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Abstract

Wireless communications systems have become an irreplaceable part of
daily life. In recent years, machine-learning (ML) algorithms have been widely
applied in various industries. Particularly, they are often employed in wireless
communications because of the correlations in the time and space dimensions
of wireless signals, channels, and energy. In this thesis, the performances of
different conventional ML algorithms, deep-learning (DL) algorithms, and ad-
versarial attack methods are evaluated in a wireless powered communications
(WPC) system, wireless channel prediction, and signal detection in a multiuser
orthogonal frequency-division multiplexing (OFDM) communications system.
Numerical results are presented to show the performances of these algorithms.
First, for efficient operation of an energy harvester in a WPC system, four
different ML algorithms are used to model the radio frequency energy data.
Linear regression (LR) is found to have the highest accuracy and the most sta-
ble performance for energy prediction. Next, five conventional ML algorithms
are compared for channel prediction and further signal detection based on the
prediction. The support vector machine (SVM) is found to have the best per-
formance in terms of prediction accuracy and stability. For signal detection,
SVM and LR give similar or even better performances to the existing scheme
at high constellation size. Then, three DL algorithms are proposed for signal
detection in an uncoded multiuser OFDM communications system. Addition-
ally, the relationships between the bit error rate (BER) and different factors
are investigated. The DL methods outperform linear minimum mean-squared
error, and they are robust when the channel has a high variability. Finally,
different attack algorithms are evaluated against a DL-based multiuser OFDM
detector. The BERs under these attack methods show that the perturbation
efficiency of adversarial attacks is higher than general multiuser interference.
Virtual adversarial method and the zeroth-order-optimization attack are the
most efficient among the white- and black-box methods, respectively.
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Chapter 1

Introduction

1.1 Scope of the Thesis

In recent years, machine learning (ML) algorithms have been developed and

widely applied in various fields as mature systems [1]. Because of their good

performance and popularity, they have been used in many industries. Thus,

the researches in this thesis intend to explore the application of ML algo-

rithms in wireless communications. Firstly, the purpose of developing wireless

powered communications (WPC) system is to extend the lifetimes of wireless

devices by capturing ambient radio frequency (RF) signals from the environ-

ment, as introduced in Section 1.2. Currently, increasing numbers of mobile

devices and various media sources are relying on RF signals in the environment

to realize their fundamental communication function. However, much RF en-

ergy is wasted because it cannot all be received at its intended destination;

this RF energy will dissipate into the environment as heat [2].

In the use of RF energy harvesting in wireless sensor network (WSN)

systems, although the amount of energy harvested is relatively constant, there

1



are still small variations in the power received. Consequently, a situation may

occur in which inadequate energy is supplied for a WSN to perform its main

tasks of transmitting and receiving data [3]. Any retrospective action taken

after realizing that there was inadequate energy to perform a task would be

futile. To mitigate this issue, it is necessary to know when those periods of low

energy will occur so that proactive mitigating measures can be put in place to

ensure constant functioning of the WSN. Therefore, it is valuable to explore the

application of ML algorithms to preventing the issue by recognizing patterns

in RF energy by building a time-based predictive model.

Secondly, as the communication channel is at the bottom of the physical

layer in a wireless communications system, the received signal can be seriously

affected by channel dynamics caused by distortions, such as fading, noise, and

interference [4]. As a result, the performance of the wireless system will also

be affected. Traditionally, to recover unknown transmitted data symbols and

to tackle random distortions in communication channels, they will be com-

pensated at the receiver according to their estimated value. Thus, a wireless

receiver has two main functions: channel estimation and signal detection.

To improve accuracy, pilot symbols, whose positions and values in the

time–frequency domain are known to both the transmitter and the receiver,

are usually used to assist the channel estimation [5, 6]. The main idea of

this method is to remove the uncertainty from the transmitted symbols in

the estimation of the channel, which is then used to remove the uncertainty

in the channel to recover unknown transmitted symbols in later signal detec-

tion [7]. Most existing pilot-assisted estimators use classical methods, such as

least-squares (LS), minimum mean-squared error (MMSE), and linear MMSE

(LMMSE). Generally speaking, since the LS estimator estimates a wireless

2



channel without using its statistical information, this method is sensitive to

interference [8]. The MMSE method makes use of the noise variance and

correlation of the channel, which increases the computational complexity, as

calculation of the sample correlation matrix is complicated [9]. LMMSE is the

linear version of MMSE. Compared to MMSE, it has reduced computational

complexity because it uses only frequency correlation [10].

There are two different types of ML: classification and regression [11].

Since the estimation of a wireless channel is essentially about regression and

signal detection is essentially about classification, ML can be applied to chan-

nel estimation and signal detection in wireless communications. By using ML

algorithms, channel gain can be calculated without the channel correlation

matrix, which leads to higher efficiency. Thus, there is a great opportunity

to apply ML methods to channel estimation and signal detection in wireless

communications for better performance. Indeed, one starts to see ML as a key

enabler for future wireless networks, including 5G and beyond, and it is used

frequently in wireless communications systems.

Generally, a wireless channel can be represented as a time-related com-

plex sequence. Therefore, time-based predictive models can be built to predict

the wireless channel using regression. Conventional ML methods have their

own advantages in this field. They do not depend on a large number of epochs

of training or large-scale training data. Thus, in time-based prediction work,

an ML model can be renewed in each step to fit the latest patterns and obtain

higher prediction accuracy. Therefore, conventional ML algorithms are chosen

to complete the work of channel prediction. To verify their feasibility and

improve their performance, these ML algorithms need to be evaluated, and

suitable algorithm selections should be made to predict the channel.
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Thirdly, Orthogonal frequency-division multiplexing (OFDM) is a pop-

ular modulation scheme that can combat frequency-selective fading in wireless

channels. Deep learning (DL) methods are widely used due to their out-

standing performance in pattern-recognition tasks with large-scale or high-

dimensional data, including natural language identification [12], image process-

ing [13], and visual tracking [14]. Recently, DL has also been widely adopted

in the physical layer of wireless communications systems [15], including for

channel estimation [16, 17], signal detection [18], and channel extrapolation

[19]. Although DL is also used in OFDM communications systems [8], there

is still no research relating to DL-based detection under a general uncoded

multiuser OFDM scenario. Thus, it is necessary to test the performance of

DL-based detectors in a multiuser OFDM system.

Last but not least, although DL is useful in the field of wireless com-

munications, it has been shown to be vulnerable to examples created by ad-

versarial methods. These adversarial attacks have become security risks for

several areas in which DL is employed, including spam detection [20], com-

puter vision [21], malware detection [22], and image classification [23]. How-

ever, because numerous problems in wireless communications applications are

essentially binary-classification tasks between 0 and 1, it is more difficult to

generate perturbations to cause a DL-based detector to misjudge in a clas-

sification problem. This means that DL-based communications systems are

less vulnerable than other types of DL-based systems when they are exposed

to attackers. Although several studies have applied different adversarial algo-

rithms to different communications systems, none has concentrated on attacks

against a multiuser OFDM system. In such a situation, the attacker could be

a legitimate but malicious user in the system, which means that the attack is
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Figure 1.1: Wireless sensor node architecture.

more likely to succeed. Therefore, it is valuable to study the performance of

adversarial methods in multiuser OFDM systems.

1.2 Wireless Powered Communications System

A WSN consists of independent sensing nodes that are connected via wireless

links over short distances [24]. The sensing nodes are often small and mul-

tifunctional, and they often have low power consumption. They are usually

managed by a central controller to collect data in a specific area. Figure 1.1

[25] shows the architecture of a typical wireless sensing node. In almost all

wireless sensing nodes, the power unit is the most important component [25].

This is because once the battery runs out, none of the other units in the sen-

sor will be able to operate. Thus, one technique that has been developed to

support perpetual operation of wireless nodes is to harvest energy from the

ambient environment to extend the battery life [25]. By using this harvested

energy, a wireless sensing node can be less dependent on a battery. Further-
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more, the burden on the battery can be significantly reduced and the lifetime

of the wireless sensing node can be extended [26].

Energy harvesting is a process in which energy is obtained from exter-

nal sources; it can be captured and stored for small wireless devices such as

wearable electronics and wireless sensing nodes [27]. Because solar energy has

wide availability and high energy density, it has been widely used in WSNs

to charge batteries. Some previous studies have contributed to the modelling

of solar energy sources [28]; however, in general, solar energy is limited by

weather conditions. For example, on cloudy or rainy days, the amount of

available solar energy is very limited, and it cannot be harvested at night [29].

To address these limitations, a new format of communication, which is

called WPC system, is applied to various low-power-consumption system such

as WSN. In a WPC system, ambient RF energy can be harvested from the

environment; there are many sources of RF energy due to the recent develop-

ment and proliferation of wireless systems [30]. Ambient RF energy is thus

relatively stable, and it provides a cost-effective solution as a substitute for

batteries. Moreover, RF energy harvesters are easy to integrate into wireless

sensing nodes [29]. For these reasons, ambient RF energy harvesting has been

widely used in WSNs with lower power consumption.

In [31], an ambient RF energy harvester was designed based on the re-

quirements for wireless devices. By harvesting and converting the energy from

a 2.45GHz Wi-Fi signal for 20 minutes, a maximum current of 20µA was

achieved, and this allowed a liquid-crystal display of temperature and humid-

ity to function continuously for 10 minutes. In [32], a battery-free embedded

sensor platform was designed; this used the ambient RF energy from a wireless

digital television signal as its power supply. This could successfully provide
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power for a 16-bit embedded sensor microcontroller and keep it working. In

[33], RF energy harvesting was optimized by using adaptive work-cycle con-

trol technology. After improving the sensing rate and efficiency, the sensor

was provided with an average voltage of 2.68V at the height of the 11th floor,

6.3 km away from the Tokyo TV transmission tower. In addition to the appli-

cations described in these works, many other RF sources have been harvested

for various types of low-power wireless devices. Ambient RF energy has thus

been proven to be a reliable power source in the application of WSNs.

1.3 OFDM Communications Systems

OFDM is an extended application of multicarrier (MC) transmission, which

was introduced in [34] and [35]. In [36], OFDM was proposed as a MC trans-

mission technique, and it was first implemented in a mobile wireless commu-

nications system in [37]. In recent years, to combat multipath fading and

intersymbol interference (ISI), OFDM has become a widely used modulation

scheme in various wireless communications systems, including Wi-Fi and 5G

cellular networks [4].

The following equations (1.1) to (1.12) are from [38]. An OFDM system

has N subchannels, and each subcarrier can be represented as

xk (t) = Bk cos (2πfkt+ φk) , (1.1)

where: k = 0, 1, · · · , N − 1; Bk is the amplitude of the k-th subcarrier; fk is

the frequency of the k-th subcarrier; and φk is the initial phase of the k-th

subcarrier. Thus, the sum of the N sub-signals in this system can be presented
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as

e (t) =
N−1∑
k=0

xk (t) =
N−1∑
k=0

Bk cos (2πfkt+ φk) =
N−1∑
k=0

Bke
j(2πfkt+φk), (1.2)

where Bk is the complex input of the k-th subchannel. To split signals in

N subchannels, Bk should be orthogonal. Thus, any two subcarriers should

satisfy ∫ TB

0

cos (2πfkt+ φk) cos (2πfit+ φi) dt

=
1

2

∫ TB

0

cos [2π (fk − fi) t+ φk − φi] dt

+
1

2

∫ TB

0

cos [2π (fk + fi) t+ φk + φi] dt

= 0,

(1.3)

where TB is the period of the symbols. After integral calculation,

sin [2π (fk + fi)TB + φk + φi]

2π (fk + fi)
+

sin [2π (fk − fi)TB + φk − φi]

2π (fk − fi)

− sin (φk + φi)

2π (fk + fi)
− sin (φk − φi)

2π (fk − fi)
= 0.

(1.4)

Thus, when equation (1.4) = 0, it can be obtained that

(fk + fi)TB = m, (fk − fi)TB = n, (1.5)

where m and n are integers. This can be solved as

fk =
(m+ n)

2TB

, fi =
(m− n)

2TB

, (1.6)
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Figure 1.2: Schematic of a practical OFDM transmitter and receiver system.

which means that the frequencies of the subcarriers should satisfy

fk =
k

2TB

, (1.7)

where k is an integer, and the interval between the subcarrier frequencies is

∆f = fk − fi =
n

TB

. (1.8)

Thus, the minimum interval between subcarrier frequencies is

∆fmin =
1

TB

. (1.9)

This is also the interval between adjacent subcarrier frequencies in an OFDM

system. The practical structure of a DL-based multiuser OFDM communi-

cations system is shown in Figure 1.2. In equation (1.2), when φk = 0, the
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OFDM modulated signal can be represented as

e (t) =
N−1∑
k=0

Bke
j(2πfkt). (1.10)

The input transmitted symbols e (t) are then converted from a serial to a

parallel stream. The transmitted signal is converted to the time domain by an

inverse discrete Fourier transform (IDFT), which can be represented as

e (k) =
1√
K

K−1∑
n=0

B′
ne

j(2π/K)nk, (1.11)

whereB′
n is a complex parallel stream of transmitted symbols, K is its number

of terms, and k = 0, 1, · · · , (K − 1). After the digital–analogue converter, the

discrete-sampled signal e (k) is converted to a continuous OFDM signal as

e (t) =
1√
K

K−1∑
n=0

B′
ne

j(2π/TB)nt. (1.12)

A cyclic prefix (CP) is inserted between adjacent OFDM blocks to solve

the ISI caused by the delay spread of the channel [39]. The length of a symbol

without the CP is Ts; after the CP is added, the length of OFDM signal

(1.10) is extended to T = Ts + TCP. Thus, when −TCP ≤ t ≤ 0, symbol

ẽ (t) = e (t+ Ts). After the CP is inserted into the symbols, the signal is

converted back to a serial stream and sent to the wireless channel.

At the receiver, the demodulation of the OFDM signal is the reverse

process of modulation, including parallel-to-serial conversion, removal of the

CP, discrete Fourier transform (DFT), and serial-to-parallel conversion, as

shown in the lower part of Figure 1.2. Finally, the symbols are recovered.
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1.4 Proposed Learning Algorithms

ML algorithms aim to use of data and algorithms to imitate the way that hu-

mans learn, and build a model based on known sample data, in order to make

decisions or predictions and improve their accuracy without being explicitly

programmed to do so [40, 41]. It is regarded as a branch of artificial intelli-

gence. An ML approach can learn from past experience to improve a method

or model, leading to better performance [42]. Recently, ML methods have been

developed for many applications in communications. For example, they can

be used to achieve human–computer interaction [1]. In general, ML methods

can be divided into supervised, unsupervised, and reinforcement learning. Su-

pervised learning builds an optimal model that can be used to predict future

results from a new data set based on an existing training data set [11]; unsu-

pervised learning is used in applications in which there are no labels for data

or no certain results [43]; and reinforcement learning does not require any data

to be given in advance, but obtains learning information and updates model

parameters by receiving feedback from the environment for actions [44]. All

of the learning methods used in the work of this thesis are supervised.
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1.4.1 Conventional ML Methods

Linear Regression

In ML, linear regression (LR) builds a linear function model. Its function can

be represented as

hθ (x) = θ0 + θ1x1 + θ2x2 + · · ·+ θnxn

= θ0 +
i=n∑
i=1

θixi,
(1.13)

where n is the number of parameters, θi is the i-th training feature vector, and

xi is the i-th input vector. When the model is being trained, the Euclidean

distance between samples and the line hθ (x) is measured. The loss function,

the mean-squared error (MSE), is based on this distance. The MSE can be

represented as

J (θ) =
1

n

i=n∑
i=1

[f (xi)− yi]
2 , (1.14)

where yi is the i-th output. The model is trained using the LS method, and

the best coefficients θ0, θ1, θ2, · · · , θn are obtained [45].

Support Vector Regression

Solving a regression problem using a support vector machine (SVM) is referred

to as support vector regression (SVR). As shown in Figure 1.3, SVR aims to

set a ‘hyperplane’ and a minimum distance from the hyperplane to the farthest

sample point. SVR creates a ‘spacer band’ on both sides of the linear function,

with a spacing of ε. For all the samples falling within the spacer band, the

error will be accepted. In other words, only when the error is larger than ε will

the loss be calculated [46]. Those samples that play a role in the determination
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Figure 1.3: Schematic diagram of SVR, where w and b is the weight and the
bias, x is the input vector, and ε are respectively the spacing size.

of the final parameters of the hyperplane are called ‘support vectors’. Finally,

the optimized model is obtained by minimizing the total loss and maximizing

ε.

In linear conditions, the hyperplane function can be described as

f (x) = wx+ b. (1.15)
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Thus, the problem can be represented as

min
1

2
∥w∥2

s.t.

yi − (wxi + b) ≤ ε i = 1, 2, · · · , N ;

(wxi + b)− yi ≤ ε i = 1, 2, · · · , N,

(1.16)

where N is the number of training samples.

In practice, if ε is too small, it cannot be guaranteed that all useful

sample points are in the spacer band. Conversely, if ε is too large, the hyper-

plane will be biased by some abnormal points. Therefore, slack variables ξi, ξ
∗
i

are added to cope with exceptional infeasible constraints to the optimization

problem (1.16). The problem can then be described as

min
1

2
∥w∥2 + C

N∑
i=1

(ξi + ξ∗i )

s.t.


yi − (wxi + b) ≤ ε+ ξi i = 1, 2, · · · , N ;

(wxi + b)− yi ≤ ε+ ξ∗i i = 1, 2, · · · , N ;

ξi, ξ
∗
i ≥ 0,

(1.17)

where the constant C > 0 determines the penalties for samples whose devia-

tions are larger than ε. After some mathematical operations, the optimization

problem is transferred to a dual problem. When the problem is nonlinear, ker-

nel functions are used to map the samples to high-dimensional feature space

and convert it into a linear divisible problem. Finally, (1.15) can be represented

in explicit form as [47]

f(x) =
N∑
i=1

(αi − α∗
i )K (xi,x) + b, (1.18)
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where αi and α∗
i are Lagrange multipliers and K (xi,x) is a kernel function.

In the work of this thesis, a radial basis function (RBF) is used as the kernel

function. Its formula is

K (xi,xj) = exp

(
−∥xi − xj∥2

σ2

)
, (1.19)

where σ2 is the width parameter of the RBF.

Decision Tree

The decision tree (DT) is an ML method with a tree-like structure. Each node

of this tree represents the test of a feature, each branch of the genus represents

a test result of a feature, and each leaf node of the tree represents a classifica-

tion result. A DT model can be applied to processing both classification and

regression problems. A regression tree divides the feature space into several

units, each of which has a specific output. Test data is then classified into

units according to its characteristics, and corresponding output values can be

obtained. In the work of this thesis, the MATLAB function fitrtree is used

to build DT regression models that follow the classification and regression tree

(CART) algorithm [48, 49].

The CART algorithm is employed to build classification or regression

models based on a binary tree. Assuming that a split s is a partition of

n samples according to the feature j into two classes R1 (j, s) and R2 (j, s),

which respectively satisfy

R1 (j, s) =
{
x | x(j) ≤ s

}
, R2 (j, s) =

{
x | x(j) > s

}
. (1.20)
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For the classification problem, the formula for the Gini index is

Gini (p) =
K∑
k=1

pk (1− pk) , (1.21)

where K is the number of the class. Hence, in binary classification, the Gini

index can be represented as

Gini (p) = 2p (1− p) . (1.22)

In regression, the sum of the MSE of each node after a split and the MSE of

the nodes before split is used as an alternative to the Gini index. The problem

of regression can be represented as

min
j,s

min
c1

∑
xi∈R1(j,s)

(yi − c1)
2 +min

c2

∑
xi∈R2(j,s)

(yi − c2)
2

 , (1.23)

cm =
1

Nm

∑
xi∈Rm(j,s)

yi m = 1, 2, (1.24)

where Nm is the number of samples in class Rm. The samples will be split

continuously as (1.20), (1.23), and (1.24), until meeting the stop condition.

