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Quantification of activity budgets is pivotal for understanding
how animals respond to changes in their environment. Social
grooming is a key activity that underpins various social
processes with consequences for health and fitness. Traditional
methods use direct (focal) observations to calculate grooming
rates, providing systematic but sparse data. Accelerometers, in
contrast, can quantify activity budgets continuously but have
not been used to quantify social grooming. We test whether
grooming can be accurately identified using machine learning
(random forest model) trained on labelled acceleration data
from wild chacma baboons (Papio ursinus). We successfully
identified giving and receiving grooming with high precision
(81% and 91%) and recall (87% and 79%). Giving grooming
was associated with a distinct rhythmical signal along the
surge axis. Receiving grooming had similar acceleration signals
to resting, and thus was more difficult to assign. We applied
our machine learning model to n = 680 collar data days from
n = 12 baboons and found that grooming rates obtained from
accelerometers were significantly and positively correlated with
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direct observation rates for giving but not receiving grooming. The ability to collect continuous
grooming data in wild populations will allow researchers to re-examine and expand upon
long-standing questions regarding the formation and function of grooming bonds.
ietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:221103
1. Introduction
How animals allocate time and energy to different activities has important fitness consequences [1]. The
observed activity budgets can be seen as the result of a context-dependent trade-off, reflecting
environmental (e.g. climatic conditions [2], food availability [3], predation pressure [4]) demographic
(e.g. group-size [5]) and physiological (e.g. lactation [6,7], pregnancy [8]) constraints. Moreover,
individual characteristics such as sex [9,10], age [11] and dominance rank in group-living species [12]
may dictate what activities require more time investment.

One of the core activities in the time budgets of many social animals is ‘allo-grooming’ (hereafter:
‘grooming’), a prosocial behaviour found across multiple taxa [13–16] and extensively studied in non-
human primates [17–20]. Although grooming is thought to have evolved primarily for its hygienic
function [17,21], it plays a pivotal role in forming and maintaining social bonds [19,22,23] which, in
turn, are linked to ultimate fitness benefits such as longer lifespans [24–26] and increased infant
survival [27,28]. Grooming also functions as a tradeable commodity, sensu ‘biological markets’ [29],
given in exchange for coalition support [30,31], tolerance [32,33], protection [34], infant handling
[35,36] or grooming itself [18,37]. Finally, grooming has physiological benefits and has been linked to
reduced hypothalamic–pituitary–adrenal-axis activity in several primate species [38–43], which could
positively affect longevity [44]. Accurate quantification of grooming is thus crucial for our
understanding of its role in the above contexts.

To date, grooming data have been collected through direct behavioural observations which are
typically restricted to one or a few individuals at a time and limited by both environmental (e.g. the
habitat the animal lives in) and species-specific (e.g. nocturnal versus diurnal) variables [45,46].
Traditional behavioural observation methods, i.e. focal and scan sampling [47], allow researchers to
approximate activity budgets by calculating rates of behaviour. This generally leads to questions
about grooming being addressed in a correlative manner: e.g. are different social contexts [18,48],
social partners [49,50] or physiological states [39,41,51] associated with higher or lower rates of
grooming? Unless grooming data are collected in detail, usually as part of an experimental design
which requires considerable observer efforts (e.g. [16,42,52]), investigating directional or dynamic
relations between grooming and variables of interest is generally precluded.

The advances in animal-mounted tracking devices have allowed researchers to gain insights into animal
movement and behaviour thatwould have been impossible to record throughdirect observations [45,53]. Tri-
axial accelerometers allow identification of behaviours through their unique acceleration patterns [45]. In a
first instance, accelerometers might simply provide information on whether the animal is ‘active’ or
‘inactive’ [54–56]. However, recent studies have identified specific behaviours [57,58], and some have used
accelerometers to estimate activity budgets [59–61]. In an extensive review on the use of accelerometers in
behavioural studies, Brown et al. [45] showed that the identified behaviours typically fall under the
categories of ‘locomotion’, ‘resting’ and ‘feeding/foraging’, but highlighted the general scarcity of
measurements of social behaviours, with some exceptions, including mating [59,62], parent–offspring
interactions [63], aggressive interactions [59] and territorial or courtship displays [64]. The limited use of
acceleration data to estimate social behaviours is probably because such behavioural ‘events’ occur less
frequently and for shorter time periods than ‘state’ behaviours [45].

Self-grooming/preening has been identified using accelerometers with varying levels of accuracy
(0–50%) in a number of species [58,60,65–69], suggesting that identification of social grooming could
also be possible. Primates dedicate substantial time to grooming [17] and thus present an ideal study
system to collect accelerometer data on this behaviour. In fact, the first study to produce an
acceleration ethogram for a primate included grooming [57]. This study was conducted on male
chacma baboons (Papio ursinus) and successfully identified foraging, locomotion and resting with high
precision (ability to minimize false positives/type 1 error: 88%) and recall (ability to minimize false
negatives/type 2 error: 71%), but since adult males rarely or never groom one another, grooming data
were infrequent and identification of grooming was less precise (greater than 60% precision and recall
for receiving grooming, and approx. 20% for giving grooming). The accurate identification of
grooming from accelerometers would allow this important behaviour to be included in accelerometer-
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derived activity budgets, in a species where grooming interactions underpin social bonds [19], with
ultimate fitness consequences [24,27].

