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ABSTRACT

A six-degrees of freedom mathematical model of an experimental
Remotely Piloted Vehicle (RPV) and the linearised longitudinal and
lateral models at 30 m/sec are developed.

The longitudinal and lateral dynamics are analysed and the
equivalent discrete systems are used to provide baseline data for the
identification of the aerodynamic derivatives of the RPV.

An advanced aircraft parameter estimation method - the Extended
Kalman Filter - is implemented for the estimation of the aerodynamic
characteristics of the RPV. Conclusions are drawn about the identifi-
ability of the stability and control derivatives from pitch, roll and
yaw rate measurements.
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INTRODUCTION

The determination of aircarft stability and control derivatives
is of great importance in the design and testing of any aircraft.
These derivatives are needed for the following reasons:

1. They define a given aircraft and can be used as quality

criteria.

2. They provide model parameters for aircraft simulators.

3. They are used as a basis for the design of flight control
systems.

Over the past few years, a great deal of effort has been placed in
determining aerodynamic derivatives using parameter identification
techniques. This new approach makes it possible to evaluate from one
test run all the stability and control derivatives, their accuracy and
their confidence intervals.

Aircraft parameter identification is particularly useful for
Remotely Piloted Vehicles (RPVs), where the type of manoeuvre flown is
not restricted by the human factor, an RPV having no pilot.

The purpose of this work is twofold:

1. Development of the six degrees of freedom mathematical model of
an experimental RPV to provide simulation data for flight
control system design and parameter identification.

2. Development of an Extended Kalman Filter (EKF) for the identifi-
cation of the aerodynamic derivatives of the RPV.

The contents of this study are as follows:

In the first chapter, the equations of motion of a flying vehicle

and the assumptions upon which they are based are presented.

The concepts of the aerodynamic stability and control derivatives
and the linearisation of the equations of motion are given in Chapter 2.
A brief discussion about the longitudinal and lateral dynamics is also
presented in this chapter. '

- In Chapter 3, the mathamatical model of an experimental RPV - the
X-RAE1l - is derived based on static longitudinal wind-tunnel tests and
on ESDU Data Sheets. Its purpose is to provide simulation data for six
degrees of freedom motions of the RPV for flight regimes below stall.



The linearised longitudinal and lateral models at 30 m/sec are also
given while their dynamics are analysed.

In Chapter 4, an EKF is implemented for the identification of
the aerodynamic derivatives of the longitudinal and lateral models at
30 m/sec, assuming that measurements from the pitch, roll and yaw rates
alone are available. Conclusions about the identifiability of the deri-
vatives from these measurements are drawn.

The software developed to support the nonlinear and linear
mathematical models of X-RAEl and the computer implementation of the
EKF algorithms is given in the fifth chapter, while the conclusions
of this work and the recommendations for further research are presented
in Chapter 6. '



Chapter 1

THE EQUATIONS OF MOTION OF A FLYING VEHICLE

1.1 Introduction

The equations of motion of a rigid body and the assumptions
upon which they are based are briefly presented in this chapter. Suitable
systems of axes for the following analysis are defined and the process
of converting from one system to another with different orientation is
set forth using Euler angles.
' Finally, the general origin of the forces and moments acting
on a flying vehicle is discussed and they are incorporated within the
equations of motion.

1.2 Assumptions Definitions and the Equations of Motion
In this section, the equations of motion of a flying vehicle
are given with no attempt of any detailed proof. The interested reader
is referred to the many texts available for this purpose (Refs 1,2,4,10).

1.2.1 Assumptions

Assumption 1. The aircraft is a rigid body and the mass and

mass distribution of it are constant. Therefore, the motion of the air-
craft can be described by a translation of its centre of gravity and
a rotation about it. Any deformations of the structure are not taken
into account nor the dynamfcs of any moving element with respect to
the airframe apart from the static deflection characteristics of the
control surfaces.

Assumption 2. The earth is flat and fixed in space. This assum-

ption is particularly valid for an RPV where the flight time and the
distances covered for each operation are generally small.
Assumption 3. The aircraft has a plane of symmetry.

Assumption 4. The atmosphere is assumed still and not moving
with respect to earth. '



1.2.2 Definitions

With the foregoing assumptions as a basis, suitable sets of
axes can be defined where Newton’s laws can be applied. A1l these
systems are orthonormal and right-handed.

a. Earth-fixed Axes. They constitute an inertial frame fixed

in earth with 0z axis directed towards geocentre.
b. Body-fixed Axes. They are fixed to the moving airframe

with their origin &t the centre of gravity of it.
"to the right" (Fig. 1.1), so xz is the plane of symmetry of the air-
craft.

b.2 Principal Axes. When Ox, Oy and 0z coincide with the
principal axes of the airframe they are called principal axes.

b.3 Stability Axes. These are chosen so that Ox points in the
direction of motion of the airframe in a condition of steady symmetric
flight.

Fig. 1.1 Body-fixed Axes



The orientation of one system of axes with respect to another
one needs to be defined. As most of the analysis is limited to pertur-
bations about straight symmetric flight, the so-ca]ied Euler angles
are considered as the most appropriate for this purpose. It can be
proved that three angular displacements ¢, 8, and ¢ - and in that
order - are necessary and sufficient (Ref. 13) to give the relative
orientation of any two systems of axes (Fig. 1.2). In the flight
mechanics literature, the Euler angles are usually referred as:

¢ : yaw angle or azimuth or heading
B: pitch angle or elevation
gp: roll angle or bank

Fig. 1.2 Euler angles and rates.

The components of any vector along the axes of the displaced
system can be determined if the Euler transformation RELR will be
applied to its components with reference to the initial system, where



RELR is the orthogonal transformation given bellow:

[ cosgcose singcosB -sinB
cosdsinBsing  singsinBsing cosBsing
Rpyp = | -singcosy +CoS¢Cosy ’ (1.1)
cospsinBcosy  sinpsinBcosy  cosBcosy
+singsing -cosgsing
Then:
. X
y’ = RELR Y (1.2)
z° z
Because R is orthogonal R'1 = Rl Therefore:
ELR > "ELR ELR ~° :
<
_ ol .
= RELR y (1.3)
z z°

Finally, the relation between the time derivative of a vector
with respect to the inertial space and the time derivative of it as it
is observed in a system rotating with angular velocity w is given

(Refs 11, 13):

where:
da da
_;| e -=
dt in dt
da .
m

da

da
dt dt

Iin m

is the time derivative of the vector a relative
to the inertial space.

is the time derivative of the vector a observed
in the rotating system.