Finally, the input space x will be split into M regions R1, R2, . . . , Rm, and the

DT regression model will be built as

f (x) =
M∑
i=1

cmI(x ∈ Rm), (1.25)
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where I is the indicator function:

I =

1 if (x ∈ Rm) ;

0 if (x /∈ Rm) .
(1.26)

Random Forest

The random forest algorithm (RFA) is one of the ensemble versions of the

DT algorithm. In the RFA, the training set is randomly sampled T times by

choosing M samples each time to obtain the sampling set DT , which is used

to train T DTs. Assuming that each sample has M attributes, when each

node of the DT needs to be split, m attributes are randomly selected from

these M attributes, where m≪M . Each node should be split until it cannot

be split further. Hence, a large number of DTs are built, and this is the so-

called ‘random forest’. For regression problems, the final result of an input

is obtained by averaging the prediction results of multiple DTs. This can be

represented as

f̄ (x) =
1

T

T∑
t=1

ft (x) , (1.27)

where ft (x) denotes the t-th tree in the forest.

Ensemble Regression of Trees

Ensemble regression (ER) of trees is used to build a predictive model that

is composed of a weighted combination of multiple DTs. In the work of this

thesis, the fitresemble function in MATLAB is used to boost regression trees

using the LSBoost method. LSBoost is a boosting algorithm that is suitable

for regression systems [50]. A new tree, which is a so-called ‘weak learner’

hm(x), is added into the overall model FM(x) in each iteration. This can be
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represented as

Fm+1 (x) = Fm (x) + ηhm (x) , (1.28)

where η ≤ 1 denotes the learning rate.

1.4.2 Deep-Learning Methods

Fully Connected Deep Neural Network (FCDNN)

As the structure in Figure 1.4 shows, an FCDNN is an advanced version of

an artificial neural network that is composed of several layers, each of which

contains multiple neurons. An FCDNN consists of an input layer, hidden lay-

ers, and an output layer. Increasingly complex patterns of data can be learned

by the addition of increasing numbers of hidden layers. Mathematically, an

FCDNN can be represented as

ẑ = f (I,W) fL
(
fL−1

(
...f 1 (I)

))
, (1.29)

where ẑ is the output of the neural network, L denotes the number of layers,

I is the input data, and W is the weighting of the network, which needs to be

optimized in the training process [8].

To improve the performance of a deep neural network (DNN), it will be

trained using labelled data. The weight and bias of each layer are optimized

in multiple epochs. The training of an FCDNN is divided into two processes:

forward propagation and backward propagation. In forward propagation, a

weight is assigned to each input vector x to calculate a result vector. This can

be illustrated by

z = wx+ b, (1.30)
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Figure 1.4: Structure of an FCDNN.

where: z and x are the output and input vectors of the neuron, respectively;

and w and b are the weight matrix and the bias, respectively. Then, to make

the neural network nonlinear, an activation function is used to deal with the

numerical result obtained by the linear transformation. The formula of the

Sigmoid function is

σ (x) =
1

1 + e−x
, (1.31)

and that of the rectified linear unit (ReLU) function is

f (x) = max (0, x) , (1.32)

The loss function will be calculated based on the dissimilarity between the

actual output value and the predicted value. In the signal-detection work

presented in this thesis, the MSE function is chosen to calculate the loss. The
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loss function L2 can be described as

L2 =
1

N

N∑
i=1

(ŷi − yi)
2 . (1.33)

where N is the number of predicted values, ŷi is the prediction value, and yi

is the supervision value.

In the backward-propagation process, the partial derivatives of the loss

function are calculated to compute the loss gradients of each layer [51]. Then,

they are back-propagated to fit the neural network. The process of optimizing

the parameters repeats until the pre-set number of iterations is reached; this

minimizes the loss function and improves the model’s accuracy. It can be

represented as

wi+1 = wi − α
∂L2 (w,b)

∂w
, (1.34)

where i denotes the number of iterations, α denotes the learning rate, and wi

is the weight of the i-th layer.

Convolutional Neural Network (CNN)

Essentially, a CNN is a neural network constructed by forward propagation

and trained by back propagation. The structure of a CNN is similar to that

of an FCDNN; it consists of multiple layers, including an input layer, several

hidden layers, and an output layer. However, in contrast to an FCDNN, a

CNN has particular hidden layers known as convolution layers. These are the

core layers of a CNN, and they generate most of its computation. Convolution

is widely used in image processing. For example, a discrete 2D filter, which is

also called a convolution kernel, is used to perform convolution operations on

2D images. This 2D filter (Conv2D) slides to all positions on the 2D image
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and calculates the inner product with the central pixel point and the areas

neighbouring that point. The output of two Conv2D layers can be written as

I′′ = f (K2 ⊗ f (K1 ⊗ I′ + b1) + b2) , (1.35)

where KL is the L-th convolutional kernel, ⊗ indicates the convolution op-

eration, and b represents the bias. Different convolution kernels can extract

different features, such as edges, linearity, and angles. In a CNN, both the

simple and complex features of images can be extracted by convolution oper-

ations.

Long Short-Term Memory (LSTM)

The LSTM network was first proposed by the authors of [52] in 1997. It is a

development from a recurrent neural network (RNN). In an RNN, the hidden

state of node ht can be represented as

ht = σ (wxtxt +whtht−1 + b) , (1.36)

where xt represents the t-th observation, and wxt and wht are the network

weights. However, with an RNN, long-term series data will lead to long-

term dependence problems; this means that earlier information recorded in

the memory unit will be diluted with the passage of time steps. As a result, it

will be difficult to establish the dependency relationships between parameters

and the information in earlier time steps. The LSTM network solves the long-

term dependence problem by incorporating a ‘gate’ into each memory unit to

control the flow and loss of features.
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Figure 1.5: Structure of an LSTM block, where Ct−1 and Ct are respectively
the cell states at the t−1-th and t-th observations, ht−1 and ht are respectively
the hidden states of the t − 1-th and t-th nodes, C̃t is the cell state update
value, xt is the input data, ft), it, and ot are the states of forget gate, input
gate, and output gate, respectively.

The structure of the memory block of an LSTM network is shown in

Figure 1.5. It consists of one memory cell with an input gate, a forget gate,

and an output gate. In the figure, Ct represents the cell state at the t-th

observation. This can be described as

Ct = ft ∗Ct−1 + it ∗ C̃t, (1.37)

where ∗ indicates element-wise multiplication. The forget gate ft indicates

which features of Ct−1 are used to calculate Ct. It can be represented as

ft = σ (Wf · [ht−1,xt] + bf ) , (1.38)
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where W and b are the weight and bias terms, respectively. Generally, ft

uses a sigmoid activation function. The output of the sigmoid function is a

value in the range [0, 1], and C̃t represents the cell state update value, which is

obtained from the input data xt and the hidden node ht−1 via a neural network

layer. The activation function of C̃t is usually tanh. The input gate it reads

data from input xt. Similar to ft, the elements of it are in the range [0, 1], and

they are also calculated using ht−1,xt through a sigmoid function. it indicates

which features of C̃t are used to update Ct; these can be represented as

it = σ (Wi · [ht−1,xt] + bi) , (1.39)

C̃t = tanh (WC · [ht−1,xt] + bC) . (1.40)

Then, to calculate the predicted value ŷt and generate the input for the next

observation, the output of the hidden node needs to be calculated. This can

be gained from the output gate ot and cell state Ct. The calculation of ot is

similar to those for ft and it. It can be described as

ot = σ (Wo · [ht−1,xt] + bo) , (1.41)

ht = ot ∗ tanhCt. (1.42)

The output ŷt is often obtained from ht after changes.

1.4.3 Adversarial Attack Methods

Adversarial attack methods can be divided into white-, black-, and grey-box

attacks. For white-box attacks, the attacker knows all the information and
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parameters of the DL model and generates adversarial samples based on the

known model to attack the network. White-box attacks are not applicable

when the attacker does not have the details of the model. Grey-box attack

cannot get the structure and parameters of the attacked model, but can only

get the training data. Black-box attacks only interact with the DL model to

generate attacking samples, and they then attack the network without know-

ing the parameters or structure information of the model. In the work of

this thesis, the Adversarial Robustness Toolbox (ART) [53] is used to im-

plement white- and black-box adversarial methods. For white-box methods,

projected gradient descent (PGD) [54], virtual adversarial method (VAM) [55],

and the elastic-net attack (ENA) [56] are studied. For black-box methods, the

boundary attack (BoA) [57], HopSkipJump (HSJ) attack [58], and zeroth-

order-optimization (ZOO) attack [59] are tested.

Projected Gradient Descent

PGD is an iterative extension of the widely used gradient-based attack method,

the fast gradient sign method (FGSM) [53]. A gradient-based attack seeks to

find a perturbation η to maximize the loss function L (x+ η,y,θ) based on

the constraint ∆ and optimization method as

max
η∈∆

L (x+ η,y,θ) , (1.43)

where x denotes the input of the neural network, y denotes the true label of

x, and θ denotes the parameters of the DL model. The FGSM [60] generates

24



attacks by using the sign of the gradient function as

x′ = x+ ϵ · sign (∇xL (x,y,θ)) , (1.44)

where x′ is the adversarial sample and ϵ is the attack strength. In contrast to

FGSM, PGD is an iterative method. It projects the adversarial perturbations

on the ϵ-norm ball around x at each iteration as

x′
t+1 = Proj (xt + α · sign (∇xL (x,y,θ))) , (1.45)

where Proj is a constrained projection operation in a PGD standard optimiza-

tion and α is the step size of the gradient-descent update.

Elastic-Net Attack

The ENA is an advanced version of the Carlini and Wagner (C&W) attack

[61], which is a popular gradient-based attack method. It can generate attack

samples by restricting norms, such as ℓ1, ℓ2, and ℓ∞, of DL models. For the

untargeted version of the C&W attack, the problem can be described as [53]

min c · f (x′) + ∥x′ − x∥p

s.t. ∥x′ − x∥p ≤ ϵ,

(1.46)

in which

f (x′) = max (Zy (x
′)−max {Zi (x

′) : i ∈ Y \ {y}}+ k, 0) , (1.47)
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where c denotes the regularization parameter of the function f , y is the true

label of x, and Z is the logit-layer representation of the input x′ in the consid-

ered network. Therefore, if and only if there exists a label i ∈ Y \ y such that

Zi − Zy ≥ k, f (x′) = 0. The term ∥x′ − x∥p is the p-norm distance between

the adversarial sample x′ and the original sample x, which is defined as [61]

∥v∥p =

(
n∑

i=1

∣∣vi∣∣p) 1
p

. (1.48)

An ENA generates perturbations by using an elastic-net regularization

method and minimizing the ℓ1 norm [56]. Its formulation can be represented

as

min c · f (x′) + β ∥x′ − x∥1 + ∥x
′ − x∥22

s.t. x′ ∈ [0, 1]p ,

(1.49)

where β is the regularization parameter of the ℓ1 penalty. In ENA, the itera-

tive shrinkage-thresholding algorithm (ISTA) is used to solve (1.49). In each

iteration, there is an additional shrinkage-thresholding step. At the (k+1)-th

iteration, the adversarial sample xk+1 is computed by [56]

xk+1 = Sβ (xk − αk∇g (xk)) , (1.50)

where: g (xk) = c · f (xk) + ∥xk − x∥22; ∇g (xk) is the numerical gradient of

g (xk); αk is the step size of the (k+1)-th iteration; and Sβ denotes an element-
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wise projected shrinkage-thresholding function as

[Sβ (z)]i =


min {zi − β, 1} , if (zi − xi) > β;

xi, if (|zi − xi| ≤ β) ;

max {zi − β, 0} , if (zi − xi) < −β.

(1.51)

Zeroth-Order-Optimization (ZOO) attack

A ZOO attack is a black-box version of the C&W(ℓ2) attack. It queries the

gradient of the objective function to the input in each iteration based on

a stochastic coordinate-descent method [59]. In a black-box situation, the

network parameters are unknown. Thus, the symmetric difference quotient is

used in ZOO to estimate the gradient ĝi as [59]

ĝi =
∂f (x)

∂xi

≈ f (x+ hei)− f (x− hei)

2h
, (1.52)

where ei is a standard basis vector with only the i-th component as 1, and h is a

small constant. In the implementation of ZOO in ART, the ADAM coordinate-

descent method is used as the optimization algorithm [53], as described by

Algorithm 1 [59].

27



Algorithm 1: ZOO-ADAM[59]

Input: Step size η, ADAM states M ∈ Rp, v ∈ Rp, T ∈ Zp, ADAM

hyperparameters β1 = 0.9, β1 = 0.999, ϵ = 10−8

1 M ← 0

2 v ← 0

3 T ← 0

4 while not converged do

5 Randomly pick a coordinate i ∈ {1, 2, . . . , p}

6 Estimate ĝi using (1.52)

7 Ti ← Ti + 1

8 Mi ← β1Mi + (1− β1) ĝi

9 vi ← β2vi + (1− β2) ĝi

10 M̂i =
Mi

1−β
Ti
1

11 v̂i =
vi

1−β
Ti
2

12 δ∗ = −η M̂i√
v̂i+ϵ

13 Update xi ← xi + δ∗

14 end

Virtual Adversarial Method

In [55], local distributional smoothness (LDS) is proposed, and the regulariza-

tion of this is named the VAM. In contrast to the methods described above,

VAM is proposed as a training method. It aims to use LDS as a regularization

term to promote the smoothness of the distribution of the trained model rather

than generating samples that can result in misclassification of the model. The

process of generating adversarial samples in the VAM algorithm is described
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in Algorithm 2 [53].

Algorithm 2: Virtual Adversarial Method [53]

Input: Original input x, perturbation strength ϵ, finite-difference

width ξ, maximum number of iterations imax

Output: Adversarial sample x′

1 d← N(0, IN)

2 d← d/ ∥d∥2

3 i← 0

4 while i < imax do

5 κ1 ← KL [F (x) ∥ F (x+ d)]

6 dnew ← d

7 for i = 1, 2, . . . , N do

8 κ2 ← KL [F (x) ∥ F (x+ d+ ξ · ei)]

9 dnew ← dnew + (κ2 − κ1) /ξ · ei

10 end

11 d← dnew

12 d← d/ ∥d∥2

13 end

14 x′ ← clip (x+ ϵ · d, xmin, xmax)

In Algorithm 2, N denotes the number of components of classifier in-

puts, N (0, IN) represents a random sample of the N -dimensional standard

normal distribution, and ei is the i-th standard basis vector of dimension

N [53]. Algorithm 2 seeks to maximize the Kullback–Leibler (KL) diver-

gence KL [F (x) ∥ F (x+ d)] between output distributions to find the ℓ2-norm-

bounded perturbation [55]. Then, ϵ ·d is added into x to construct the adver-
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sarial input x′, where ϵ is the pre-set perturbation strength.

Boundary Attack

The BoA is the earliest successful decision-based attack. It only needs to query

the output classes, and it perturbs an adversarial sample along the decision

boundary between the non-adversarial and adversarial regions until the ℓ2

difference from the original input to the perturbed input is minimized. The

basic idea of the BoA is described in Algorithm 3 [57].

Algorithm 3: Boundary Attack [57]

Input: Original input x, decision of model D (·), adversarial

criterion c (·)

Output: Adversarial sample x′ s.t. the distance

d(x,x′) = ∥x− x′∥22 is minimized

1 x′
0 ∼ U (0, 1) s.t. x′

0 is adversarial

2 k ← 0

3 while k < maximum number of steps do

4 Draw random perturbation ηk ∼ P
(
x′
k−1

)
5 dnew ← d

6 if x′
k−1 + ηk is adversarial then

7 x′
k ← x′

k−1 + ηk

8 else

9 x′
k ← x′

k−1

10 end

11 k ← k + 1

12 end
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HopSkipJump

The HSJ attack is an improved version of the BoA attack that functions by

optimizing the ℓ2 or ℓ∞ distances for attacks [53]. In each iteration, a binary

search is used to approach the decision boundary iteratively, as presented in

Algorithm 4 [58].

Algorithm 4: Binary Search [58]

Input: Samples x,x′, binary function ϕ, s.t. ϕ (x) = 0, ϕ (x′) = 1,

threshold θ, constraint ℓp

Output: A sample near the boundary x′′

1 αl ← 0

2 αu ← 1

3 while |αl − αu| > θ do

4 αm = (αl + αu) /2

5 if ϕ (Πx,αm (x′)) = 1 then

6 αu ← αm

7 else

8 αl ← αm

9 end

10 end

11 x′′ ← ϕ (Πx,αu (x
′))

Next, the gradient direction is estimated, and the updating step size is

then initialized and decreased until the perturbation is successful. The process

of the HSJ attack is shown in Algorithm 5 [58].
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Algorithm 5: HopSkipJump Attack [58]

Input: Original input x, input size d, Classifier C, constraint ℓp,

initial batch size B0, maximum number of iterations i

Output: Adversarial sample xI

1 Initialize the threshold parameter θ

2 Initialize x̃0 s.t. ϕx (x̃0) = 1

3 d0 ← ∥x̃0 − x∥p

4 for i in 1, 2, . . . , I − 1 do

/* Boundary Search */

5 xi ←Binary Search(x̃i−1,x, θ, ϕx, p)

/* Gradient-direction Estimation */

6 Sample Bi = B0

√
i unit vectors u1, u2, . . . , uBi

7 δi ← d−1 ∥x̃i−1 − x∥p

8 ∇̂S (xi, δi)←
1

Bi−1

∑Bi

b−1

[
ϕx (xi + δiub)− 1

Bi

∑Bi

b−1 ϕx (xi + δiub)
]
ub

vi (xi, δi)←


∇̂S (xi, δi) /

∥∥∥∇̂S (xi, δi)
∥∥∥
2
, if p = 2,

sign
(
∇̂S (xi, δi)

)
, if p =∞,

/* Step-size Search */

9 Initialize the step size ξi ← ∥xi − x∥p
√
i

10 while ϕx (xi + ξivi) = 0 do

11 ξi ← ξi/2

12 end

13 x̃i ← xi + ξivi

14 di ← ∥xi − x∥p

15 end

16 xi ←Binary Search(x̃i−1,x, θ, ϕx, p)
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1.5 Thesis Outline

Motivated by above observations, in this thesis, the performances of learning

algorithms and adversarial methods are evaluated based on numerical results.

Each chapter contains an introduction and conclusion to provide summaries

to the reader. The remainder of this thesis is organized as follows.

Chapter 2 reports the development of a predictive model using ML

algorithms that provides a solution to the problems described above. For

this aim, different ML algorithms are explored to build time-based predictive

models for finding out the features and patterns of telecommunications and

RF energy signals according to a dataset that was harvested on the campus

of the University of Warwick. The parameters of the time-series prediction

model are tested and selected for RF energy prediction. Then, the prediction

accuracies of various selected ML methods are compared, and a decision is

made concerning the most appropriate model to use. Finally, the efficiency of

the harvesting operation is discussed.

The work reported in Chapter 3 sought to make channel predictions

using conventional ML algorithms. The key parameters of prediction, such

as the training size and the sample size, are chosen. Next, the Rayleigh or

Rician channel gain is predicted using ML methods. The prediction errors of

different conventional ML methods are compared. Finally, transmitted signals

are detected based on the results of prediction with different signal-to-noise

ratios (SNRs), normalized Doppler shifts, and modulation types.

In Chapter 4, DL algorithms are employed for signal detection in a

multiuser OFDM communications system. In this system, one or more sig-

nals from interfering users are received with noise at the receiver. FCDNN,
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CNN, and LSTM are employed and evaluated to detect the signal in this dif-

ficult scenario. The DL models that are pre-trained for OFDM recover the

multiuser signal at the receiver. The performances of these three algorithms

are compared under different conditions, including different numbers of pilots,

numbers of interfering users (NoIs), SNRs, and interference modulation types.