The present study aimed to identify grooming (giving and receiving) in wild chacma baboons using
tri-axial acceleration data and machine learning. Papio are an ideal study genus as they spend between
5.7 and 18.9% of the day grooming [17]. The present study focuses on females who, unlike males,
are philopatric, maintain long-term female–female bonds within the group [70], and spend larger
proportions of their time grooming than males [71]. First, we used a random forest model [72] to
identify behaviours from tri-axial acceleration, with a particular focus on grooming, following the
‘end-to-end’ methods described in Fehlmann et al. [57]. Second, we applied this model to calculate
activity budgets. Third, as studies of primate socioecology estimate activity budgets using traditional
methods [47] to investigate how environmental [2,73], anthropogenic [74,75], reproductive
[41,76,77] and demographic [78–80] factors and dominance rank [5,81] affect grooming rates, we
compare accelerometery-based rates of behaviours with rates obtained from direct (focal) observations.
R.Soc.Open
Sci.10:221103
2. Material and methods
2.1. Study site and troop
The study was conducted on the ‘Da Gama’ troop which consisted of approximately 50 individuals,
including two adult males and 19 adult females. The troop was studied in Table Mountain National
Park and the neighbouring residential areas of Da Gama and Welcome Glen, in the Western Cape, South
Africa (−34.15562° N, 18.39858° E) between June and November 2018. Research was permitted by local
authorities (Cape Nature, permit number: CN44–59–6527; SANparks, permit number: CRC/2018–2019/
008–2018/V1) and collaring (see below) approved by Swansea University’s Ethics Committee (IP-1314-5).

2.2. Collars and acceleration data
SHOAL group in-house collars (F2HKv3) were built at Swansea University. Each collar contained a Daily
Diary device [82] containing a tri-axial accelerometer (recording at 40 Hz continuously) and a GPS unit
(GiPSy 5 tag, TechnoSmArt Italy; recording at 1 Hz between 08.00 and 20.00 local time). Collars were
fitted to the baboons between 25 July and 2 August 2018 in collaboration with Human Wildlife Solutions
(HWS). After entering food-baited cages, baboons were anaesthetized by a local certified veterinarian
using Ketamine (dose adjusted for body mass) in accordance with local protocols (described by
Fehlmann et al. [57]). Collars weighed mean 2.2% baboon body mass (range 1.2–2.6%) and were fitted
with a drop-off mechanism (version CR-7, Telonics, Inc.) to reduce the need for recapture. No baboons
died or sustained injury during capture and no injuries were observed from wearing the collars. Sixteen
adults (n = 2 males, n = 14 females) were fitted with collars. One collar was not retrieved at the end of the
study period (F1), one collar did not collect accelerometer data (F13), one collar only collected 2 days of
acceleration data (F17, before any video data were collected; see electronic supplementary material, table
S2) and one collar collected faulty data (F18, as confirmed by matching accelerometer to GPS to estimate
‘active’ time; electronic supplementary material, figure S6). Together this resulted in a final sample size
of n = 12 individuals (n = 10 females, n = 2 males; see electronic supplementary material, table S2 for
individual acceleration data details), and a total of n = 680 collar days (mean ± s.d. = 53 ± 23 full days of
accelerometer data; the first day of trapping and the last day of collar data were discarded for each
baboon, to only use full days in the analyses, see ‘Activity budgets based on acceleration data’).

2.3. Video collection and processing
Baboons were habituated to observer presence, which allowed for the collection of video data using
hand-held video-recorders from a minimum distance of 10 m (Sony HD Handycam HDR-CX190).
During a video-follow, the observer dictated date and time and narrated behaviours. In total, 29.4 h of
video were recorded (mean ± s.d. = 2.3 ± 0.8 h per individual, range 1.3–3.5 h) from which baboon
behaviours were extracted at time-steps of 1 s, generating a labelled dataset of 36 behaviours (see
electronic supplementary material, table S3 for full ethogram and table S4 for ethogram sample sizes).

Some videos contained multiple collared individuals (particularly videos of grooming dyads),
meaning that some video footage was used to label behaviours of more than one individual. During
preliminary analysis, some behaviours (receiving grooming, resting, foraging) were sub-classified by
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posture (lying, sitting, standing). However, fewer behavioural categories have been found to improve
model accuracy [83], and here, behavioural categories were collapsed into a single category (without
posture) to improve the overall accuracy of the random forest model (analyses not shown).

We focused on six main ‘state’ behaviours following Fehlmann et al. [57]: ‘giving grooming’, ‘receiving
grooming’, ‘resting’, ‘foraging’, ‘walking’ and ‘running’. We focused our analyses on these state behaviours
as they are generally mutually exclusive [84] and represented themajority of the baboons’ activity (94.4% of
the video data). The other 30 behaviours (electronic supplementary material, table S4), which represented
5.6% (1.4 h) of the video data, were not included in any analyses (as is common, see e.g. [57,58,83,85]). Of
these, 1.2% were rare behaviours (e.g. mating, aggressive interactions) and 4.4% were instances where
‘event’ behaviours occurred during state behaviours (e.g. body-shakes, self-scratching, lip-smacking, see
electronic supplementary material, table S3) and were removed to obtain a ‘pure’ behavioural dataset. If
the baboon was shifting from one behaviour to another (e.g. from sitting to walking), the adjustment
period (typically less than 2 s) was assigned to whichever state behaviour most closely matched the
transitionary behaviour. This resulted in 83 243 s, or 23.1 h (on average 3.9 ± 2.5 h per behaviour; and
1.9 ± 0.7 h per baboon; table 1) of video data for use in the random forest model analysis. We also
extracted the number of independent events (table 1) where a new event was classified as a change in the
main activity (e.g. transition from receiving grooming to giving grooming). In the calculation of
independent events, additional behaviours (e.g. self-scratching, adjusting body position, lip-smacking)
and changes in posture (lying, sitting, standing) were included in the same event to maintain a
conservative estimate of number of events (e.g. giving grooming interrupted by self-scratching would
still constitute one event).