Suppose that the aircraft with mass m flies with rectilinear
velocity yT and angular velocity @ with respect to the earth-fixed
frame. The components of these vectors in body axes (Fig. 1.3) are:

<
\

ip=Lu vl
¢ =[P qRY



Fig. 1.3 Aircraft movement w.r.t. earth

Then according to Eqn 1.4 and the Newton’s second law, the
equations of motion of the flying vehicle become:
dv

—T =y + Ve = F/m
dt =T T £/
By Qx4 =M
— =H +QxH =

dt - -

where F and M are all the external forces and moments applied to the
aircraft and ﬁ'is the angular momentum with the following components:
H = PIx - QIxy - RIXz

p 4
n

I, -RI _ -
y e y yz Pl

2 RIz - PIxz - QIyZ

Xy

x
"

' Ix’ Iy and IZ are the moments of inertia about the corresponding
body axes and Ixy’ Iyz and Ixz are the products of inertia. Because
the aircraft has the xz plane as plane of symmetry Ixy = Iyz = 0.



Expanding the equations of motion in body coordinates we obtain
the following set of equations:

Fo = m(0 + QW - RV)

Fy = m(V + RU - PW)

Fy =l + PV - V) (1.5)
L = ?IX - RL, + QR(I, - 1) - POl ,

Moo= 1« ITR(Ix - L)+ (P2 - R2)1xz

N =RI, - PL, +PQ(I, - 1) + QRI,

The external forces and moments are generally:
1. Gravity forces and moments.
2. Rerodynamic forces and moments.
3. Thrust forces and moments.

1.3 External Forces and Moments

— e o — e om— am— w—

The gravity forces can be evaluated by the projection of the
gravitational acceleration g along the body axes, using Euler trans-
formations (Eqns 1.1). Therefore:

FGx

FGy
FGz = mgcosBcosd

As the angles ¢ and 8 are not generally the integrals of P and

= -mgsin@®

mgcos®sind : (1.6)

Q, we have to introduce new motion quantities. From Fig. 1.2, applying
successive Euler transformations we have:

P=2¢ - Usin®

Q= Bcosd + ¥cosBsind (1.7)
R = -ésin@ + ¥cosBcos®  or
¢ = P + Qtan®sind + RtanBcos®
@ = QCos@ - Rsind ; (1.8)
v = (Rcos® + Qsing)/cos®

So, three more differential equations have to be added to the
equations of motion 1.5,

The moments due to gravity are zero as the body-fixed axes are
assumed to have their origin at the centre of gravity of the flying
vehicle.



— e w amy w— - o— — — — — — — — — —

The aerodynamic forces and moments are acted upon the vehicle
by the surrounding airmass and they are generally due tb the relative
motion between the vehicle and the atmosphere. As the atmosphere is
assumed to be still, the relative wind velocity is Vg (where Vo is the
velocity of the vehicle w.r.t. earth). It can be proved that the aero-
dynamic forces can be expressed in the form: '

F = gov2sc, | (1.9)
where: |

p : is the air density

VT: the relative velocity of the body w.r.t. air

S : a reference area of the body (wing area)

C.: a dimensionless coefficient depending on the properties

of the air and the airframe, the geometry of the air-
frame and the relative motion between the air and the
airframe
The orientation of the air velocity vector with respect to body
axes is usually given by two angles (Fig. 1.4):

angle of attack a and
angle of sideslip B where:
a = tan"} %
a1y (1.10)
B = sin v
T
1] v

N

W
Fig. 1.4 Angles of attack and sideslip
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The total steady aerodynamic force is conventionally given by
two components: 1ift and drag (Ref. 10). The 1ift acts normal to the
flight path and the drag parallel to the flight path. According to Eqn 1.9:
1.2

L = 5pV;SC
et (1.11)
D = 5PV33Cy
Then:
FAx = Lsina - DcosBcosa
FAy = Dsing (1.12)
FAz = - Lcosa - DcosBsina

Akin to Egn 1.9 the aerodynamic moments can be expressed as

follows:
rolling L, = S0v2sbC
rol'ling Lp = 3PPy
pitching M, = %p $Sccm | O (1.13)
. 1.2 '
yawing NA = §pVTSan

where b is the wing span and ¢ the mean aerodynamic chord of the wing.

The aerodynamic coefficients are generally functionals of the
angle of attack and sideslip and their time rates, the angular velocities
P, Q, R and their time rates, the control inputs and their time rates
and so on. For example:

CL(t) = CL[G(X)’ B(X), p(X)a cees n(X)y seey d(X)y -°']

where it is understood that A is a running variable in time over the
interval [0 t]. This briefly means that generally the present behaviour
of the aerodynamic coefficients does not depend only on the present
values of their variables but on their time histories also (Ref. 16).

1.3.3 Thrust Forces and Moments

The thrust is assumed to act on the longitudinal plane xz along
a thrust line with eccentricity er from the origin of the body axes
(positive downwards) and all the gyroscopic effects are neglected.
Then (Fig. 1.5):

FTx = TcoseT
Fr, = Tsine; (1.14)
MT = TeT



_11 -

z

Fig. 1.5 Thrust configuration

1.4 The Complete Set of the Equations of Motion

As the gravitational forces are proportional to the mass of

the vehicle it is convenient to combine them with the inertial ones.

Then the equations of motion become:

¥ =

These

of motion of the flying vehicle on which all the following analysis is

based.

+

+

+

+

P

QW - RV + gsin@) = FAx + FTX = X

RU - PW - gcos@sind) = FAy =Y

PV - QU - gcosBcosd) = FAz + FTZ =7

ﬁlxz +QR(L, - 1)) - PQL, =Ly =L

PRI, - 1)+ (PP -RO)L =M +M_ =M  (L.15)
PI, + PQ(I, - 1,) + QRL, = Ny = N

+ Qtan@sind + Rtan®cosd

Qcos® - Rsind

(Rcos® + Qsind)/cos®

equations constitute the six degrees of freedom equations
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Chapter 2

THE LINEARISATION OF THE EQUATIONS OF MOTION
Longitudinal and Lateral Dynamics

2.1 Introduction .

The equations of motion as they have been presented in the
first chapter; are in general dynamically and aerodynamically non-
linear. In this chapter, they are linearised and also decomposed into
two motions - longitudinal and lateral - by assuming small perturba-
tions around the operating point or the trimmed conditions of the
flying vehicle and certain aerodynamic properties.

The nature of the so-called aerodynamic stability and control
derivatives is also briefly discussed.

2.2 The Perturbed Equations of Motion

The perturbed equations of motion can be obtained by perfor-
ming the differentials on both sides of the six degrees of freedom
equations of motion 1.15. If we designate the differential of each
motion quantity by its lower case equivalent (ie dU=u, etc), the per-
turbed equations of motion become: |

mla + Wa+Qw-Vr- R,V + (gcos@o)e] = dX
mlv + Uor + Rou - wop - Pow . |

- (gcos@ocoséo)m + (gs1n®os1n¢0)8] = dY
mw + Vop + Pov - qu T Qou .