In Chapter 5, different white- and black-box adversarial attack methods

integrated in the ART library are applied against a DL-based detector for a

multiuser OFDM communications system. The PGD, ENA, and VAM attacks

are used as white-box methods, while the HSJ, ZOO, and BoA attacks are

used as black-box methods. The detection bit error rates (BERs) under these

different attacks are compared. Additionally, the attack efficiencies when there

is a random attack starting time or multiple attackers are evaluated. Finally,

the performances of the chosen attack algorithms on a realistic WINNER II

channel model are investigated.

Finally, Chapter 6 summarizes all the results and contributions of the

research in this thesis. Potential future directions for this research are also

discussed.
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Chapter 2

ML-based RF Energy Modelling

for WPC Systems

2.1 Introduction

For WPC, the power between antenna and rectifier is maximized by the

impedance matching circuit when it runs at a specific frequency, after which

the RF energy is converted to direct current (DC) through diodes in the recti-

fier circuit and the DC voltage is smoothed in the capacitor[62]. Although the

energy harvested from RF is reliable, it is still randomly fluctuating, due to

the random channel and operational conditions. This means that, during the

periods of low energy, the wireless sensing node will not be able to receive or

transmit data properly due to insufficient energy. Moreover, to extend the life-

time of the WSN, it is necessary to keep the power consumption of the energy

harvester to a minimum level. For these reasons, a threshold for the energy

harvester can be set as the sensitivity of the harvester. If the predicted en-

ergy is lower than the threshold, energy harvester will sleep to save activation
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energy. Otherwise, it will start to harvest energy for data transmission. There-

fore, it is valuable to predict the pattern of the ambient RF energy and use

this prediction to take mitigating measures to ensure the efficient operations

of the wireless sensing nodes.

Several measurement campaigns have been conducted to study the pat-

tern of ambient RF energy. For example, in [63], various ambient energy-

harvesting technologies were reviewed and the applicability of ambient RF

energy harvesting was verified as an enabling technology for various self-

sustaining wireless platforms. In [3], the average, the probability density func-

tion, and the cumulative distribution function of harvested RF energy using

linear and non-linear models for the energy harvester were derived to optimize

the power transfer strategy. In [64], a survey of 270 underground stations

in London was conducted to investigate the potential availability for ambient

RF energy harvesting within urban and semi-urban environments. In [65],

wireless data was analyzed by setting a threshold to assume the occupancy

of a particular band and comparing the classification accuracy of five ML al-

gorithms (DT, SVM, fire fly, hidden Markov model and naive Bayesian). In

[66], two energy harvesting communications protocols, ‘harvest-store-use’ and

‘harvest-use’, were used to optimize the effective throughput of energy har-

vesting devices.

Furthermore, ML methods have been developed for many applications

in WPC recently. In [67], an unsupervised Bayesian learning method was

proposed to model the transmission power computed in each time slot at the

hybrid access point of wireless RF energy harvesting networks to reduce the

drop rate. In [68], optimal sleeping and harvesting policies for RF energy har-

vesting devices were developed as a Bayesian adaptive Markov decision process
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based on knowledge of energy arrival from energy modelling. None of these

works has considered the use of different ML algorithms as it is well-known

that different ML algorithms are suitable for different datasets. [65] studied

the modelling of occupancy using ML. Occupancy is a binary quantization

of the RF energy but not the RF energy itself, and hence it cannot be used

to implement the optimal control of harvesting as in [68]. In [69], a kernel-

density-based statistical model for the mobile service channels was proposed

to predict RF energy. The sampling frequency was adjusted according to the

channel power prediction. Accuracy of the model is higher than 80%.

Although works have been done to optimize RF energy harvesting, there

has been no model for the prediction of time-series RF energy data. To achieve

a balance between complexity and task performance, an effective model to

make RF energy prediction is needed. Generally, ML is a powerful tool to

model or predict patterns from data. Motivated by above observations, in

the following work, different ML algorithms will be used to develop predictive

models for the amount of ambient RF energy harvested.

The ambient RF energy data is acquired from a measurement cam-

paign performed at a university campus. Four supervised algorithms will be

explored to build accurate predictive models, including LR, SVM, RFA, and

DT, to model the amount of available RF energy, not the occupancy. All of

those algorithms are supervised learning. Based on the best performance of

each model in the previous steps, a suitable threshold will be set for energy

harvester. The threshold will allow system designers to determine when the

energy harvester should be activated to harvest energy and when it should go

to sleep to save energy. The prediction accuracies of the models are compared,

and recommendations are made on the most appropriate model to use.
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In Section 2.2, the dataset and pre-processing will be introduced. In

Section 2.3, the selection of feature length(FL), number of observations, train-

ing split and learning algorithms will be explained. In Section 2.4 the results

on the prediction for the RF energy data will be discussed. Section 2.5 is the

conclusion.

2.2 Data Pre-processing

2.2.1 Data Description

The RF energy data in this work was captured for a period of 4 months inside

a research laboratory in the University of Warwick campus. The equipment is

the Cambridge Radio Frequency Services (CRFS) node. CRFS is a cutting-

edge RF designer, whose nodes focus on real-time 24/7 and cost-effective RF

spectrum monitoring. The antenna is Rhode & Schwartz HF907OM Broad-

band omnidirectional antenna, covering 800MHz to 26.5 GHz and is vertically

polarized. All the measurements were saved in a two-dimensional matrix,

whose row represents the time and whose column represents the frequency.

For instance, band 1805-1880MHz has 448 frequency bins as columns, where

the bandwidth of each frequency bin is 0.167 MHz. The data was measured for

131 days (188917 minutes) from Feb to June in 2013. Therefore, the data set

of each frequency bin has 188917 time instants as rows. Eight frequency bands

are measured as: 880-915MHz, 925-960MHz,1710-1785MHz, 1805-1880MHz,

1900-1920MHz, 1920-1980MHz, 2110-2170MHz and 2400-2500MHz. They

represent the UK 2G and 3G bands as well as the Wi-Fi band.
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2.2.2 Initial Data Pre-processing

The aim of the work is to predict the total power for a whole frequency band

including all frequency bins. Therefore, it is important to arrange data in

a suitable data structure, as a time series. To calculate the total power for

each time instant, the power values were converted from dBm measurements

to mW, and added together, and then converted back into dBm. The formula

of the conversion can be represented as

dBm = 10 lg (mW ), (2.1)

Thus, all the considered powers have a unit of dBm. Intuitively, Figures 2.1 -

2.8 show the measurements of mean received energy of all the frequency bins

in the bands.
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Figure 2.1: Power of 880-915MHz.
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Figure 2.2: Power of 925-960MHz.

2 4 6 8 10 12 14 16 18

Number of Minutes 10
4

-110

-100

-90

-80

-70

-60

-50

-40

M
e
a
n
 R

e
c
e
iv

e
d
 P

o
w

e
r(

d
B

m
)

1710MHz-1785MHz

Figure 2.3: Power of 1710-1785MHz.

40



2 4 6 8 10 12 14 16 18

Number of Minutes 10
4

-110

-100

-90

-80

-70

-60

-50

-40

M
e
a
n
 R

e
c
e
iv

e
d
 P

o
w

e
r(

d
B

m
)

1805MHz-1880MHz

Figure 2.4: Power of 1805-1880MHz.
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Figure 2.5: Power of 1900-1920MHz.
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Figure 2.6: Power of 1920-1980MHz.
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Figure 2.7: Power of 2110-2170MHz.
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Figure 2.8: Power of 2400-2500MHz.

Comparing these bands, 880-915MHz, 1710-1785MHz, and 1920-1980MHz

bands have too many burrs, mean values of 1900-1920MHz and 2400-2500MHz

are relatively lower, the pattern of 1805-1880MHz band is the more stable than

925-960MHz and 2110-2170MHz bands. Therefore, in the following sections,

the 1805-1880MHz band is chosen to build the predictive models.

The time series representing the RF energy data has autocorrelation,

which means that it is possible that future observation yt can be predicted

as a function of past observations yt−1, yt−2, ..., yt−p, where p is the number

of past observations, as in an autoregressive model. Thus, it is important

to investigate the optimal parameter p, which will accurately illustrate the

number of rows needed to be trained and tested to generate any ML model, to

describe the random patterns of the harvested energy in the short term [70].

In the remainder of this work, the parameter p will be referred to as the feature

length of the ML process, and the term ‘observations’ will be used to refer to

the rows of measurements used for training and testing. To account for the
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Figure 2.9: An illustration of the data structure for modelling.

the autocorrelation, the data in the time series is rearranged as in Figure 2.9.

The dataset is then divided into training set and testing set. We use

the normalized root mean square error (NRMSE) to represent the prediction

accuracy as

RMSE =

√∑n
t=1 (ŷt − yt)

2

n
, (2.2)

NRMSE =
RMSE∑n

t=1 yt
n

, (2.3)

where ŷt is predicted value, yt is actual value, and n is the number of

predictions.
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Figure 2.10: Autocorrelation function of the original dataset.

2.3 Parameters Selection

2.3.1 Feature Length

FL is the number of measurements in minutes before the nth measurement

that will be learned to make a prediction as discussion in the previous section.

Theoretically, autocorrelation function (ACF) can be used to calculate the best

feature size. The results of ACF for the dataset are shown below in Figure 2.10

In Figure 2.10, the autocorrelation function is tested for up to 50 lags.

The degree of correlation decreases with the increase of lags. Although the

overall ACF curve shows a downward trend, there are several values of lags that

mean to be local maximums. From these lags, four different feature lengths

of 1, 3, 10 and 15 are used for testing, and the best FL out of them will be
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chosen.

In the following, prediction will be made by using the data structure

as multiple ‘chunks’ of data. For example, chunk 1 uses the first 100 data

points in the data set to generate an ML model, chunk 2 uses the next 100

data points in the data set and so on. This is for all ML algorithms, and it is

performed over 10 chunks to obtain 10 values of NRMSE for each ML model

to reduce the randomness of error rates. The mean value of the NRMSE of 10

chunks is used as the final performance indicator.
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Figure 2.11: NRMSE of feature length of 1 for LR, with 120 observations and

a split of 80:20.

From Figure 2.11 to 2.14, NRMSE of different feature length of 1, 3,

10, and 15 for LR are illustrated. When using a feature length of 1, the lowest
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error is recorded in chunk 9 as 0.0348, while the highest error occurs in chunk 1

as 0.0553. The mean value of NRMSE is 0.0464, which gives a mean prediction

accuracy of 95.36% for the feature length of 1.
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Figure 2.12: NRMSE of feature length of 3 for LR, with 120 observations and

a split of 80:20.

When using a feature length of 3, the lowest error is recorded in chunk

9 as 0.0357, while the highest error occurs in chunk 2 as 0.0564. The mean

value of prediction NRMSE is 0.0471. Thus, a feature length of 3 has a mean

prediction accuracy of 95.29%, lower than that for a feature length of 1.
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Figure 2.13: NRMSE of feature length of 10 for LR, with 120 observations and

a split of 80:20.

When using a feature length of 10, the lowest error is also recorded in

chunk 9 as 0.0391, while the highest error occurs in chunk 2 as 0.0597. The

mean value of prediction NRMSE is 0.0489, and the mean prediction accuracy

is 95.11%.
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Figure 2.14: NRMSE of feature length of 15 for LR, with 120 observations and

a split of 80:20.

When a feature length of 15 is used, the lowest error is recorded in

chunk 9 as 0.0408, while the highest error occurs in chunk 1 as 0.0574. The

mean value of prediction NRMSE is 0.0501, and the mean prediction accuracy

is 94.99%. These results are based on 120 observations and a training split of

80:20. The result shows that a feature length of 1 has the lowest mean error.

Thus, it is best to use only the most recent observation in the prediction. We

have done similar tests for others numbers of observations: 60, 120, 240, and

480. The tests of 60, 120 and 240 observations also show that FL=1 is the

optimal choice for accuracy. Hence, FL=1 is chosen as the best feature length

in later studies.
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Similarly, the effect of FL on the accuracies of other ML algorithms have

been studied: For SVM, in the tests of 60, 120 and 240 observations, FL=1

records a NRMSE of 0.0510, 0.0475 and 0.0504, respectively, and has the lowest

error rate. Therefore, FL=1 is regarded as the best FL for SVM. For RFA,

in the tests of 60, 240 and 480 observations, FL=15 records 0.0500, 0.0500

and 0.0518, and has the lowest error rate of. In the test of 120 observations,

the error rate of FL=15 is 0.0476 and is the second best. Considering both

accuracy and generality, FL=15 is regarded as the best FL for RFA. For DT, in

all tests of four observations, FL=1 records 0.0585, 0.0559, 0.0607 and 0.0650

for 60, 120, 240, 480 observations, respectively, and it has the lowest error rate.

Therefore, FL=1 is regarded as the best FL of DT. In summary, the results

reveal that when FL is 1, the algorithms of LR, SVM and DT have the best

performances in terms of NRMSE, and when FL is 15, the algorithm of RFA

has the best performance. Therefore, FL=1 will be used in LR, SVM and DT

tests, while FL=15 will be used for RFA in the following.

2.3.2 Number of Observations

In this subsection, the effect and the choice of the number of observations will

be studied. To do this, four different numbers of observations will be tested

to determine the best choice of the number of observations as 60, 120, 240,

and 480. Larger numbers of observation, with up to 15000 observations for 10

chunks, which gives a total of up to 150000 observations, have also been tested

in the research. The results have showed little improvement comparing with

the result of less than 480 observations.
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Figure 2.15: NRMSE of observations of 60 when FL=1, split=80:20 for LR

algorithm.

In Figure 2.15 to 2.18, NRMSE of different numbers of observations of

60, 120, 240, and 480 is shown. FL is set as 1, and split is set as 80:20, for the

LR algorithm. One can see that, when using a number of 60 observations, the

lowest error is recorded in chunk 8 as 0.0443, while the highest error occurs in

chunk 1 is 0.0614. The mean value of the prediction NRMSE is 0.0500, which

gives a mean prediction accuracy of 95.00%.
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Figure 2.16: NRMSE of observations of 120 when FL=1, split=80:20 for LR

algorithm.

When using a number of 120 observations, the lowest error is recorded

in chunk 9 as 0.0348, while the highest error that occurs in chunk 1 as 0.0553.

The mean value of the prediction NRMSE is 0.0464. Thus, a number of

120 observations has a mean prediction accuracy of 95.36%, higher than the

number of 60 observations.
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Figure 2.17: NRMSE of observations of 240 when FL=1, split=80:20 for LR

algorithm.

When using a number of 240 observations, the lowest error is recorded

in chunk 5 as 0.0404, while the highest error that occurred in chunk 9 as

0.0592. The mean value of the prediction NRMSE is 0.0495, which gives a

mean prediction accuracy of 95.05%.
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Figure 2.18: NRMSE of observations of 480 when FL=1, split=80:20 for LR

algorithm.

When a number of 480 observations is used, the lowest error is recorded

in chunk 8 as 0.0458, while the highest error that occurred in chunk 10 as

0.0619. The mean value of the prediction NRMSE is 0.0534, which gives a

mean prediction accuracy of 94.66%. The results illustrate that, the perfor-

mances of both the mean prediction accuracy and the lowest error are the

best when using 120 observations. Even when a higher number of observa-

tions is tested, such as 15000, the results are not better than 120 observations.

Thus, 120 is the best choice for the number of observations for LR algorithm.

Similarly, the best number of observations for other ML algorithms can be

obtained. The results are listed in Table 1 below.
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Table 2.1: NRMSE of different numbers of observations for different ML
algorithms.

ML Algorithm
Number of Observations

60 120 240 480

Linear Regression 0.0500 0.0464 0.0495 0.0534
Support Vector Machine 0.0510 0.0475 0.0504 0.0547

Random Forest 0.0496 0.0476 0.0493 0.0508
Decision Tree 0.0585 0.0559 0.0607 0.0650

The results in Table 2.1 show that, when the number of observations

is 120, the NRMSEs of LR, SVM, RFA, DT are 0.0464, 0.0475, 0.476 and

0.0559, respectively. All the algorithms reach their lowest error rates when 120

observations are used. It means that, 60 observations may lack of information

and complexity, but on the other hand, the correlation between predicted point

and the point used in 240 and more observations is insufficient. Therefore, 120

will be used as the number of observations to compare these ML algorithms

later.

2.3.3 Training Split

In this subsection, the effect and the choice of the number of training split will

be studied. To do this, four different splits between training set and testing

set will be tested to determine the best choice of the training splits as 80:20,

70:30 and 60:40 and 50:50.
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Figure 2.19: NRMSE of training split of 80:20 when FL=1, number of obser-

vations=120 for LR algorithm.

In Figure 2.19, FL is set as 1, the number of observations=120 for LR

algorithm, as LR shows the best prediction accuracy in the previous subsec-

tions. One can see that, when using a training split of 80:20, the lowest error

is recorded in chunk 9 as 0.0348, while the highest error occurs in chunk 1 as

0.0553. The mean value of the prediction NRMSE is 0.0464, which gives a

mean prediction accuracy of 95.36%.
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Figure 2.20: NRMSE of training split of 70:30 when FL=1, number of obser-

vations=120 for LR algorithm.

When using a training split of 70:30, the lowest error is recorded in

chunk 9 as 0.0361, while the highest error that occurs in chunk 1 as 0.0560.

The mean value of the prediction NRMSE is 0.0467, Thus, a training rate of

70:30 has a mean prediction accuracy of 95.33%, lower than 80:20.
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Figure 2.21: NRMSE of training split of 60:40 when FL=1, number of obser-

vations=120 for LR algorithm.

When using a training split of 60:40, the lowest error is recorded in

chunk 9 as 0.0363, while the highest error that occurred in chunk 9 as 0.0565.

The mean value of the prediction NRMSE is 0.0470, which gives a mean pre-

diction accuracy of 95.30%.
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Figure 2.22: NRMSE of training split of 50:50 when FL=1, number of obser-

vations=120 for LR algorithm.

When a training split of 50:50 is used, the lowest error is recorded in

chunk 8 as 0.0458, while the highest error that occurred in chunk 10 as 0.0574.

The mean value of the prediction NRMSE is 0.0477, which gives a mean pre-

diction accuracy of 95.23%. The results illustrate that, the performances of

both the mean prediction accuracy and the lowest error are the best when

using 80% training split. Thus, 80:20 is the best choice of the proportion

between training set and testing set for the ambient RF energy modelling.
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2.4 Numerical Results and Discussion

As mentioned above, in the research, four different algorithms are tested. They

are LR, SVM, RFA and DT. For all the following results, the FL for RFA is

set as 15 and the FL for other algorithms is set as 1, and the number of

observations is set as 120 with 80:20 split between training sets and testing

sets. These choices are based on the tests in Section 2.3. Each prediction is

also made using 10 chunks. There are 120 consecutive observations in each

chunk, with a total of 1200 records used. It has been discussed that using larger

records does not improve the accuracy significantly. The 10 data fragments

in each chunk used in this section are obtained randomly from the original

dataset by excluding data used in Section 2.3.

2.4.1 Minutes

In Figure 2.23, the average prediction errors for LR, SVM, RFA and DT are

0.0464, 0.0475, 0.0476, 0.0559 respectively over all chunks, and the mean value

of these errors is 0.0494.
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Figure 2.23: Prediction error using different ML models with uncategorised

data by minutes.

Overall, the algorithm with the best performance is LR with a mean

error of 0.0464, which gives a mean prediction accuracy of 95.36%. The lowest

error of LR is recorded in chunk 9 as 0.0348, while the highest error occurs

of LR in chunk 1 as 0.0553. The range of errors for LR is 0.0205. Next,

SVM has a mean error of 0.0475, which gives a mean prediction accuracy of

95.25%. The lowest error of SVM is recorded in chunk 9 as 0.0363, while the

highest error of SVM occurs in chunk 1 as 0.0552. The range of errors for

SVM is 0.0189. Next is RFA has a mean error of 0.0476, which gives a mean

prediction accuracy of 95.24%. The lowest error of RFA is recorded in chunk

9 as 0.0359, while the highest error of RFA occurs in chunk 1 as 0.0558. The
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range of errors for RFA is 0.0199. The algorithm with the worst performance

is DT with a mean error of 0.0559, which gives a mean prediction accuracy

of 94.41%. The lowest error of DT is recorded in chunk 9 as 0.0409, while

the highest error of DT occurs in chunk 1 as 0.0706. The range of errors for

DT is 0.0297. The results show that LR outperforms all other ML algorithms

considered in terms of the errors of the 10 chunks. Although LR has the best

performance in mean error, the range of errors of SVM is the smallest among

all, and RFA is the second best, which means that they are the most stable

model due to less variation of error.

