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Abstract: Aiming at the prediction of truck travel time in open pit mines, we established a prediction model based on long
short-term memory(LSTM). This model fully accounts for 11 factors, including the nature of trucks, weather, road conditions,
and driver’s behaviors, as well as the influence of neighbor road segments in the route on the current predicted road segment.
The experiment shows that the error of the LSTM prediction model is significantly reduced compared with SVR and BP models.
In addition, the maximum absolute mean error under different conditions is less than 12 seconds.
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1 Introduction

Truck transportation is a crucial component of the open-
pit mine industry, and its mining and transportation costs
make up more than 60% of the mine’s overall output costs.
Therefore, open-pit truck scheduling system is constantly
being developed in order to increase mining efficiency and
lower running costs. It is inevitable that it will play a key
role in the advancement and upgrading of the scheduling
algorithm through the analysis and processing of the vast
amounts of data produced in the system. The use of accurate
travel time prediction is conducive to reducing truck queu-
ing time, thus greatly improving production efficiency and
reducing costs.

In terms of travel time prediction of open-pit mine,
Sun et al. [1] used the average of truck travel time as the pre-
dicted value of travel time to establish a mathematical model
for the running time statistics of mine road segments trans-
ported by multiple types of trucks. Zhang et al. [2] proposed
the non-stationary time series ARIMA model to predict this
kind of time parameters, and proved that the prediction for-
mula of time series model can predict a kind of mine time
parameters. Bai et al. [3] proposed a multi-factor prediction
neural network travel time prediction function model, proved
that travel time prediction function is a complex nonlinear
functional relationship, and pointed out the shortcomings of
single-factor prediction method. However, the model has lo-
cal minimum points, which lead to slow convergence and
multiple iterations. In order to make travel time prediction
have real-time, reliability and higher accuracy, Li et al. [4]
established a real-time prediction model of travel time of
truck road segment based on fuzzy neural network reason-
ing system (ANFIS).

In addition, prediction models can be built by computer
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simulation software. Chanda et al. [5] conducted a compar-
ative study on TALPAC software simulation, ANN and mul-
tiple regression (MR) three time prediction models to deter-
mine the best method of travel time prediction. The results
show that the prediction ability of neural network and regres-
sion model based on actual mine data is better than that of
TALPAC computer simulation software.

In view of the shortcomings of the existing multi-factor
prediction BP neural network travel time model, Xue [6]
proposed a selective integrated learning algorithm based on
least square support vector regression (LS-SVR), and con-
ducted experiments on the actual collected data of open-pit
coal mine, and obtained a high prediction accuracy, which
demonstrated the effectiveness and real-time performance of
the algorithm. Meng [7] compared the results of BP neu-
ral network and support vector machine in the prediction of
travel time, selected the prediction model based on SVM,
and obtained the prediction of vehicle-path travel time in the
next stage of the scheduling time, which was used as a pa-
rameter to improve the scheduling model, and further im-
proved the accuracy and reliability of the dynamic schedul-
ing model.

In recent years ,machine learning has become the main
method for prediction of truck travel time in open pit mines.
Sun [8] combined the machine learning method with big
data to predict the real-time link travel time of open-pit truck
scheduling, and took into account the influence of meteoro-
logical characteristics on the model. Gu et al. [9] proposed
a method of SVM parameter optimization based on genetic
algorithm, and built a truck travel time prediction model
based on HGSVMA model, whose accuracy is higher than
that of GS-SVM and other models. Choudhury et al.[10]
used kNN, SVM and RF to predict the travel time of
mine dump trucks under different atmospheric conditions.
Tian et al. [11] constructed a velocity field according to the
truck velocity information to obtain the average speed of
trucks in each road segment, which was used as the input
feature of the random forest road segment unit travel time
prediction model, and then accumulated the predicted value



of each unit prediction model to obtain the predicted value
of truck travel time on the composite road segment.

