyticity constraints discussed in

Section 2.4. Is it possible to translate these constraints more directly to analyticity

constraints of K̂(ω) and G+(ω)? Put more concretely, can one read from an S-

matrix more directly whether the WH function will have a branch cut, or where its

poles will be? Even more ambitiously, is it possible to extract, from these analytic

properties, through the TBA, an analytic structure of the ambiguities, without

the explicit solution discussed in Section 4.3?

• In [145], the authors constructed the λ-models as a continuum limit of a Heisenberg

spin-chain. The WZW-model can be constructed as an XXX spin chain, but to

generalise to the λ-model we need to introduce in-homogeneities. The WZW-level

k is corresponds to the representation of the of spin chain, whereas the group of the
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WZW-model is the group of the spin chain. The parameter that governs the in-

homogeneity becomes a mass. Although the ground state of the system is quite a

complicated Fermi sea, one can identify holes as certain particle excitations. After

taking the continuum limit, one can obtain a TBA system for the spin chain. The

question is whether a resurgent structure can be found in the spin chain without

taking a continuum limit.

It was attempted to do TBA analysis of the scattering kernel of the bi-Yang-Baxter

deformed PCM (2.93). However, the attempts were thwarted as we were not able to

establish an adequate bulk ansatz. On a technical level, the small s expansion of the

WH-decomposition G+(2is) in (2.95) is pure in s. In particular, there are no terms such

as sn+1/2 or log(s). However, this leads us to consider Laplace transforms of the form

(4.29), which introduces terms linear in log(z) (but no further log(z)k). This makes the

kernel of the bi-Yang-Baxter deformed SU(N) PCM unique from previously discussed

kernels in [1, 2, 48]. It should also be noted that G+(ω) (and hence also ϱ(ω)) has no

branch cuts which makes it similar to the SG model. A transseries analysis might thus

be relatively simple and enlightening.

4.A TBA for the Free Energy

In this appendix we will discuss a common restructuring of the TBA equations. Instead

of writing an integral for the total energy density, we write an integral equation for

the free energy density. This will feature a more explicit dependence of the chemical

potential h, and we will motivate why the free energy is minimised.

The literature often makes use of the definition K(θ) = δ(θ) − R(θ) where δ(θ) is

the dirac-delta functional such that the TBA system given by Equation (4.16) can be

re-written as
m

2π
cosh θ = fh(θ) +

∫ ∞

−∞
R(θ − θ′)f(θ′)dθ′ . (4.189)

We will introduce the pseudo-energies ϵ+(θ) > 0 and ϵ−(θ) < 0 of holes and particles

respectively, which satisfy

δF =

∫ ∞

−∞
dθ [δfh(θ)ϵ+(θ)− δf(θ)ϵ−(θ)] . (4.190)

We assume that the Fermi see is filled in the area θ ∈ [−B,B] and empty outside. This

means that we assume ϵ+(θ) and f(θ) have support precisely inside this interval, whereas

ϵ−(θ) and fh(θ) have support outside that interval. This is another way of saying that

we work at zero temperature. Conversely, we can say the Fermi density is defined by

the value of B such that ϵ±(±B) = 0. These constraints guarantee indeed that the free

energy is minimised because the right-hand side of Equation (4.190) now vanishes.
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It follows by varying Equation (4.189) that

fh(θ) = −
∫ ∞

−∞
R(θ − θ′)f(θ′)dθ′ . (4.191)

Plugging this into (4.190) gives

δF = −
∫ ∞

−∞
dθ

[∫ ∞

−∞
dθ′ϵ+(θ′)R(θ′ − θ)δρ(θ) + ϵ−(θ)δρ(θ)

]
. (4.192)

We compare this against the variation of the free energy given by Equation (4.19)

δF =

∫ ∞

−∞
dθ δf(θ)(m cosh θ − h) , (4.193)

which gives

h−m cosh θ = ϵ−(θ′) +

∫ ∞

−∞
dθ′ϵ+(θ′)R(θ′ − θ)

= ϵ−(θ′) +

∫ ∞

−∞
dθ′ϵ+(θ′)R(θ − θ′)

= ϵ(θ)−
∫ B

−B

ϵ(θ′)K(θ − θ′)dθ′ ,

(4.194)

where we have used that R(θ) is a symmetric function because S(−θ) = S(θ)−1.