To improve the accuracy of modelling, the data set is then labelled by

days before prediction. It is assumed that data from the same day of different

weeks will resemble each other. For this reason, models are built for each day

to improve accuracy.

In Figure 2.24 and 2.25, the performances of different ML algorithms

on Tuesday and Wednesday are presented. On Tuesday, the prediction error

for LR, SVM, RFA and DT are 0.0436, 0.0442, 0.0448, 0.0539, respectively.

Overall, the algorithm with the best performance is LR with a mean error of

0.0436, which gives a mean prediction accuracy of 95.64%. The lowest error

of LR occurs in chunk 6 as 0.0384, while the highest error of LR occurs in

chunk 5 as 0.0550. The range of errors for LR is 0.0166. The algorithm with

the worst performance is DT with a mean error of 0.0539, which gives a mean

prediction accuracy of 94.61%. The lowest error of DT is recorded in chunk

6 was 0.0449, while the highest error of DT occurs in chunk 5 is 0.0702. The

range of errors for DT is 0.0253. The results show that LR outperforms all

other ML algorithms when comparing the error rate. However, the range of

errors of RFA is the smallest and LR records the second best, which means
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Figure 2.24: Prediction error using different ML models with Tuesday data
labelled by days.

that RFA and LR are the most stable models on Tuesday. Finally, LR also

has the lowest error in chunks.

According to Figure 2.25, on Wednesday, the prediction errors for LR,

SVM, RFA and DT are 0.0456, 0.0464, 0.0463, 0.0558, respectively. Overall,

the algorithm with the best performance is LR with a mean error of 0.0456,

which gives a mean prediction accuracy of 95.44%. The lowest error of LR is

recorded in chunk 3 as 0.0357, while the highest error occurs of LR in chunk 10

as 0.0560. The range of errors for LR is 0.0203. The algorithm with the worst

performance is DT with a mean error of 0.0262, which gives a mean prediction

accuracy of 97.38%. However, though LR has the best average accuracy, the

range of error of SVM is the smallest and LR records the second best, which
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Figure 2.25: Prediction error using different ML models with Wednesday data
labelled by days.

means that SVM and LR are the most stable models on Wednesday. Moreover,

both the lowest error and the highest error in chunks of LR are lower than

other models.

By labelling data with days, there is a slight improvement in the ac-

curacy of predictions. On Tuesday, the mean error decreases by 5.67% from

0.0494 to 0.0466, and on Wednesday, the mean error decreases by 1.82% from

0.0494 to 0.0485, and the lowest errors on both days also decrease, compared

with predictions using minutes in Figure 2.23.
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Figure 2.26: Prediction error using all ML models with uncategorised hourly
data.

2.4.2 Hours

The measurements for different minutes can also be combined into aggregate

measurements for different hours, by taking an arithmetic mean for the mea-

surement at each minute within the hour, to reduce randomness and therefore

to increase prediction accuracy. In Figure 2.26, the prediction error for LR,

SVM, RFA and DT are 0.0352, 0.0353, 0.0387, 0.0424, respectively. Overall,

using the hourly data, the algorithm with the best performance is LR with

a mean error of 0.0352, which gives a mean prediction accuracy of 96.48%.

The lowest error of LR is recorded in chunk 8 as 0.0301, while the highest

error of LR occurs in chunk 4 as 0.0440. The range of errors for LR is 0.0139.
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The algorithm with the worst performance is DT with a mean error of 0.0250,

which gives a mean prediction accuracy of 97.52%. The lowest error of DT is

recorded in chunk 8 as 0.0365, while the highest error of DT occurs in chunk

4 as 0.0547. The range of errors for DT is 0.0182. The results show that LR

outperforms all other ML algorithms in terms of average accuracy. However,

SVM has the smallest range of error, and LR is the second best, which means

that SVM is the most stable models due to less error variation.

2.4.3 Harvester Operation Efficiency

The energy models built in the previous subsections can be used to optimize

the control of harvester operation. An experienced threshold is preset. The

chosen model predicts the energy minutes by minutes or hours by hours. Then

the predicted energy is compared with the threshold. If the predicted energy

is smaller than the preset threshold, the harvester will go to sleep to save

energy. Only when the predicted energy is above the threshold, the harvester

will be activated to harvest energy. In this part, a threshold is set for the

energy harvester to determine turn-ons and turn-offs of the energy harvester.

If the actual energy falls below it while the predicted energy is above it, or

if the harvested energy is above it, while the predicted energy is below it,

the harvester will make a mistake. Thus, the number of false operations is

recorded and a penalty is given. The efficiency means the proportion of the

correct operation when harvesting RF energy. To evaluate it, the penalty using

each algorithm will be compared.
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Figure 2.27: Prediction efficiency test for data by minute using LR with a

threshold of -35 dBm.

Figure 2.27 shows the prediction efficiency test by minutely data. It

uses the LR model with its best parameter settings. The results use the 3rd

chunk of the Wednesday data that has the lowest error among all chunks. The

threshold is set as -35 dBm. In Figure 2.27, all of the prediction points are over

estimated. Although the prediction data have the similar patterns to actual

data in most of points, the prediction results are unavailable because they are

not sensitive to the fluctuation of the minutely data.
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Figure 2.28: Prediction efficiency test for hourly data using LR with a thresh-

old of -17.2 dBm.

Figure 2.28 shows the prediction efficiency test by hourly data. It also

uses the LR model with its best parameter settings of hourly test. The re-

sults use the 8th chunk of the uncategorised hourly data that has the lowest

error among all chunks. The threshold is set as -17.2 dBm. According to Fig-

ure 2.28, the mean number of over-estimates is 4.55, while the mean number

of under-estimates is 9.35. The mean error rate of estimation is 0.1390. In

Figure 2.28, the prediction follows the trend of the actual data with similar

patterns. However, the prediction lags the actual value slightly which may

lead to misoperation in time-critical applications.

Figure 2.29 uses the SVM model with its best parameter settings. The
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Figure 2.29: Prediction efficiency test for hourly data using SVM with a thresh-
old of -17.2 dBm.

results use the 8th chunk of uncategorised data has the lowest error among all

chunks. The threshold is set as -17.2 dBm. According to Figure 2.29, the mean

number of over-estimates is 2.45, while the mean number of under-estimates is

11.65. The mean error rate of estimation is 0.1410, higher than the error rate

of LR model. In Figure 2.29, the prediction follows the trend of the actual

data with similar patterns. However, the prediction of SVM model also lags

the actual value slightly. In the hours which record high energy, SVM model

shows worse performance of fitting actual value than LR model, which may

lead to more under-estimation in the harvester.
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Figure 2.30: Prediction efficiency test for hourly data using RFA with a thresh-

old of -17.2 dBm.

Figure 2.30 uses the RFA model with its best parameter settings. The

results use the 9th chunk of uncategorised data has the lowest error among all

chunks. The threshold is set as -17.2dBm. According to Figure 2.30, the mean

number of over-estimates is 0.35, while the mean number of under-estimates is

29.7. The mean error rate of estimation is 0.3005. In Figure 2.30, although the

prediction of RFA can also follow the trend of the actual data, comparing with

LR and SVM models, the prediction of RFA lags the actual value more than

other two models, which causes a higher mean error rate than LR’s and SVM’s.

Comparing with LR and SVM, on the most points in which the actual energy

beyond the threshold, the prediction cannot lead to the right operations, which

means that the RF energy cannot be harvested properly when they are high.
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Thus, the accuracy of the RFA prediction is not acceptable.

Table 2.2: Estimated coefficients of selected LR model

Estimate SE tStat p− V alue

Intercept -4.7224 2.0971 -2.2519 0.027069
x1 -0.029871 0.10847 -0.27538 0.78373
x2 -0.027799 0.11851 -0.23457 0.81514
x3 0.13541 0.12299 1.101 0.27421
x4 -0.021097 0.12335 -0.17103 0.86463
x5 0.095555 0.12267 0.77895 0.43831
x6 0.050455 0.12479 0.40431 0.68706
x7 -0.246 0.12188 -2.0184 0.046898
x8 0.062442 0.12486 0.50011 0.61387
x9 -0.2374 0.1222 -1.9428 0.055561
x10 -0.06328 0.12729 -0.49712 0.62047
x11 0.24891 0.12425 2.0032 0.048538
x12 -0.050529 0.12542 -0.40289 0.6881
x13 0.048124 0.12498 0.38504 0.70123
x14 0.35397 0.11902 2.974 0.0038838
x15 0.41164 0.11188 3.6792 0.00042267
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Figure 2.31: Figure of the best LR model.

Upon comparison, LR model shows the best performance in prediction ac-

curacy. Figure 2.31 shows the LR model obtained. The selected LR model

formula is

y = β0 + β1X1 + β2X2 + ...+ β15X15 + ϵ (2.4)

and the coefficients obtained are shown in Table 2.2 below.

In Table 2.2, Estimate means coefficients of each terms which are esti-

mated by the model. SE is standard error of the coefficients. tStat is t-statistic

to test null hypothesis for each coefficient, with tStat = Estimate/SE. p −

V alue for the t-statistic is used to test whether the corresponding coefficient is

zero or not at the the determined significant level. The number of observation
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is n = 96, because 80% observations of 120 are split as training set to generate

model. The degree of freedom for the error is n − p = 80, in which p = 16 is

the number of coefficients in the model. As a standard of fitness, R-squared is

0.603, while Adjusted R-Squared is 0.529.

2.5 Conclusion

The work of this chapter has studied the use of reliable ML models for RF

energy data in WPC. Four different ML algorithms (LR, SVM, RFA and DT)

have been discussed and their performances in RF energy harvesting works

have been compared using the dataset in the 1805-1880MHz band. The results

have shown that, in terms of average accuracy, LR has the highest and most

stable accuracy, followed by SVM and RFA, with DT being the worst model.

For the harvester operation efficiency, LR has the highest accuracy, followed by

SVM, and RFA has given an unacceptable error rate in the energy harvesting

efficiency. The advancement of knowledge includes the following. First, to the

best of my knowledge, this is the first time that ML is used to predict energy for

RF harvesting. Second, proposed predictive models have very high accuracies.

This allows system designers to operate the energy harvester efficiently. These

contributions justify the work. There is great potential ability of the proposed

RF energy modelling methodology in this work. It can be applied in various

WSNs to increase the energy harvesting efficiency and extend their work time.

Furthermore, it can assist the work of next generation networks, in which each

node executes the computations when it is running.
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Chapter 3

ML-based Pilot Symbol Aided

Channel Prediction

3.1 Introduction

In recent years, machine learning (ML) algorithms have been more applied

to channel estimation in wireless communications. By using ML algorithms,

channel gain can be calculated without the channel correlation matrix, which

leads to higher efficiency. For example, in [71], a low-complexity channel esti-

mator based on the ML method and the MMSE structure was proposed. In the

estimator, the model parameters were learned instead of fined-tuned for differ-

ent channel models. An ML-based time-division duplex scheme was presented

in [72]. In this scheme, channel state information (CSI) was obtained based on

the temporal channel correlation, and the estimation performance was opti-

mized. In [73], a real-valued sparse Bayesian learning approach was developed

to estimate the downlink channel of a massive multiple-input multiple-output

(MIMO) system. By converting the complex-valued channel recovery prob-
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lem into a real one, the computational complexity was significantly reduced.

DL methods were used in [74] to resolve the estimation of fast time-varying

MIMO-OFDM channels. The results showed that DL models outperformed

traditional algorithms in both accuracy and robustness. In [75], a cost-efficient

convolutional neural network was used to classify the modulation of radio sig-

nals for various distortions and noise. Its accuracy can reach over 93% at

a SNR of 20 dB. In [17], a DL-based super-resolution network and an im-

age restoration network were cascaded for channel estimation as ChannelNet,

and in [76], a residual-learning-based deep neural network called ReEsNet was

proposed and compared with ChannelNet in [17].

As the CSI between two relatively moving transceivers is correlated in

time, recently, increasing researches have focused on wireless channel predic-

tion. Generally, there are mainly two types of channel prediction: autoregres-

sive model prediction and parametric model prediction [77]. For example, in

[78], a RNN based real-time channel predictor was proposed. By using his-

torical CSI for training, the network achieved CSI prediction. In [79], LSTM

and gated recurrent unit were used, and the prediction accuracy was further

improved.

Traditional ML algorithms are rarely used in recent works. In [80]

and [81], SVM was cascaded for channel estimation in massive MIMO systems

with one-bit Analog-to-Digital Converters. An SVM-based channel estimation

method and a two-stage signal detection method were proposed. Moreover,

as the latest advance in ML, DL has good accuracy due to long training and

large-scale data [82]. In [83], DL is used to predict Rayleigh channel by using

5000 CSI samples and dozens to hundreds training epochs. In [84], several DL

methods are used to predict fading channel, in which the size of dataset is 104.
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However, when the facility moves continuously in a large range, the wireless

channel also varies. Thus, the pre-trained DL model may not fit the new

environment in this situation. Motivated by these observations, in this work,

the feasibility of real-time channel prediction using traditional ML algorithms

will be explored. In real-time channel prediction, The model can be trained and

renewed continuously using the latest CSI. Traditional ML algorithms, which

produce the results without large-scale data for long-time training and do

not need high-performance graphics processing unit (GPU), central processing

unit (CPU) or solid state disk (SSD), as in DL, are a good choice for real-

time prediction [1, 85]. Five different traditional ML algorithms are used to

build predictive models using the noisy received signals and historical CSI: 1)

RFA, 2) SVM, 3) LR, 4) DT and 5) ER. All the methods in this research are

based on Statistics and Machine Learning Toolbox of MATLAB R2019b. The

CSI will be extrapolated from the predictive models. All the used algorithms

are supervised regression algorithms. Their performances are calculated and

compared.

The rest of this Chapter is organized as follows. In Section 3.2, the

system model will be described. In Section 3.3, the sample size, the training

size, and different algorithms will be considered and selected for further use.

In Section 3.4, signal detection will be simulated using the predicted chan-

nel based on the selected algorithms and parameters, and the results will be

discussed. In Section 3.5, the conclusions will be drawn.
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3.2 System Model

The data symbols are assumed to be transmitted and received in frames each

of which contains K data symbols. Within the K symbols of a frame, the

first one is a pilot symbol and the other K − 1 symbols are data symbols. All

the symbols are from a signal set of M possible values. The value of the pilot

symbol is known as b̃.

The received signal from wireless channel can be represented as

r (t) = c (t) s (t) + n (t) , (3.1)

where c (t) is the complex channel gain, s (t) is the transmitted signal, and n (t)

is the additive white Gaussian noise (AWGN), which is a zero mean Gaussian

random process, and the transmitted signal s (t) can be written as

s (t) =
∞∑

i=−∞

b (i) p (t− iT ) , (3.2)

where b (i) is the value of the i-th transmitted signal, T is the symbol dura-

tion,and p (t) is the shaping pulse with energy Ep.

The complex channel gain c (t) is a complex Gaussian random process

with variance σ2
c , and it can be represented as

c (t) = cR (t) + jcI (t) . (3.3)

If the channel is Rayleigh fading, one has

p|c(t)| (x) =
x

σ2
e−

x2

2σ2 , (3.4)
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E
{
cR (t)

}
= E

{
cI (t)

}
= 0. (3.5)

where p|c(t)| (x) is the probability density function (PDF) with parameter σ2,

and E {.} is the expectation. If the channel is Rician fading, it has

p|c(t)| (x) =
x

σ2
e−

x2+A2

2σ2 · I0
(
xA

σ2

)
, (3.6)

E
{
cR (t)

}
= mR (t) ,

E
{
cI (t)

}
= mI (t) . (3.7)

where A is the peak value of line-of-sight amplitude, and I0 is modified Bessel

function of first kind with order zero.

Its autocorrelation function can be represented as

Rc (τ) = σ2
c R̃c (τ) , (3.8)

where R̃c (τ) is the normalized autocorrelation function. In this research, the

scattering in the fading channel is assumed to be isotropic. Thus, one has

R̃c (τ) = J0 (2πfDτ) , (3.9)

where fD is the maximum Doppler spread in the channel.

For simplicity, the line-of-sight component of fading process is assumed

to be constant. Thus, mR (t) can be represented as mR, and mI (t) can be

represented as mI . Then, the local mean power of the line-of-sight component
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in the Rician fading channel can be defined as [4]

A2 =
(
mR
)2

+
(
mI
)2

, (3.10)

and the Rician K factor can be defined as [4]

RK =
A2

2σ2
c

. (3.11)

In this research, different values of RK will be used to examine the performance

of the predictor.

The received signal will be sampled with a duration T . Thus, the ith

symbol sampled can be represented as

ri = c (iT ) biEp + ni, (3.12)

where c (iT ) is the Gaussian channel gain sample, and ni is the noise sample

whose mean is zero and variance is σ2
n = N0Ep. For simplicity, in the system,

it is assumed that the 0-th symbol of the transmitted signal is a pilot symbol

[7], and the 1st to the (K − 1)th symbols are data symbols.

Thus, the effective SNR γ per bit can be represented as [6]

γ =
1
2
σ2
cE

2
p

σ2
n log2M

·
(K − 1)E

{
|bi|2

}
+
∣∣∣̃b∣∣∣2

K − 1
, (3.13)

where 1
2
σ2
c is the average fading power, and E

{
|bi|2

}
is the mean signal energy.

The Rayleigh and Rician channel dataset used in this work is simulated

and generated by MATLAB as introduced. The signal set includes the symbols

of 0 or 1. They are modulated according to the requirement of experiment
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Figure 3.1: The structure of training sets.

using binary phase shift keying (BPSK), 16-ary phase shift keying(16-PSK),

or 16-ary quadrature amplitude modulation(16-QAM). It is assumed that the

previous SS pilot symbols situated in SS previous frames are used to predict

the channel gain in the future to detect the data symbols. SS is the sample

size. Also, ST is the number of frames of data used to train the predictive

models, as the training size. The received pilot symbols are included in the

training set X. The channel gains are included in the training set Y . The

structure of training sets is shown in Figure 3.1.

For example, when SS = 50, ST = 10 and the frame size K = 5, there

is a training set X of size 50 × 10 and a training set Y of size 1 × 10. For

the prediction of the channel gain at the 61st pilot position c (300T ), in the

first line of the training set X, they are the 1st, 2nd, ..., 50th received pilot

symbols, i.e. r0, r5, ..., r245, and in the first line of the training set Y , it is the

channel gain in the 51th pilot position, i.e. c (250T ). Similarly, in the second

line of the training set X, they are r5, r10, ..., r250, and in the first line of
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training set Y , it is c (255T ), etc. Until the last line of training set Y is the

channel gain in the 60th pilot position c (295T ). Each prediction will be given

according to such training sets covering the previous SS + ST pilot symbols

and ST complex channel gain values by 5 ML algorithms, which are LR, SVM,

DT, RFA, and ER. The accuracy of the prediction will be examined in the

pilot symbol assisted modulation (PSAM) signal detector and compared with

the perfect channel knowledge case, which uses the true value of the channel

gain. The detector can be represented as [6]

b̂i = arg max
bi∈{bm}Mm=1

{
Re {rib∗iX∗

i } −
|bi|2

2
|Xi|2

}
, (3.14)

where b̂i is the data decision, Xi is the prediction result in i-th frame, and

other symbols are defined as before.

3.3 Choices of Key Parameters for Prediction

In this section, the normalized root mean square error (NRMSE) will also be

used to represent the prediction accuracy as the equation (2.3).