The current methods for predicting truck travel time in
open-pit mines usually divide the whole route of trucks from
the starting point to the end point into independent road seg-
ments (or called links), but ignore the influence of neighbor
road segments in the route on the current predicted road seg-
ment. In order to improve the accuracy of the optimized
scheduling system for open-pit trucks, and considering the
influence of the sequence of continuous road segments, a
prediction model for truck travel time in open-pit mines
based on LSTM is proposed, which significantly improved
the accuracy compared with the traditional prediction meth-
ods.

2 Prediction Model of Truck Travel Time in Open
Pit Mines

2.1 Feature Selection
Trucks are often affected by a variety of factors when driv-

ing. External circumstances such as gradient, road condi-
tions and weather conditions are the main reasons for fluc-
tuations in travel times when driving in different road con-
ditions. Factors such as the type of vehicle and the driving
habits of the driver can also cause travel times to vary.

Travel time is mainly affected by four aspects:
One is the nature of the trucks themselves. Different

trucks have different performance and transport capacity.
Load capacity is an important factor affecting truck travel
time. If the output of the truck is constant, the heavier the
load, the lower the speed.

Second, road characteristics, including road type, road
gradient and turning angle. According to the road rolling
resistance coefficient (also known as the friction coefficient,
refers to the ratio of the thrust required by the wheel and
its load during the driving process), the pavement types are
divided into several types as shown in Table 1.

Table 1: Rolling Resistance Coefficient
Pavement Type f

Good asphalt or concrete pavement 0.0.0∼0.018
General asphalt or concrete pavement 0.018∼0.020

Gravel pavement 0.020∼0.025
Good pebble pavement 0.025∼0.030

Potholed pebble pavement 0.035∼0.050
Compacted dirt road (dry) 0.025∼0.035

Compacting dirt road (after rain) 0.050∼0.150

Different tonnage of Open-pit trucks correspond to dif-
ferent power and different road gradients produce different
driving resistance [12]. Assuming that all Open-pit trucks
are electrically driven, the literature [13] gives the relation-
ship between road gradient, motor power and transmission
ratio, fully loaded gross mass and driving speed:

ui =
3600ηP

mg(f + i)
(1)

where ui is the speed of the open-pit truck on a road with
gradient i, km/h; η is the total efficiency of the transmission,
0.8 ∼ 0.9, up to 0.95; P is the maximum output power of
the motor, kW; m is the total mass of the open-pit truck, kg;

g is the acceleration of gravity, 9.81 m/s2; f is the rolling
resistance coefficient; i is the gradient, %.

Thirdly, the driver’s behavior. The subjective factor that
has the greatest impact on the speed of a truck during its
travel is the driver himself. The variability of the driver’s
individual driving habits or functional needs can lead to fre-
quent shifting behaviour, and the changes in speed caused by
this behavior can have an impact on the truck’s travel time
on the roadway.

Lastly, weather conditions can adversely affect the
driver’s driving vision, resulting in a reduction in driving
speed, while changes in the degree of slippery road surface
in adverse weather conditions can also reduce driving speed.
The effects of three weather characteristics, sunny, rainy and
foggy, are included to take into account the contingent na-
ture of the occurrence of extreme weather. In addition, the
difference in road visibility between daytime and nighttime
also affects the driving speed to a great extent.

Through the above analysis, 11 variables are finally se-
lected as model input features in these four aspects, and the
Table 2 describes the input variable types and value ranges.

Table 2: Description of the Input Variables
Variables Type Range of Values

Truck type Categorical 28t,50t,65t and 220t
Truck state Categorical load and unload

Speed Numeric 0∼40km/h
Link length Numeric not fixed
Link width Numeric not fixed
Gradient Numeric not fixed

Pavement quality Numeric 0∼0.050
Number of turns Numeric not fixed
Driver’s behavior Numeric 0.0∼0.5

Weather Categorical sunny, foggy and rainy
Time period Categorical daytime, nighttime

2.2 Structure of the Road Network
To complete the basic mining, transportation as well as

unloading and discharging work in an open pit mine, it is
necessary to link the load points, the dump points and the ac-
cess trenches between the flat pan and the discharging site.
The transport network of an open pit mine is to establish
certain connections through functionally different transport
routes such as production trunk lines, branch lines and liai-
son lines.