Using the minimisation constraints decribed above, we can evaluate the free energy

as

F =

∫ ∞

∞
f(θ)(m cosh θ − h)

= −
∫ ∞

∞
f(θ)

[
ϵ−(θ′) +

∫ ∞

−∞
dθ′ϵ+(θ′)R(θ − θ′)

]
= −

∫ ∞

∞
dθϵ+(θ)

∫ ∞

∞
dθ′R(θ − θ′)f(θ′)

= −
∫ ∞

∞
dθϵ+(θ)

[m
2π

cosh θ − fh(θ)
]

= −m
2π

∫ B

−B

cosh(θ)ϵ(θ) .

(4.195)

In the first step, we used (4.194), then we used the minimisation constraints and re-

labels the dummy variables. We used (4.189), before using the minimisation constraints

again in the last step.
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To summarise, we find the following TBA equations

h−m cosh θ = ϵ(θ)−
∫ B

−B

ϵ(θ′)K(θ − θ′)dθ′

ϵ(±B) = 0

F = −m
2π

∫ B

−B

cosh(θ)ϵ(θ) .

(4.196)
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Chapter 5

Summary

This thesis has shown how ideas of resurgence can be applied to deformed integrable

models. We have done so for bi-Yang-Baxter models in the context of an adiabatic

reduction with twisted boundary conditions and for λ-models in the context of TBA

equations. In both cases, we see some signs on an ambiguity cancellation. In the

bi-Yang-Baxter case, the uniton solutions appear to play the role of an instanton-like

solution that causes non-perturbative effects. In the TBA context, the origin of the

renormalon is not as clear, but we do see a mathematical ambiguity cancellation in a

transseries approach and an asymptotic series approach. Both these result reinforce

the idea that resurgence is a necessary ingredient to give a complete understanding

of asymptotic expansions and non-perturbative effects in two-dimensional integrable

models.

As a coda to this thesis we consider some large-scale questions of possible future

enquiry that go beyond the analyses in either those of Chapters 3 and 4, but straddle

both Chapters or make connections to other recent developments.

The apparent connection between the reduction of the 2d integrable theory and

the N = 2 gauge theories, explored in Section 3.4, provokes a number of questions.

First, is this simply coincidental? If not, is there a more fundamental way to make

this connection we find (that doesn’t required picking particular coordinate, adiabatic

reduction etc.)? Second, what significance do dualities exhibited on the gauge theory

side hold for the integrable models? Third, how do the integrable Hitchin systems

associated to the gauge theory [160] compare to the integrable structures of the PCM

(e.g. Maillet-brackets and twist functions) and its deformations? If such a connection

can be made it seems likely it is via the use of affine Gaudin models [201, 202]. A final

intriguing question here is to understand if the wall-crossing phenomena seen in the

gauge theory has an interpretation and implication for the two-dimensional deformed

sigma-model considered in this paper.

It was shown by a series of papers [103, 119–122] that the non-abelian T-dual (more

precisely, an analytic continuation of a Poisson-Lie dual) of the λ-model is the η-model.

A natural question is how the non-abelian T-duality is manifested in the asymptotic
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series studied in this thesis. This question can be explored through either the TBA

techniques of Chapter 4, or the adiabatic reduction techniques in Chapter 3. Of partic-

ular interest are the λ-deformed AdS5×S5 [101] and the η-deformed AdS5×S5, whose

S-matrix was constructed by [203], as these models are deformations of a super-string

background. Its Lagrangian and target space descriptions were studied by [98, 100].

The papers [46, 47, 149] and Section 3.1 established certain uniton solutions of the

(Yang-Baxter deformed) PCM. Is it possible to consider a TBA system which has these

unitons scattering? The (bi)-Yang-Baxter models also involved complex unitons. Is it

possible to isolate these individually?