+ (gcos@os1n¢0)m + (gs1n®0cos¢o)8] =dZ (2.1)
L, - P, *+ (Qpr + Roa)(I, - 1)) - (Poa + Qp)L,, = dL
QIy + (Por + Rop)(Ix - IZ) - (ZROr - 2Pop)1xz = dM

= dN

Pl =PI, + (Poa+Qp)(I - 1)+ (Qr+Ra)l

Xz y X
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9 = p + qtan® sing_ + rtan@ cosé_

+ [(roos‘bo - RosinQO)tanﬁo]w + [(Qosin@0 + Rocoséo)(l + tanzao)]e
8 = qcos®, - rsin@o - (Qosintb0 + Rocos¢o)w
¢ = rcos® /cos@  + qsing /cos®

+ [(roostbo - Ros1n®0)/cos®o]w + [(Qos1n<1>0 + Rocos@o)tanso/cosao]e

where the zero subscripts denote steady state or trimmed conditions
about which the small perturbations are performed.

(2.1)

If the functional representation of the aerodynamic coefficients

is dropped and they are assumed to be depended on the present values
of their variables and that symmetric reactions can be caused by sym-
metric disturbances (whereas asymmetric disturbances can cause only
asymmetric reactions), the differentials of the aerodynamic forces and
moments are the following:

dx = Ru+ X+ Xow+ Ko+ kqa + Rqa + inn + ?(ﬁﬁ ¥ §5T6T

dY = Yov+bous ?pp + ?pﬁ AR R ?Eg + ?gé ¥ ?gg + ?Cé

dz = iuu + 200 + 2ww + wa + qu + qu *In+ Zhﬁ + 26T5T

d=Lv+Dv+ {pp + [pp +Lr+ L+ Iﬁg + lég + fgg + {gg

dM = fou+ P+ fow o+ ﬁww + ﬁqq + ﬁqq + ﬁnn + Mﬁﬁ + ﬁé 81

v =Ry o+ R+ Npp + ﬁﬁb +Rr o+ Ri o+ Néﬁ + Néé + Ngg + ﬁgi
where iu = gé y &0 = Eé y eeesy N§ = g%

The partial derivatives of the aerodynamic forces and moments
with respect to the motion quantities are called stability derivatives
whereas the partial derivatives with respect to the control deflections
and settings are called control derivatives.

The foregoing differentials do not really sound mathematically,
as infinitesimal disturbance of any quantity does not necessarily imply
infinitesimal disturbance of its time rate at the same instance.

If guasisteady flow is assumed all the derivatives with respect
~ to the time rates of the variablescan be neglected apart from those
with respect to w and v rates. These derivatives are retained to model
the downwash and sidewash effects, ie. the dependance of the flow at
the tail on the time history of the motion of the wing.



- 14 -

When steady, straight, level and symmetric flight is assumed, ie:
=0
= Qo.: R0= 0
@0= Wo= 0
and with the quasisteady assumption, the perturbed equations of motion

vo
Po
are decomposed into two sets of motion:

The Longitudinal Set (Symmetric Motion)

N -9 o . °
mla + woq + (gcos@o)B] qu + wa + iww + qu + Xdﬂ + iéTaT
mw - qu + (gs1n®0)8] = 2uu + iww + wa + qu + Zﬁn + 25T6T (2.3)
g1, = fou+fws i + g+ fn - ﬁéTaT
6=q

The Lateral Set (Asymmetric Motion)

m{v + Ur - (gcos@o)w] = ?vv + Vvv + Ypp +Y o+ Yﬁﬁ + Ygg
pIX - FIXZ = LVV + va + Lpp + er + Léﬁ + LQQ (2.4)
P, pL, = Ry + R+ Nop + for o+ Rg + ReC

g =p+ rtan@0

Although the linearised equations of motion are absolutely
valid only for infinitesimal disturbances, they have been proved very
useful and widely applicable even when the disturbances are of much
larger magnitude and their rates are kept in " reasonably " small
values.

Before proceeding with the dynamics of the longitudinal and
lateral motions a brief discussion about the origin of the aerodynamic
stability and control derivatives follows.

2.3 Aerodynamic Stability and Control Derivatives

The definitions, the origin and the equations - when applicable -
of the aerodynamic derivatives are given in this section. All the
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derivatives are assumed to be expressed in stability-axes and the
compressibility and slipstream effects are neglected (Refs 1, 2, 3,
4, 10, 14, 15).

Definition Origin Equation

5 - BX iati 8T
Xu = Bu ‘ Variation of drag and thrust —pVTSCD + VT
with u.
_ 8z L
2u = B Variation of normal force 'pVTSCL
with u.
AL iati ! o1
Mu * Bu Variation of pitch and thrust pVTSch + eTBVT
with u.
2.3.1b Derivatives Due to Change in_Ig_cidgngé_
Definition Origin Equation
° _ BX 1 oCp
Xw-= B Lift and drag variations along EpVTS(CL - —gaﬂ
the x-axis.
;] =& Variation mainly of 1ift with - dov_s(c +BCL)
W Bw y 271\ T B
incidence.
M= L.} Static Longitudinal Stability lpv ScEEm
w  Bw ’ 2" T Ba

2.1.3c Derivatives Due to Downward Linear Acceleration

— e e - — a— — —— — f— — — — —— — — —— — t— — o— ——— —

Definition Origin Equation
8C
e _ BX 1 D
Xw = Downwash lag on drag (usually szce(gE)
negligible). 2V

T
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Origin

Donwash lag mainly on Tift of

tail.

Downwash lag on pitching moment.

2.3.1d Derivatives Due to Rate of Pitch

Definition
fy e 5
Iy = 5
o < 5

Effect of pitch rate on drag.
Usually negligible.

Effect of pitch rate on 1ift
(tail and wing contribution).

Effect of pitch rate on pitching
moment (damping in pitch).

2.3.1e Derivatives Due to Elevator Deflection

e

:!\,IO
g

Effect of elevator deflection on
drag (usually negligible).

Effect of elevator deflection on
1ift.

Effect of elevator deflection on
pitching moment.

Equation

1.2.Cp
-PVrSe

1

eC
-EDV S

6

- N

1.2
Epv SCBU
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Variation of thrust along x-axis
with throttle.

Variation of thrust with throttle
along z-axis (usually neglected).

Variation of pitching moment with
throttle.