Referring to the road network structure in [14], this in-
cludes five load points and three dump points as well as
13 numbers of intersection nodes, which are divided into
24 road segments based on road attributes. The depth-first
traversal algorithm searches for all paths between any load
point and any dump point, and avoids the occurrence of
closed loops in the paths, allowing a total of 111 optional
paths to be found.

2.3 LSTM Neural Network
The LSTM model [15] is derived from the deformation

of Recurrent neural network(RNN). RNN can be seen as an
improved result of multilayer perceptrons, which have sig-
nificant advantages in dealing with time-series-like problems
and are widely used in generating sequences, text translation



Fig. 1: Road network of open-pit transportation system

and prediction. RNNs consist of three layers: input, hidden
and output, where the way to establish the connection be-
tween the hidden layers is through the time series. When
expanded in time, it is seen that the input at each moment
includes both the output of the hidden layer of the network
at the previous moment and the input at the current moment.
Therefore, the historical information is included in the out-
put of the hidden layer of the network at the current moment,
showing the ability to remember historical information.

RNNs compute errors by Back-Propagation Through
Time (BPTT), but this method does not solve the problem of
frequent gradient disappearance or occasional gradient ex-
plosion due to the long time series of data association prob-
lems. Gated RNNs exist to solve such problems, and one of
the most widely known is the LSTM.

The LSTM does not change much from the RNN in terms
of its overall structure, but mainly improves the hidden layer.
The units in the hidden layer are called memory modules,
and their composition consists of a storage unit as well as
three computational components. A brief description of each
component is given below, mainly in terms of structure and
function.

• Forget gate. The forget gate, which in some ways dis-
cards useless information, is mainly concerned with the
output ht−1 at the current moment and the input xi at
the current moment. The value between 0 and 1 indi-
cates the degree of forgetting.

• Input gate. The input information of the network is
controlled by an input gate. New vectors are generated
through the tanh layer. i(t) and g(i) together make up
the input gate, so updating the state of the input gate
requires updating both parts to determine what infor-
mation is stored in the cell.

• Output gate. The output gate controls the output infor-
mation of the network. First determine what the output
data or information is, and second multiply the input via
the sigmoid function with the data or information that
needs to be output via the tan layer, so that the value of
the cell state can be in the range of -1 to 1, that is, the
state information of the output gate.

The three gates in the LSTM model have the same logical
unit structure and consist of a Sigmoid function σ and a dot
product operation ×. The sigmoid function is often used as
an activation function in neural networks. Its role is to be
able to introduce a non-linear element to the LSTM network

and because of its limited output range can ensure a clustered
type of information in the transfer process. The vector is
restricted to 0 to 1 after the sigmoid function layer, with 0
representing “no pass at all” and 1 representing “pass at all”.

As shown in Figure 2, the four structural layers of the
LSTM act in connection with each other. The boxes show
the activation functions in the memory module, the circles
show the addition and multiplication of vectors and the ar-
rows point in the direction of the transfer in the structure.
The black line represents the output of a vector from one
node to another, the interaction of several lines represents
the merging of vectors, and the division of one into multiple
lines represents the copying of vectors. The lines crossing
the model represent the transfer of cell states from the previ-
ous moment to the current moment, enabling a linear inter-
action of information. The update of cell states is achieved
by gates, sigmoid layers, and dot product operations to filter
the information.
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Fig. 2: LSTM neurons

2.4 Prediction Model
LSTM neural network is used to establish the truck travel

time prediction model of the open pit mine. The general flow
of the model algorithm is as follows.
Step 1 Data Partitioning and Preprocessing. The data is di-

vided into two parts: the training set and the verification
set, the input and output variables of the LSTM model
are determined, and all data are standardized.

Step 2 LSTM Model Prediction. Test out the basic range of
each parameter in LSTM based on existing experience
and refine the model structure. Load the data of the
training set into the LSTM model, and then complete
the training of the model through the loss function and
optimization function. Finally, the data from the test
set is loaded into the trained LSTM model to obtain the
predicted travel time of each road segment.