2.4. Acceleration data preparation
The analysis of accelerometer data detailed below closely follows the workflow and code provided by
Fehlmann et al. [57] and used Daily Diary Multi Trace (DDMT; http://www.wildbytetechnologies.
com) software. Before baboons were fitted with the collars, sensors were calibrated at the field site to
create offsets in DDMT, providing the time reference used to match video to accelerometer data. The
position of the daily diary in the collar was specified to correct the position of acceleration channels
(X = surge, Y = sway, Z = heave) relative to the ground. Datasets containing the labelled behaviours
with associated timestamp were imported into DDMT as ‘bookmarks’. Timestamps were verified
visually to ensure the DDMT timestamp matched the video timestamp. Accelerometer data and
associated behaviours were exported out of DDMT using Bookmark Multisession.

2.5. Computing variables from acceleration data
All analyses (computation of variables, random forest models, comparison of models and calculation of
activity budgets) were conducted in R studio (version 3.6.1). Tri-axial acceleration allows the
identification of behaviours through deriving information about the posture of the animal (static
acceleration) and the movement of the animal (dynamic acceleration). Calculations combining the signal
along the three axes can provide further metrics that can be used to differentiate behaviours from one
another. To match the labelled behaviours (1 Hz) to the acceleration signal (40 Hz), the mean values
were calculated for 16 acceleration variables per second. Acceleration variables were computed using the
methods described in Fehlmann et al. [57], excluding the variables that were found to have low
predictive power. This resulted in the following 16 variables being included in the model: (1–3) tri-axial
static acceleration (X, Y, Z), (4–5) pitch and roll, (6) vectorial dynamic body-acceleration (VeDBA), (7)
smoothed VeDBA (VeDBAs), (8–10) tri-axial partial dynamic body acceleration (PDBA) and (11–16) tri-
axial power spectrum density (PSD) for the first and second associated maximum frequencies. See
Fehlmann et al. [57] for a comprehensive description of these variables and associated R script.

2.6. Random forest model fitting
Random forestmodels have been employed formanyaccelerometer-derived behaviour identification studies
and have been found to outperform other machine learning approaches [85–88]. To run the random forest
models, we used the R package ‘random forest’ [89]. Random forests are a machine learning method
based on building classification trees [72]. It operates using two ‘layers of randomness’ by first using a
random subset of the data each time a tree is grown, and second by using a random subset of variables
(here the 16 variables computing from tri-axial acceleration) for each classification step [90]. Each

http://www.wildbytetechnologies.com
http://www.wildbytetechnologies.com
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Table 2. Confusion matrix for the random forest model. Comparison of the predicted behaviour (rows) and observed behaviour
(columns), based on labelled dataset from videos. Values in italics represent the true positives (TP). Instances where the
behaviour was incorrectly classified by the model (false positives: FP) are in rows, instances where the behaviour was missed by
the model (false negatives: FN) are in columns.

behaviour resting
receiving
grooming

giving
grooming foraging walking running

total
predicted

resting 3243 416 246 180 9 9 4094

receiving grooming 182 3243 158 14 0 0 3953

giving grooming 438 429 5816 500 0 0 7183

foraging 331 122 435 6151 411 3 7453

walking 18 3 4 266 1701 17 2009

running 0 0 0 4 18 122 144

total observed 4212 4569 6659 7115 2139 142
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classification tree contains a set of hierarchical decision rules which aims to split the data into subsets which
represent a given behaviour. To achieve ‘purity’ in the subset (pure = a subset which only contains one
behaviour), decision rules aim to maximize the impurity reduction at each split. Some variables may
contribute more to the decrease in impurity at each split than others, and this can be represented by the
Gini index: the difference between the impurity at a split and the sum of the weighted impurity of the
two splits that follow, averaged across all trees [91]. The Gini index can be used to rank the variables used
to build the random forest in order of importance. Following Fehlmann et al. [57], we ran the random
forest model with 500 trees and left the parameters at default. To confirm no further iterations (i.e. trees)
were required for the model to stabilize (i.e. obtains the best classification results), we ran a post hoc test
which revealed that error rates level out after 100 iterations (electronic supplementary material, figure S3).

The labelled dataset from all 12 baboons was divided at random into a 70% (58 254 s; 16.2 h) training
set and a 30% (24 989 s; 6.9 h) validation set (to test the precision and recall of the random forest model
prediction) allowing for a ‘supervised algorithm’ approach [57,66,92]. Behavioural classes and
individuals were equally represented in the training and validation dataset (variation within 1%; see
electronic supplementary material).
2.7. Model validation
Using the random forest model generated with the training set, we predicted the behaviours from
the validation set by running 500 trees [57] where the most frequently predicted behaviour across 500
trees is presented as the final prediction. To assess recall and precision, we compared the output from
the predicted behaviours with the observed behaviour in a confusion matrix (table 2) using the
calculations below.