3.3.1 Sample Size

Sample size is the number of pilot symbols before the i-th pilot position that

will be learned in one row of a data set. In this subsection, different values of

sample size will be tested from 25 to 250 with a step size of 25. The prediction

will be averaged for 1000 times.
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Figure 3.2: NRMSE for different sample sizes from 25 to 250.

In Figure 3.2, the NRMSE of each algorithm is shown. All of them

decrease with the sample size in general. Among them, for RFA, the lowest

error is recorded as 0.1053 when SS = 250, while the highest error occurs as

0.1305 when SS = 75. The mean value of prediction NRMSE is 0.1174.This

gives a mean prediction accuracy of 88.26%. Next is SVM, whose lowest error

is recorded as 0.0378 when SS = 250, and the highest error occurs as 0.1630

when SS = 50. The mean value of NRMSE is 0.0799, and the mean prediction

accuracy is 92.01%. For LR, the lowest error is recorded as 0.0425 when

SS = 250, while the highest error occurs as 0.5118 when SS = 100. The mean

value of prediction NRMSE is 0.1346, and the mean prediction accuracy is

86.54%. The NRMSE of LR hops at SS = 100. After the test, LR algorithm
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is unstable when SS = ST , because the training set X is symmetric, which

disturbs the fitting of linear regression model. Without considering the value

at SS = 100, the mean NRMSE of LR is 0.0927, which leads to the accuracy of

90.73%. For DT, the lowest error is recorded as 0.1231 when SS = 175, while

the highest error occurs as 0.1534 when SS = 25. The mean value of prediction

NRMSE is 0.1374, and the mean prediction accuracy is 86.26%. Finally, for

ER, the lowest error is recorded as 0.1187 when SS = 175, while the highest

error occurs as 0.1440 when SS = 50. The mean value of prediction NRMSE

is 0.1315, and the mean prediction accuracy is 86.85%.

These results are based on ST = 100 and SNR = 20 dB. The results

show that the channel prediction error in general decreases when SS increases,

because larger sample size provides more information on the fading process.

In addition, when SS is above a certain value, the prediction errors remain

relatively stable, which means that the data farther away from the desired

time gives less help to the prediction.

Similar tests have been done for different ST and SNR. Generally, when

SS ⩾ 200, the NRMSE is relatively stable, especially for SVM and LR. Hence,

considering the trade off between complexity and accuracy in the prediction

efficiency, SS = 200 is chosen as the sample size in later studies.

3.3.2 Training Size

In this subsection, different training sizes will be tried to examine the system

performance. Training size represents how many rows of data are used in a

data set and will be learned to make a prediction. The prediction will also be

averaged for 1000 times, for training sizes from 25 to 250 with a step size of
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Figure 3.3: NRMSE of different training sizes from 25 to 250.

25.

In Figure 3.3, the NRMSEs of SVM and LR show an upward trend with

the increasing training size, while the NRMSEs of RFA, DT and ER fluctuate.

For RFA, the lowest error is recorded as 0.1037 when ST = 25, while the

highest error occurs as 0.1215 when ST = 150. The mean value of prediction

NRMSE is 0.1125, and the mean prediction accuracy is 88.75%. For SVM,

the lowest error is recorded as 0.0382 when ST = 50, while the highest error

occurs as 0.2073 when ST = 250. The mean value of prediction NRMSE is

0.0791, and the mean prediction accuracy is 92.09%. For LR, the lowest error

is recorded as 0.0367 when ST = 50, while the highest error occurs as 0.7564

when ST = 200. The mean value of prediction NRMSE is 0.1632, and the
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mean prediction accuracy is 83.68%. Similar to the SS test, the NRMSE of

LR hops at ST = 200. It is also because the unstable performance of LR

algorithm when SS = ST . Next is DT, the lowest error is recorded as 0.1037

when ST = 25, while the highest error occurs as 0.1527 when ST = 125. The

mean value of prediction NRMSE is 0.1345, and the mean prediction accuracy

is 86.55%. Finally for ER, the lowest error is recorded as 0.0937 when ST = 25,

while the highest error occurs as 0.1440 when ST = 125. The mean value of

prediction NRMSE is 0.1315, and the mean prediction accuracy is 87.08%.

These results are based on SNR = 20 dB. Similar tests have also been

done for different SNRs. Generally, when ST ⩽ 150, the NRMSE is rela-

tively stable with good accuracy, especially for SVM and LR. The results

show that, in dynamic wireless channel conditions, the neighbouring batches

of data points are more effective to real-time channel prediction. Hence, for a

balance between complexity and accuracy, ST = 100 is chosen as the training

size in later studies.

3.3.3 Algorithm Comparison by Chunks

In this subsection, to compare the performances of different algorithms, the

test is done in several ‘chunks’ of data. The dataset is divided into chunks to

examine the stability of these algorithms in different data intervals.

In this research, the sample size is set as 200 and the training size is

set as 100 to build the prediction model. Also 1000 rows of data points are

predicted in one chunk based on the learning of 300 data points, while the next

1000+300 data points are used in the next chunk and so on. For example, as

shown in Figure 3.4, the first chunk has the 1st to 1300th data points and the
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Figure 3.4: The structure of chunks.

second chunk has the 1301st to 2600th data points. The mean NRMSEs of 10

chunks will be calculated and compared in the following.

From Figure 3.5 to 3.9, the average NRMSEs for RFA, SVM, LR, DT,

and ER are 0.1088, 0.0392, 0.0467, 0.1251 and 0.1194 respectively, and the

mean value of these errors is 0.0878.
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Figure 3.5: NRMSE of SVM by chunks.

Overall, the algorithm with the best performance is SVM, which gives

a mean prediction accuracy of 96.08%. The lowest error of SVM is recorded

in chunk 3 as 0.0389, while the highest error occurs of SVM in chunk 10 as

0.0396. The range of errors for SVM is 0.0007.
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Figure 3.6: NRMSE of LR by chunks.

Next, LR gives a mean prediction accuracy of 95.33%. The lowest error

of LR is recorded in chunk 3 as 0.0434, while the highest error of LR occurs

in chunk 1 as 0.0523. The range of errors for LR is 0.0089.
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Figure 3.7: NRMSE of RFA by chunks.

Next is RFA, which gives a mean prediction accuracy of 89.12%. The

lowest error of RFA is recorded in chunk 2 as 0.1077, while the highest error

of RFA occurs in chunk 4 as 0.1106. The range of errors for RFA is 0.0029.
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Figure 3.8: NRMSE of ER by chunks.

Next, ER gives a mean prediction accuracy of 88.06%. The lowest error

of ER is recorded in chunk 8 as 0.1138, while the highest error of ER occurs

in chunk 2 as 0.1289. The range of errors for ER is 0.0151.
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Figure 3.9: NRMSE of DT by chunks.

The algorithm with the worst performance is DT, which gives a mean

prediction accuracy of 87.49%. The lowest error of DT is recorded in chunk

9 as 0.1195, while the highest error of DT occurs in chunk 1 as 0.1304. The

range of errors for DT is 0.0109. The results show that SVM outperforms all

other algorithms in terms of the errors for all the 10 chunks both in accuracy

and stability. LR is the second best algorithm.

In this test, RK is set as 8 with BPSK modulation. Other RK values

and modulations are also tested. The accuracies of SVM and LR are still

significantly higher than RFA, ER, and DT.
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3.4 Numerical Results and Discussion

In this section, the prediction will be examined in the PSAM detector to

compare the signal detection accuracy. Symbol error rate (SER) is used to

represent the detection accuracy as

Pe = P
[
b̂i ̸= bi

]
. (3.15)

3.4.1 SNR

In this subsection, channel prediction and signal detection will be simulated

separately. The performances of the prediction systems for different values of

SNR are compared with that of MMSE based estimator. In this test, ST = 100,

RK = 8, and the modulation type is BPSK. In Figure 3.10, when SS = 200, the

NRMSEs of the five algorithms all reduce with the increase of SNR. Among

them, for RFA, the lowest error is recorded as 0.1106 when SNR=30 dB,

while the highest error occurs as 0.1857 when SNR=-5 dB. The mean value of

prediction NRMSE is 0.1362, and thus the mean prediction accuracy is 86.38%.

For SVM, the lowest error is recorded as 0.0342 when SNR=30 dB, while the

highest error occurs as 0.1719 when SNR=-5 dB. The mean value of prediction

NRMSE is 0.0765, and thus the mean prediction accuracy is 92.35%. For LR,

the lowest error is recorded as 0.0184 when SNR=30 dB, while the highest error

occurs as 0.4248 when SNR=-5 dB. The mean value of prediction NRMSE is

0.1510, and then the mean prediction accuracy is 84.90%. For DT, the lowest

error is recorded as 0.1215 when SNR=30 dB, while the highest error occurs

as 0.2606 when SNR=-5 dB. The mean value of prediction NRMSE is 0.1731,

and the mean prediction accuracy is 82.69%. Finally for ER, the lowest error is
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Figure 3.10: NRMSE of different SNR from -5 dB to 30 dB when SS = 200.

recorded as 0.1136 when SNR=30 dB, while the highest error occurs as 0.2682

when SNR=-5 dB.The mean value of prediction NRMSE is 0.1718, and the

mean prediction accuracy is 82.82%.

Among the five algorithms, SVM gives the best performance in terms

of NRMSE, and RFA is the second best. In addition, when SNR < 10 dB,

the performances of all the ML methods are better than MMSE, which means

ML shows better adaptability to noise in the wireless channel. When SNR

⩾15 dB, MMSE gives lower NRMSE than ML methods, but the performances

of LR and SVM are always near the MMSE. When SNR ⩾ 25 dB, the NRMSE

of LR becomes the lowest of all the ML algorithms. Thus, for large SNRs, LR

should be used, while for small SNRs, SVM should be used.
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Figure 3.11: SER of different SNR from -5 dB to 30 dB when SS = 200.

The prediction in Figure 3.10 is then used in the signal detector, and

its SER is shown in Figure 3.11. For all the following figures, the line ‘perfect

detection’ means the SER is obtained when the detector using the true value

of channel gain with the length of SS. Similar to NRMSE, in Figure 3.11, all

the SERs decrease with the increasing SNR.

For RFA, the lowest SER is recorded as 1.78×10−2 when SNR=30 dB,

while the highest SER occurs as 3.12×10−1 when SNR=-5 dB. For SVM, the

highest SER occurs as 3.09×10−1 when SNR=-5 dB. And when SNR ⩾ 20 dB,

SER⩽ 10−3. For LR, the highest SER occurs as 3.59×10−1 when SNR=-5 dB.

And when SNR ⩾20 dB, SER⩽ 10−3. For DT, the lowest SER is recorded

as 2.38×10−2 when SNR=25 dB, while the highest SER occurs as 3.13×10−1
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Figure 3.12: NRMSE of different SNR from -5 dB to 30 dB when SS = 500.

when SNR=-5 dB. Finally for ER, the lowest SER is recorded as 2.40×10−2

when SNR=25 dB, while the highest SER occurs as 3.12×10−1 when SNR=-

5 dB. The performance of SVM is very close to perfect detection. However, the

channel prediction in this research does not require knowledge of the channel

covariance matrix to reduce complexity.

In Figure 3.12, when SS = 500, the NRMSEs of the five algorithms all

decrease with the increase of SNR value. For RFA, the lowest error is recorded

as 0.1054 when SNR=30 dB, while the highest error occurs as 0.1818 when

SNR=-5 dB. The mean value of prediction NRMSE is 0.1314, and the mean

prediction accuracy is 86.86%. For SVM, the lowest error is recorded as 0.0328

when SNR=30 dB, while the highest error occurs as 0.1442 when SNR=-5 dB.
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The mean value of prediction NRMSE is 0.0664, and the mean prediction

accuracy is 93.36%. For LR, the lowest error is recorded as 0.0116 when

SNR=30 dB, while the highest error occurs as 0.3884 when SNR=-5 dB. The

mean value of prediction NRMSE is 0.1190, and the mean prediction accuracy

is 88.10%. For DT, the lowest error is recorded as 0.1226 when SNR=30 dB,

while the highest error occurs as 0.2483 when SNR=-5 dB. The mean value

of prediction NRMSE is 0.1654, and the mean prediction accuracy is 83.46%.

Finally for ER, the lowest error is recorded as 0.1147 when SNR=30 dB,

while the highest error occurs as 0.2535 when SNR=-5 dB. The mean value of

prediction NRMSE is 0.1631, and the mean prediction accuracy is 83.69%.

When SS = 500, SVM also gives the best performance of mean predic-

tion accuracy, and LR is in the second best, too. ML methods still outperforms

MMSE in lower-SNR regions due to their better anti-noise abilities. Addition-

ally, the NRMSE of LR becomes the lowest of ML algorithms and near MMSE

when SNR ⩾20 dB.

The SER is shown in Figure 3.13, in which all the SER also show an

downward trend with the increase SNR.

For RFA, the lowest SER is recorded as 4.75×10−3 when SNR=20 dB,

while the highest SER occurs as 3.12×10−1 when SNR=-5 dB. For SVM, the

highest SER occurs as 3.07×10−1 when SNR=-5 dB. And when SNR ⩾ 15 dB,

SER⩽ 10−3. For LR, the highest SER occurs as 3.44×10−1 when SNR=-5 dB.

And when SNR ⩾ 15 dB, SER⩽ 10−3. For DT, the lowest SER is recorded

as 1.72×10−2 when SNR=30 dB, while the highest SER occurs as 3.19×10−1

when SNR=-5 dB. Finally for ER, the lowest SER is recorded as 1.65×10−2

when SNR=30 dB, while the highest SER occurs as 3.22×10−1 when SNR=-

5 dB. Compared with Figure 3.11, LR gives better performance when SNR
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Figure 3.13: SER of different SNR from -5 dB to 30 dB when SS = 500.

⩾15 dB.

For clarity, all the NRMSE and SER values are illustrated in Table 3.1

and 3.2. Overall, the SER of all the methods decreases with the increase of

the SNR, because less noise leads higher accuracies. The SER of detection

based on ML methods match their performances of channel prediction. SVM

and LR outperform the other three algorithms both in prediction NRMSE and

detection SER.

3.4.2 Normalized Doppler Shift

In this subsection, the performance of detection based on channel prediction

for different values of the normalized Doppler shift in the fading channel will
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Table 3.1: NRMSE of channel prediction with different SNR values

SNR -5 0 5 10

Algorithm SS NRMSE

RFA
200 0.1857 0.1659 0.1527 0.1299

500 0.1818 0.1640 0.1450 0.1278

SVM
200 0.1720 0.1189 0.0910 0.0677

500 0.1442 0.1048 0.0766 0.0558

LR
200 0.4248 0.2995 0.1837 0.1290

500 0.3885 0.2153 0.1323 0.0917

DT
200 0.2606 0.2202 0.2047 0.1710

500 0.2483 0.2147 0.1918 0.1586

ER
200 0.2682 0.2264 0.2037 0.1695

500 0.2535 0.2115 0.1940 0.1606

MMSE

estimation

200 0.8765 0.6783 0.3829 0.1482

500 0.8648 0.6586 0.3650 0.1411

SNR 15 20 25 30

Algorithm SS NRMSE

RFA
200 0.1199 0.1135 0.1110 0.1106

500 0.1110 0.1098 0.1067 0.1054

SVM
200 0.0502 0.0422 0.0362 0.0342

500 0.0447 0.0377 0.0340 0.0328

LR
200 0.0745 0.0504 0.0280 0.0184

500 0.0627 0.0294 0.0205 0.0116

DT
200 0.1487 0.1264 0.1317 0.1215

500 0.1325 0.1310 0.1235 0.1227

ER
200 0.1475 0.1267 0.1190 0.1136

500 0.1303 0.1238 0.1166 0.1147

MMSE

estimation

200 0.0493 0.0232 0.0149 0.0081

500 0.0490 0.0229 0.0127 0.0074
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Table 3.2: SER of detection with different SNR values
SNR -5 0 5 10

Algorithm SS SER

RFA
200 3.04×10−1 1.99×10−1 1.04×10−1 4.20×10−2

500 3.10×10−1 2.01×10−1 9.15×10−2 3.45×10−2

SVM
200 3.09×10−1 1.79×10−1 7.63×10−2 1.55×10−2

500 3.07×10−1 1.84×10−1 6.50×10−2 1.18×10−2

LR
200 3.58×10−1 2.35×10−1 1.36×10−1 3.75×10−2

500 3.44×10−1 2.20×10−1 1.01×10−1 2.88×10−2

DT
200 3.13×10−1 2.28×10−1 1.36×10−1 7.20×10−2

500 3.19×10−1 2.35×10−1 1.32×10−1 5.88×10−2

ER
200 3.12×10−1 2.17×10−1 1.41×10−1 7.18×10−2

500 3.23×10−1 2.26×10−1 1.30×10−1 6.33×10−2

Perfect

detection

200 2.88×10−1 1.60×10−1 4.83×10−2 5.80×10−3

500 3.03×10−1 1.73×10−1 5.30×10−2 5.50×10−3

SNR 15 20 25 30

Algorithm SS SER

RFA
200 2.25×10−2 1.95×10−2 1.80×10−2 1.78×10−2

500 1.05×10−2 4.75×10−3 5.25×10−2 5.74×10−2

SVM
200 2.00×10−3 < 10−3 < 10−3 < 10−3

500 < 10−3 < 10−3 < 10−3 < 10−3

LR
200 3.25×10−3 1.00×10−3 1.00×10−3 < 10−3

500 < 10−3 < 10−3 < 10−3 < 10−3

DT
200 4.30×10−2 3.43×10−2 2.37×10−2 2.53×10−2

500 2.45×10−2 1.78×10−2 2.35×10−2 1.72×10−2

ER
200 3.70×10−2 2.90×10−2 2.40×10−2 2.92×10−2

500 2.58×10−2 2.25×10−2 1.85×10−2 1.65×10−2

Perfect

detection

200 10−3 < 10−3 < 10−3 < 10−3

500 1.00×< 10−3 < 10−3 < 10−3 < 10−3
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Figure 3.14: SER comparison for BPSK modulation in Rayleigh fading chan-
nels with different values of fDT .

be compared. In the following, based on the previous results, only SVM and

LR will be chosen to make comparison with the perfect detection, and all the

tests are done for 10000 data points to calculate the SER.

Figure 3.14 and Table 3.3 show the SER for BPSK modulation in

Rayleigh fading channels when fDT =0.01, 0.03 and 0.06. When fDT =0.01,

the mean SERs of SVM and LR are 3.98×10−2 and 5.79×10−2, respectively.

When fDT =0.03, the mean SER of SVM is 5.57×10−2 and the mean SER of

LR is 1.00×10−1. When fDT = 0.06, the mean SER of SVM is 9.85×10−2,

while the mean SER of LR is 2.00×10−1. In addition, the performance of LR

is better than SVM at a higher SNR, while SVM is better at a smaller SNR.

The normalized Doppler shift relates to the relative speed between transmitter
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Table 3.3: SER of detection with different fDT values.

SNR 0 5 10 15

Algorithm fDT SER

SVM

0.01 1.89×10−1 7.27×10−2 1.45×10−2 1.45×10−3

0.03 2.05×10−1 1.04×10−1 4.06×10−2 1.66×10−2

0.06 2.18×10−1 1.39×10−1 9.15×10−2 6.89×10−2

LR

0.01 2.44×10−1 1.19×10−1 3.59×10−2 5.97×10−3

0.03 2.92×10−1 2.05×10−1 1.19×10−2 5.41×10−2

0.06 3.31×10−1 2.85×10−1 2.36×10−2 1.92×10−1

Perfect

detection
1.71×10−1 5.58×10−2 6.57×10−3 < 10−3

SNR 20 25 30

Algorithm fDT SER

SVM

0.01 < 10−3 < 10−3 < 10−3

0.03 9.18×10−3 7.73×10−3 7.00×10−3

0.06 6.07×10−2 5.66×10−2 5.51×10−2

LR

0.01 < 10−3 < 10−3 < 10−3

0.03 2.03×10−2 7.57×10−3 3.92×10−3

0.06 1.52×10−1 1.19×10−1 8.49×10−2

Perfect

detection
< 10−3 < 10−3 < 10−3
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Figure 3.15: SER comparison for BPSK modulation with Rayleigh and Rician
fading channels with different values of RK .

and receiver. Generally speaking, because the normalized Doppler shift leads

to the variation of wireless channel and signal, a larger value of the normalized

Doppler shift gives a higher SER for signal detection.