The LSTM model has a more complex internal structure
than a typical artificial neural network. Figure 3 expands it
in chronological order. Vertically, the three nodes represent
the input, hidden, and output layers of the LSTM network.
Horizontally, each node represents a different section of the
computational process.

Suppose there are n links and each link data x(n) contains
11 features [x1, x2, ..., x11] that affect the truck travel time.
k + 1 is the LSTM time step, which takes the value of 3.
Here the data x(n−2) at the link n−2 is input into the LSTM
model, output via the hidden layer, and input to the n − 1



Input variables of the link n: [x1,x2,x3...,x11]
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Fig. 3: Schematic diagram of LSTM prediction model

LSTM model together with the input data x(n−1) for the link
n − 1, which is then output via the hidden layer. In this
way it is passed to the hidden layer of the link n and finally
transmitted to the output layer. In this case, the hidden layer
is calculated as follows.

The LSTM contains three thresholds and cell states each
with its corresponding equation. By following equations 2
to 7 the current output value of each state can be found.

The input to the forget gate is obtained by combining the
input variable xt, i.e. x(n), at moment t with the output ht−1

of the hidden layer at moment t−1 to obtain the output value
of the forget gate at that moment:

f(t) = σ (Wf · [h(t− 1), x(t)] + bf ) (2)

where f(t) represents the output value of the forget gate state
at moment t; σ is the sigmoid function of the forget gate; Wf

and bf are the weight matrix and bias matrix respectively;
h(t− 1) is the output at moment t− 1, i.e. the running time
of the section n − 1 at moment t − 1; x(t) i.e. x(n) is input
variables of the link n at moment t;

And for the input gate, the states i(t) and C̃(t) to be up-
dated and retained:

i(t) = σ (Wi · [h(t− 1), x(t)] + bi) (3)

C̃(t) = tanh (Wc · [h(t− 1), x(t)] + bc) (4)

where i(t) represents the information that needs to be up-
dated at moment t; σ is the activation function sigmoid func-
tion of the input gate; C̃(t) is the information to be retained
obtained at moment t through the tanh layer.

The cell is updated from the state C(t−1) at moment t−1
to the state C(t) at moment t by the equation:

C(t) = f(t− 1) ∗ C(t− 1) + i(t) ∗ C̃(t) (5)

where f(t−1)∗C(t−1) is the degree of forgetting; i(t)∗C̃(t)
is the added information, i.e. the product of the information
to be updated and retained that passes through the input gate.

The output gate determines the output information of the
network and the state equation is

o(t) = σ (Wo · [h(t− 1), x(t) + bo]) (6)

h(t) = o(t) ∗ tanh(C(t)) (7)

where o(t) is the output cell state after a sigmoid function;
h(t) is the output gate state obtained by multiplying the input
C(t) by o(t) after the tanh function, i.e. The travel time on
the link n obtained after the action of the hidden layer at
moment t.

3 Experimental Studies

The experiments are conducted using the Pytorch deep
learning framework. Firstly, the dataset is partitioned and
all input data is normalized in order to eliminate numeri-
cal problems caused by too large values of some variables
leading to too small weights. Next, the parameters of the
network model is set, which requires a given time step and
batch, setting the input and output dimensions, determining
the number of layers and nodes in the hidden layer, selecting
a loss function and an optimization function to optimize the
model, and finally validating the model performance through
evaluation metrics.

3.1 Dataset
There are currently no physical models for the full range

of surface mine truck travel times to describe the process.
Based on the actual situation and the existing experience it is
possible to simulate the equation of the relationship between
each factor and the target value. The distances and elevation
differences of the road segments between the nodes in the
mine road network map are obtained and, after reasonable
normalization, used as the lengths of the corresponding road
segments, and the segment quality and number of turns for
each segment in the map are noted. As the five road attributes
of each segment are fixed, the remaining six variables are
changed separately to calculate the travel time of 111 paths
on each segment in turn, each segment data is a sample, and
finally 59940 sample data are obtained.