2.3.2 Lateral Derivatives

Definition
gY

?v Bv

o 8L

Ly =8

° BN

Ny = By

Origin

Variation of side force with
sideslip angle. Mainly from
fin and body.

Rolling moment due to sideslip
known as "effective dihedral
derivative". Combination of wing
dihedral effect and fin.

"Weathercock" or static directional

derivative. Main contribution from
fin ; also wing-body.

Equation

er

Equation

1., .55
EpVTSb-ﬁ

1 BCn
PVrSbgg



- 18 -

2.3.2b Derivatives Due to Rate of Roll

Definition Crigin
e _ Bf .
Yp ) Change of side force due to

rolling velocity. Fin is the main
contributor although the wing may
bé significant for some configu-

rations.

L =8 The roll damping derivati i

p - 55 ero amping derivative. Wing
is the dominant factor when taijl
is of conventional size.

e BN . .

Np * B Change in yawing moment from

rolling velocity. Wing and fin
the main contributors.

2.3.2c Derivatives Due to Rate of Yaw

Definition Origin
? = 8y Variations in side force due to
r Br s

yawing velocity. Fin is the
dominant contributor.

tr =-%% Rolling moment due to variations
in yawing velocity. Quite impor-
tant for spiral stability.Major
contributors wing and fin.

Nr = %g Yaw damping derivative. Contribu-

tions from wing fuselage and fin.

Equation
1 8C
V.S
Pl 8 (2D
2VT
8C
1 2 1
ZVT
: 8C
1 2 °’n
szTSb e(RE)
ZVT’
Equation
1 BC
PIrhg )
2VT
ec
1 2 71
ZpVTSb B(Eg)
2VT
8Cc
Loy sp2—n_
4T b
8(5y)
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2.3.2d Derivatives Due to Control Deflections

Definition Origin Equation
o ey . . . 1 .2 8c
Yé ='§E Side force due to aileron deflection. 7pVTS7§¥
Usually negligible.
* -8 Rolling moment due to aileron lpVZS BC]
e =B g 7PV Sbgr
deflection known as aileron effecti-
veness.

K BN 1.2 BCn
Ng =-§E Yawing moment due to aileron ?pVTSbT§?
deflection. It is caused from the
difference between drag on up and

down ailerons.
Y, = ik Change in side force due to rudder 1 VZSEEX
TG g 277178

deflection. :
o _ 8L - 12,84
Lg ='§§ Rol1ing moment produced from rudder fpVTSbTﬁf

deflection (minor importance).

8C_

o _ BN C s . . . 1.2 n
Ng " ® Variation in yawing moment with a ?pVTS 5

change in rudder deflection known
as rudder effectiveness.

2.3.2e Derivatives Due to Side Acceleration v

— e — —— o — — g —— a— — —— — — m— —— —— — —

.

The derivatives due to v usually arise from sidewash lags that
produce angle of attack variations at the vertical tail. As only little
is known for these aerodynamic derivatives, they are usually neglected
in the usual formulation of the rigid body equations. However, there are
cases where Nv affects significantly the dutch roll damping and has to
be accounted for, but the difficulty is that there is no good way of
estimating ﬁv or of knowing apriori for which configurations is impor-
tant (Refs 10, 14).
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Another reason for forces énd moments to arise due to rate of
change in side velocity is aeroelastic effects. These distortion effects
are considered negligible for our analysis as the airframe is assumed
to be rigid.

2.4 Longitudinal Dynamics

Rearranging Egns 2.3 the state space model of the longitudinal
equations of motion can be obtained:

0 Xo *u xq 2,9 u XU x5T Ui
W z z z. a9 w z. 2
N S e | LY (2.5)
g m, M mq a39 q mn m6T
8] [o o 1 o L&) Lo o |
where:

xu = Xu + ZUXW/(I - ZW) s xw = Xw + waw/(l - ZW)

xq = Xq - No + (Zq + UO)XW/(l - ZW)

a; = -cose0 - (sinso)xw/(l - ZW)

xn = XU + anw/(l - ZW) s x5T = X6T + ZéTXW/(l- ZW)

z, = Zu/(l - ZW) y 2, Zw/(l- Zw) ’ Zq = (Zq + UO)/(l - Zw) (2.5)
a, = -(sinao)/(l - ZW) y ZU = Zﬂ/(l - ZW) y ZBT = ZéT/(l - Zw)

mu = Mu + ZuMw/(l - ZW) , mw = Mw + ZwMW/(l - ZW)

mq = Mq + (Zq + Uo)MW/(l - ZW)

a3 = -(sinBO)MW/(l - ZW)

UG LA U W Mot I M/ - Z)

=

The derivatives appearing on the right hand side of the Eqns 2.6
are the so-called normalised aerodynamic stability and control derivatives.
They are obtained from the basic ones by dividing the force derivatives
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by the mass of the aircraft and the moment derivatives by the corre-
sponding moment of inertia, ie:

%

X E—!:
u m

i
ole
=
[1}]
o-olcgo
|2

- L
I
y 'y

D

T

The eigenvalues of the longitudinal system of equations for
nearly all aircrafts in most flight conditions are two- sets of complex
numbers. Therefore the modesof the motion are two oscillations:

The Short Period. A relatively high frequency ( msp ) oscillation
) primarily consisting of variations in a

sp
and 8 with the forward velocity remaining almost constant and

with heavy damping ( T

The Phugoid. A relatively small frequency ( wph ) oscillation
with very light damping ( gph ) characterised by variations in u and
B8 with a about constant. It can be thought as an exchange of potential
and kinetic energy as the aircraft tends to fly an oscillatory flight
path on the longitudinal plane (Ref. 2).

2.5 Lateral Dynamics

The state space model of the lateral equations of motion (Egns 2.4)
becomes as follows:

v Yv Yp + wo Yr - U gcosg, v YE Yg E
L L L 0 L
p = v p r p + LE g g
1y Nv Np N. 0 r N§ Ng
L ¢ | O 1 tang 0 JLv | 0 0 |

where all the derivatives are normalised.

The eigenvalues of the lateral system of motion are usually
a set of two real and two complex numbers which consitute the three
modes of the lateral motion:

The Dutch Roll. It primarily consists of sideslip and yaw. The
damping and natural frequency of the dutch roll vary with aircraft and
flight conditions where the damping may become very light.
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The Roll Subsidence. It is the one degree of freedom rolling

response to aileron deflection. Usually a small time constant is re-
quired. ’
The Spiral Divergence. It is a combination of an increase in

yaw and roll angle and the aircraft eventually falls into a high-speed
spiral dive. The spiral mode is not usually objectionable as the time
constant is so large that it can be controlled by the pilot (Ref. 2).
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Chapter 3

THE MATHEMATICAL MODELLING OF THE X-RAE1l RPV

3.1 Introduction

The concepts and principles presented and analysed in the first
two chapters are applied in this chapter for the development of the six
degrees of freedom model of an experimental RPV - the X-RAEl. A combi-
nation of static wind-tunnel tests and ESDU data sheets is used for the
formulation of the aerodynamic characteristics of the RPV.

