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We study five-dimensional N = 1 Superconformal Field Theories of the linear quiver type. These are 
deformed by a relevant operator, corresponding to a homogeneous mass term for certain matter fields. 
The free energy is calculated at arbitrary values of the mass parameter. After a careful regularisation 
procedure, the result can be put in correspondence with a calculation in the supergravity dual 
background. The F-theorem is verified for these flows, both in field theory and in supergravity. This 
letter presents some of the results in the companion paper [1].
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1. Introduction

After Nahm’s famous classification of superalgebras contain-
ing the conformal symmetry [2], the pursuit and study of super-
conformal field theories (SCFTs) in higher dimensions has com-
pletely reshaped the quantum field theory (QFT) landscape. Five-
dimensional N = 1 SCFTs [3] are the main characters of this work. 
They do not admit a weakly coupled description [4,5], thus re-
maining out of the reach of the textbook Lagrangian formalism. 
Developing new methods to study them, based on string [6] or 
M-theory [7], turned out to be an invaluable source of lessons, ex-
portable to QFT in general.

Supersymmetric localisation [8] provides a handle on the prob-
lem of computing physical observables in strongly coupled SCFTs. 
The basic idea is to work with quantities that are protected by 
supersymmetry, such as the sphere partition function. These quan-
tities are amenable to be analysed away from the strongly coupled 
superconformal point. Deforming the SCFT into one of its gauge 
theory phases and applying the localisation machinery, the path 
integral reduces to an ordinary integral. Taking the strong coupling 
limit only at the end of the computation sheds light on the prop-
erties of the SCFT itself.

Combining the vast progress in five-dimensional SCFTs with the 
AdS/CFT correspondence [9] opens up a plethora of avenues to ex-
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plore. The computational strategy just outlined has been fruitfully 
employed in [10–13] to perform refined checks of the duality be-
tween certain 5d N = 1 SCFTs and warped AdS6 × S4 geometries 
[14,15] and orbifolds thereof [16] in massive Type IIA supergrav-
ity. More recently, warped AdS6 × S2 × � backgrounds have been 
constructed in Type IIB string theory [17–20], and proposed to be 
dual to SCFTs described by balanced linear quivers. Also in this 
case, field-theoretical computations based on localisation provided 
support for the duality [21–25].

The aim of this letter is to delve further into the subject. We 
consider N = 1 linear quivers and their dual supergravity back-
grounds. We analyse the effect of turning on relevant deformations 
in the SCFT. These are mass deformations that trigger a Renormal-
ization Group (RG) flow. We study the flows between SCFTs in the 
same class both at the beginning and at the end of the flow. Our 
goal is to probe the AdS6/CFT5 correspondence both at and away 
from the SCFT points. The main achievement is to find holographic 
agreement at every point of the RG flow, for the class of mod-
els and relevant deformations that we consider. In particular, we 
present strong evidence for the existence of an F-theorem in these 
flows.

The details of the RG flows are spelled out in Section 2, and 
schematically presented in Fig. 1. Then, we compute the sphere 
free energy for arbitrary values of the mass parameter and elabo-
rate on a 5d F-theorem. Along the way, we encounter an anomaly 
first discussed in [26]. A careful treatment of it is essential to en-
sure the validity of the AdS/CFT dictionary.

In Section 3 we present the solutions for the supergravity back-
ground and their relation to an electrostatic problem. This relation 
 under the CC BY license (http://creativecommons .org /licenses /by /4 .0/). Funded by 
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was thoroughly examined in [27], and here we extend the analogy 
by including a natural deformation of the setup. We then identify 
this deformation as the holographic dual to the relevant operator 
added to the dual SCFT, and find that the supergravity background 
and the large N sphere free energy are described by the same elec-
trostatic picture. Furthermore, we compute the holographic central 
charge (i.e. the quantity dual to the 5d free energy), again showing 
perfect agreement with the field theory result. For more details on 
the derivations, as well as extensions in several directions, includ-
ing the analogous AdS4/CFT3 setting, we refer to the companion 
work [1].