3.2 Parameters Setting
The travel time of a truck traveling a certain roadway dis-

tance is not necessarily fixed due to the fact that it is affected
by a variety of factors, so it is necessary to incorporate as
many external environments as possible, such as road en-
vironment and weather conditions, as well as human factors
such as driver’s behavior, to improve the accuracy of the pre-
diction model.

Based on the analysis of the influencing factors of truck
travel time, the features of link length x1, link width x2, av-
erage gradient x3, pavement quality x4, number of turns x5,
driver’s behavior x6, weather x7, time period x8, truck type
x9, truck state x10, and speed x11 are selected as the influ-
encing factors of truck travel time prediction. Therefore, 11
neurons are used in the input layer and 1 neuron is used in
the output layer.

In the LSTM prediction model, the tanh function is gen-
erally chosen as the default activation function and the mean
square error function MSE is chosen as the loss function.
Considering the continuity of the sample space and the char-
acteristics of other common optimization methods, Adam,



which has better performance, is selected as the optimiza-
tion function.

Model performance index evaluation is a basic way to ver-
ify the accuracy of model training. In order to show the ac-
tual value of error more intuitively, the absolute mean er-
ror (MAE) and mean absolute percentage error (MAPE) are
chosen to evaluate the model prediction effect.

MAE =
1

n

n∑
i=1

|ŷi − yi| (8)

MAPE =
1

n

n∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ (9)

where n represents the number of samples involved in the
evaluation, and ŷi and yi denote the predicted and true val-
ues, respectively. the absolute mean error (MAE) represents
the average deviation between the predicted and true values.
From equation 8, it can be seen that the smaller the MAE
is, the smaller the gap between the predicted and true val-
ues.The mean absolute percentage error (MAPE) represents
the relative mean deviation, and the closer its value is to zero,
the more accurate the prediction will be. Of the two perfor-
mance evaluation indicators, MAPE is a relative ratio, which
is more objective than the absolute value.

3.3 Experimental Results
The first 70 path data are selected as the training set and

the last 30 path data are used as the validation set. To evalu-
ate the prediction effect of the LSTM model, the prediction
results of LSTM are compared with those of two traditional
open pit mine truck travel time prediction methods, SVR and
BP, and the comparison results are shown in Table 3.

Table 3: Comparison of evaluation indexes of the three pre-
diction models

Model Evaluation value
SVR MAE(s) 3.58

MAPE(%) 16.2
BP MAE(s) 2.86

MAPE(%) 11.6
LSTM MAE(s) 0.848

MAPE(%) 2.61

By comparing the evaluation indexes of each model in Ta-
ble 3, it can be seen that the accuracy of the LSTM model
predictions are significantly improved compared with the
traditional SVR and BP methods, indicating that the use of
the LSTM model can significantly improve the accuracy of
predicting the travel time of the open pit trucks.

In order to verify the degree of influence of multiple fac-
tors on the driving conditions and on the accuracy of the pre-
dicted values of the LSTM model for each link, the trend
of the travel time and the error between the predicted and
true values are observed when a single factor variable is
changed without changing other factors. The shortest path
from loading point E to dump point a is selected as the
test object, which passes through links 5-13-20-19-18-21-
22.Table 4 shows the link properties of path E-a.

Figure 4(a) shows the fitting effect of the LSTM model on
the test data when the weather conditions are sunny, foggy

Table 4: link properties of path E-a
link length width gradient quality turns

5 73.11 0.95 0.18 0.025 3
13 1020.4 0.95 0.06 0.035 1
20 627.149 1 0.17 0.02 0
19 2373.11 1 0.4 0.02 3
18 640.865 1 0.02 0.02 0
21 1268.43 1 0.33 0.035 1
22 29.25 0.95 0.1 0.025 1

and rainy respectively. As shown in the figure, the predicted
distribution of travel time on all links is the longest in rainy
days, followed by foggy days and the shortest in sunny days,
which is in line with the predicted change trend.