The linearised model for straight and level flight at forward
velocity of 30 m/sec is derived and the Tongitudinal and lateral dyna-
mics are analysed.

A new method also for the estimation of the moments and products
of inertia of the airframe is proposed using an Extended Kalman Filter.

3.2 The Six Degrees of Freedom Mathematical Model of X-RAE1

X-RAE1l is a small tow cost experimental RPV. The six degrees 6f
freedom mathematical model of it is developed in this chapter. Its
primary purpose is to provide baseline data for flight control system
design and improvement and for the identification of the aerodyhamic
stabi]ity and control derivatives of X-RAEl. It can be considered as
the necessary preliminary step for the assesment of the most appropriate
identification algorithm before proceeding with the analysis of flight
test data.

The model is dynamically nonlinear but as it is intended to
provide simulation data for flight regimes well below stall, the aero-
dynamic characteristics of it are assumed linear.

The modelling work was preceded by static wind-tunnel testing
of a full-scale unpowered model at RAE Farnborough. These data provided
the basis for the derivation of the longitudinal aerodynamic characte-
ristics of the RPV (static and rotational). The engine model and the
lateral aerodynamics are based on ESDU data sheets and fundamental theo-
retical concepts as wind-tunnel or any other kind of data were not
available.
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A general arrangement of X-RAEl and some of its specifications
are shown in Fig. 3.1 and Table 3.1 respectively.

:
t —eE—
| U
{l

Fig. 3.1 X-RAE1 layout
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Length ( ]b ) 2.1 m
Wing Area ( S ) 0.9307 m?
Wing Span ( b ) 2.638 m2
Mean Aerodynamic Chord ( c ) 0.353 m
Tail Area (S, ) 0.2576 m?
Distance of the centre of gravity
from the leading edge of the mean
aerodynamic chord 0.34c = 0.121 m
Typical Weight ( mg ) 15 Kgr
Typical Payload ' 2 Kgr
Speed Range 40 to 68 Kts
ENGINE: Webra '91' 1.5cc two stroke delivering
approximately 1.9 Kwat 14000 RPM and
driving a 14 inch dia. x 6 inch pitch
propeller.

Table 3.1 X-RAE1 spetifications

The aerodynamic forces are assumed to consist of three compo-
nents: 1ift L, drag D and side force Y. Lift and drag act on the longi-

tudinal plane normal and parallel respectively to the velocity vector
in symmetric flight whereas side force acts along the Oy body axis.

Any aerodynamic quantity with subscript s is assumed to be
expressed in stability axes.

3.2.1a Lift_

Lift is mainly produced by the lifting surfaces - wing and tail -
and by the deflection of the elevator. It is estimated from the formula:

_1,2
L = ZPVTSCL (3.1)

where CL = CL(a, @, g, 1) is assumed a linear function of the
angle of attack a, the time rate of the angle of attack &, the pitching



rate g and the elevator deflection 7 ie:

C, =C, + CL a+C

ac ac
L | ) + C )+CLT; (3.2)

( (
o Ly Ly Vg 7 LoV L

A full derivation of C, , C, , C, &nd C, from wind-tunnel
L(1 Ld- Lq LU
data is given in Apx A.1l and for reasons of completeness their values
are shown in Table 3.2 .

3.2.1b Drag_
Drag is derived by a similar formula as 1ift, namely:
D =

2 . '
vasc, - (3.3)

l\_)é;—l

Wing and body are the main contributors and CD can be estimated
from wind-tunnel data as:

(3.4)

where CD is the zero-1ift drag and kCE is the drag induced by the
0 W
1ift produced by the wing-body combination (Apx A.l1 , Table 3.2).

CL = 4,98 /rad CD = 0.0227 C = -1.05/rad
a 0 Mg

CL = 2.78 /rad k = 0.0514 Cm = -9,32/rad
a a

CL = 4,83 /rad C =-19.15/rad
q | M

CL = 0.49 /rad Cm = -1.63/rad
n n

Table 3.2 Longitudinal aerodynamic derivatives
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Side Force_
Akin to Eqn 1.9 the side force Y is expressed as follows:
_1.,,2
Y = ?pVTSCy (3.5)

where Cy = cy(v, P, R, T) is a linear function of its variables ie:

C
y

YV

=1
VT v

b
+=YP
VT p

b
+<YR+Y
VT r

&S

(3.6)

The main contribution to the side force arises from the rudder
deflection with sideslip and yaw rate also having some effect. Side
force due to roll rate is almost negligible.

~The aerodynamic derivatives Yv’ Yp, Yr and Yg are given in
Table 3.3 . ESDU data sheets are mainly used for the estimation of the
side force derivatives. Details can be found in Apcs A.2, A.3, A.4

and A.6 .

. BY 1
sz & /2PVS | - 0.3054
1) :
. 8Y,1 ( 11.32cosa - 110.19sirg _
Yo, * B /50VSb | 0.078C, - 0.3133 [ =220
0.1 %y (2)]
- 0.18 - —L
8 ()
T
Y, ® g-}/%vaSb - 0.0109 + 0.2164 (109.51cosa + 8.87sina)/ 263.8
S
£8Y 1.2
Y far /P 0.1184

Table 3.3 Side force aerodynamic derivatives

(1) Lift coefficient
(2) Sidewash term due to body
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— e Y m— a— - —— — —

The main contributors to the pitching moment are the wing and
the tail. The equation for it is:

M, = govisce (3.7)
where: 3
C = G * Cpo* cm&(a—s% + Cmq(g%% = (3.8)
Cmo, Cma, Cm&’ Cm and Cm are defived from wind-tunnel data

(Apx A.1l) and their values are recalled in Table 3.2 .
3.2.2b Rolling Moment

The rolling moment is assumed that depends on the lateral
motion quantities V, P, R and on the aileron deflection m@in]y, whereas
rudder deflection contributes only a very small amount. The equation
for the rolling moment is as follows:

12
Ly = 3oVashC, (3.9)
where:
gLV teLp bR e g (3.10)
T TPV & T

A1l the derivatives are estimated from ESDU data sheets (Apcs A.2, A.3,
A.4, A.5 and A.6) and their values are given in Table 3.4 .