2. Mass deformations of 5d long quivers

We consider 5d SCFTs that admit a gauge theory phase with 
gauge group 

∏P−1
j=1 SU (N j) and matter fields in the bifundamental 

of SU (N j) × SU (N j+1), plus additional F j flavours in the funda-
mental of SU (N j). The data of each such theory are encoded in a 
linear quiver:

N P−1· · ·N1 N2

F P−1F1 F2
(1)

We restrict our attention to balanced quivers, subject to

F j = 2N j − N j−1 − N j+1. (2)

Supergravity backgrounds for this class of theories have been con-
structed in [17–20,27].

Balanced linear quivers are characterised by a rank function 
R(η). It is a piecewise-linear function of the continuous variable 
0 ≤ η ≤ P with R( j) = N j . The number of flavours F j is related to 
the discontinuity of ∂ηR at η = j via (2).

The theories (1) have rich moduli spaces of vacua. The Coulomb 
branch (CB) is fibered over the parameter space of real masses for 
the matter fields. When all flavours are massless, the CB is a cone, 
and the SCFT is located at its tip. However, giving mass to a sub-
set of the flavours, the conical singularity is smoothed into a less 
severe one.

In this letter we explore the effect of turning on mass de-
formations for balanced linear quivers. We select a homogeneous 
deformation, in which many flavours at each node acquire equal 
mass m, so that there is only one mass scale in the problem.1 The 
choice of relevant deformation of the SCFT is specified by select-
ing the number F2, j of flavours that are given a mass, at each j, 
while the remaining F1, j = F j − F2, j stay massless. Condition (2)
then selects a splitting N j = N1, j + N2, j . In other words, a relevant 
deformation of the SCFT which is controlled by a unique parame-
ter m and such that (2) holds at the end of the RG flow induced 
by the deformation, is specified by a splitting of the rank function 
R(η) into

R1(η) +R2(η) = R(η). (3)

For later reference, we write the Fourier expansion,

Rα(η) =
∞∑

k=1

Rα,k sin

(
kπη

P

)
, α = 1,2 (4)

with R1,k + R2,k subject to (3).

1 The generalisation to an arbitrary number of masses is reported in [1].
2

•SCFT[R]

•
SCFT[R1] ⊕ SCFT[R2]
⊕ Massive fields

m→∞

m→0

UV

IR

Fig. 1. RG flow activated by the relevant deformation which gives equal mass to a 
large number of flavours across the quiver. The UV SCFT with rank function R flows 
to two SCFTs with rank functions R1 and R2, plus a collection of heavy fields that 
decouple at the very end of the flow.

Turning on m > 0 activates an RG flow away from the SCFT 
characterised by R. We show that at the end of the flow we find 
two factorised balanced SCFTs, with rank functions R1 and R2. In 
addition, there is a collection of fields that have acquired a large 
mass along the flow and have eventually decoupled. The situation 
is represented in Fig. 1. Concretely, these massive fields account 
for Higgsed W-bosons and matter modes that are present in the 
original SCFT but are missing in the pair of SCFTs at the end of the 
flow. Indeed, the breaking SU (N j) → SU (N1, j) × SU (N2, j) gives 
mass to some of the W-bosons. Besides, out of the F j N j flavour 
zero-modes, only F1, j N1, j + F2, j N2, j remain, the other ones having 
decoupled, and likewise for the bifundamental fields.

As we have mentioned, the original UV SCFT sits at the gap-
less vacuum, on the singularity at the origin of the CB. A finite 
mass splits the singularity in two, separated by a finite distance 
m. In the limit m → ∞, the CB will eventually break in two dis-
connected components, each with its own single gapless vacuum 
yielding a 5d SCFT. From the IR perspective, each such vacuum is 
blind to the other CB, and the full RG flow is uniquely specified by 
the choice of which CB conical singularity is retained and which 
is sent to infinity. The sphere free energy, however, is computed 
in the UV and, as we will show, it retains the information about 
the factorisation of the CB. In particular, it is independent of the 
choice of vacuum, the various choices being related by a change 
of variables in the matrix model (5). With this caveat in mind, we 
loosely refer to the situation in Fig. 1 as the RG flow.

Massive deformations of this type have a neat interpretation 
in Type IIB string theory. Given a five-brane web engineering the 
SCFT (1), we separate the D5 branes in two stacks and pull them 
apart a distance m. Modes arising from strings stretched between 
branes in the same stack remain massless, while strings stretched 
between the two stacks are heavy.