At the quantum level, the parameter λ dimensionally transmutes into the mass gap.

If would be interesting to explore if it is possible to do a dimensional reduction as in

Section 3.2 with twisted boundary conditions for the λ-model. This compactification

should be adiabatically connected to the original theory. What is the fate of λ under

the dimensional reduction?

Lastly, in a recent series of papers [204–206], it was shown how one can construct

2d integrable field theories from a certain four-dimensional holomorphic Chern-Simons

type theory. It was later shown by [207] that Yang-Baxter deformations and the λ-

deformations can also be incorporated in this framework. A direct question is to un-

derstand the more general resurgent structure of integrable 2d field theories from the

perspective of this 4d gauge theory. A rather concrete first question would be to un-

derstand the significance of the uniton, and its cousin in complex field space, within

the gauge theory. A potential route here would be to exploit the connection with affine

Gaudin models established by [208]. Other in-roads to the integrable structures of these

models were made by [202, 209].

155



Bibliography

[1] Dmytro Volin. ‘From the mass gap in O(N) to the non-Borel-summability in

O(3) and O(4) sigma-models’. Phys. Rev. D 81 (2010), p. 105008. doi: 10.1103/

PhysRevD.81.105008. arXiv: 0904.2744 [hep-th].

[2] Marcos Mariño and Tomás Reis. ‘Renormalons in integrable field theories’. JHEP

04 (2020), p. 160. doi: 10.1007/JHEP04(2020)160. arXiv: 1909.12134 [hep-th].

[3] D. Hanneke, S. Fogwell and G. Gabrielse. ‘New Measurement of the Electron

Magnetic Moment and the Fine Structure Constant’. Phys. Rev. Lett. 100 (2008),

p. 120801. doi: 10.1103/PhysRevLett.100.120801. arXiv: 0801.1134 [physics.atom-ph].

[4] Tatsumi Aoyama, Toichiro Kinoshita and Makiko Nio. ‘Revised and Improved

Value of the QED Tenth-Order Electron Anomalous Magnetic Moment’. Phys.

Rev. D 97.3 (2018), p. 036001. doi: 10.1103/PhysRevD.97.036001. arXiv:

1712.06060 [hep-ph].

[5] Freeman J Dyson. ‘Divergence of perturbation theory in quantum electrodynam-

ics’. Physical Review 85.4 (1952), p. 631.

[6] Carl M. Bender and Tai Tsun WU. ‘Large order behavior of Perturbation theory’.

Phys. Rev. Lett. 27 (1971), p. 461. doi: 10.1103/PhysRevLett.27.461.

[7] E. Brezin, J.C. Le lou and Jean Zinn-Justin. ‘Perturbation Theory at Large

Order. 1. The ϕ2N Interaction’. Phys. Rev. D 15 (1977), pp. 1544–1557. doi:

10.1103/PhysRevD.15.1544.

[8] J.C. Le Guillou and Jean Zinn-Justin, eds. Large order behavior of perturbation

theory. North Holland, 1990.

[9] M. Beneke. ‘Renormalons’. Phys. Rept. 317 (1999), pp. 1–142. doi: 10.1016/

S0370-1573(98)00130-6. arXiv: hep-ph/9807443.
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Normale Supérieure. Vol. 16. 1899, pp. 9–131.

[63] David Sauzin. ‘Resurgent functions and splitting problems’. arXiv:0706.0137

(2007).

[64] E. Cavalcanti. ‘Renormalons beyond the Borel Plane’. arXiv:2011.11175 (2020).

[65] Syo Kamata, Tatsuhiro Misumi, Naohisa Sueishi and Mithat Ünsal. ‘Exact-WKB
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[157] T. Koike and R. Schäfke. ‘On the Borel summability of WKB solutions of the

Schrödinger equations with polynomial potentials and its application. (In pre-

paration)’ ().

[158] Albrecht Klemm, Wolfgang Lerche, Peter Mayr, Cumrun Vafa and Nicholas P.