The yawing moment is derived by an analogous way to the rolling
moment. The rudder deflection is now more important than the aileron
deflection. The expression for the yawing moment is:

1
Na = gpvésbe_ (3.11)
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S (1) (2)
Lvs = EV'/ﬁpVTSb - 0.0005(1b - 0.0119 - 0.0016(3L -
- 0.1969 ( 8.87cosa -109.51sina ) /263.8
Lo« Loy o2 | - 0.2457 + Y(B) (11.32cosa - 110.91sina ) /263.8
P Bp 2" T : pFS : : :
2)
LBl Ly o2 (
Lrs * Br /EpVTSb - 0.0018¢ + 0.1243CL +
(4)
+ Y (8.87cosa - 109.51sina ) /263.8
rFS
- 6L ,1 .2
LEs "% /EpVTSb - 0.2291
- 8L ,1 .2
Lc = ﬁZ'/EpVTSb 0.00398
Table 3.4 Rolling moment derivatives
(1) Body incidence measured from its zero 1ift value.

(1)

(2) Wing 1ift coefficient.

(3) Contribution of fin to side force due to rate of roll.
(4)

4) Contribution of fin to side force due to rate of yaw.

b ‘
+ VTNrR + Nﬁg + Ngg (3.12)

The values of the aerodynamic derivatives are recalled in
Table 3.5 . Detailed analysis for their estimation is given in Apcs A.2, A3,

A.4, A5 and A.6 .
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N, * g—ﬂ/%vaSb - 0.0363 + 0.1969 (109.51cosa + 8.87sina) /263.8
S
1) ac. 2
. BN 1 2 D
Nps ® g /US| - 0.03C,  + l23gs -
(3)
- YpF (110.91cosa + 11.32sina) /263.8
S .
(2) (5)
N2 8N,y sp2 | _0.0022 - 0.1261C. - 0.009C2 -
rs Br ?p T ' : D0 : L
(6)
- YrF (109.51cosa + 8.87sima ) /263.8
S
6N 1.2 (5)
Nas = g /7PVysh 0.0195C,
. BN ,1 2
N g /PVSh | - 0.0492

Table 3.5 Yawing moment derivatives

1
2

(1) Lift coefficient.

(2)

(3) Contribution of fin to side force derivative due to rate of roll.
(4)

(5)

(6)

Viscous drag derivative w.r.t. angle of attack (per degrees).

4
5
6

Wing drag at zero 1ift.
Wing 1ift coefficient.
Contribution of fin to side force derivative due to rate of yaw.

3.2.3 Thrust Forces and Moments

Thrust forces and moments are produced by one 12 inch diameter
by 6 inch pitch two blade propeller. The propeller axis lies on the
longitudinal plane of the RPV and is parallel to the body x-axis. As
the only data available about the engine are those given in Table 3.1 ,
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an analytical model has been developed based on a combination of the
momentum and blade element theory and the use of power-required and
power-available curves (Ref. 18) .

The resulting thrust force is given by the fornula:

_ 2
T = klaT - k?_vT (3.13)
where:
k1 = 26.7154 Watts sec / m
k, = 0.0055 Watts (m / sec )-3

bT : throttle setting (from zero to one)

A pitching moment is also produced due to the eccentricity er
of the thrust line:

(eT = - 0.16 m) (3.14)

The rolling moment due to the torque moment Mbr of the engine
is assumed negligible and is not taken into account in the following
analysis. A detailed development of the engine model is given in Apx A.l .

After the evaluation of the aerodynamic and thrust forces and
moments acting on the airframe the equations of motion of X-RAE1l can be

developed. The following aspects are taken into account for their deri-
vation:

1. A1l the derivatives given in stability axes have to be
transformed to body axes.

2. The aerodynamic coefficients CL, CD and Cm are estimated
with reference to the point 0A on the centre line chord of the wing at
a distance 0.34c from the leading edge of the mean aerodynamic chord
whereas the centre of gravity of the airframe is assumed to be the
 centroid of the equivalent cross-section at 0A (Fig. 3.2 and Apx B.1l) .
3. The product of inertia Ixz is assumed to be zero.
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z

Fig. 3.2 Pitching moment reference point

If g = %-pV% , the equations of motion of X-RAEl in body axes

become:
"0 =RV -QW- gsin® + [ ﬁS(CLsina - Cycosa) + T /m
V = PW - RU + gcos@sin® + (éSCy) /m
W=0QUu - PV + gcosBcosd + [ GS(-CLcosa - Cpsina) ] /m
P=1 QR(Iy - IZ) + quC]] /IX
Q= PR(IZ - Ix) + chCm + qS(CLsina - CDcosa)h0 + TeT] /Iy (3.15)
R=[ PQ(IX - Iy) + quCn] /Iz

¢ = P + Qtan®sind + RtanBcosd
§+ © = Qcosd - Rsind
¥ = (Rcosd + Qsind) /cos®
where:
e (e ev? )t o=t E o ang a=—————gg;3‘é’

What remains to be evaluated is the trimmed conditions (ie. the
initial conditions for the set of Eqns 3.15) and the moments of inertia.
They are all given in the following two sections.
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An ACSL programme - the RPVPI.CSL - has been developed for the
digital simulation of the six degrees of freedom motion of X-RAE1l (Ch. 5).
The responses to small amplitude pulse deflections of the elevator
and aileron, after the trimmed values have been subtracted, are shown
in Figs 3.4 to 3.16 at the end of this chapter.

3.2.5 Trim Conditions of_ X-RAEl

X-RAE1 is assumed to be initially set to straight, horizontal
and level flight with velocity yTo . The deflections of the control
surfaces, the throttle setting and the angle of attack required for
sustained flight at V. m/sec are computed in this section.

The trimmed values of the motion quantities become:

Yo

V0 = P0 = RO =0, ¢0 = Wo =0

VTocosa0 R wo = VTosmuO , Qo =0, @0 = q,

The lateral conditions can be easily obtained by setting the
aileron and rudder at their zero value positions. Then, the longitudinal
equations are the following:

mU

-n
L]

- mgsina + gS(C, sina - C,cosa) + T

X L D
F,o= mW = mgcosa - aS(CLcosa + CDsina) (3.16)
M- = QIy= aSch + Tep + aS(CLsina - CDcosa)h0
where:
CL = CLO + CLaa + CLnn
_ 2
CD = CD0 + kCLw
CLw= CLow : CLawa

] My )|
For equilibrium:



- 34 -

Eliminating thrust T from Eqns 3.16 we have:

- h
=8¢, _; ing - 9
T . Cm qS(CLs1na CDcosa)e
T T
. - ho . gSc
Fx = - mgsina + qS(1 - E;J(CLs1na - CDcosu) - e; Cm
Fz = mgcosa - qS(CLcosa + CDsina)

(3.17)

(3.18)