Precision ¼ TP
(TPþ FP)

and

Recall ¼ TP
(TPþ FN)

,

where TP is true positive; TN, true negative; FP, false positive; FN, false negative.
2.8. Activity budgets based on acceleration data
To obtain activity budgets for each baboon across their respective collar periods, the model output from
all baboons was applied to the entire accelerometer dataset (16 319 h; 680 days, n = 12 baboons) to
estimate the total number of seconds engaged in each behaviour. To allow for the comparison of
activity budgets from collars with those obtained from direct focal observations, a subset of the
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accelerometer data was used, corresponding to the time window covering direct observation hours
(between 07.00 and 17.00 local time).

Of the total 58 747 636 s (16 319 h; 680 days) of accelerometer data, 316 654 s (88 h, 0.54% of the
total dataset) could not be classified as one of the six behaviours (mean ± s.d.: 28 786 ± 76 359 s,
8 ± 21 h per individual (n = 11); median: 3176 s, 0.9 h). One individual had no non-classified
behaviours. As these points could not be definitely assigned to any behaviour, they were removed
from the daily budget calculations. Further investigation into the characteristics of non-classified
acceleration datapoints is provided in the electronic supplementary material (‘Non-classified
behaviours’; electronic supplementary material, figure S5). One individual (F18) was excluded from
further analysis and removed from the random forest model analysis (see electronic supplementary
material, figure S6) because we observed a discrepancy between accelerometer and GPS-identified
activity.

2.9. Activity budgets based on focal data
Focal observations [47] were conducted for all collared individuals (n = 16, of which n = 12 have
acceleration data) between August and November 2018 (two observers: CC, AMB) and included both
an instantaneous and a continuous component. Instantaneous data were collected on activity
(grooming, resting, foraging, walking, running or engaged in other social behaviour) every minute for
30 min, resulting in 31 records per focal observation [93]. All social interactions (including giving and
receiving grooming) were recorded in detail in the continuous part of the focal observation to the
nearest second. If the grooming interaction was still ongoing by the end of the 30 min focal period,
the focal observation was continued until the end of the grooming bout (following [94]). For the
instantaneous data, rates of behaviour were calculated by dividing the number of scans engaged in
each behaviour by the total number of scans. For the continous grooming data, rates were obtained
by dividing the total time (seconds) engaged in giving or receiving grooming by the total observation
time. While grooming rates are typically calculated based on adult grooming interactions [18,19], for
the purpose of comparing focal with accelerometer-identified grooming rates (see below), all
grooming interactions (including grooming with juveniles and non-collared adults) were included, as
grooming partner identity is not distinguishable in accelerometer-identified grooming. Focal
observations were carried out within five time-blocks (07.00–09.00, 09.00–11.00, 11.00–13.00, 13.00–
15.00, 15.00–17.00; electronic supplementary material, figure S1) and individuals were observed in a
randomized order across time-blocks.

Focal data were collected up to the collar drop-off date (16 October 2018) and only focal observations
of more than 3 min in length were used. In total, n = 323 focal follows were conducted (mean ± s.d. = 27 ±
4 per individual), the equivalent of 154 h (mean ± s.d. = 13 ± 2 h per collared individual, n = 12). First, we
used a Spearman’s correlation to establish whether rates calculated from the full focal dataset were
correlated with those obtained when only using the focals collected while the collars were recording
data (i.e. a ‘true time match’), with the focal data window adjusted for each baboon’s collar duration
(n = 208 focals, mean ± s.d. = 17 ± 9 per individual; n = 97 h, mean ± s.d. = 8 ± 4 h per individual). As
the correlations were strong (ρ range: 0.77–0.92) and highly significant ( p≤ 0.005 for all behaviours;
electronic supplementary material, figure S2), all focal data were included to maximize the amount of
data used in the analysis. Second, to test if relative rates obtained from the collars (see ‘Activity
budgets based on acceleration data’) were positively correlated with the rates from focal observations,
we used Spearman’s correlations. Further, to test whether rates were consistently higher or lower for
different behaviours when using focal or collar data (which would indicate a method-based bias), we
used Wilcoxon signed-rank tests.
3. Results
3.1. Acceleration ethogram
Smoothed VeDBA (VeDBAs) was the most important variable for distinguishing among behaviours
(figure 2b). VeDBAs during running (median [first and third quartile]: 0.85g [0.62g–1.09g]) showed no
overlap with any other behaviour, and foraging and travelling had medians that fell outside the
interquartile ranges of all other behaviours (figure 1a; electronic supplementary material, table S7).
Conversely, the three ‘inactive’ behaviours (giving grooming, receiving grooming and resting) showed
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substantial overlap in VeDBAs ranges (electronic supplementary material, table S7; figure 1b). Median
VeDBAs for resting (0.031 g) was slightly higher than for receiving grooming (0.027 g) (electronic
supplementary material, table S7), which probably led to the overestimation of receiving grooming
during the night (see ‘Activity budgets’).