3.4.3 Different Signalling

Figure 3.15 gives the SER for BPSK signaling in different RK values. In this

subsection, SVM and LR will be compared with the existing scheme, which is

based on MMSE estimator with conventional PSAM (CPSAM) detector in [6]

[7].

When RK = 0 and SER=10−1, the performances of SVM and LR are
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respectively about 4.7 dB and 4.1 dB worse than the performance of existing

scheme. When RK = 4 and SER=10−1, the performance of LR is about 2.6 dB

worse than the existing scheme and SVM. When RK = 8 and SER=10−1, the

performances of existing scheme and LR are respectively about 0.2 dB and

3.8 dB worse than the performance of SVM. Additionally, when RK = 0, the

mean SER of SVM from 0 dB to 30 db is 1.18×10−1 and the mean SER of LR

from 0 dB to 30 dB is 1.12×10−1. When RK = 4, the mean SER of SVM from

0 dB to 30 db is 4.82×10−2, while that of LR is 6.79×10−2. When RK = 8, the

mean SERs of SVM and LR from 0 dB to 30 dB are 4.02×10−2 and 5.74×10−2,

respectively. When RK = 8 and SNR ⩾ 20, the SERs of both algorithms are

⩽ 10−3.

In Figure 3.16, the SER for 16-PSK signaling in different fading channel

conditions is shown. When RK = 0, the mean SER of SVM from 0 dB to 30 dB

is 4.90×10−1, and the mean SER of LR from 0 dB to 30 db is 4.21×10−1.

Both of the two algorithms cannot achieve the SER of lower than 10−1 when

SNR ⩽ 30 dB. When RK = 4, the mean SERs of SVM and LR from 0 dB

to 30 dB are 2.74×10−1 and 2.99×10−1, respectively. When the SER=10−1,

the performance of SVM is about 2.7 dB worse than the CPSAM and the

performance of LR is about 2.5 dB worse than the existing scheme. And when

RK = 8, the mean SER of SVM from 0 dB to 30 dB is 2.45×10−1, and that

of LR is 2.79×10−1. When the SER=10−1, the performance of SVM and LR

are respectively about 1.3 dB and 2.4 dB worse than the existing scheme.

Figure 3.17 shows the SER for 16-QAM signaling in different fading

channel conditions. When RK = 0, the mean SER of SVM from 0 dB to

30 dB is 2.82×10−1, and the mean SER of LR from 0 dB to 30 dB is 2.64×10−1.

When the SER=10−1, the performance of LR is about 2.7 dB worse than the
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Figure 3.16: SER comparison for 16-PSK modulation in Rayleigh and Rician
fading channels with different values of RK .

existing scheme. However, SVM cannot achieve the SER of lower than 10−1

when SNR ⩽ 30 dB. When RK = 4, the mean SERs of SVM and LR from 0 dB

to 30 dB are 7.90×10−2 and 1.51×10−1, respectively. When the SER=10−1,

the performance of SVM is about 5.1 dB better than the existing scheme

and the performance of LR is about 0.2 dB better than the existing scheme.

When the SER=10−2, the performance of LR is about 3.5 dB worse than the

existing scheme. However, SVM cannot achieve the SER of lower than 10−2

when SNR ⩽ 30 dB. And when RK = 8, the mean SER of SVM from 0 dB

to 30 dB is 4.38×10−2, and that of LR is 1.16×10−1. When the SER=10−1,

the performances of SVM and LR are respectively about 7.8 dB and 1.7 dB

better than the existing scheme. When the SER=10−2, the performances of
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Figure 3.17: SER comparison for 16-QAM modulation in Rayleigh and Rician
fading channels with different values of RK .

SVM is about 4.7 dB better than the existing scheme and LR is about 0.7 dB

worse than the existing scheme. And when the SER=10−3, the performances

of SVM and LR are respectively about 0.8 dB and 2.6 dB worse than the

existing scheme.

Table 3.4 shows the SERs of different signaling when RK = 8. Over-

all, larger values of RK result in higher accuracy of SVM and LR predic-

tion because of the better channel conditions.This is because higher RK leads

to stronger direct wave from transmitter to receiver. Respectively, when

SNR ≥ 20 dB and RK = 8, in BPSK signaling, the SERs of SVM and LR

can be lower than 10−3. In 16-PSK signaling, the SER of SVM can reach
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Table 3.4: SER of detection with different signaling when RK = 8.

SNR 0 5 10 15

Algorithm
Modulation

type
SER

SVM

BPSK 1.91×10−1 7.39×10−2 1.47×10−2 1.80×10−3

16-PSK 7.06×10−1 5.24×10−1 3.00×10−1 1.20×10−1

16-QAM 2.24×10−1 6.27×10−2 1.37×10−2 3.40×10−3

LR

BPSK 2.42×10−1 1.19×10−1 3.46×10−2 4.73×10−3

16-PSK 7.53×10−1 5.96×10−1 3.82×10−1 1.61×10−1

16-QAM 4.67×10−1 2.39×10−1 8.54×10−2 1.85×10−2

Existing

scheme

BPSK 2.38×10−1 7.13×10−2 7.10×10−3 < 10−3

16-PSK 7.43×10−1 5.52×10−1 3.04×10−1 9.29×10−2

16-QAM 7.25×10−1 4.87×10−1 1.48×10−1 1.59×10−2

SNR 20 25 30

Algorithm
Modulation

type
SER

SVM

BPSK < 10−3 < 10−3 < 10−3

16-PSK 3.92×10−2 1.71×10−2 1.13×10−3

16-QAM 1.43×10−3 < 10−3 < 10−3

LR

BPSK < 10−3 < 10−3 < 10−3

16-PSK 4.76×10−2 1.23×10−2 4.28×10−3

16-QAM 3.08×10−3 < 10−3 < 10−3

Existing

Scheme

BPSK < 10−3 < 10−3 < 10−3

16-PSK 1.32×10−2 3.03×10−3 1.18×10−3

16-QAM < 10−3 < 10−3 < 10−3
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1.13×10−2 and the SER of LR can reach 4.28×10−3. In 16-QAM signaling,

when SNR ≥ 25 dB, both the SERs of SVM and LR can also be lower than

10−3.

Generally, in the lower-SNR region, the SVM predictor shows reliable

SER performance. On the other hand, when the constellation size is large, the

gaps between the SERs of ML methods and those of existing scheme are small.

In 16-PSK and 16-QAM modulation, the mean SER of ML methods reaches

the same level as the existing scheme, and even outperforms it in some cases,

which means that, compared to the existing scheme, ML methods can learn

channel characteristics from neighbouring data points, and eliminate noise

disturbance. In the higher-SNR region, the performance of LR outperforms

that of SVM. It is because SVM is based on the structural risk minimization

principle, which can prevent overfitting, while LR is not. In addition, after

the test of even higher range of SNR, the minimum SER value of the LR is

significantly lower than that of SVM, which means the highest accuracy that

LR can achieve is higher than the value that SVM can achieve. Compared to

existing scheme, LR and SVM do not need any channel model knowledge for

estimation. In these figures, the curves of LR and SVM become flatter when

SNR increases, the similar situation is also occurred on the curves of existing

scheme with the increase of SNR.

3.4.4 Prediction Efficiency

In Table 3.5, the mean training and prediction time at each data point for

different algorithms and different signaling is compared. The training and

prediction time represents the time of each algorithm to renew the model

107



Table 3.5: Comparison of processing time for different algorithms and signal-
ing.

BPSK 16-PSK 16-QAM

LR 0.4150s 0.4171s 0.4086s

SVM 0.1444s 0.1414s 0.1410s

parameter and make prediction in each data point. They are recorded when

SNR=5. Similar tests for others SNRs have also been done. The results are

not affected by SNR values. In BPSK, 16-PSK, and 16-QAM signaling, when

using LR, the training and prediction time for each data point is 0.4150s,

0.4171s and 0.4086s. When using SVM, the prediction of each point spends

0.1444s, 0.1414s and 0.1410s. From the table, the prediction time is irrelevant

to the modulation type. In the test, for DL methods, each update of model

needs decades or hundreds of epochs, and each epoch takes several seconds.

Compared to DL, in the dynamic wireless channel environment, LR and SVM

can update the model and make real-time prediction at each data point in

no more than 0.5 second. On the other hand, the training and prediction

time shows that, although the prediction accuracy of SVM is slightly lower

than that of LR, but SVM only about 34% time of LR for each data point.

Therefore, SVM is more efficient than LR.

3.5 Conclusion

The work of this Chapter has studied five ML algorithms (RFA, LR, SVM,

DT, and ER) for real-time channel prediction based on the received signals,

which do not need any channel model statistical knowledge. The results have

shown that, in terms of the average prediction accuracy, the SER of detection,
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and prediction efficiency, the SVM give the best performance among all the

five algorithms. When SNR=30 dB and RK = 8, for BPSK and 16-QAM mod-

ulation, the SERs of detection based on SVM and LR prediction have both

reached lower than 10−3, and for 16-PSK modulation, the SERs of SVM and

LR have reached 1.13×10−2 and 4.28×10−3. Additionally, in higher constella-

tion size conditions, ML methods have reached similar detection accuracy to

existing scheme and even outperformed it, which shows the potential ability

of ML algorithms in complex channel conditions.

The main contribution of this work includes the following. First, to

the best of my knowledge, this is the first time that classical ML algorithms

are used to predict wireless channel. Second, the detection accuracies of dif-

ferent ML predictors have been tested. Moreover, because of the efficiency

of traditional ML, the proposed method will be easier to use in the real-time

prediction using received signal, which means the ML model can be renewed

along time series continuously.
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Chapter 4

Deep-Learning-based Multiuser

OFDM Signal Detection

4.1 Introduction

In recent years, to combat multipath fading in wireless channels, OFDM has

become a widely used modulation scheme in various wireless communications

systems. To gain the CSI and recover the transmitted symbols in OFDM

systems, many works have been conducted for channel estimation and signal

detection [6]. Since DL algorithms are widely used in various fields [86], many

researches have focused on applying DL to wireless communications, especially

to channel estimation and signal detection. In [71] and [17], DL methods were

used to improve the performance of MMSE estimator. In [87], a convolutional

blind denoising network was developed for channel estimation of millimetre-

wave massive MIMO system. In [88], a deep learning-assisted method was

proposed for channel estimation in 5G communications. In addition, recently,

deep learning has been applied to OFDM communications systems. In [76],
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a residual-learning-based OFDM channel estimation method was presented.

In [74], a DL-based estimator was proposed to adapt the scenarios of high

mobility in MIMO-OFDM system, which shows high robustness. In [89], a

generative adversarial network was developed for channel super-resolution to

gain more details of the CSI with performance close to that of LMMSE. In

[8], FCDNN was used for signal detection. It was shown that, when cyclic

prefix was omitted and the number of pilots was small, the DL based detector

was more robust than LS and MMSE detectors. In [90], a DL-based channel

estimator with joint pilot design was presented. In the scheme, the inherent

correlations in MIMO-OFDM were utilized to improve the performance of

estimation. In [91], a channel estimation network and a channel-conditioned

recovery network were proposed for channel estimation and signal detection

to make them robust to the variation of parameters. However, all these works

have considered only a single user.

Additionally, how to improve accuracy of signal processing in multiuser

conditions has received a lot of attention. In [28], the performances of FCDNN

and CNN based signal detectors were compared in the presence of co-channel

interference. In [92], genetic algorithms was proposed in space division multiple

access (SDMA) detector. In [93], DNN was used in the detector for multiuser

MIMO system. The proposed detector gave higher accuracy than conventional

MMSE detection scheme. In [94], a LS-based channel estimation algorithms

was developed for multiuser multiple-input-single-output(MISO)-OFDM light

communication and the accuracy achieved the same level as MMSE. In [95],

DL based detector was proposed for multiuser non-orthogonal multiple access

(NOMA) and OFDM-NOMA communications systems.

The works mentioned above are all for a specific multiuser scenario,
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such as multiuser SDMA, NOMA, MIMO or MISO. Different from them, in

following work, DL-based signal processing and detection for an uncoded mul-

tiuser OFDM system will be studied. The multiuser interference will be added

directly at the OFDM receiver. To the best of my knowledge, this is the first

time that DL models are applied in such a tough system. The performances

of different methods in this system will be investigated. FCDNN and CNN

are popular for DL, while LSTM usually gives good performance in time-series

data processing [86]. Therefore, We will compare the bit error rates (BERs)

of offline-trained FCDNN, CNN and LSTM neural networks to evaluate their

anti-interference ability in multiuser conditions.

4.2 System Model

4.2.1 System Architecture

The structure of the deep-learning-based multiuser OFDM communications

system is shown in Figure 4.1. The transmitted symbols Sk (t) with pilots

are converted from serial to parallel stream. Then, the transmitted signal

is converted to the time domain by IDFT. After the CP is inserted in the

symbols, the signal is converted back to serial stream and sent to the wireless

channel. The signal at the receiver is

r (t) = c (t)⊗ s (t) + n (t) , (4.1)

where c (t) is the wireless channel and is a time-varying complex Gaussian

random process, s (t) is the transmitted signal after IDFT and n (t) is the

AWGN. For the desired user whose signal is tried to be received from, its
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transmitted signal, received signal, and wireless channel are denoted as sM (t),

rM (t), and cM (t) respectively. The NoI is n. For the jth interfering user,

its transmitted signal, received signal, and wireless channel are denoted as

sIj (t), rIj (t), and cIj (t) respectively. At the receiver, rM (t) is interfered by

rI1 (t), rI2 (t), ..., rIn (t). After parallel-to-serial conversion, removal of CP,

DFT, and serial-to-parallel conversion, SM (k) is recovered using DL without

CSI. The CSI is unknown at the receiver. The recovered symbols are denoted

as ŜM (k). In the system, DL is trained offline. At the deployment stage

when DL is online, the weight of the network has been fixed and there is no

training at this stage. To learn the feature of the channel, the DL model is

trained using WINNER II channel model [96] for a dynamic OFDM channel

in various conditions. Thus, DL network does not need to be re-generated or

re-trained for different NoI, SNR or SIR. As [8], the typical urban channels

with a maximum delay of 16 sampling period are used. The frequency of the

carrier is 2.6 GHz, and the number of paths is 24.

4.2.2 Deep Learning Network and Complexity

As mentioned before, in this work, FCDNN, CNN and LSTM are used to

recognize transmitted symbols. In the physical layers of communications, the

transmitted symbols are 0 or 1. Therefore, the detection can be regarded as a

simple binary classification problem. To solve it, the data will be transformed

to different sizes to adapt to different networks. At the input layer of CNN, the

input complex channel parameters and transmitted signal will be transformed

to a 2D array using their real parts and imaginary parts, while in the LSTM

network, the input data will be formed as a sequence. As [8], to improve the
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Figure 4.1: System structure.
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Table 4.1: Architecture of FCDNN network
Layer name Parameters Activation

Input Size 256Ö1

Dense 512 neurons Relu

Dense 512 neurons Relu

Dense 128 neurons Relu

Output Size 16Ö8 Sigmoid

Table 4.2: Architecture of CNN network
Layer name Parameters Activation

Input Size 2Ö2Ö64

Conv2D 1Ö2 filter Relu

Conv2D 2Ö1 filter Relu

Dense 128 neurons Relu

Output Size 16Ö8 Sigmoid

performance, every frame of 128 symbols will be used as input to 8 parallel

networks, and each network will detect 16 symbols. For transmitted signals,

the pilot symbols are the same in the training and testing stages, while the

data symbols are generated randomly in each simulation. The output layer

will give a result of 8Ö16 symbols.

The network architecture are illustrated in Tables 4.1 to 4.4. For

FCDNN, the architecture is shown in Table 4.1.

For CNN, the architecture of CNN network used in this work is shown

in Table 4.2. We use 1*2 and 2*1 filters to match the 64*2*2 input data. The

pooling layer is not used as the size of input data is small.

The LSTM network architecture is shown in Table 4.3.

At the training stage, to learn the feature of OFDM channels, the sets

of transmitted symbols and corresponding unrecovered received signal through
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Table 4.3: Architecture of LSTM network
Layer name Parameters Activation

Input Size 256*1 Sequence

LSTM 128 neurons

LSTM 128 neurons

Dense 64 neurons Relu

Output Size 16Ö8 Sigmoid

various OFDM channels when SNR = 15 dB are generated for training and

validation. In this work, 1000 training samples are generated for each epoch.

Then, the sets of symbols in multi-user OFDM conditions at transmitter and

receiver are generated for testing the anti-multiuser-interference performance

of DL models. The transmitted bits are 0 or 1. Therefore, BER is used to

represent the detection accuracy as

Pe = P
[
ŜM (k) ̸= SM (k)

]
. (4.2)

For the fully connected layer, the number of parameters is calculated

as NFC = (di + 1) do, where do and di denote the number of input units

and output units of the layer, respectively. For the convolutional layer, the

number of parameter relates to the filter size, it is calculated as NConv =

(dh × dw × di + 1) do, where dh and dw denote the height and width of the fil-

ter, respectively. A LSTM layer contains 4 non-linear transformation, which

leads to 4 non-linear mapping layers. Thus the number of parameters for

the LSTM layer is NLSTM = 4 [do (do + di) + do], In the training, the com-

putational complexity for each time step and parameter of these methods is

O (1). Therefore, the complexities for the models are O (NFC), O (NConv), and

O (NLSTM). To illustrate the complexities of the DL networks, the values of

116



Table 4.4: The number of parameters for DL networks

Lth

layer

Deep learning network

FCDNN CNN LSTM

1 131584 66048 197120

2 262656 262400 131584

3 65664 32896 8256

Total 459904 361344 336960

parameters are listed in Table 4.4.

4.3 Numerical Results and Discussion

In this section, the performances of different methods are compared. FCDNN,

CNN, and LSTM models are trained offline and then deployed online. The

BER is used to measure their performances. All the SIR in this section is

a transmitting SIR. In a multiuser system, successive interference cancella-

tion schemes can be used in signal processing. However, they usually suffer

from decoding error and estimation error. Thus, the BER of LMMSE that is

defined in [10] is used as a benchmark to compare with the result. For the

desired user, 4-ary quadrature amplitude modulation (4-QAM) signalling is

used. The modulation types of interfering users and the SIRs change in differ-

ent experiments. Same as [8], OFDM channel is WINNER II channel model

[96].

117



0 25 50 75 100 125 150 175 200
Epoch

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

Lo
ss

Model Loss
LSTM train
LSTM test
CNN train
CNN test
DNN train
DNN test

Figure 4.2: Training loss when SNR = 15 dB and SIR = 0 dB.
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Figure 4.3: Training BERs when SNR = 15 dB and SIR = 0 dB.

To find the best number of epochs, the training loss and accuracy curves

with 4-QAM interference when SNR = 15 dB and SIR = 0 dB are illustrated

in Figure 4.2 and Figure 4.3, respectively. 1000 is chosen as the batch size for

training. In Figure 4.2, the loss function decreases significantly before the 25th

epoch. After the 25th epoch, it declines slowly and continuously. Similarly,

the BER curves show a sharp decrease trend before the 25th epoch. When the

epoch is more than 100, the BER is no longer changing. All the methods reach

their error floor in multiuser condition. After the 150th training epoch, the

overfitting leads to stronger BER fluctuation as epoch increases. Therefore,
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150 is chosen as the number of training epoch.

4.3.1 Comparison of Methods
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Figure 4.4: BERs of DL models without interference.

To ensure that the DL models work well in OFDM detection, Figure 4.4 shows

the BERs of DL models in OFDM system without interference. All the three

models give reliable performance. When SNR > 5 dB, BER⩽ 10−1, and when

SNR > 15 dB, BER⩽ 10−2. The lowest BERs which LSTM and CNN can

reach are 10−3.
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Figure 4.5: BERs of different methods with 4-PSK interference.
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Figure 4.6: BERs of different methods with 4-QAM interference.