In order to quantitatively probe the AdS/CFT correspondence 
under such deformations, we now move on to discuss the large 
N limit of the free energy on S5.

2.1. Long quiver free energies

The partition function of the linear quiver on S5 is computed 
by a matrix model. It takes the form [28,29]

ZS5 = 1

N!
∫

d �φ e−Seff( �φ,m) Znon-pert, (5)

where �φ collectively denotes the CB parameters, the integration 
domain is R

∑
j N j and the measure d �φ includes the traceless con-

straint at each gauge node. The matrix model effective action Seff
contains both the classical action as well as the one-loop contribu-
tions from W-bosons and fundamental and bifundamental matter 
fields. We refer to [28] for the explicit expressions. The depen-
dence on the mass m appears through a shift φ j �→ φ j + m in the 



M. Akhond, A. Legramandi, C. Nunez et al. Physics Letters B 840 (2023) 137899
argument of the one-loop determinant of the F2, j flavours at each 
j. Finally, Znon-pert → 1 in the large N limit, hence we neglect it 
from now. In addition, one may enrich (5) with contributions from 
the background fields, considered in [26,30].

The holographic regime corresponds to choose an integer N and 
take N 	 1 with N j/N fixed. Moreover, we take a large N limit in 
which also the length P of the quiver grows. This long quiver limit 
was first addressed in [24] and we extend it to the mass deformed 
setup. This will allow us to evaluate the free energy at every point 
of the flow.

As usual, the effective action is large when N 	 1, thus the 
leading contribution to (5) comes from the saddle points of Seff. 
The interplay with P 	 1 introduces novel features compared to 
the large N limit familiar from, for example, N = 4 super-Yang–
Mills in 4d. Expanding on [24], we are led to make the scaling 
ansatz

φ,m ∝ Pχ (6)

for some χ > 0. That is, in the holographic regime (P very large), 
the CB parameters as well as the mass grow with P . With this as-
sumption, the functions appearing in Seff have large argument, and 
the physically realised value of χ is determined by the existence of 
an equilibrium configuration. Self-consistency of the scaling limit 
tells us that χ = 1.

The procedure to study the large N limit is detailed in [1], 
building on [24]. With the long quiver scaling (6), we introduce 
the eigenvalue density ρ(η, φ) [24]. At every fixed η = j we have 
the usual eigenvalue densities, and this function ρ(η, φ) collects 
them together. In the regime N, P 	 1 we have [1]

Seff = −π

6
N2

P∫
0

dη

∫
dφρ(η,φ) (7)

[
− 1

N

(
∂2
ηR1(η)|φ|3 + ∂2

ηR2(η)|φ − m|3
)

+
∫

dφ̃

(
27

4
ρ(η, φ̃)|φ − φ̃| + 1

2
∂2
ηρ(η, φ̃)|φ − φ̃|3

)]
.

Notice that R1,2 is linear in N , thus the 1/N in the first line guar-
antees that all terms are of the same order and contribute to the 
saddle point. Extremising (7) and acting with ∂3

φ , we arrive at the 
saddle point equation [1]

9

4
∂2
φρ(η,φ) + ∂2

ηρ(η,φ)

− 1

N
∂2
η [R1(η)δ (φ) +R2(η)δ (φ − m)] = 0.

(8)

This is a Poisson equation for ρ , with sources at φ = 0 and φ =
m. It describes an electrostatic problem, which we will encounter 
again in the study of the supergravity dual. The dictionary between 
QFT and supergravity is spelled out in (23) below.

Solving (8), we use ρ(η, φ) to compute the free energy F =
lnZS5 . The result is [1]:

F = 27

32
P 2

∞∑
k=1

1

k

[
R2

1,k + R2
2,k + 2R1,k R2,ke− 2πkm

3P

]

+
∞∑

k=1

1

k
R1,k R2,k

[
9π

8
Pkm + π3

12P
k3m3

]
.