Figure 4(b) shows the absolute error of the predicted travel
time of each link of the path under three different weather
conditions. The maximum error is less than 12 seconds on a
rainy day, indicating that the predicted results are accurate.

5 13 20 19 18 21 22
link

0

100

200

300

400

500

tim
e(

/s
)

(a) Fitting effect

 
Original(sunny)
Original(foggy)
Original(rainy)
LSTM(sunny)
LSTM(foggy)
LSTM(rainy)

5 13 20 19 18 21 22
link

0

2

4

6

8

10

12

M
AE

(/s
)

(b) Absolute error

 
sunny
foggy
rainy

Fig. 4: Forecast results under three different weather condi-
tions

Driver’s behavior is also an important factor in the change
in travel time. Larger values of driver’s behavior in Figure
5 indicate that the more frequently the driver occurs shifting
behavior, the shift duty cycle increases, and the travel time
for each link decreases further. The true value in Figure 5(a)
reflects this process, while the predicted value can also see
this change process. Combined with the average error in
Figure 5(b), it can be seen that the absolute average error
does not exceed a maximum of 5 seconds, which satisfies
the prediction accuracy requirement.
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Fig. 5: Forecast results under three different driver’s behav-
iors

In practice, the travel time of the truck on the road seg-
ment increases correspondingly with the increase of the load.
The relationship between the travel time and truck state for
each link on the predicted path is shown in Figure 6(a), in
which it can be seen that the travel time of the truck un-
der different load conditions varies significantly, and it of-
ten takes more time when it is heavily loaded compared to
the unloaded state. The maximum absolute average error is
shown in Figure 6(b) to be no more than 5 seconds.
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As can be seen from Figures 4 to 6, changes in all three
factors - weather, driver’s behavior and truck load - can lead
to varying degrees of change in travel time, so consider-
ing these three factors in the input features can further im-
prove the prediction accuracy of the model, thus validating
the need for open pit mine truck feature selection.

4 Visualization of Truck Travel Time Prediction
Model in Open-Pit Mine

The visualization system of truck travel time prediction
model in the open-pit mine is mainly divided into two parts:
travel time prediction model and three-dimensional road net-
work topographic map. The former uses Libtorch to invoke
the LSTM neural network model in Pytorch to build a vi-
sualization system of truck travel time prediction model in
the open-pit mine. The latter uses the Qt extension tool in
VS and OSG graphics engine to build a 3D road map visual
system, and the two are combined to establish the complete
prediction model visualization system.

The visualization system contains two functions: query
function and display function. The query function is to pre-
dict truck travel time by inputting link parameters and call-
ing the neural network model in the Qt query interface. The
display function is mainly to display the road network struc-
ture of open-pit truck transportation on the 3D topographic
map of the Qt display interface, and display the truck travel
time of 24 links in the road network structure according
to the results predicted by the neural network. Figure 7
shows the final visualization interface. On the left side of
the interface, the travel time of 24 links in the road network
structure can be viewed. In the middle of the interface, a
three-dimensional topographic map of the surface mine is
displayed, and on the right is the query interface.

Fig. 7: Visualization interface

5 Conclusion

In order to achieve an accurate prediction of the travel time
of open pit trucks, We fully analyzed the influencing factors

affecting the travel characteristics of open pit trucks and ex-
tracted 11 features as input variables. The model is designed
with the long short-term memory LSTM, and the accuracy of
the LSTM prediction model is significantly improved com-
pared with the traditional SVR and BP methods through ex-
periments while revealing the changing trend of the open pit
truck travel time and the error range of the prediction model
under different weather, driver’s behaviors, and load states.
For the purpose of presenting the model prediction results, a
3D visualization platform of the open pit mine is created to
visually display the truck travel times of the various links.

Although the LSTM is used to achieve good results for
the prediction of truck travel time in the open pit mine, there
are still areas that can be improved. For example, it can start
from the overall spatial characteristics of the road network
structure and consider all link information at the same time,
rather than just the link information on the predicted path.
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