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We discuss the dynamics of three-dimensional Maxwell theory coupled to a level-k Chern-Simons term.
Motivated by S-duality in string theory, we argue that the theory admits an S-dual description. The S-dual
theory contains a nongauge one-form field, previously proposed by Deser and Jackiw [Phys. Lett. 139B,
371 (1984).] and a level-k Uð1Þ Chern-Simons term, ZMCS ¼ ZDJZCS. The couplings to external electric
and magnetic currents and their string theory realizations are also discussed.
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Introduction.—Chern-Simons theory is vastly used in
mathematical physics, in condensed-matter physics, and in
string theory [1]. It was studied intensively in the past three
decades, yet the dynamics of Yang-Mills–Chern-Simons
theory is not fully understood in the strong coupling
regime.
Four-dimensional S-duality is an exact duality between

two N ¼ 4 super-Yang-Mills theories, enabling us to
calculate quantities in the strong coupling regime using
a dual weakly coupled theory. In the Abelian case, it
reduces to the old electric-magnetic duality which swaps
electric and magnetic fields:

F ↔ �F: ð1Þ

In 3D, Abelian S-duality relates the electric field to a
dual scalar:

f ↔ �dϕ: ð2Þ

The purpose of this note is to extend S-duality to 3D
Maxwell Chern-Simons (MCS) theory, with either a
compact or noncompact Uð1Þ gauge group. It should
hold on any spin manifold. The Lagrangian of the theory
is given by

L ¼ −
1

2g2
dae ∧ �dae þ

k
4π

ae ∧ dae: ð3Þ

MCS theory contains a vector boson of mass
M ¼ ðg2k=2πÞ. At low energies, the kinetic term is
irrelevant, and the theory flows to a pure level-k Chern-

Simons theory. As explained in the section on the deriva-
tion of the duality, the theory admits a global Zk one-form
symmetry generated by

G≡ exp

�
i
I �

ae −
1

M
� dae

��
: ð4Þ

When the theory is compactified on a torus, the global Zk
one-form symmetry is spontaneously broken, resulting in k
degenerate vacua.
Several attempts were made to find the S-dual of Eq. (3).

In Ref. [2], Deser and Jackiw proposed a “self-dual model”
(SDM) which describes a massive vector. While SDM
describes a massive vector, it does not admit a Zk one-form
symmetry, and neither does it flow to a pure Chern-Simons
theory at low energies; hence, it cannot be an exact dual of
MCS theory.
A closely related problem concerns the open string

dynamics on a certain Hanany-Witten brane configuration.
It is well known [3] that MCS theory lives on the left brane
configuration shown in Fig. 1. Type-IIB S-duality maps the
left configuration into the right configuration. Thus, know-
ing the field theory that lives on the right configuration
will solve the problem of finding the S-dual. In early
attempts [3,4], the authors found gauge theories with a
fractional-level Chern-Simons term. While the theories
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FIG. 1. The electric theory on the left brane configuration is
Maxwell–Chern-Simons. The magnetic theory, obtained by type-
IIB S-duality, lives on the right brane configuration.
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they found are classically equivalent to MCS, it cannot be
the full answer, as it does not admit the symmetries or the
same dynamics as the electric theory.
Derivation of the duality.—We may use 4D S-duality

between Maxwell theories to derive the 3D duality. In 4D, a
pure Maxwell theory with a coupling g is dual to a pure
Maxwell theory with a coupling 1=g.
Consider the following partition function:

Z ¼
Z

DFmDAe exp i
Z �

−
g2

2
Fm ∧ �Fm þFm ∧ dAe

�
;

ð5Þ

Ae is the “electric” gauge field, while Fm is a “magnetic”
gauge-invariant two-form. g is the “electric” gauge
coupling.
Upon integrating over Fm, we obtain the electric theory

Z ¼
Z

DAe exp i
Z �

−
1

2g2
dAe ∧ �dAe

�
: ð6Þ

If instead we integrate over Ae, we obtain

Z ¼
Z

DFmδðdFmÞ exp i
Z �

−
g2

2
Fm ∧ �Fm

�
; ð7Þ

hence, it can be written in terms of Am such that Fm ¼ dAm:

Z ¼
Z

DAm exp i

�
−
g2

2
dAm ∧ �dAm

�
: ð8Þ

This is the magnetic theory dual to the electric theory.
Let us use the dimensional reduction of Eq. (5) in order

to derive the 3D duality. Upon reducing to 3D, the 4D two-
form Fm becomes a 3D two-form fm and a one-form am.
The 4D gauge field Ae becomes a 3D gauge field ae and a
scalar ϕe. The two-form fm and the scalar ϕe decouple from
the rest of the action and admit

Z ¼
Z

DfmDϕe exp i
Z �

−
g2

2
fm ∧ �fm þ fm ∧ dϕe

�
;

ð9Þ

which leads to the well-known S-duality

dâm ↔ �dϕe; ð10Þ

where fm ¼ dâm.
Let us focus on the duality between ae and am, which is

the prime purpose of this Letter. We add to the action a
Chern-Simons term [5]. Our proposal is the following
“master” partition function:

Z ¼
Z

Dam Dae exp i
Z �

−
g2

2
am ∧ �am þ am ∧ dae

þ k
4π

ae ∧ dae

�
: ð11Þ

Note that am is a gauge-invariant one-form. Upon inte-
gration over am, we obtain the electric theory

Z ¼
Z

Dae exp i
Z �

−
1

2g2
dae ∧ �dae þ

k
4π

ae ∧ dae

�
;

ð12Þ

namely Maxwell–Chern-Simons theory.
In order to derive the magnetic theory, we should use

Eq. (11) and integrate over ae. This is a subtle point. Instead,
let us use a change of variables, ae ¼ b − ð2π=kÞam, to
obtain the following partition function:

Z ¼
Z

Dam Db exp i
Z �

−
g2

2
am ∧ �am −

π

k
am ∧ dam

þ k
4π

b ∧ db

�
: ð13Þ

Equation (13) is our proposal for the S-dual of Maxwell–
Chern-Simons theory. The partition function of the mag-
netic theory is a product of the Deser-Jackiw theory and a
level-k Chern-Simons term,

ZMCS ¼ ZDJZCS: ð14Þ

Note that am is not a gauge field, and therefore the term
ðπ=kÞam ∧ dam is not ill-defined.
Both the electric and the magnetic theories describe a

massive vector of mass M ¼ ðg2k=2πÞ and a decoupled
level-k Chern-Simons theory. Both theories exhibit a one-
form Zk symmetry.
Let us now provide another argument in favor of our

proposal in Eq. (13). We begin with the magnetic brane
configuration of Fig. 1. It was argued by Gaiotto andWitten
[6] that the theory which lives on the intersection of the
3-brane and the tilted 5-brane (without a D5 brane) is

Z ¼
Z

DaDc exp i
Z �

1

2π
a ∧ dcþ k

4π
c ∧ dc

�
: ð15Þ

In order to understand what happens when we add a D5
brane, let us assume that the terms that we need to add to
the action are k-independent. Indeed, the information about
k is encoded in the tilted 5-brane, not in the 3-brane. Let us
use k ¼ 0, since in this case the duality is well understood:
the electric theory is pure Maxwell, and the magnetic
(mirror) theory is a massless scalar. The brane realization of
the duality was provided in the seminal work of Hanany
and Witten [7].
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We may write the theory of a free massless scalar as
follows:

Z ¼
Z

DaDc exp i
Z �

a ∧ �aþ 1

2π
a ∧ dc

�
; ð16Þ

with a being a gauge-invariant one-form. The equation of
motion for c is �da ¼ 0—namely, that a ¼ dχ. Thus, for
k ¼ 0we obtain a theory of a free scalar ðdχÞ2, as expected.
We find that adding a term a ∧ �a to the action yields a

theory that describes the correct dual of Maxwell theory.
We propose that a ∧ �a is the missing term in Eq. (15)—
namely, that by adding it to Eq. (15) we obtain the dual of
MCS for any k. Note that

Z ¼
Z

DaDc exp i
Z �

a ∧ �aþ 1

2π
a ∧ dcþ k

4π
c ∧ dc

�

ð17Þ

is almost identical to Eq. (11). An important difference is
that Gaitto and Witten introduced a gauge field a, whereas
in Eq. (17) we added a term that breaks gauge invariance.
We may reintroduce gauge invariance in Eq. (17) by
transforming the fixed gauge vector a into a gauge-
invariant term by adding a scalar η as follows:

Z ¼
Z

DaDcDη exp i
Z �

ða − dηÞ ∧ �ða − dηÞ

þ 1

2π
a ∧ dcþ k

4π
c ∧ dc

�
; ð18Þ

such that under a gauge transformation a → aþ dλ,
η → ηþ λ, with a being a Uð1Þ gauge field.
Equation (17) may be viewed as the fixed-gauge version
of Eq. (18) with dη ¼ 0.
Our proposal in Eq. (13) passes all the requirements from

a dual theory: it admits a Zk global symmetry, it flows to
pure Chern-Simons theory in the IR, it contains a massive
vector of mass M, and finally, when k ¼ 0, it agrees with
the results of Hanany and Witten [7]. As we shall see, the
brane realizations of both electric and magnetic theories
predict the existence of k-degenerate vacua.
We summarize this section by writing the precise map

between the electric and magnetic variables using Eq. (11):

−g2am ¼ �dae; ð19Þ

b ¼ ae −
1

M
� dae; ð20Þ

or

ae ¼ b −
2π

k
am: ð21Þ

Comments on Zk.—Let us introduce a Wilson loop in
MCS theory. We wish to measure the Zk charge of the loop
—namely, the number of fundamental strings, n, that pass
through a certain contour C. We will define an operator G
such that

GWn ¼ exp

�
i
2πn
k

�
Wn; ð22Þ

with Wn being a Wilson loop of charge n, Wn ¼
expðin H aeÞ.
In order to define G, let us consider the equation of

motion in MCS:

d

�
1

g2
� dae −

k
2π

ae

�
¼ je ≡ dJe; ð23Þ

where Je is the integral of the electric current je over a disk
D such that C ¼ ∂D. The setup is depicted in Fig. 2. By
integrating Eq. (23), we learn that

1

g2
� dae −

k
2π

ae ¼ Je: ð24Þ

We can therefore define a generator of a Zk symmetry as
follows:

G ¼ exp

�
i
2π

k

I
C

�
k
2π

ae −
1

g2
� dae

��
¼ exp

�
i
I
C
b

�
:

ð25Þ

Note that the implication of Zk symmetry is a symmetry
n → nþ k: namely, that a collection of k strings is
topologically isomorphic to a singlet—namely, to no
strings at all. This is supported by string theory: suppose
that we attempt to place the end points of k coincident
strings on the worldvolume of the D3 brane. The collection
of k fundamental strings can transform itself into an anti-D-
string and a ðk; 1Þ string. Instead of ending on the

j

C=dD

FIG. 2. A Wilson loop passing through a domain D (shaded
region) whose boundary is C ¼ ∂D.
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worldvolume of the D3 brane, the D-string can end on an
NS5 brane, and a ðk; 1Þ string can end on a ð1; kÞ 5-brane.
Thus, string theory predicts that a collection of k strings can
be removed from the worldvolume of the 3D gauge theory.
A similar phenomenon happens in the magnetic dual if we
attempt to introduce k coincident D-strings in the world-
volume of the magnetic theory.
When the theory is defined on the torus, the Zk

symmetry is broken, resulting in k vacua [8]. An intuitive
explanation is as follows: The level-k Uð1Þ Chern-Simons
theory is equivalent (using level-rank duality) to a level-
1SUðkÞ theory that admits a Zk center symmetry. When it
is defined on the torus, the SUðkÞ theory deconfines,
resulting in k degenerate vacua, parametrized by the
eigenvalues of the ’t Hooft loop.
The k vacua manifest themselves in both the electric and

magnetic brane configurations as follows: the D3 brane
may end on any of the k constituents of the 5-branes. Each
one of the k choices corresponds to a vacuum.
Coupling to external sources, Wilson and magnetic

loops.—Consider the coupling of the electric gauge field
to a source je, namely aeje. It translates to the coupling
ðb − ðπ=kÞamÞje in the magnetic side. We therefore suggest
that the Wilson loop

We ¼ exp i
I

ae ð26Þ

in the electric side is mapped into a magnetic loop of the
form

Mm ¼ exp i
I �

b −
2π

k
am

�
ð27Þ

in the magnetic side.
We may use the above map between the Wilson loop in

the electric side and its magnetic counterpart to study the
dynamics of 3D QED-CS. Using the worldline formalism
[9], we can write the partition function of MCS theory
coupled to Nf massless fields as follows:

ZQED-CS ¼
Z

Dae expðiSMCSÞ
X
n

ðNfΓeÞn
n!