(9)

We recognise in the first two pieces the free energies of two SCFTs 
with rank functions R1 and R2, respectively. The m-dependent 
terms describe an interaction between the two quivers. All the 
terms are O (P 2), according to (6).
3

It is instructive to analyse the cubic part in m in the second line 
of (9), which we denote δF . Using the relation between ∂2

ηR2|η= j

and F2, j , it can be conveniently recast in the form [1]

δF =
P−1∑
j=1

π

3
keff

f , j Tr
(

M3
j

)
, keff

f , j = R1( j)

2
, (10)

where M j is the mass matrix whose eigenvalues are 0 with mul-
tiplicity F1, j and m with multiplicity F2, j . Now recall that, upon 
localization, a supersymmetric Chern–Simons (CS) term in 5d is

SCS = πk

3
Tr

(
M3

)
(11)

where M is the scalar superpartner of the gauge field. We take it 
to be a background field for the flavour symmetry, rather than a 
dynamical field. As usual, gauge invariance of (11) requires k ∈ Z. 
As it only involves background fields, we are free to add the coun-
terterm (11) to our action. We observe that δF can be cancelled by 
a sum of such local, supersymmetric counterterms, with fractional
CS couplings −keff

f , j ∈ 1
2Z. The non-integrality of the CS couplings 

spoils invariance under background large gauge transformations 
and signals the presence of an anomaly (see [26] for in-depth 
discussion). We include such counterterm and denote F̃ the im-
proved free energy. Let us mention that a similar dilemma is faced 
in matching the rank-N En theories with their holographic dual in 
Romans F (4) supergravity [13].

2.2. F-theorem

We now introduce the quantity

FEFT = F̃ −Fdec. (12)

where F̃ is the free energy improved with the background CS 
counterterm. From this free energy of the mass-deformed quiver 
with rank function R, we subtract the contribution Fdec. from the 
fields that become heavy and eventually decouple. We claim that 
FEFT is the proper quantity to explore the RG flow between the 
original SCFT and the two decoupled SCFTs. The underlying motiva-
tion to consider (12) is that usually one wants to make statements 
that are intrinsic to the interacting SCFT, regardless of free massive 
fields that may have originated. In fact, both holography [9] and 
the F-theorem [31] are claims of this sort.

Concretely, the following statements hold:

• FEFT satisfies the 5d F-theorem;
• FEFT matches with the holographic central charge computed 

in supergravity.

We leave the technical evaluation of FEFT to the companion work 
[1]. It is based on analysing which flavours and W-bosons become 
massive along the flow and computing their free energy, denoted 
Fdec., based on an Effective Field Theory (EFT) approach. More 
explicitly, we count the total number of such heavy modes that be-
come decoupled at the end of the RG flow, and evaluate their free 
energy. Crucially, the EFT approach consists in cutting off energy 
scales larger than m.2 Doing this exercise for the heavy W-bosons 
and matter fields and adding all together, we obtain Fdec. . We then 
subtract this quantity from (9). The result is,

2 The background Chern–Simons term is regularised in the same vein.
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FEFT[R1,R2] = 27

32
P 2

∞∑
k=1

1

k

[
R2

1,k + R2
2,k

+2R1,k R2,ke− 2πkm
3P

(
1 + 2πkm

3P

)]
.

(13)

Denoting F [R] the free energy of a conformal (massless) quiver 
with rank function R, we have that (13) satisfies

lim
m/P→0

FEFT [R1,R2] = F [R1 +R2] ,

lim
m/P→∞FEFT [R1,R2] = F [R1] +F [R2]

∂mFEFT ≤ 0, lim
m/P→0

∂mFEFT = 0 = lim
m/P→∞ ∂mFEFT.

(14)

In words: FEFT is monotonically decreasing, stationary at the SCFT 
points, and interpolates between the free energies of the UV SCFT, 
with rank function R = R1 + R2, and of the IR SCFT, comprised 
of the two quivers with ranks functions R1 and R2. These are 
precisely the requirements of the strong version of the F-theorem 
[31] (see also [32] for further support for the conjectural 5d F-
theorem).

As we will show in the next section, (13) matches with the 
holographic central charge (26), obtained from a supergravity com-
putation.

3. Type IIB backgrounds for 5d long quiver SCFTs

In this section we discuss the holographic dual to five-dimen-
sional N = 1 SCFTs and their relevant deformations. A Poisson 
equation describing this dynamics is written and put in corre-
spondence with (8). We give the explicit dictionary between the 
field theory discussion of the previous section and the holographic 
description below. We then propose the correspondence between 
FEFT in (12) and the holographic central charge, and also discuss 
the supergravity version of the F-theorem in (14).