Warner. ‘Selfdual strings and N=2 supersymmetric field theory’. Nucl. Phys. B

477 (1996), pp. 746–766. doi: 10.1016/0550-3213(96)00353-7. arXiv: hep-

th/9604034.

[159] Alba Grassi, Jie Gu and Marcos Mariño. ‘Non-perturbative approaches to the

quantum Seiberg–Witten curve’ (Aug. 2019). arXiv: 1908.07065 [hep-th].

[160] Nick Dorey, Timothy J Hollowood and S Prem Kumar. ‘An exact elliptic su-

perpotential for N = 1∗ deformations of finite N = 2 gauge theories’. Nucl.

Phys. B 624 (2002), pp. 95–145. doi: 10.1016/S0550-3213(01)00647-2. arXiv:

hep-th/0108221.

[161] N. Seiberg and Edward Witten. ‘Electric - magnetic duality, monopole condens-

ation, and confinement in N=2 supersymmetric Yang-Mills theory’. Nucl. Phys.

B 426 (1994). [Erratum: Nucl.Phys.B 430, 485–486 (1994)], pp. 19–52. doi: 10.

1016/0550-3213(94)90124-4. arXiv: hep-th/9407087.

167

https://arxiv.org/abs/2212.03893
https://doi.org/10.1007/JHEP05(2022)103
https://arxiv.org/abs/2112.00031
https://doi.org/10.1007/s00220-018-3281-y
https://arxiv.org/abs/1609.06198
https://doi.org/10.1088/1751-8121/ab477b
https://arxiv.org/abs/1904.11593
https://arxiv.org/abs/2003.07451
https://doi.org/10.1088/1742-6596/462/1/012014
https://arxiv.org/abs/0908.0307
https://arxiv.org/abs/0908.0307
https://doi.org/10.1016/0550-3213(96)00353-7
https://arxiv.org/abs/hep-th/9604034
https://arxiv.org/abs/hep-th/9604034
https://arxiv.org/abs/1908.07065
https://doi.org/10.1016/S0550-3213(01)00647-2
https://arxiv.org/abs/hep-th/0108221
https://doi.org/10.1016/0550-3213(94)90124-4
https://doi.org/10.1016/0550-3213(94)90124-4
https://arxiv.org/abs/hep-th/9407087


[162] Edward Witten. ‘Solutions of four-dimensional field theories via M theory’. Nucl.

Phys. B 500 (1997), pp. 3–42. doi: 10.1016/S0550-3213(97)00416-1. arXiv:

hep-th/9703166.

[163] Ta-Sheng Tai. ‘Triality in SU(2) Seiberg-Witten theory and Gauss hypergeomet-

ric function’. Phys. Rev. D 82 (2010), p. 105007. doi: 10.1103/PhysRevD.82.

105007. arXiv: 1006.0471 [hep-th].

[164] Marco Matone. ‘Instantons and recursion relations in N=2 SUSY gauge theory’.

Phys. Lett. B 357 (1995), pp. 342–348. doi: 10.1016/0370-2693(95)00920-G.

arXiv: hep-th/9506102.

[165] Clay Mathematics Institute. Millennium Problems. https://www.claymath.

org/millennium-problems. [Online; accessed 113-September-2020].

[166] Arthur Jaffe and Edward Witten. ‘Quantum yang-mills theory’. The millennium

prize problems 1 (2006), p. 129.

[167] Peter Hasenfratz, Michele Maggiore and Ferenc Niedermayer. ‘The exact mass

gap of the O(3) and O(4) non-linear σ-models in d = 2’. Physics Letters B 245.3-4

(1990), pp. 522–528.

[168] Peter Hasenfratz and Ferenc Niedermayer. ‘The exact mass gap of the O(N) σ-

model for arbitrary N ≥ 3 in d = 2’. Physics Letters B 245.3-4 (1990), pp. 529–

532.

[169] P. Forgacs, F. Niedermayer and P. Weisz. ‘The Exact mass gap of the Gross-

Neveu model. 1. The Thermodynamic Bethe ansatz’. Nucl. Phys. B 367 (1991),

pp. 123–143. doi: 10.1016/0550-3213(91)90044-X.