Static acceleration along the heave and surge axes (both provide information on posture) was also
important, with stZ and stX ranked second and fifth, and pitch (forward/backward rotation) ranked
fourth (figure 2b). The interquartile ranges for static acceleration channels overlapped for all
behaviours, but the interquartile range for receiving grooming was consistently the largest followed
by resting (see electronic supplementary material, table S7 and figure S4 for distribution of mean stZ),
suggesting that a large range of postures is adopted during these behaviours.

Three of the power spectrum densities (PSDs), i.e. PSD2X, PSD1Z, PSD2Z were in the top 10 most
important variables. Notably, PSD2X was important for identifying giving grooming with a median
that did not fall within the interquartile ranges of other behaviours (median [first and third quartile]:
0.0001g [0.00007g–0.0002g]; figure 1b). This suggests that giving grooming occurs on a regular low-
amplitude frequency (with lower values than the aforementioned ‘active’ behaviours but higher than
the two other ‘inactive behaviours’, viz., resting and receiving grooming).
3.2. Model performance
The model reached a precision of mean ± s.d. = 83.8 ± 0.4% and a recall of mean ± s.d. = 82.5 ± 0.5%
(electronic supplementary material, table S6). Receiving grooming had 91% precision and 79% recall,
while giving grooming had 81% precision and 87% recall (figure 2c). Resting had the lowest precision
(79%) and recall (77%) and was mostly confused with giving or receiving grooming (table 2;
figure 2c). Walking, foraging and running had high precision and recall (greater than 80%; figure 2c).
The slightly lower recall for walking compared with other active behaviours was primarily due to
instances misclassified as foraging (table 2), probably caused by the intermittent nature of walking
and foraging.
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3.3. Activity budgets
Activity budgets were calculated by applying the random forest model to the dataset (24 h d−1, total
collar days = 680; electronic supplementary material, table S8). Baboons spent on average (mean ± s.d.)
21.4 ± 9.0% of their time resting, 18.8 ± 6.3% giving and 30.0 ± 8.1% receiving grooming (n = 12;
electronic supplementary material, table S8). When restricting the collar data to direct observation
hours (07.00–17.00) the baboons spent 19.0 ± 9.6% of their time resting, 18.7 ± 6.6% giving grooming
and 15.2 ± 6.5% receiving grooming (n = 12; electronic supplementary material, table S9). See electronic
supplementary material, tables S8 and S9 for active behaviours (foraging, walking and running).

Based on the results of the accelerometer-identified activity budgets, which suggested receiving
grooming may be confused with resting (particularly during the night), we calculated whether
VeDBAs (the most important predictor variable; figure 2b) associated with resting overlapped more
with receiving grooming during the night than during the day, which was the case (see ‘Night versus
Day: Resting versus Receiving grooming VeDBAs’ in electronic supplementary material for details).
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3.4. Comparing acceleration-based rates of behaviours with focal rates
Overall behavioural budgets (during observation hours of 07.00–17.00) calculated using focal and
accelerometer data (based on random forest models) revealed comparable activity budgets (figure 3;
electronic supplementary material, table S13). Behavioural rates obtained from accelerometer-identified
budgets were significantly correlated with focal rates for giving grooming (ρ = 0.73, p = 0.010, n = 12;
figure 4c), but not for receiving grooming (ρ =−0.45, p = 0.147, n = 12; figure 4b). Rates from
accelerometer and focal data were significantly correlated for resting (ρ = 0.69; p = 0.016, n = 12; figure 4a)
and running (ρ = 0.58, p = 0.049, n = 12; figure 4f ) but not for foraging (ρ = 0.26; p = 0.417, n = 12;
figure 4d) and walking (ρ = 0.01, p = 0.991, n = 12; figure 4e). Focal sampling resulted in lower rates of
receiving grooming (Wilcoxon signed-rank test: Z =−2.31, p = 0.021, n = 12; figure 4b) but not
significantly different rates of giving grooming (Wilcoxon signed-rank test: Z =−1.68, p = 0.092, n = 12;
figure 4c) compared with accelerometer data. Focal sampling showed higher rates of foraging (Wilcoxon
signed-rank test: Z =−3.49, p < 0.001, n = 12; figure 4d ), but lower rates of walking (Wilcoxon signed-rank
test: Z =−2.70, p = 0.007, n = 12; figure 4e) and running (Wilcoxon signed-rank test: Z =−3.49, p < 0.001,
n = 12; figure 4f ). There was no significant difference in resting rates between the two methods (Wilcoxon
signed-rank test: Z =−1.19, p = 0.233, n = 12; figure 4a).
4. Discussion
This study aimed to quantify grooming from accelerometer data using machine learning. We first used
random forest models to identify receiving and giving grooming (and other behaviours) from
accelerometer data collected from n = 12 collared wild chacma baboons. Second, we applied the random
forest model to calculate activity (grooming) budgets for each individual. Third, we compared rates of
grooming obtained from focal data (direct observation) with rates obtained from accelerometer data
(using the random forest model). Below, we discuss each objective and associated findings in turn. We
also discuss the implications of this methodological advance for the study of social grooming and future
avenues for its application.