3.1. Supergravity as an electrostatic problem

We present an infinite family of supergravity backgrounds in 
Type IIB string theory of the form AdS6 × S2 × �. The isome-
tries of AdS6 correspond to the five-dimensional conformal algebra, 
whereas the additional SU (2) isometry guaranteed by the pres-
ence of the sphere becomes the R-symmetry of the dual field 
theory. The 5d N = 1 SCFTs introduced in (1) live on the asymp-
totic boundary of AdS6, with the specifics of the quiver encoded in 
the dependence of the metric and additional fields on the coordi-
nates (σ , η), that define the auxiliary two-dimensional geometry 
�.

The full string theory configuration consists of a metric, dilaton 
�, B2 field in the Neveu–Schwarz sector and C2 and C0 fields in 
the Ramond sector. The type IIB background in string frame is [27]
(see also [33])

ds2
10 = f1

[
ds2

AdS6
+ f2ds2

S2 + f3(dσ 2 + dη2)
]
,

e−2� = f6, B2 = f4Vol(S2),

C2 = f5Vol(S2), C0 = f7.

(15)

The warp factors f i = f i(σ , η) have been obtained in [27] and we 
report them in the appendix. They depend only on the coordinates 
(σ , η) on �, and carry functional dependence on a single potential 
function V 5(σ , η). The configuration is fixed by demanding that 
V 5 solves the linear partial differential equation (PDE)

∂σ

(
σ 2∂σ V 5

)
+ σ 2∂2

η V 5 = 0. (16)
4

σ

η

σ0

0 P

R1(η)

R2(η)

Fig. 2. The electrostatic problem for Ŵ in the two rank functions setup. A charge 
distribution equal to R1(η) is placed at σ = 0 and a second charge distribution 
R2(η) is at σ = σ0.

This equation is equivalent to the BPS equations of the system.
The infinite family of backgrounds (15)-(16) has been proven 

to be in exact correspondence with the solutions discussed in 
[17–20]. Moreover, the paper [27] presents the study of the PDE 
(16), with suitable boundary conditions leading to a proper in-
terpretation of the solutions, with quantised Page charges and 
avoiding badly-singular behaviours. Following [27], we make the 
redefinition

V 5(σ ,η) = Ŵ (σ ,η)

σ
. (17)

The PDE (16) then reads like a Laplace equation in flat space,

∂2
σ Ŵ + ∂2

η Ŵ = 0. (18)

We stress that (18) implies that the Einstein, Maxwell and dilaton 
equations are satisfied. Away from the sources, the Bianchi identi-
ties are also satisfied. In the presence of sources (that play the role 
of flavour branes, realising the flavour groups of the dual field the-
ory), the differential equation gets an inhomogeneous term. In that 
case, (18) is modified to

∂2
η Ŵ + ∂2

σ Ŵ +R(η)δ(σ ) = 0, (19)

on which we impose boundary conditions

Ŵ (σ → ±∞) = Ŵ (η = 0) = Ŵ (η = P ) = 0 . (20)

This is a Poisson equation for a classical electrostatic potential in 
the presence of the charge distribution encoded by R(η). The lat-
ter can be put in correspondence with a linear quiver describing 
the low energy dynamics of the five dimensional SCFT deformed 
by a relevant operator. Intuitively, the η-direction is a field theory
direction, moving along the quiver. The charge distribution R(η)

is then identified with the rank function of Section 2. See [27] for 
the details.

In this letter we are interested in exploring the physical signifi-
cance of the σ -direction. To do this, we generalise the electrostatic 
problem and consider the situation in which two charge densi-
ties R1(η) and R2(η) are separated in σ by a distance σ0. In this 
setup, the Poisson equation (19) encoding the dynamics of the sys-
tem reads

∂2
η Ŵ (σ ,η) + ∂2

σ Ŵ (σ ,η) +R1(η)δ(σ ) +R2(η)δ(σ − σ0) = 0,

(21)

with boundary conditions (20). The associated electrostatic prob-
lem is depicted in Fig. 2. The solution is [1]

Ŵ =
∞∑ P

2kπ
sin

(
kπη

P

)[
R1,ke− kπ

P |σ | + R2,ke− kπ
P |σ−σ0|] , (22)
k=1
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with R1,k and R2,k the Fourier coefficients of the two rank func-
tions, as in (4).