The system of Eqns 3.18 is nonlinear and it is solved numerically

for the unknown vector

T
x=[a n]
using the Newton-Raphson method. Therefore (Ref. 5):

) S
X+l T % - J

whéré J is the Jacobian

BFX / Ba BFx /81

J =
%é/eu Wé/ﬁn
and
SFX ho _ ) ‘
o - (- -e—;)qs[((:L + Cp)sina + (C, - Cy )cosa] -
asc
- mgcosa - C
e my
BF h =
X . 0yase sing - A€
— = (1 - =—)gsC, sina - C
8n e Ln &1 My
BFz _
T qS[(CL - CDa)sina - (CLQ + CD)cosa] - mgsina
oF, |
o) = - qSCchosa
7
The solution for yTo = 30 m/sec is
a, - 0.0245
X = =

o 0.0445
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Then Eqns 3.13 and 3.17 give throttle setting éT = 0.7156 .
Summarising, the control deflections and the throttlie setting for steady,
straight, symmetric flight at 30 m/sec are as follows: o

elevator no = 0.0445 rad
aileron 50 = 0.0 rad
= 0.0 rad

rudder go
throttle &

T 0.7156 or 71.56%

A method for the estimation of the moments and products of inertia
of X-RAEl is presented in this section. It is based on the use of an
Extended Kalman Filter.

It is assumed that the position of the centre of gravity of the
airframe is known and three accelerometers and three rate gyros are
fitted on it along the body axes. The RPV is hung from a point on the
longitudinal plane and is left to perform small amplitude oscillations.
Therefore, the forces acting on the airframe are only the gravitational
ones and the reaction at the hanging point (Fig. 3.3). The measurements
are assumed to be corrupted by bias errors and white gaussian noise of
zero mean (Ref. 9), ie:

=y+b + 3.19
Yp =Y ¥b, tn (3.19)
where:
Yo the measured value
y ¢ the true value of the measured quantity
b : the bias error
n.y : the white noise, E[n ] = 0 E[n2] = ¢
y - TNy Y y

The equations of motion then become:

PI - RIL =L

I = M 3.20
QIy ( )
RI, - PI, =N

where all the second order terms of the motion quantities have been
ignored, and
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Fig. 3.3 General arrangement for the estimation

of the moments and products of inertia

L =- Fy]z
M= Fx]z - Fz]x (3.21)
N = Fy]x
Fx’ Fy and Fz are the reactions at the hanging point and can be

evaluated by the accelerometer readings according to Eqn 3.19, ie:

Fx =ma, = m(axm - bax - nax)

F = = - - .22

y =My m(aym b, -n. ) (3.22)
_ _ y y

FZ =ma, = m(aZm - ba - n, )
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Incorporating Eqns 3.21 and 3.22 into Eqns 3.20, the equations
of motion become as follows:

s . 2
P = m(Iz]zbay - Ixz]xbaZ - Iz1zaym * Ixz]xazm)/(lxlz - L)
2
* m(Iz]zna - Ixz]xna )/(lez B Ixz)
y z
Q = m( -]zbax + 1xbaz + ]zaxm - ]xazm - ]Znax + 1xnaz)/l (3.23)

R=m(I1b -I1b. -1 1la +1I1a )/(I.1 -1%)+

Xz z ay x'x"a xz z°%ym x x%zm X'z Xz
2
m(Ileznay - lexnaz)/(IxIZ - Ixz)

= f(x, u, t) + p(x)w(t)
¥y = hix, u, t) + y(t)
where:
_ T
)'-(» = [p’ q’ r’ bax, bay’ baz’ bp’ bq’ br’ Ix, Iy! IZ! IXZ]
is the state vector.
~ T
u = ._axm’ aym, azm:} is the input vector.

T
Yy = _Pm, qm, rm] is the output vector.

T
w=|n_,n.,n is the white process noise.
a, ay a,

~ T
vV = np, nq, nr:] is the white measurement noise.
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B 2
m(Izlzbay - ... % Ixz'lxazm)/(lxlz - Ixz)
m( - ]zbax + ... - ]xazm)/ly
' 2
| mI, 1,0, = « .+« *+L1a )/(LI -If)
f(x, u, t) = y
0
0

T
h(x, u, t) = Cp+by @b, r+b.]
. mIZ]z mez]x
2 2
Isz - Ixz Isz - Ixz
ml ml
- £ 0 -2
I 1
y y
0 mezlz me1x
_ 2 2
I(x) = LI, - Ixz LI, - Iy
0 0 0
0 0 0

the product of inertia Ixz’ can be estimated in principle using an
Extended Kalman Filter. Their initial values are assumed to be:

The state vector x and so the moments of inertia Ix’ I
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1 = 2.1678 Kgrm’
Iy = 1.6469 Kgr m2
I = 3.6962 Kgr n’

_ 2
Ixz— 0.0 Kgrm

and they are evaluated in Apx MI. A brief discussion of the Kalman
filter theory and its use as state and/or parameter estimator is given
in the following Chapter 4.

3.3 The Linearised Model of X-RAEl at 30 m/sec

The linear model of X-RAEl about a steady, straight, symmetric
and horizontal flight at a constant velocity of 30m/sec is given in
this section. The aerodynamic stability and control derivatives for this
flight condition are computed and the dynamics of the longitudinal and
lateral motions are analysed. ‘

—— e - —— ——— t— — — —— —— — — — — —— — — —

The aerodynamic stability and control derivatives for a trimmed
flight at 30 m/sec are evaluated for the linear longitudinal motion in
Apx LA.l. Their normalised values in body axes are shown in Table 3.6.

X = -0.097 |z = -078 |M =  0.029

X,= 0.037 |z, = -549% |M = - 3.865

X, = - 0.00084 | Z. = -0.018 | M = - 12.38

Kg = - 0.019 | Z = -0.902 | M = -0.201

Xn = - 0.397 | Zp= - 16.172 | My = - 179.079

Xe = 1.719 | Zg= 0.0 |Mg= - 2.595
T . T T

Table 3.6 Normalised longitudinal derivatives
at 30 m/sec - Body Axes.