This study is the first to identify grooming with high precision and recall for both actors (precision
81% and recall 87%) and receivers (precision 91% and recall 79%) using tri-axial accelerometer data.
Compared with previous work on male baboons only [57], the focus on females (who devote high
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proportions of the day to grooming [71]) and the larger sample sizes for both grooming behaviours (± 6 h
versus ± 1.5 min for giving grooming; ± 4.5 h versus ± 4 min for receiving grooming in the current versus
previous dataset, respectively) probably explain this improved precision and recall (e.g. [58]). This
demonstrates that grooming behaviour, if performed frequently and when targeted during video
follows by the researchers, can be successfully identified and included into activity budget as social
behaviour alongside other state behaviours [45]. Because machine learning is a ‘black box’ in terms of
its internal decision rules [92], it is important to consider what biomechanical features distinguish
grooming from other stationary behaviours in acceleration signals [95]. Below we describe the findings
for giving and receiving grooming in turn.

Acceleration profiles for giving grooming show that sufficient movement takes place to produce a
distinctive cyclic pattern, with a median PSD2 along the X-axis (surge) which falls outside the
interquartile ranges of any other behaviours (electronic supplementary material, table S7, figure 1b).
This surge (back-and-forth) motion makes sense when considering the typical grooming rhythm, in
which the actor repeatedly moves their hands forwards and across the recipient in front of them.
Power spectra are typically used for identifying locomotion which produces repeated oscillations
[57,69,96,97], but self-grooming in domestic cats (Felis catus) is also associated with differently paced
cyclic patterns along the surge axis [65]. In a study on dingoes (Canis dingo), ‘self-grooming’ was
classified as a ‘medium’ activity class (repetitive head movement) associated with higher overall
dynamic body activity (ODBA) compared with resting behaviours [85]. Moreover, giving grooming
takes place in a relatively consistent posture (sitting), which narrows the range of static acceleration
associated with this behaviour (e.g. electronic supplementary material, figure S4) compared with
studies of self-grooming where postures may vary depending on the body part being cleaned [65,68].

Taken together, the present and previous studies suggest that the act of giving grooming, while
stationary, can still produce a distinct acceleration pattern that is discernible from other stationary
behaviours (i.e. resting, receiving grooming). Our study also highlights the value of performing further
waveform analyses to obtain descriptive statistics of how signal varies across time (e.g. to detect
repetitive patterns), rather than relying on measures of general body activity. For instance, previous
work on captive rhesus macaques using omni-directional accelerometers (which provide a general
indicator of ‘physical activity’) successfully differentiated ‘active’ from ‘inactive’ behaviours [56], but
these were unaffected by arm and neck movements which would be important for identifying grooming.
This corresponds to our findings: VeDBAs (also a general measure of activity based on the dynamic
acceleration across the three axes) overlaps between the three stationary behaviours (resting, receiving
and giving grooming; electronic supplementary material, table S7, figure 1b). By contrast, the relatively
small but repetitive movements during giving grooming were discernible in the PSDs (figure 1b).

For receiving grooming, the acceleration profile presents a challenge due to its resemblance to resting
(the difference between sitting versus sitting while being groomed is inevitably subtle). Previous studies
testing the use of tri-axial accelerometry to differentiate between non-active or slowly executed
behaviours suggest that there are limits to what fine-scale changes in movement can be detected using
accelerometers alone [98,99]. As both resting and receiving grooming are executed in similar body
positions (e.g. sitting, lying), static acceleration—which informs posture—would not be sufficient to
distinguish between these behaviours (e.g. see electronic supplementary material, figure S4 for stZ
distribution). Nevertheless, the random forest model shows relatively high precision and recall for both
behaviours (greater than 77%). Dynamic acceleration and its derivatives must thus pick up on very small
changes in movement. While being groomed may be expected to be associated with slightly more body
movements due to the manipulation of fur by another baboon, the median VeDBAs is, in fact, lower for
receiving grooming than for resting (electronic supplementary material, table S7; figure 1b).

There are several reasons why resting may generate more overall body movement than receiving
grooming. First, based on the labelled dataset, daytime resting is a behavioural state that is relatively
brief compared with receiving grooming (electronic supplementary material, table S5; resting bouts
were on average four times shorter than receiving grooming bouts). Thus, resting does not necessarily
reflect uninterrupted periods of relaxation (which would presumably be associated with very low
VeDBAs), but rather takes place as a relatively brief pause between activities. Consequently, when
taking a moving average across a 3 s window (as was done to obtain VeDBAs), the calculation will
take into account a second of the behaviour that precedes and follows resting. Quick transitions can
result in misclassifications of behaviours [100], and, considering that transitions have distinct
acceleration signatures [101], it is possible that more noise is introduced into the resting signal due to
its intermittent nature compared with receiving grooming, which is longer in duration. Second, from a
biological perspective, resting during the daytime (when video footage was collected), may be a more
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active behaviour than the name suggests. While standing (resting quadrupedally) and secondary
behaviours such as self-scratching and body shakes were removed from the dataset to create a ‘purer’
resting category, baboons still move their body during resting when scanning the environment (e.g.
vigilance [102]) or as they prepare to start moving [103]. Conversely, when being groomed, baboons
typically stay still, as would be expected when considering the tension-reducing effect of being
groomed, which is reflected in lower rates of behavioural indices of stress (e.g. yawning, scratching,
body-shaking, auto-grooming [104]). Furthermore, staying motionless makes the removal of
ectoparasites during grooming more effective [104].