[170] P. Forgacs, F. Niedermayer and P. Weisz. ‘The Exact mass gap of the Gross-

Neveu model. 2. The 1/N expansion’. Nucl. Phys. B 367 (1991), pp. 144–157.

doi: 10.1016/0550-3213(91)90045-Y.

[171] J. Balog, S. Naik, F. Niedermayer and P. Weisz. ‘Exact mass gap of the chiral

SU(n) x SU(n) model’. Phys. Rev. Lett. 69 (1992), pp. 873–876. doi: 10.1103/

PhysRevLett.69.873.

[172] Timothy J. Hollowood. ‘The Exact mass gaps of the principal chiral models’.

Phys. Lett. B 329 (1994), pp. 450–456. doi: 10.1016/0370-2693(94)91089-8.

arXiv: hep-th/9402084.

[173] Jonathan M. Evans and Timothy J. Hollowood. ‘Exact results for integrable

asymptotically - free field theories’. Nucl. Phys. B Proc. Suppl. 45.1 (1996). Ed.

by G. Mussardo, S. Randjbar-Daemi and H. Saleur, pp. 130–139. doi: 10.1016/

0920-5632(95)00622-2. arXiv: hep-th/9508141.

[174] Jonathan M. Evans and Timothy J. Hollowood. ‘Exact scattering in the SU(n)

supersymmetric principal chiral model’. Nucl. Phys. B 493 (1997), pp. 517–540.

doi: 10.1016/S0550-3213(97)00077-1. arXiv: hep-th/9603190.

168

https://doi.org/10.1016/S0550-3213(97)00416-1
https://arxiv.org/abs/hep-th/9703166
https://doi.org/10.1103/PhysRevD.82.105007
https://doi.org/10.1103/PhysRevD.82.105007
https://arxiv.org/abs/1006.0471
https://doi.org/10.1016/0370-2693(95)00920-G
https://arxiv.org/abs/hep-th/9506102
https://www.claymath.org/millennium-problems
https://www.claymath.org/millennium-problems
https://doi.org/10.1016/0550-3213(91)90044-X
https://doi.org/10.1016/0550-3213(91)90045-Y
https://doi.org/10.1103/PhysRevLett.69.873
https://doi.org/10.1103/PhysRevLett.69.873
https://doi.org/10.1016/0370-2693(94)91089-8
https://arxiv.org/abs/hep-th/9402084
https://doi.org/10.1016/0920-5632(95)00622-2
https://doi.org/10.1016/0920-5632(95)00622-2
https://arxiv.org/abs/hep-th/9508141
https://doi.org/10.1016/S0550-3213(97)00077-1
https://arxiv.org/abs/hep-th/9603190


[175] G. Parisi. ‘On Infrared Divergences’. Nucl. Phys. B 150 (1979), pp. 163–172. doi:

10.1016/0550-3213(79)90298-0.

[176] G. Parisi. ‘Singularities of the Borel Transform in Renormalizable Theories’. Phys.

Lett. B 76 (1978), pp. 65–66. doi: 10.1016/0370-2693(78)90101-6.

[177] Gerard ’t Hooft. ‘Can We Make Sense Out of Quantum Chromodynamics?’ Sub-

nucl. Ser. 15 (1979). Ed. by Antonino Zichichi, p. 943.

[178] A Polyakov and Paul B Wiegmann. ‘Theory of nonabelian Goldstone bosons in

two dimensions’. Physics Letters B 131.1-3 (1983), pp. 121–126.

[179] Alexander M Polyakov and PB Wiegmann. ‘Goldstone fields in two dimensions

with multivalued actions’. Physics Letters B 141.3-4 (1984), pp. 223–228.

[180] PB Wiegmann. ‘Exact solution of the O(3) nonlinear two-dimensional sigma-

model’. JETP Letters 41.2 (1985), pp. 95–100.

[181] VA Fateev, VA Kazakov and PB Wiegmann. ‘Principal chiral field at large N’.

Nuclear Physics B 424.3 (1994), pp. 505–520.