; ð28Þ

with

Γe ¼
Z

dt

t
5
2

Z
Dx exp

�
−
Z

t

0

dτð_xÞ2
�
exp i

I
ae: ð29Þ

The duality yields the following partition function:

Zmagnetic ¼
Z

DamDb expðiSDJ-CSÞ
X
n

ðNfΓmÞn
n!

; ð30Þ

with

Γm ¼
Z

dt

t
5
2

Z
Dx exp

�
−
Z

dτð_xÞ2
�
exp i

I �
b−

2π

k
am

�
:

ð31Þ

This suggests that the dynamics of QED with Nf massless
flavors is captured by a dual DJ-CS theory coupled to Nf

massless “monopoles.” The precise coupling of am and b to
the monopoles is given by Eq. (31). We may write the dual
magnetic theory in a more “standard” form:

Z ¼
Z

DamDbDψ̄mDψm exp i Smagnetic; ð32Þ

with Smagnetic given by

Smagnetic ¼
Z �

−
g2

2
am ∧ �am −

π

k
am ∧ dam þ k

4π
b ∧ db

þ ψ̄mγ ∧ ⋆
�
i∂þ b −

2π

k
am

�
ψm

�
: ð33Þ

It is interesting to note that the QED-CS theory is mapped
to a theory of interacting massless magnetic “monopoles,”
with a coupling 2π=gk. Thus, when the electrons couple
strongly to ae, the “monopoles” couple weakly to am, and
we may use perturbation theory in the magnetic side to
study the strongly coupled electric theory.
Following Itzhaki [10], let us define a magnetic (“dis-

order”) loop in the electric theory

Me ¼ exp

�
i
I
C

�
kae −

2π

g2
� dae

��
; ð34Þ

which is mapped into the electric loop in the magnetic side,

Wm ¼ exp

�
ik
I
C
b

�
: ð35Þ

The magnetic loop in the electric side and the electric
(Wilson) loop in the magnetic side are trivial [10].
We suggest that a rectangular Wilson loop (or magnetic

loop) should be identified with the end points of an F-string
and an anti-F-string (or a D-string and an anti-D-string) that
end on the 3-branes of Fig. 3.
A D-string can end on an NS5 brane instead of a 3-brane;

hence, the magnetic loop in the electric theory should be
trivial. Similarly, a F-string can end on a D5 brane instead
of a 3-brane; hence, a Wilson loop in the magnetic
theory should be trivial. This is consistent with our
definitions of the magnetic loop [Eq. (34)] and the
Wilson loop [Eq. (35)].
Summary.—The purpose of this Letter is to find the S-

dual of MCS theory. We found that the dual theory
[Eq. (13)] contains a nongauge vector of mass M and a
decoupled pure TQFT. The magnetic theory nicely captures

PHYSICAL REVIEW LETTERS 130, 141601 (2023)

141601-4



the dynamics of the electric theory: a theory with a mass
gap that flows in the IR to a TQFT. The duality we
uncovered in this Letter is a precise manifestation of the
duality between a topological insulator and a topological
superconductor outlined in Ref. [11].
It will be interesting to find the S-dual of the non-Abelian

UðNÞ theory that lives on a collection of N coincident D3
branes, suspended between tilted 5-branes. The master field
of that theory may be obtained by replacing the Abelian
one-forms of Eq. (11) with non-Abelian one-forms as
follows [12]:

Z ¼
Z

DamDae exp i tr
Z �

−
g2

2
am ∧ �am þ am ∧ ðdae

þ ae ∧ aeÞ þ
k
4π

�
ae ∧ dae þ

2

3
ae ∧ ae ∧ ae

��
;

ð36Þ

together with ae ¼ b − ð2π=kÞam. Other dualities that
involve SO=Sp (and an orientifold in string theory) could
also be derived. The generalization to supersymmetric QED
or QCD theories with a CS term [4] is also interesting and
can be written down using the worldline formalism, as in
the previous section on coupling. The duality found in this

Letter is useful for studying the strong coupling regime of
those theories.
Finally, it is well known that MCS theory admits Seiberg

duality. The manifestation of the duality using an exchange
of 5-branes in the magnetic theory might teach us about
5-branes’ dynamics.
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FIG. 3. Rectangular Wilson loops can be realized in string
theory by ending a pair of an F-string and an anti-F-string on the
3-brane. Similarly, rectangular ’t Hooft loops can be realized by
ending a pair of a D-string and an anti-D-string on the 3-brane.
The end of the F-string represents a heavy quark, whereas the end
of the D-string represents a heavy monopole.
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