The electrostatic problem is directly translated in the saddle 
point problem of Section 2. Indeed, dividing (21) by −3N/2 and 
acting with ∂2

η , we reproduce (8) upon identification

φ = 3

2
σ , m = 3

2
σ0, −∂2

η Ŵ = 3N

2
ρ, (23)

while η is mapped trivially.

3.2. Holographic central charge

An interesting observable that informs us about the interpreta-
tion of the parameter σ0 is the holographic central charge chol . See 
[34,35] for a general definition and [27] for the calculation in the 
context of AdS6 backgrounds. chol is proportional to the free en-
ergy calculated in the previous section. More precisely, at the SCFT 
point σ0 → 0, 27π6

4 chol equals the limit m → 0 of (9). We now pro-
ceed to compute the holographic central charge at arbitrary σ0 and 
show that

27π6

4
chol = FEFT. (24)

Intuitively, the holographic central charge of the theory is com-
puted as the weighted-volume of the internal manifold S2 × �. 
After a lengthy calculation, this works out to be [27]

chol = 2

3π5

∞∫
−∞

dσ

P∫
0

dη ∂2
η Ŵ

(
σ∂σ Ŵ − Ŵ

)
. (25)

Here Ŵ is given by (22) and the residual integration is over the 
surface �. After the integrals are performed, one finds

chol[R1,R2] = P 2

8π6

∞∑
k=1

1

k

[
R2

1,k + R2
2,k

+2R1,k R2,ke− kπσ0
P

(
1 + kπσ0

P

)]
.

(26)

With the identification σ0
2 = m

3 already found in (23), this is pro-
portional to (13), as claimed.

In the spirit of a holographic version of the F-theorem, we state 
here that chol satisfies

lim
σ0/P→0

chol[R1,R2] = chol[R1 +R2],
lim

σ0/P→∞ chol[R1,R2] = chol [R1] + chol [R2]

lim
σ0/P→0

chol > lim
σ0/P→∞ chol

∂σ0 chol ≤ 0

(27)

This mirrors the statement (14). It is shown rigorously in [1] that 
the F-theorem is valid for this kind of relevant deformations. The 
proof goes in two parts. On the field theory side, it shows that 
FEFT in (13) satisfies the conditions in (14). On the other hand, it 
is shown independently that the holographic central charge (26)
satisfies (27).

While chol (as well as probe branes [1]) clearly see the fac-
torisation, only one metric (15) remains as σ0 → ∞. However, 
depending on how the limit is taken, either the metric given by 
R1 or the one given by R2 is retained. Namely, sending σ0 → ∞
directly, one is left with the AdS6 metric fixed by the rank function 
R1, as in [27]. However, first shifting σ̃ = σ −σ0 and then sending 
σ0 → ∞, the AdS6 metric that remains is determined by the rank 
5

function R2, located at σ̃ = 0. Therefore, even if only one met-
ric survives at the end of the RG flow, the geometry still detects 
the existence of two decoupled SCFTs. The choice of how to take 
the limit, and thus of which metric to retain in the IR, is equiva-
lent to focusing on one of the two decoupled SCFTs. The fact that 
such a choice exists is precisely what tells us that there are two 
decoupled SCFTs.

3.3. Study of singularities

Let us turn our attention to the analysis of the singularities in 
the backgrounds (15), once V 5 in (17)-(22) is used. Already for 
σ0 = 0, the backgrounds (15) do present singularities that, in the 
regime of very large N, P , are sharply localised at the location of 
the source branes in the Type IIB setup. The result is reliable ev-
erywhere away from the sources, although very close to them one 
should supplement the analysis with the open string sector.

Nevertheless, for finite σ0, new singularities appear, which can-
not be interpreted in terms of localised sources. The supergravity 
backgrounds are not a faithful dual description of the field theory 
dynamics, because the parameter σ0 introduces a finite scale and 
is incompatible with conformal invariance of the field theory, and 
thus with the AdS6 factor in the family of metrics. The supergravity 
solution we would need to construct deforms away from AdS6 into 
a R1,4 and a radial coordinate, which should be a combination of 
the AdS radial coordinate and the σ -direction. For |σ0| → ∞ the 
AdS6 factor is eventually recovered, with a factorised form of the 
warp factors.