The above notwithstanding, receiving grooming and resting are similar from an accelerometry
perspective with a difference in VeDBAs of less than 0.1g (figure 1b). Essentially, this reduces the
distinction to: was the baboon ‘still’ or ‘very still’? Based on the results from the random forest model,
‘still’ corresponds to ‘resting’ and ‘very still’ corresponds to ‘receiving grooming’ in a relatively reliable
way within the training data (approx. 23 h), but the assumption may not hold across all contexts for the
full study period (16, 319 h), which should be borne in mind when interpreting receiving grooming
budgets (see below). Future studies, or further exploration of this dataset, could investigate ways to
distinguish receiving grooming and resting with more certainty. Using GPS-identified dyads may help,
i.e. if two baboons are spatially close and are classified as giving and receiving grooming, respectively,
this may further help confirm receiving grooming. However, baboons often groom in small sub-groups
[105], and it is not uncommon to see several females grooming and resting in proximity without
necessarily grooming one another (C Christensen, AM Bracken 2018, personal observation).
Alternatively, accelerometers have been deployed on different body parts to target or tease apart similar
(from an accelerometry point of view) behaviours [45,106]. For instance, mandible- and head-mounted
accelerometers deployed on seals have been used to distinguish between feeding and vocalizing
(Leptonychotes weddellii [107]) and between resting and being alert (Halochoerus grypus [63]), respectively.
Arm-mounted accelerometers have been used in captive baboons [108] and wrist-mounted
accelerometers are currently being tested in wild olive baboons [109]. Self-directed behaviours (e.g.
scratching) decline while receiving grooming [104] and can increase during resting [110,111], thus wrist-
mounted accelerometers may add a layer of information that could help distinguish between the two
behaviours. Finally, collar-mounted cameras deployed on primates have recorded grooming [112], but
this data collection method is costly in terms of energy and on-board memory (B Walton 2022, personal
communication). In conclusion, resting and receiving grooming fall into a category of stationary
behaviours that present challenges for identification using tri-axial acceleration signals alone [98]. Collar-
mounted tri-axial accelerometers do allow estimating these behaviours to an extent, but continued efforts
to improve detection will allow leveraging the benefits of continuous grooming data with more certainty.

The ability to quantify grooming continuously (as made possible by using collars) opens a wealth of
potential questions for investigation, for instance in the fields of socio-endocrinology [20], socioecology
[2,113], biological markets [18,29] and grooming social networks [114]. Rather than correlating grooming
rates to concurrent physiological, ecological or social conditions, continuous grooming data from collars
allow tracking the dynamic nature of the decision-making process during grooming. For example,
simultaneous grooming activity across a social network could shed light on how much time and when
individuals invest in grooming relative to the changing availability of grooming partners. Collars also
allow measuring grooming at times when direct observation is precluded, such as at hard-to-reach sleep
sites or at night [115–117]. Physiological correlates of grooming, which are often monitored non-
invasively in the wild (e.g. urine and faeces [118]), can be studied by time-matching hormone measures
to grooming data retrospectively; addressing both how grooming is affected by physiology and vice
versa, e.g. in the context of social buffering [119] or of the sociality–health–fitness relationship more
broadly [120]. Finally, while the grooming literature is primate-skewed, many other group-living animals
perform allo-grooming [13,16,23,121] or allo-preening [14] and use it as a tradeable commodity [16] and/
or in social bond formation [23]. As tracking devices have been deployed successfully in some of these
systems (e.g. Suricata suricatta [95], Desmondus rotundus [122], Equus caballus [123]), grooming
identification from acceleration data could be applied more widely, particularly if the postures adopted
during grooming are relatively consistent (e.g. as was the case for giving grooming in this study).

Our second objective—calculating activity budgets based on random forest models—revealed an
important aspect of the evaluation of random forest model performance. The accelerometer-identified
activity budgets across 24 h suggest that overall baboons spent on average 30% of time engaged in
receiving grooming, 19% giving grooming and 21% resting. When restricting the time window to
direct observation times (07.00–17.00), baboons spent on average 15% receiving grooming, 19% giving
grooming and 18% resting. The steep increase in receiving grooming (±15%) when including night
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hours, compared with a modest increase in resting (±2%), strongly suggests that resting during the night
is misclassified as receiving grooming (though some of the receiving grooming is probably ‘true’, as
baboons are known to groom at the sleep site at night; [117]). As discussed above, there is
considerable overlap between accelerometer variables between resting and receiving grooming, but
receiving grooming has the lower median VeDBAs (electronic supplementary material, table S7;
figure 1b). This raises the question whether receiving grooming is more prone to confusion with
resting during the night compared with the day, which may be the case if resting during the night is
more still (due to sleeping) compared with resting during the day (where brief resting is more typical;
electronic supplementary material, table S5). Indeed, other studies treat resting and sleeping as
separate behaviours due to the difference in energetic demands [124,125] and a recent study
investigating baboon sleep patterns using accelerometers likewise distinguished between ‘sleep’ and
‘resting wakefulness’ [117].

The median/range VeDBAs calculations for resting during day versus night in the present study are in
line with this, showing more overlap in VeDBAs between resting and receiving grooming at night
(electronic supplementary material, figure S7). As a consequence, when the random forest model is
trained using a biased testing dataset (e.g. daytime resting but no night-time sleeping), it can appear to
function well in the first phase (e.g. when precision and recall are calculated using the same biased
dataset) but, once applied to a new independent dataset, make predictions that are comparable to
random guesses [126]. When considering direct observation hours only (when videos were collected),
however, the activity budgets are biologically more plausible. Calculating activity budgets could serve as
a ‘quality control’ step for random forest model performance beyond the commonly used metrics (e.g.
precision, recall).