Figure 4.5 and Figure 4.6 respectively show the performance comparison

of different DL algorithms and LMMSE detector when 4-ary phase shift keying

(4-PSK) and 4-QAM are used by interfering users and SNR = 15 dB. In both

figures, the BERs of DL and LMMSE increase with increasing NoI. When

interfering users are 4-PSK modulated, at SIR = 15 dB, the BERs of FCDNN,

CNN, and LSTM are 0.04, 0.039, 0.047 smaller than LMMSE on average,

respectively. When SIR is increased to 25 dB, the gap between LMMSE and

DL methods are smaller. The BERs of FCDNN, CNN, and LSTM are 0.005,

0.003, and 0.006 smaller than LMMSE. When interfering users use 4-QAM,

which is the same modulation type of desired user, all methods have higher
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BERs than 4-PSK. DL algorithms still outperform LMMSE when SIR = 15 dB

and SIR = 25 dB. Overall, from the comparison in these two figures, the BER

differences between FCDNN and LSTM are very small. But CNN give worse

performance than other two methods in 4-PSK interference. When SIR is

lower or NoI is higher, DL methods perform better than conventional LMMSE

method under serious interference. To test the robustness of the methods,

their performances with different numbers of pilots are compared. Figure 4.7

shows the BERs of the methods when 16 pilots and 64 pilots are used in a

frame of 128 symbols. For CNN, the BER with 16 pilots is 0.006 to 0.0466

higher than the BER with 64 pilot for different NoI values. BERs of FCDNN

and LSTM with 16 pilots are no more than 0.019 higher than BERs with 64

pilots. Thus, decrease in number of pilots from 64 to 16 have less effect to

LSTM and FCDNN methods.
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Figure 4.7: BERs with different number of pilots.

Overall, LSTM and FCDNN give better and more robust performances

against multiuser-interference than CNN. Compared with LMMSE, DL models

have much lower BERs in weaker interference, because neural networks can

learn signal and channel features from epochs of training.

4.3.2 NoI and SNR

The received signal is disturbed by both AWGN and interference. To under-

stand their influence, in this subsection, the BER is examined for different

values of the SNR and NoI. The SIR is set as 20 dB.

In Figure 4.8, performances of three DL algorithms for different SNRs

124



with NoI = 1, 5, and 9 are presented. As NoI increases, there is significant

increase of interference. The BER differences between DL methods at the

same SNR and NoI are very small too. However, the BER of CNN at lower

SNR is higher than FCDNN and LSTM, which means that CNN model is less

robust in lower SNR conditions. For LSTM, when SNR > 25 dB, each curve

flattens out and reaches the error floor of SIR = 20 dB. When SIR = 20 dB

and NoI = 1, all of the DL methods can reach BER of 10−3.
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Figure 4.8: BERs when different SNR and different NoI.
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4.3.3 Modulation Type of Interference

Different modulation types lead to different signal complexities. Types of

interference signals can affect detection accuracies for DL.
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Figure 4.9: BERs of LSTM and LMMSE with different interference.

To investigate the impact of interference signaling, Figure 4.9 illustrates

BERs of LSTM and LMMSE for five different types of modulation when SIR

= 20 dB. In the order from smallest to largest in BER of LSTM, are 4-PSK,

16-PSK, 4-QAM, and 16-QAM.

For 4-PSK modulation, the highest SER of LSTM is recorded as 9.63×
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10−2 at SNR = 5 dB, and the lowest SER is 3.31 × 10−3 at SNR = 30 dB.

The highest SER of LMMSE is recorded as 7.52× 10−2 at SNR = 5 dB, and

the lowest SER is 7.70× 10−2 at SNR = 30 dB. For 16-PSK modulation, the

highest SER of LSTM is recorded as 9.48 × 10−2 at SNR = 5 dB, and the

lowest SER is 3.38 × 10−3 at SNR = 30 dB. The highest SER of LMMSE is

recorded as 8.39× 10−2 at SNR = 5 dB, and the lowest SER is 7.58× 10−2 at

SNR = 30 dB. For 4-QAM modulation, the highest SER of LSTM is recorded

as 9.78× 10−2 at SNR = 5 dB, and the lowest SER is 5.69× 10−3 at SNR =

30 dB. The highest SER of LMMSE is recorded as 8.50×10−2 at SNR = 5 dB,

and the lowest SER is 9.69× 10−3 at SNR = 35 dB. For 16-QAM modulation,

the highest SER of LSTM is recorded as 1.09× 10−1 at SNR = 5 dB, and the

lowest SER is 2.49 × 10−2 at SNR = 35 dB. The highest SER of LMMSE is

recorded as 9.71× 10−2 at SNR = 5 dB, and the lowest SER is 2.56× 10−3 at

SNR = 35 dB.

Generally, the SERs of LSTM are slightly higher than those of LMMSE

when SNR ≤ 10 dB. As SNR increases, LSTM method outperforms LMMSE,

and the gaps between LSTM and LMMSE increase, too. However, the gap

between LSTM and LMMSE is very small in 16-QAM modulation. For LSTM,

the BERs of QAM interference are higher than those of PSK interference. The

BER of 16-QAM interference is noticeably higher than the that of 4-QAM.

On the contrary, there is only a small gap between BERs of 4-PSK and 16-

PSK curves. For QAM modulation, higher constellation size leads to higher

BER, this is because the Euclidean distance of interfering signal decreases with

constellation size. In summary, QAM for interference has higher impact than

PSK for interference. This is because both phase and amplitude of symbols

in QAM signalling are different, while symbols in PSK modulations are only
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different in phase. In addition, the impact of constellation size in QAM is

larger than that in PSK. Similar test are also done for FCDNN network. The

BER of FCDNN is at the same level as LSTM.

4.3.4 Conclusion

In the work of this Chapter, the capability of DL algorithms for signal pro-

cessing and detection in multiuser OFDM communications systems have been

explored. The transmitted symbols using offline-trained FCDNN, CNN, and

LSTM models have been detected and their performances with the conven-

tional LMMSE method have been compared. The simulation results have

illustrated that the BERs of DL algorithms are lower than LMMSE. Several

experiments have also been done on different SIRs, SNRs, NoI, and inter-

ference modulation types. The results have shown that among DL methods,

LSTM and FCDNN are better and more robust than CNN. However, there are

error floors for all methods because of the multiuser situation. In addition, in

these experiments, the models are trained by the simulation of different wire-

less channels and then employed in different parameters, which shows that the

DL models are robust when the channel has a high variability. They have also

shown that the impact of QAM interference is higher than PSK. The pros and

cons of three methods investigated in this work can be concluded. FCDNN

and LSTM both recorded the best performance with low BER. FCDNN is

popular due to its comprehensible network structure. It is easy to code and

be understood. LSTM is developed to process the sequence data. It has the

lowest computational complexity among the three methods in this work. CNN

is known for its ability of extracting feature of images. In this work, the signal
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is rearranged as a 2D format. However, the results show that CNN is harder to

learn the features in transmitted and received signal than other two methods.
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Chapter 5

Multiuser Adversarial Attack

on OFDM Detection

5.1 Introduction

As deep-learning-based communications systems evolves, many researchers

have found that it is not stable under targeted perturbation. In some applica-

tions, the perturbed model could have disastrous consequences for the safety

of human life [97]. In [98], perturbation imperceptible to human was gener-

ated on images to fool DNN models, called adversarial attack. In [99], [100],

and [101], adversarial attack was added to voice controllable system, object

recognition system, and automatic speech recognition models, respectively. In

recent years, researchers have paid more attention on adversarial attack of DL

models for wireless systems [102]. In [103], adversarial samples were generated

for learning-based modulation classifiers. In [104], a generative-adversarial-

network-based spoofing attack was proposed to fool DL-based signal classifier.

In [105], adversarial attack and jamming attack were tested on DL-based au-
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toencoder communications systems. The result shows that adversarial attacks

are more destructive than jamming. In [106], white-box and black-box attacks

were designed for DL-based signal classification. The attack leads to more

misclassification than the conventional random noise. In [107], a perturbation

generator against DNN-based wireless communications was tested. It is of

great interest to examine how different attack methods perform in a multiuser

OFDM system.

5.2 System Architecture

The architecture of the attacked multiuser OFDM communications system is

illustrated in Figure 5.1. For the desired user, the transmitted symbols Sm (t)

with pilots are converted to parallel streams from a serial one, and then from

the frequency domain to the time domain by IDFT. Then, CP is added and the

signal is converted back to a serial stream and sent over the wireless channel.

In the simulation, the attack size is the same as the number of transmitted

symbols. The attacker may not know whether the desired user uses OFDM

or not. Thus, two cases are considered. In the first case, the attack signal

is also OFDM-modulated before being transmitted. In the second case, the

symbols are added directly to the channel without OFDM modulation. Signal

transmitted from the attacker will interfere the desired signal as multiuser

interference. In either case, the interfered signal will be OFDM-demodulated

at the receiver. The received signal r (t) at the receiver can be represented as

r (t) = rD (t) + rA (t) + n (t)

= cD (t)⊗ sD (t) + cA (t)⊗ sA (t) + n (t) ,

(5.1)
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where rD (t) and rA (t) are the signals received from the desired user and the

attacker, ⊗ denotes the convolution operator, cD (t) and cA (t) are channel

gains as time-varying complex Gaussian random processes, sD (t) and sA (t)

are transmitted signals, respectively, and n (t) is the AWGN with mean zero

and variance σ2.

At the receiver, the CP is removed, and the symbols are converted back

to the frequency domain by DFT. Finally, Sm (k) is recovered as Ŝm (k) using

the pre-trained DL models. In this work, there are 128 symbols in a frame,

64 of which are pilots. The CP length is set as 16. The wireless channel is a

multipath fading channel model that defined in [10] using MATLAB [108].

In the physical layer of a wireless system, the transmitted symbols are

0 or 1. Therefore, there is a binary classification problem that the DL network

try to solve at the detector. The attacked DL model uses FCDNN, details

of which can be found in [8]. Compared to [8], the number of neurons in

hidden layer has been increased to fit the multiuser condition in Chapter 4.

As shown in Figure 5.2, at the input layer, the 128 symbols in every frame will

be divided into real and imaginary parts, and used as inputs separately to 8

parallel DL networks, which means each network detects 16 of them. For the

hidden layers, the number of neurons in each layer is 256, 512, 512, 128 and

16, respectively. The results between 0 and 1 will be binarized and given as

a size of 8Ö16 symbols at the output layer. Same to Chapter 4, BER is also

used to measure the detection error as

Pe = P
[
ŜD (k) ̸= SM (k)

]
. (5.2)
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Figure 5.1: System structure.

133



Figure 5.2: Architecture of attackted FCDNN.

5.3 Comparison of Attack Methods

In the following section, the BERs of the DL model under different attacks

are compared to measure their attack efficiency. We use 4-QAM signalling for

the desired user. For ZOO, BoA, and HSJ, the maximum number of iterations

are set as 200, 200, and 50, respectively, which have been tested to have the

best attack. The norm of HSJ is set as ℓ∞. Other methods use the default

settings of ART functions. The test is done when the multiuser SIR changes

from 0 dB to 50 dB, where SIR represents the ratio of the desired signal power

to the attack or general multiuser interference power. As for AWGN, the SNR

is set to 15 dB in all the tests. There are two baselines. The first is the BER

of 0.148 when there is no multiuser interference or attack at SNR = 15 dB.

This is called the no-attack error floor. The second is the BER with a general

multiuser interference, as a general QAM signal being received at the receiver

with or without OFDM modulation. A QAM signal source similar to the

desired user is simulated as the general interference to the receiver so that one
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can compare the performance degradation caused by adversarial attack with

that caused by general multiuser interference.
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Figure 5.3: BERs under VAM.

For VAM, the mean BERs of OFDM-modulated attack and non-OFDM-

modulated attack are 1.05×10−1 and 1.29×10−1. VAM attack without OFDM

modulation outperforms OFDM-modulated at low-SIR region. The highest

is recorded as 3.76 × 10−1 at SIR = -5 dB. When SIR < 5 dB, the BERs

under OFDM-modulated VAM are lower than those under general interference.

When SIR ≥ 20 dB, VAM leads to a stable level of BERs around 5.72× 10−2

to 7.38 × 10−2, which is about 300% to 400% higher than BERs of general

interference.
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Figure 5.4: BERs under PGD.

For PGD, the mean BERs of OFDM-modulated and non-OFDM-modulated

attacks are respectively 8.28 × 10−2 and 8.44 × 10−2. There is no signifi-

cant difference between the BERs under OFDM-modulated and non-OFDM-

modulated PGD. The gap between general interference and PGD attack is

small. At high-SIR region, PGD shows better performance. When SIR ≥

20 dB, PGD keeps the advantage of about 30% to 50% over general interfer-

ence in BER.
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Figure 5.5: BERs under ENA.

The mean BERs of OFDM-modulated ENA and non-OFDM-modulated

ENA are respectively 7.05×10−2 and 1.06×10−1. OFDM-modulated ENA has

poor attack efficiency when SIR < 10 dB. When SIR = -5 dB. The BER under

OFDM-modulated ENA is only 1.94 × 10−1, much lower than 3.54 × 10−1 of

non-OFDM-modulated. However, at high-SIR region, both OFDM-modulated

and non-OFDM-modulated ENA have good performance. When SIR ≥ 20 dB,

the BERs under ENA are from 4.19×10−2 to 5.70×10−2, about 100% to 200%

more than general interference.
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Figure 5.6: BERs under BoA.

The following methods are black-box attacks. For BoA, the mean

BERs of OFDM-modulated and non-OFDM-modulated attack are respectively

8.94× 10−2 and 7.70× 10−2. The performance of non-OFDM-modulated BoA

is close to general interference. However, different from other methods that

are illustrated, BoA with OFDM modulation outperforms general interference

when SIR = 5 dB to 25 dB. The largest gap is at SIR = 15 dB, where the BER

of OFDM-modulated BoA is recorded as 5.50 × 10−2 and about 72% higher

than general interference. But at high-SIR region, BoA does not have better

interfering efficiency than general signal.
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Figure 5.7: BERs under HSJ.

The mean BERs of OFDM-modulated ENA and non-OFDM-modulated

HSJ are respectively 7.51 × 10−2 and 8.13 × 10−2. Intuitively, non-OFDM-

modulated HSJ attack is slightly better than general interference when SIR <

30 dB. Especially, HSJ leads to high BER about 2.41× 10−2 at SIR = 25 dB,

which is about 30% higher than general interference.
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Figure 5.8: BERs under ZOO.

For ZOO, the mean BERs of OFDM-modulated and non-OFDM-modulated

attack are respectively 5.81× 10−2 and 9.23× 10−2. OFDM-modulated ZOO

is not powerful when SIR < 15 dB. When SIR = -5 dB and 0 dB, BERs

under OFDM-modulated ZOO attack are respectively only 1.09 × 10−1 and

1.01 × 10−1, which is about 69% lower than general interference, and 60%

lower than ZOO attack without OFDM modulation. When SIR<40 dB, ZOO

without OFDM modulation still outperforms OFDM-modulated. When SIR

> 15 dB, both OFDM-modulated and non-OFDM-modulated ZOO show high

attack efficiency with the BER values from 3.50× 10−2 to 5.41× 10−2, which

outperform general interference from 100% to 230%.
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Figure 5.9: BER comparison of different attack methods.

Figure 5.9 shows the BER comparison of the DL model under different

white-box and black-box attacks. All the methods have been tested both with
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and without OFDM modulation. However, for better readability of Figure 5.9,

results for white-box are only shown with OFDM modulation, while results for

black-box are only shown without OFDM modulation. As the SIR increases,

the BERs under different attacks decrease and approach the no-attack error

floor as a lower limit. This is because when SIR is higher, the proportion of

attack signal is lower, which leads to less interference to the receiver. For white-

box methods, most are more efficient than the general interference. When SIR

≥ 25 dB, the BERs of DL model with general interference (with or without

OFDM modulation) reach the no-attack error floor. Similarly, BERs under

PGD attack also reach the error floor when SIR > 25 dB. The error floor

under PGD attack is about 0.0198. ENA and VAM attacks perform better

than PGD, especially in the high-SIR region. When SIR = 50 dB, their BERs

are still 0.045 and 0.06, respectively, which are 200% and 300% higher than

the no-attack error floor. These show that these two attack methods are still

efficient even when the attack signal is weak at the receiver. VAM is the most

powerful white-box attack method, which leads to the largest degradation of

BERs when SIR > 5 dB.

Since the parameter and gradient inside the DL model are not available

to black-box attacks, the performances of black-box attacks are not as good as

white-box ones. However, most of them can still cause more misclassification

than the general interference without any intentional attack designs. BoA is

the least powerful method among black-box attacks. The BERs under BoA

are near that of general interference. The performance of HSJ attack is slightly

better than BoA. The BERs under HSJ are about 0.05 higher than BoA on

average. ZOO attack is the most efficient, especially at high SIR. BERs under

OFDM-modulated ZOO attack are at a stable level of 0.042 to 0.05, which are

142



much higher than the BERs with other black-box methods.

In summary, the order of the performances of white-box attacks from

high to low within the SIR range considered is: VAM, ENA, and PGD, and

that of black-box attacks is: ZOO, HSJ, and BoA, since the model parameters

are known in white-box training. White-box attacks are more efficient than

black-box ones.
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5.4 Attack Efficiency Analysis

5.4.1 Random Starting Time
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Figure 5.10: BER comparison with uniformly distributed starting time for the

frame.
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In practice, due to asynchronous operations, frames from the desired user and

the attacker usually cannot achieve synchronization. To investigate its poten-

tial effect on attack efficiency, the BERs with asynchronous users are studied.

Each user has its own random starting time, following a uniform distribution

between 1 and the frame size 128. As the VAM and ZOO attacks give the best

performances among white-box and black-box methods, respectively, they are

used in the following study.

Figure 5.10 shows the BER comparison. Both non-OFDM-modulated

VAM and ZOO outperform OFDM-modulated ones at high-SIR region. For

VAM attacks, no matter whether the perturbation is OFDM modulated or

not, the same level of BER is achieved. It can be seen that, even in a high-

SIR region, the attack still has a stable efficiency. Similarly, although the

parameters of the DL model are not known, the ZOO attack is not affected

by asynchronous users. The results show that, the random starting time has

almost no impact on the attack efficiency of VAM and ZOO methods.
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5.4.2 Multi-attacker Experiment
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Figure 5.11: BER comparison when multi-attack.
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In order to further improve the attack efficiency of adversarial methods, several

attackers are used to generate multiple attacks. Figure 5.11 shows the BER

comparison between one and four attackers for VAM and ZOO. In this case,

the SIR is still the receiving SIR, which is the same for one attacker and four

attackers. From Figure 5.11, for the VAM attack, the BERs under quadruple

attack are higher than that with one attacker, which means multiple VAM

attacks can increase the attack performance in perturbation capability. When

the VAM attack is OFDM-modulated, quadruple attack increases the BER

by 2.85% to 33.74% over the single attack. For non-OFDM-modulated VAM

attack, the gap between quadruple attack and single attack is even larger. The

BER increases by 7.49% to 47.74% over the single attack. However, adding the

number of attackers has no impact for ZOO. There is no significant increase

of BER when using multi-ZOO-attack. Therefore, multi-attack is effective in

enhancing the performance of VAM attack, but not ZOO.
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5.4.3 Realistic Channel Experiment
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Figure 5.12: Comparison with BERs under WINNER II channel.

To evaluate the attack methods under realistic channel conditions, they are

studied in the WINNER II channel model [96] as in Chapter 4. The DL

model is re-trained for this channel. Figure 5.12 compares the MATLAB sim-

ulated frequency-selective fading (MSFF) channel in [108] with the WINNER

II channel. The DL model performs better in WINNER II channel than in

original MSFF channel without attack. Thus, BERs under VAM and ZOO at-

tacks in WINNER II channel are both lower than those in MSFF. At low-SIR

region, VAM has the same level of attack efficiency. Although ZOO still out-

performs the general interference case, its BER in WINNER II is much lower

than in MSFF. It is because the DL model trained in WINNER II channel
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has stronger anti-interference ability and better protection from the black-box

method. Thus, VAM attack is more effective in WINNER II.