[182] Fedor Levkovich-Maslyuk. ‘The Bethe ansatz’. J. Phys. A 49.32 (2016), p. 323004.

doi: 10.1088/1751-8113/49/32/323004. arXiv: 1606.02950 [hep-th].

[183] Stijn J. van Tongeren. ‘Introduction to the thermodynamic Bethe ansatz’. J.

Phys. A 49.32 (2016), p. 323005. doi: 10.1088/1751- 8113/49/32/323005.

arXiv: 1606.02951 [hep-th].

[184] V Hutson. ‘The circular plate condenser at small separations’. Mathematical Pro-

ceedings of the Cambridge Philosophical Society. Vol. 59. 1. Cambridge University

Press. 1963, pp. 211–224.

[185] Viktor Nikolaevich Popov. ‘Theory of one-dimensional Bose gas with point inter-

action’. Teoreticheskaya i Matematicheskaya Fizika 30.3 (1977), pp. 346–352.

[186] Sinya Aoki, Janos Balog, Tetsuya Onogi and Shuichi Yokoyama. ‘Bulk recon-

struction from a scalar CFT at the boundary by the smearing with the flow

equation’. 14th International Workshop on Lie Theory and Its Applications in

Physics. Apr. 2022. arXiv: 2204.01989 [hep-th].

[187] Ines Aniceto, Zoltan Bajnok, Tamas Gombor, Minkyoo Kim and Laszlo Palla.

‘On integrable boundaries in the 2 dimensional O(N) σ-models’. J. Phys. A

50.36 (2017), p. 364002. doi: 10.1088/1751-8121/aa8205. arXiv: 1706.05221

[hep-th].

[188] Tomas Reis. ‘On the resurgence of renormalons in integrable theories’. PhD thesis.

U. Geneva (main), 2022. arXiv: 2209.15386 [hep-th].

[189] Z Bajnok, J Balog, B Basso, GP Korchemsky and L Palla. ‘Scaling function in

AdS/CFT from the O(6) sigma model’. Nuclear Physics B 811.3 (2009), pp. 438–

462.

169

https://doi.org/10.1016/0550-3213(79)90298-0
https://doi.org/10.1016/0370-2693(78)90101-6
https://doi.org/10.1088/1751-8113/49/32/323004
https://arxiv.org/abs/1606.02950
https://doi.org/10.1088/1751-8113/49/32/323005
https://arxiv.org/abs/1606.02951
https://arxiv.org/abs/2204.01989
https://doi.org/10.1088/1751-8121/aa8205
https://arxiv.org/abs/1706.05221
https://arxiv.org/abs/1706.05221
https://arxiv.org/abs/2209.15386


[190] F. David. ‘Nonperturbative Effects and Infrared Renormalons Within the 1/N

Expansion of the O(N) Nonlinear σ Model’. Nucl. Phys. B 209 (1982), pp. 433–

460. doi: 10.1016/0550-3213(82)90266-8.

[191] F. David. ‘On the Ambiguity of Composite Operators, IR Renormalons and the

Status of the Operator Product Expansion’. Nucl. Phys. B 234 (1984), pp. 237–

251. doi: 10.1016/0550-3213(84)90235-9.

[192] F. David. ‘The Operator Product Expansion and Renormalons: A Comment’.

Nucl. Phys. B 263 (1986), pp. 637–648. doi: 10.1016/0550-3213(86)90279-8.

[193] Calan Appadu, Timothy J Hollowood and Dafydd Price. ‘Quantum inverse scat-

tering and the lambda deformed principal chiral model’. Journal of Physics A:

Mathematical and Theoretical 50.30 (2017), p. 305401.

[194] Alexei B. Zamolodchikov. ‘Mass scale in the sine-Gordon model and its reduc-

tions’. Int. J. Mod. Phys. A 10 (1995), pp. 1125–1150. doi: 10.1142/S0217751X9500053X.

[195] Lorenzo Di Pietro, Marcos Mariño, Giacomo Sberveglieri and Marco Serone. ‘Re-

surgence and 1/N Expansion in Integrable Field Theories’. JHEP 10 (2021),

p. 166. doi: 10.1007/JHEP10(2021)166. arXiv: 2108.02647 [hep-th].