The behaviour of these more elaborated geometries should then 
be in correspondence with the SCFT deformed by a relevant op-
erator, with parameter proportional to σ0, that flows into two 
decoupled SCFTs as indicated in Fig. 1. A background fluctuation 
localised close to σ = 0 should have fast decay for |σ | → ∞. We 
leave these explicit checks for future investigation.

It is natural to wonder about the validity of chol in (26), as it is 
obtained using the background (15) with potential (22). Carefully 
going over the supergravity calculation shows that the dilaton and 
the metric components that present a singular behaviour cancel, 
yielding the final result (25)-(26). The same cancellations occur in 
other observables [1], and are in line with closely related early 
observations in [36]. Even when the singular behaviour of our 
backgrounds is different, this type of cancellation is reminiscent 
of the so-called good singularities [37,38]. It must be emphasised 
that other observables will display a singular behaviour for finite 
σ0, invalidating the AdS6 ansatz (15) as a description of the mass-
deformed SCFT.

4. Conclusions

We have studied RG flows associated to relevant deformations 
of long quivers. Insisting on the class of mass deformations that 
yield balanced linear quiver SCFTs both at the beginning and end 
of the RG flow, we have explored the mass deformations that break 
the SCFT in two (or more) linear quivers. After understanding these 
RG flows from the perspective of the Coulomb branch, we have 
taken the large N limit and computed the free energy at arbitrary 
points of the RG flow. We have also discussed the holographic dual 
of such deformations, and given a neat interpretation in terms on 
an electrostatic problem.

The main findings reported in this letter are:

• On the QFT side, we introduced the quantity FEFT in (12), 
tailored to probe the RG flows between interacting SCFTs. It 
depends on the mass parameter, but not on the choice of vac-
uum. We have evaluated it in (13) and shown that it satisfies 
the F-theorem.
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• On the AdS6 side, we have mapped the supergravity problem 
to an electrostatic one. We have then identified the holo-
graphic dual of the mass deformation in this electrostatic for-
malism. We have used the resulting solutions to compute chol , 
finding agreement with FEFT.

We have thus provided a window on the enhancement of the 
AdS/CFT framework to entire RG flows connecting 5d N = 1 SCFTs. 
Having identified the appropriate quantity for such scope, we have 
also used it to support the 5d F-theorem.

The electrostatic formalism points toward several generalisa-
tions. Understanding their physical significance in supergravity on 
the one hand, and identifying and studying the dual deformations 
of 5d N = 1 SCFTs on the other, constitute a long term project to 
enrich the holographic dictionary.
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Appendix A

The warp factors f1, . . . , f7 appearing in the supergravity back-
ground (15) are:

f1 = 3π

2

√
σ 2 + 3σ∂σ V 5

∂2
η V 5

,

f2 = ∂σ V 5∂
2
η V 5

3
,

f3 = ∂2
η V 5

3σ∂σ V 5
,

f4 = π

2

[
η − σ∂σ V 5∂σ ∂ηV 5



]
,

f5 = π

2

[
V 5 − σ∂σ V 5



(
∂ηV 5∂σ ∂ηV 5 − 3∂2

η V 5∂σ V 5

)]
,

f6 =
12

(
σ 2∂σ V 5∂

2
η V 5

)
(

3∂σ V 5 + σ∂2
η V 5

)2
,

6

f7 = 2

[
∂ηV 5 + 3σ∂σ V 5∂σ ∂ηV 5

3∂σ V 5 + σ∂2
η V 5

]
,

and the function  is defined as

 = σ
(
∂σ ∂ηV 5

)2 +
(
∂σ V 5 − σ∂2

σ V 5

)
∂2
η V 5.

The map from [17–20] to the present setup requires fixing the 
origin in the (σ , η)-plane [27]. These expressions are written as-
suming a rank function located at σ = 0, and possibly adding other 
rank functions. In the case of a single rank function located at 
σ = σ0, one should first shift σ̃ = σ − σ0 and then replace σ with 
σ̃ in the expressions.
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