5.5 Countermeasures Discussion

Because the attacked data at the receiver of wireless communication system

cannot be modified by the requirement, the attack cannot be defended by

changing data format or regenerate data, such as data compression [109], gra-

dient hiding [110], or data randomization [111]. Thus, the best countermea-

sure to prevent misclassification in such a wireless communication system is

to make the model more robust. Adversarial training is one of the methods

which can be used to build up the DL model [98]. In training process, model

can be trained by the data added by different adversarial samples. Further-

more, possibility of protecting neural networks from attacks with additional

tools or frameworks in wireless communication can also be explored, including

Defense-Generative Adversarial Nets [112], high-level representation guided

denoiser [113], and MagNet [114], etc.

5.6 Conclusion

In the work of this Chapter, the performances of adversarial attack algorithms

have been compared to investigate the attack on multiuser OFDM signal de-

tection. Different white-box and black-box attack methods have been applied

to the DL-based detector, which is employed on simulated OFDM communi-

cations system. The results have illustrated that most of adversarial methods

give more powerful perturbation than a general signal interference. Both for
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OFDM-modulated and non-OFDM-modulated, VAM and ZOO are the most

effective in white-box and black-box methods, respectively, and especially at

high-SIR region. The experiments have also shown that, when there is ran-

dom starting time, attack efficiencies of these two methods will not be affected.

In addition, it has been found that, VAM’s performance can be improved by

adding attackers to perform multi-attack. However, in the test of realistic

wireless channel model WINNER II, ZOO attack cannot gives the as efficient

performance as in MSFF channel, instead, VAM is proved efficient in WIN-

NER II channel.
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Chapter 6

Conclusions and Future Work

6.1 Summary and Contributions

The work reported in this thesis sought to use and evaluate different learn-

ing algorithms – including conventional ML algorithms, DL algorithms, and

adversarial attack algorithms – in RF energy-harvesting prediction, wireless

channel prediction, and signal detection for various wireless communication

systems.

In Chapter 1, an overview of WPC and OFDM was presented, along

with the proposed learning algorithms. The research motivation was intro-

duced, and an outline of the thesis was given.

The work reported in Chapter 2 aimed to build a time-based predic-

tive model using four ML algorithms (LR, SVM, DT, and RFA). Firstly, at

the data pre-processing stage, the band of 1805–1880MHz was selected, and

the RF energy dataset was reshaped for time-series prediction. Secondly, the

parameters of prediction were selected. FL = 1 was chosen for the LR, SVM,

and DT tests, while FL = 15 was used in the test of RFA. A total of 120
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observations was chosen, and 80:20 was determined as the appropriate pro-

portion between the training and testing datasets, respectively. Thirdly, tests

were carried out using the selected parameters.

Generally, the order of the NRMSE from low to high is LR, SVM,

RFA, and DT. The results show that the NRMSE of prediction using the data

from a specific workday is lower than using uncategorized data. Prediction

using hourly data was found to be more accurate than data measured by the

minute. Finally, the ML predictive models were employed to optimize the

harvester control in the WPC system. The results show that prediction using

by-the-minute data is not appropriate for harvester applications due to its

random nature. The models generated using by-the-minute data were not

time-sensitive enough to make predictions. Of the models generated using

hourly data, LR gave the best performance, SVM was worse than LR, while

the accuracy of RFA was unacceptable. As mentioned in Section 2.5 this is

the first time that a time-based predictive model for RF energy has been built

using ML methods. This approach was found to lead to high accuracy and

good value.

The work presented in Chapter 3 sought to apply five conventional ML

methods (LR, SVM, DT, ER, and RFA) to achieve wireless channel prediction

using pilot symbols in frames of communications. Firstly, as with Chapter 2,

the input data were reshaped according to the requirements of prediction.

Next, the sample and training sizes were chosen as 200 and 100, respectively.

Then, the performances of the five algorithms were compared using chunks for

further tests. This showed that LR and SVM outperformed the other three

methods. Numerically, the prediction NRMSE of the ML methods outper-

formed the MMSE estimation in the low-SNR region. SVM gave the best per-
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formance among the ML algorithms, both in prediction accuracy and detection

SER. Finally, detection tests were conducted based on the results of channel

prediction under different normalized Doppler shifts, modulation types, and

RK values. The results showed that the performances of the ML methods were

not worse than the existing CPSAM scheme, and SVM was found to be more

efficient than LR. This is the first time that conventional ML algorithms have

been used to realize real-time wireless channel prediction, and the results of

the tests showed good accuracy.

In Chapter 4, FCDNN, CNN, and LSTM were employed in the signal

detector for an uncoded multiuser OFDM communications system. The per-

formances of the three DL methods were compared with an LMMSE-based

detector. The numerical results showed that the DL methods outperformed

LMMSE. In addition, tests were also conducted for different NoIs, number of

pilots, SNRs, and interference modulation types. The performance of the CNN

was not robust when using 16 pilots, while the performances of FCDNN and

LSTM were similar. The LSTM network was found to outperform LMMSE in

all the simulated signalling cases. The work also evaluated the anti-interference

ability of the three DL algorithms in a tough uncoded OFDM system environ-

ment against various multiuser interference sources.

In Chapter 5, three white-box adversarial attack methods (VAM, PGD,

and ENA) and three black-box ones (BoA, HSJ, and ZOO) were investigated

against a DL-based detector on a multiuser OFDM communication system in

which the attacker was regarded as a legitimate user. Each adversarial method

was employed in two ways: OFDM modulated and non-OFDM modulated.

The BERs of the detector under the different attacks were compared with the

BER without attack and with general signal interference. Overall, the majority
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of the attack methods had higher attack efficiency than general interference,

and the white-box methods outperformed the black-box ones. VAM and ZOO

were found to be the most efficient of the white- and black-box methods,

respectively. The BERs under the VAM and ZOO attacks were also analysed

in conditions of a random starting time of attack, multiple attackers, and a

realistic WINNER II wireless channel. The results showed that shifting the

starting time will not influence their effects. In addition, VAM can be enhanced

by increasing the number of attackers, and this is still valid in a WINNER II

channel. This is the first time that different adversarial attack methods have

been evaluated in a multiuser OFDM system; most of the methods were shown

to be effective.

6.2 Future Works

Although several unique contributions and findings are described in the section

above, there are still some directions that can be considered for future research

in this field.

In Chapter 2, the predicted energy values were compared with a pre-set

threshold to control the harvester. The setting of this threshold is experiential.

In next generation networks, the nodes in WSN can compute continuously

when they are running. The evaluation provides the evidence for the selection

of ML algorithms to improve the efficiency of RF energy harvesting work for

these networks in the future. Furthermore, better ways to set this threshold

could be explored – including the use of a dynamic threshold – to improve

the energy-harvesting efficiency according to the prediction results of ML.

Therefore, the algorithms selection strategy is valuable to be determined based
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on the evaluation. Additionally, energy datasets from different bands could be

learned together using DL methods so that their patterns could be aggregated.

Finally, the prediction could be integrated with energy management in WSNs

to design new protocols that extend the network lifetime.

In Chapter 3, ML algorithms were used to predict wireless channels

in real time. The result shows that channel prediction has the potential to

become an alternative to conventional channel estimation work in the future.

Traditional ML method can also be a choice in real-time modelling in a fierce

changing environment. Additionally, more research could be conducted to

improve the performance of these predictors and to find a balance between the

high efficiency of classical ML algorithms and the high accuracy of recent DL

methods.

In Chapter 4, FCDNN, CNN, and LSTM were used to detect the trans-

mitted symbols at the receiver in an uncoded multiuser OFDM communication

system. This system was a difficult scenario in which it was hard for the detec-

tor to break the error floor caused by multiuser interference. The work proves

that DL outperforms conventional method in such a situation, and provides

support for future exploration direction. In the future, breaking the error floor

will be a main research object. Using a combined neural network could be a

good choice for higher accuracy.

In Chapter 5, adversarial attack methods were applied to attacking a

multiuser OFDM system. Some methods showed good attack efficiency in the

tests. It provides the basis for selection of adversarial attack methods when

the attack is able to be a legitimate user, and the reference for protecting

and defending the DL model in multiuser OFDM communication. The rec-

ommend methods can be used in various offensive and defensive drills. In the
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future, more research could be conducted to explore various multiuser systems,

such as a multiuser MIMO–OFDM system. In addition, adversarial methods

could also be investigated against defensive multiuser OFDM systems to im-

prove both the offensive and defensive capabilities of wireless communications

detectors.
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[12] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,

H. Schwenk, and Y. Bengio, “Learning phrase representations using RNN

encoder-decoder for statistical machine translation,” arXiv preprint

arXiv:1406.1078, 2014.

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification

with deep convolutional neural networks,” Communications of the ACM,

vol. 60, no. 6, pp. 84–90, 2017.

158



[14] Z. Li, W. Wei, T. Zhang, M. Wang, S. Hou, and X. Peng, “Online

multi-expert learning for visual tracking,” IEEE Transactions on Image

Processing, vol. 29, pp. 934–946, 2020.

[15] Z. Qin, H. Ye, G. Y. Li, and B.-H. F. Juang, “Deep learning in physical

layer communications,” IEEE Wireless Communications, vol. 26, no. 2,

pp. 93–99, 2019.

[16] H. Huang, J. Yang, H. Huang, Y. Song, and G. Gui, “Deep learning for

super-resolution channel estimation and DOA estimation based massive

MIMO system,” IEEE Transactions on Vehicular Technology, vol. 67,

no. 9, pp. 8549–8560, 2018.

[17] M. Soltani, V. Pourahmadi, A. Mirzaei, and H. Sheikhzadeh, “Deep

learning-based channel estimation,” IEEE Communications Letters,

vol. 23, no. 4, pp. 652–655, 2019.

[18] N. Samuel, T. Diskin, and A. Wiesel, “Learning to detect,” IEEE Trans-

actions on Signal Processing, vol. 67, no. 10, pp. 2554–2564, 2019.

[19] M. Xu, S. Zhang, C. Zhong, J. Ma, and O. A. Dobre, “Ordinary differ-

ential equation-based CNN for channel extrapolation over RIS-assisted

communication,” IEEE Communications Letters, vol. 25, no. 6, pp.

1921–1925, 2021.

[20] B. Kuchipudi, R. T. Nannapaneni, and Q. Liao, “Adversarial machine

learning for spam filters,” in Proceedings of the 15th International Con-

ference on Availability, Reliability and Security, 2020, pp. 1–6.

[21] N. Akhtar and A. Mian, “Threat of adversarial attacks on deep learning

159



in computer vision: A survey,” IEEE Access, vol. 6, pp. 14 410–14 430,

2018.

[22] O. Suciu, S. E. Coull, and J. Johns, “Exploring adversarial examples

in malware detection,” in 2019 IEEE Security and Privacy Workshops

(SPW), 2019, pp. 8–14.

[23] G. R. Machado, E. Silva, and R. R. Goldschmidt, “Adversarial machine

learning in image classification: A survey toward the defender’s per-

spective,” ACM Computing Surveys (CSUR), vol. 55, no. 1, pp. 1–38,

2021.

[24] S. Dhanoriya and M. Pandey, “A survey on wireless sensor networks:

Faults, misbehaviour and protection against them,” in 2017 8th Interna-

tional Conference on Computing, Communication and Networking Tech-

nologies (ICCCNT), 2017, pp. 1–7.

[25] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey

on sensor networks,” IEEE Communications Magazine, vol. 40, no. 8,

pp. 102–114, 2002.

[26] X. Lu, P. Wang, D. Niyato, D. I. Kim, and Z. Han, “Wireless networks

with RF energy harvesting: A contemporary survey,” IEEE Communi-

cations Surveys & Tutorials, vol. 17, no. 2, pp. 757–789, 2015.

[27] U. Guler, M. S. Sendi, and M. Ghovanloo, “A dual-mode passive recti-

fier for wide-range input power flow,” in 2017 IEEE 60th International

Midwest Symposium on Circuits and Systems (MWSCAS), 2017, pp.

1376–1379.

160



[28] Y. Liu, W. Li, B. Jia et al., “Design of ZigBee-based energy harvesting

wireless sensor network and modeling of solar energy,” in International

Conference on Security and Privacy in New Computing Environments.

Springer, 2019, pp. 576–584.

[29] Y. Chen, Energy Harvesting Communications: Principles and Theories.

John Wiley & Sons, 2019.

[30] S. Bi, C. K. Ho, and R. Zhang, “Wireless powered communication: Op-

portunities and challenges,” IEEE Communications Magazine, vol. 53,

no. 4, pp. 117–125, 2015.

[31] U. Olgun, C.-C. Chen, and J. L. Volakis, “Design of an efficient ambient

wifi energy harvesting system,” IET Microwaves, Antennas & Propaga-

tion, vol. 6, no. 11, pp. 1200–1206, 2012.

[32] R. J. Vyas, B. B. Cook, Y. Kawahara, and M. M. Tentzeris, “E-WEHP:

A batteryless embedded sensor-platform wirelessly powered from ambi-

ent digital-TV signals,” IEEE Transactions on Microwave Theory and

Techniques, vol. 61, no. 6, pp. 2491–2505, 2013.

[33] R. Shigeta, T. Sasaki, D. M. Quan, Y. Kawahara, R. J. Vyas, M. M.

Tentzeris, and T. Asami, “Ambient RF energy harvesting sensor device

with capacitor-leakage-aware duty cycle control,” IEEE Sensors Journal,

vol. 13, no. 8, pp. 2973–2983, 2013.

[34] R. W. Chang, “Synthesis of band-limited orthogonal signals for mul-

tichannel data transmission,” Bell System Technical Journal, vol. 45,

no. 10, pp. 1775–1796, 1966.

161



[35] B. Saltzberg, “Performance of an efficient parallel data transmission sys-

tem,” IEEE Transactions on Communication Technology, vol. 15, no. 6,

pp. 805–811, 1967.

[36] S. Weinstein and P. Ebert, “Data transmission by frequency-division

multiplexing using the discrete Fourier transform,” IEEE Transactions

on Communication Technology, vol. 19, no. 5, pp. 628–634, 1971.

[37] L. Cimini, “Analysis and simulation of a digital mobile channel using or-

thogonal frequency division multiplexing,” IEEE Transactions on Com-

munications, vol. 33, no. 7, pp. 665–675, 1985.

[38] C. Fan and L. Cao, Communication Principle, 7th ed. National Defense

Industry Press, 2012.

[39] T. Hwang, C. Yang, G. Wu, S. Li, and G. Ye Li, “OFDM and its wireless

applications: A survey,” IEEE Transactions on Vehicular Technology,

vol. 58, no. 4, pp. 1673–1694, 2009.

[40] T. M. Mitchell and T. M. Mitchell, Machine learning. McGraw-hill

New York, 1997, vol. 1, no. 9.

[41] J. R. Koza, F. H. Bennett, D. Andre, and M. A. Keane, “Automated

design of both the topology and sizing of analog electrical circuits using

genetic programming,” in Artificial intelligence in design’96. Springer,

1996, pp. 151–170.

[42] K. Das and R. N. Behera, “A survey on machine learning: Concept,

algorithms and applications,” International Journal of Innovative Re-

162



search in Computer and Communication Engineering, vol. 5, no. 2, pp.

1301–1309, 2017.

[43] Q. V. Le, “Building high-level features using large scale unsupervised

learning,” in 2013 IEEE International Conference on Acoustics, Speech

and Signal Processing, 2013, pp. 8595–8598.

[44] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement learn-

ing: A survey,” Journal of artificial intelligence research, vol. 4, pp.

237–285, 1996.

[45] S. Shalev-Shwartz and S. Ben-David, Understanding Machine Learning:

From Theory to Algorithms. Cambridge University Press, 2014.

[46] A. J. Smola and B. Schölkopf, “A tutorial on support vector regression,”

Statistics and Computing, vol. 14, no. 3, pp. 199–222, 2004.

[47] W. Song, S. Kim, and M. Jae, “New methodology on combining source

term categories for multi-unit level 3 PRA,” Training, vol. 78, p. 58,

2018.

[48] J. J. Pao and D. S. Sullivan, “Time series sales forecasting,” Final year

project, Computer Science, Stanford Univ., Stanford, CA, USA, 2017.

[49] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification

and Regression Trees. Routledge, 2017.

[50] M. Su, Z. Zhang, Y. Zhu, and D. Zha, “Data-driven natural

gas spot price forecasting with least squares regression boosting

algorithm,” Energies, vol. 12, no. 6, 2019. [Online]. Available:

https://www.mdpi.com/1996-1073/12/6/1094

163

https://www.mdpi.com/1996-1073/12/6/1094


[51] C. Liu, Y. Chen, and S.-H. Yang, “Signal detection with co-channel

interference using deep learning,” Physical Communication, vol. 47,

p. 101343, 2021. [Online]. Available: https://www.sciencedirect.com/

science/article/pii/S187449072100080X

[52] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural

Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[53] M.-I. Nicolae, M. Sinn, M. N. Tran et al., “Adversarial robustness tool-

box v1.2.0.” CoRR, 2018.

[54] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards

deep learning models resistant to adversarial attacks,” arXiv preprint

arXiv:1706.06083, 2017.

[55] T. Miyato, S.-I. Maeda, M. Koyama, and S. Ishii, “Virtual adversarial

training: A regularization method for supervised and semi-supervised

learning,” IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, vol. 41, no. 8, pp. 1979–1993, 2019.

[56] P.-Y. Chen, Y. Sharma, H. Zhang, J. Yi, and C.-J. Hsieh,

“EAD: Elastic-net attacks to deep neural networks via adversarial

examples,” Proceedings of the AAAI Conference on Artificial

Intelligence, vol. 32, no. 1, Apr. 2018. [Online]. Available: https:

//ojs.aaai.org/index.php/AAAI/article/view/11302

[57] W. Brendel, J. Rauber, and M. Bethge, “Decision-based adversarial

attacks: Reliable attacks against black-box machine learning models,”

arXiv preprint arXiv:1712.04248, 2017.

164

https://www.sciencedirect.com/science/article/pii/S187449072100080X
https://www.sciencedirect.com/science/article/pii/S187449072100080X
https://ojs.aaai.org/index.php/AAAI/article/view/11302
https://ojs.aaai.org/index.php/AAAI/article/view/11302


[58] J. Chen, M. I. Jordan, and M. J. Wainwright, “HopSkipJumpAttack:

A query-efficient decision-based attack,” in 2020 IEEE Symposium on

Security and Privacy (SP), 2020, pp. 1277–1294.

[59] P.-Y. Chen, H. Zhang, Y. Sharma, J. Yi, and C.-J. Hsieh, “ZOO: Zeroth

order optimization based black-box attacks to deep neural networks

without training substitute models,” in AISec ’17: Proceedings of the

10th ACM Workshop on Artificial Intelligence and Security. New

York, NY, USA: Association for Computing Machinery, 2017, p. 15–26.

[Online]. Available: https://doi.org/10.1145/3128572.3140448

[60] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing

adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

[61] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural

networks,” in 2017 IEEE Symposium on Security and Privacy (SP),

2017, pp. 39–57.

[62] V. Dhivya, P. Kalaiyarasi, and G. Shamini, “Survey on spectrum occu-

pancy by using different techniques,” in 2017 International Conference

on Computation of Power, Energy Information and Commuincation (IC-

CPEIC), 2017, pp. 316–320.

[63] S. Kim, R. Vyas, J. Bito, K. Niotaki, A. Collado, A. Georgiadis, and

M. M. Tentzeris, “Ambient RF energy-harvesting technologies for self-

sustainable standalone wireless sensor platforms,” Proceedings of the

IEEE, vol. 102, no. 11, pp. 1649–1666, 2014.
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