[196] Stephen G. Naculich and Howard J. Schnitzer. ‘Duality Between SU(N)k and

SU(k)N WZW Models’. Nucl. Phys. B 347 (1990), pp. 687–742. doi: 10.1016/

0550-3213(90)90380-V.

[197] Stephen G. Naculich and Howard J. Schnitzer. ‘Level-rank duality of the U(N)

WZW model, Chern-Simons theory, and 2-D qYM theory’. JHEP 06 (2007),

p. 023. doi: 10.1088/1126-6708/2007/06/023. arXiv: hep-th/0703089.

[198] Dimitrios Katsinis and Pantelis Panopoulos. ‘Classical solutions of λ-deformed

coset models’. Eur. Phys. J. C 82.6 (2022), p. 545. doi: 10.1140/epjc/s10052-

022-10493-9. arXiv: 2111.12446 [hep-th].

[199] Sibylle Driezen, Alexander Sevrin and Daniel C. Thompson. ‘Integrable asymmet-

ric λ-deformations’. JHEP 04 (2019), p. 094. doi: 10.1007/JHEP04(2019)094.

arXiv: 1902.04142 [hep-th].

[200] Saskia Demulder, Falk Hassler and Daniel C. Thompson. ‘Doubled aspects of

generalised dualities and integrable deformations’. JHEP 02 (2019), p. 189. doi:

10.1007/JHEP02(2019)189. arXiv: 1810.11446 [hep-th].

[201] Benoit Vicedo. ‘On integrable field theories as dihedral affine Gaudin models’

(Jan. 2017). arXiv: 1701.04856 [hep-th].

[202] Andrei V. Zotov. ‘1+1 Gaudin Model’. SIGMA 7 (2011), p. 067. doi: 10.3842/

SIGMA.2011.067. arXiv: 1012.1072 [math-ph].

[203] Gleb Arutyunov, Riccardo Borsato and Sergey Frolov. ‘S-matrix for strings on η-

deformed AdS5 x S5’. JHEP 04 (2014), p. 002. doi: 10.1007/JHEP04(2014)002.

arXiv: 1312.3542 [hep-th].

170

https://doi.org/10.1016/0550-3213(82)90266-8
https://doi.org/10.1016/0550-3213(84)90235-9
https://doi.org/10.1016/0550-3213(86)90279-8
https://doi.org/10.1142/S0217751X9500053X
https://doi.org/10.1007/JHEP10(2021)166
https://arxiv.org/abs/2108.02647
https://doi.org/10.1016/0550-3213(90)90380-V
https://doi.org/10.1016/0550-3213(90)90380-V
https://doi.org/10.1088/1126-6708/2007/06/023
https://arxiv.org/abs/hep-th/0703089
https://doi.org/10.1140/epjc/s10052-022-10493-9
https://doi.org/10.1140/epjc/s10052-022-10493-9
https://arxiv.org/abs/2111.12446
https://doi.org/10.1007/JHEP04(2019)094
https://arxiv.org/abs/1902.04142
https://doi.org/10.1007/JHEP02(2019)189
https://arxiv.org/abs/1810.11446
https://arxiv.org/abs/1701.04856
https://doi.org/10.3842/SIGMA.2011.067
https://doi.org/10.3842/SIGMA.2011.067
https://arxiv.org/abs/1012.1072
https://doi.org/10.1007/JHEP04(2014)002
https://arxiv.org/abs/1312.3542


[204] Kevin Costello, Edward Witten and Masahito Yamazaki. ‘Gauge Theory and

Integrability, I’. ICCM Not. 06.1 (2018), pp. 46–119. doi: 10.4310/ICCM.2018.

v6.n1.a6. arXiv: 1709.09993 [hep-th].

[205] Kevin Costello, Edward Witten and Masahito Yamazaki. ‘Gauge Theory and

Integrability, II’. ICCM Not. 06.1 (2018), pp. 120–146. doi: 10.4310/ICCM.