As a third and final objective, this study offered a unique opportunity to compare acceleration-based
activity budgets with direct focal observations [47]. Usually, this is not possible because the primary
motivation for using collars is to reconstruct activity budgets of animals that are not readily
observable in their natural habitat (e.g. [45,61]). Focal data may over- or under-estimate behaviours
depending on the visibility of the behaviour or observer bias to start (or stop) focal follows during
certain behaviours (e.g. stationary) over others (e.g. running) [93]. Moreover, focal data can be
collected using both continuous (here: giving and receiving grooming) or instantaneous (all other
behaviours) sampling methods [47,93], with the latter method being prone to underestimation of rare
behaviours [93] which accelerometer data, collected at a 1 s resolution, can reliably record.

The relative breakdown of behaviours was comparable between the two methods, with baboons
spending most of the day foraging, followed by resting, giving grooming, receiving grooming, walking
and running (electronic supplementary material, table S13; figure 3). We found positive correlations
between accelerometer and focal rates for giving grooming and resting but not receiving grooming
(figure 4). Moreover, we found that receiving grooming rates were significantly lower using direct
observation (figure 4b), while giving grooming (figure 4c) and resting (figure 4a) were comparable
between the two methods. These findings suggest focal data are returning both different and relatively
lower individual rates for receiving grooming, but not the other two stationary behaviours. The lack of
correlation might be due to the relatively small range in individual rates of receiving grooming (between
3% and 12%, when ignoring the outlier (M2) visible in figure 4b), compared with giving grooming and
resting ranges (0–35% and 8–46%, respectively) in the focal data, which could make it harder to detect
individual differences in receiving grooming and thus correlate to accelerometer-identified rates.
Receiving grooming was also the least frequent of the three stationary behaviours, both in focal and
collar identified rates (electronic supplementary material, table S13; figure 3), and thus could be subject
to lower estimations in focal data despite being easy to observe. Finally, accelerometer-identified
receiving grooming, while more distinct from resting during the day (electronic supplementary material,
figure S7), could still be confused with daytime resting if VeDBAs is low (figure 1). This would inflate
the ‘false positive’ receiving grooming rate returned by the accelerometers relative to focal data, causing
the significantly higher rates identified in accelerometer data (figure 4b).

Foraging rates were significantly higher in focal data, while travelling and running were both lower
using focal data. Foraging and walking occur intermittently, and it is possible that the amount of walking
between foraging patches is estimated to be lower through instantaneous sampling (i.e. even if a few
steps are taken between foraging patches, the behaviour would still be labelled ‘foraging’ during scan
sampling). Moreover, active behaviours such as walking and running are probably underestimated as
the focal individual is more easily lost ([93]; C Christensen, A Bracken 2018, personal observation).
Finally, sample collection (faeces and urine) as part of a larger study [118,127] often resulted in
termination of observations if the focal animal moved off, which could result in less walking/running
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being recorded. Taken together, these findings suggest that while overall activity budgets are comparable
(figure 3), individual receiving grooming rates are lower and not correlated with accelerometer-identified
rates.

Overall, this study presents a step towards the quantification of social grooming in unprecedented
detail, but its applicability largely depends on the specific research aim(s) and the feasibility of using
collars. Deploying collars requires ethical [128], logistical (e.g. deployment, collar failure) and financial
considerations [129], whereas traditional observations can be conducted with minimal interference and
at low cost. Moreover, depending on the objectives of the study, direct observations may be preferable
if the aim is to reconstruct entire social networks, as collar data is limited to the number of collared
individuals. On the other hand, studies which aim to uncover mechanistic details about grooming
stand to gain by pursuing accelerometer-identified grooming, as changes in grooming durations and
frequencies can be tracked and time-matched to changes in internal (e.g. physiology) and external
(e.g. environmental and social) factors.

Ethics. Work on the baboons was approved by Swansea University’s Ethics Committee (IP-1314-5) and local authorities
(Cape Nature, permit number: CN44-59–6527; SANparks, permit number: CRC/2018–2019/008–2018/V1). Sixteen
adults (n = 2 males, n = 14 females) were fitted with tracking collars. Baboons were anaesthetized using Ketamine
(dose adjusted for body mass) in accordance with local protocols (described by Fehlmann et al. [57]). Collars were
approved by Swansea University’s Ethics Committee (IP-1314–5), weighed mean 2.2% baboon body mass (range
1.2–2.6%), and were fitted with a drop-off mechanism (version CR-7, Telonics, Inc.) to reduce the need for
recapture. No baboons died or sustained injury during capture and no injuries from wearing the collars were
observed.
Data accessibility. The code to run the random forest model and the video-labelled accelerometer dataset used to train
and validate the model are provided as electronic supplementary material. The behavioural rates calculated from
accelerometer and focal data are attached as electronic supplementary material. A document explaining the content
of each electronic supplementary material is provided. The code to calculate the variables from the accelerometer
data is published in Animal Biotelemetry (open access): [57].

The data are provided in electronic supplementary material [130].
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