2018.v6.n1.a7. arXiv: 1802.01579 [hep-th].

[206] Kevin Costello and Masahito Yamazaki. ‘Gauge Theory And Integrability, III’

(Aug. 2019). arXiv: 1908.02289 [hep-th].

[207] Francois Delduc, Sylvain Lacroix, Marc Magro and Benoit Vicedo. ‘A unifying

2d Action for integrable σ-models from 4d Chern-Simons Theory’ (Sept. 2019).

doi: 10.1007/s11005-020-01268-y. arXiv: 1909.13824 [hep-th].

[208] Benoit Vicedo. ‘Holomorphic Chern-Simons theory and affine Gaudin models’

(Aug. 2019). arXiv: 1908.07511 [hep-th].

[209] A. Levin, M. Olshanetsky and A. Zotov. ‘2D Integrable systems, 4D Chern–Simons

theory and affine Higgs bundles’. Eur. Phys. J. C 82.7 (2022), p. 635. doi:

10.1140/epjc/s10052-022-10553-0. arXiv: 2202.10106 [hep-th].

171

https://doi.org/10.4310/ICCM.2018.v6.n1.a6
https://doi.org/10.4310/ICCM.2018.v6.n1.a6
https://arxiv.org/abs/1709.09993
https://doi.org/10.4310/ICCM.2018.v6.n1.a7
https://doi.org/10.4310/ICCM.2018.v6.n1.a7
https://arxiv.org/abs/1802.01579
https://arxiv.org/abs/1908.02289
https://doi.org/10.1007/s11005-020-01268-y
https://arxiv.org/abs/1909.13824
https://arxiv.org/abs/1908.07511
https://doi.org/10.1140/epjc/s10052-022-10553-0
https://arxiv.org/abs/2202.10106

	Foreword
	Acknowledgements
	Declaration of Authorship
	Resurgence for Laymen
	Introduction to Resurgence
	Borel Techniques
	Borel Transformations
	Borel Resummations
	Stokes Automorphism

	WKB Analysis
	WKB Ansatz
	WKB as a Semi-Classical Limit
	Stokes Curves
	Borel Resummation

	Uniform WKB
	Airy Function
	Saddle Points
	Borel Analysis
	Large Order Relations and Resurgence

	Practical Resurgence: The Sine-Gordon Potential
	Alien Calculus
	Alien Derivatives
	Bridge Equation

	Numerics
	Richardson Transformation
	Airy Function
	Sine-Gordon Potential


	Integrable Sigma Models
	Integrability
	Bi-Yang-Baxter Deformed PCM
	Lagrangian 
	Classical Lax Structure 
	The Critical Line 
	Classical Symmetries
	Maillet Algebra, Twist Function and Classical Symmetries
	RG Equations

	lambda-Deformations
	Scattering Kernels
	Sine-Gordon Scattering
	PCM Model
	A(N) Affine Toda
	SU(2) bi-Yang-Baxter Model
	SU(N) Bi-Yang-Baxter Model
	lambda-Model


	Resurgence in the Bi-Yang-Baxter Model
	Uniton Solutions
	Real Unitons
	Complex Unitons
	Uniton Dominance Regimes

	Compactification and Fractionation
	WKB and Resurgence
	Borel Transform
	Asymptotic Analysis
	Stokes Discontinuities
	Stokes Graphs

	Connection to N=2 Seiberg-Witten Theory
	The Generalised Lamé Potential 
	Nf=2 Elliptic SU(2) X SU(2) Quiver Theory
	Nf=4 SU(2) Theory 

	Conclusion and Outlook
	Evaluating Uniton Actions

	Resurgence from TBA Equations
	Introduction
	Mass Gap
	Free Energy
	TBA Equations

	Perturbative Series from TBA Methods
	Resolvent
	Edge and Bulk Expansions
	Matching and Determination of eslashrhosquared
	PCM Model
	lambda-Model

	Analytic Transseries
	Wiener-Hopf Techniques
	Recursive Solution
	UV Renormalons
	lambda-Model

	Outlook
	TBA for the Free Energy

	Summary
	Bibliography