Then according to Egqns 2.5 and 2.6 the state space longitudinal
model becomes:
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a -0.097 0.039. 0.704 -9.804 || u -0.39  1.719 || 7
W -0.775. -5.399 28.575 0.236 || w -15.887 0 |
a| ™| o0.185 -2.782 -18.117 -0.087 || q | ¥ | -175.89 -2.595 5
5 0 0 1 0 8 0 0

S L I L -

The characteristic equation of the longitudinal system is:

4 3 2

p(s) = s  + 23.613s” + 179.537s° + 18.048s + 31.018

and the eigenvalues of it (roots of the characteristic equation) are:

Short Period: - 11.767 * j6.249
Phugoid: -0.039 t jO.416

The corresponding natural frequencies and damping ratios of the
longitudinal dynamics are given in Table 3.7.

natural frequency damping
Short Period | © = 13.328 rad/sec | T__ = 0.883
nSp sp
Phugoid anh = 0.410 rad/sec gph = 0.095

Table 3.7 Longitudinal modes of X-RAE1l at 30 m/sec

It is apparent from the above table the need of controlling the
phugoid mode to avoid low frequency oscillations due to the 1ight damping
ratio gph' Although the short period is heavily damped it is also a good
control strategy to make it fast so the transient effects mainly on the
pitching rate q will die out rapidly.

The programme RPVLG.CSL has been developed for the simulation of
the linear longitudinal motion of X-RAE1l. The response to a small amplitude
pulse deflection of the elevator is shown in Figs 3.4 to 3.10 where
the short period and phugoid characteristics can be observed.

3.3.2 The Lateral Linear Model at 30 m/sec

The normalised stability and control derivatives of the lateral
motion at 30 m/sec are given in Table 3.8. Detailed determination of
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can be found in Apx LA.Z2.

< < < < =<
N M S T <

0.336 Lv =
0.175 Lp =
0.224 Lr =
0.0 LE =
3.909 Lg =

-0.414
13.360
2.412
-142.902
2.485

=z2 2 2 =2 =2
Y M 3 O <

= -1

0.558
0.622
1.426
4.182
8.015

Table 3.8 Normalised lateral derivatives
at 30 m/sec - Body Axes

Substituting the values of the derivatives to Eqns 2.7 the
lateral equations of motion become as follows:

-0.336

-0.414

0.558
0

S - T <

-0.561

-13.360

-0.622
1

-29.767  9.804
2.412 0
-1.426 0
-0.025 0

v ]

0 3.909
-142.902 2.485
4.182 -18.015

0 0

The characteristic polynomial of the lateral system matrix is:

p(s) =s

4 3

+ 15.122s

2

and the eigenvalues of it are the following:

Dutch Ro

11: -0.

903 * j4.163

Rol11 Subsidence: -13.338

Spiral Divergence: 0.023

+ 41.897s™ + 241.099s -5.517

The corresponding natural frequency, damping ratio and time
constants of the lateral modes are given in Table 3.9.

D

utch Roll

Ro11 Subsidence

Spiral Divergence

4.259 rad/sec

0.212

Tr = 0.075 secs

Ts

= 43.478 secs

Table 3.9 Lateral modes of X-RAE1l at 30 m/sec




- 42 -

The dutch roll mode is of reasonably short period and lightly
damped so an attempt should be made to overcome its oscillations. The
unstable spiral mode has a very large time constant (TS = 43.478 secs)
and can be easily tolerated by the pilot. As a stable spiral mode may
be usually achieved at the expense of a less well damped dutch roll it
does not seem advisable to be controlled by the fiight control system.

An ACSL programme - the RPVLT.CSL - has been developed for the
simulation of the lateral model of X-RAE1l (Ch. 5). The response to a
small amplitude pulse deflection of the aileron is shown in Figs 3.1l
to 3.16.
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Fig. 3.4 Elevator deflection
-Amplitude: 0.005 rad
Duration: 1.0 sec
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Fig. 3.11 Aileron deflection
Amplitude: 0.005 rad
Duration: 1.0 sec
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Chapter 4

IDENTIFICATION OF THE STABILITY AND CONTROL DERIVATIVES OF X-RAE1l

4.1 Introduction

An Extended Kalman Filter (EKF) is used in this chapter for the
estimation of the aerodynamic derivatives of X-RAEl. It is based on
simulated data (p, q and r measurements only) from the discretised longi-
tudinal and lateral models of the RPV.

The general problem of identification and its application to
aircraft is discussed in section 4.2 and the concepts of the EKF are
presented and briefly analysed in section 4.3. |

4.2 The General Problem of Identification and

Its Application to Aircraft

Systemidentification and parameter estimation can be considered
as a technique for evaluating the properties of any system by the measu-
rement of its input and outpuf time histories (Ref. 8). As it appears
from this definition the identification process is distinguished in the
following two problems:

1. System Identification.'The problem of determining the structure
and the parameters of the system.

2. Parameter Estimation. The problem of determining the system
parameters for a given or an assumed structure. »

If the first problem has to deal with a "black” nontransparent
box, then the second is related to a "grey" semi-transparent one (Ref. 17).

Both problems can arise in aircraft identification although
parameter estimation is more common as any information about the possibie

aircraft structure or sufficiently general permissible structure can
considerably accelerate the process of estimation.

Therefore, aircraft pafameter estimation - as it has been developed
over the pést 25 years - is the process of extracting numerical values of
the aerodynamic stability and control derivatives and other parameters
(gusts, sensor errors etc) from the time history of the input and output
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variables (Ref. 12). The basic identification procedure can be seen in
Fig. 4.1. ‘

process
noise
rctual l measurement
. ctual or i
input u : y ., noise
—1nput y simulated =—) Sensors :xﬁg
aircraft I
sensors
me@surementj+ aircraft y +\)“_
noise | model 41*)

: error or
innovations
sequence

optimisation
algorithm

Fig. 4.1 Basic identification procedure

As the system is generally corrupted by process and measurement
noise the problem of parameter estimation is that of stochastic appro-
ximation. The optimisation criterion can then be the evaluation of the
extremum of a performance index J(3) given in the form of an expectation
(Refs 17, 19):

3(8) = £,[0(x,8)] (4.1)
where:
Ex[ - ] is the expectation operator and
Q(x,8) 1is a function of the vector & = (al, ceny an)T of
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the unknown parameters and of the vector x = (xl, ceey xm)T of a random
process with usually unknown probability density function p(x). When
Q(x,3) is a quadratic function in & then the performance index J(&) is
the familiar least squares cost function. The condition of optimality

for J(8) can be written as follows:
v(g) = E [V,0(x,8)] = 0 (4.2)

is the gradient of J and

where VJ(3)
(x,a) is the gradient of Q w.r.t. 3

V§Q

Egqn 4.2 can be solved recursively by the following formula:
S T -1 ” YK[VQQ(Zk-l’Qk—l)] (4.3)
As VaQ(gk_1,§k_1) # 0 due to the presence of the random sequence
Xo1° it is ﬁecessary that the gain sequence A\ should tend towards zero

as k increases, for §k to converge almost surely to a. The scalar gain
Y can be replaced by a matrix Pk usually of the form:

4.3 The Extended Kalman Filter (EKF)

The theory of the EKF and its use as state and parameter esti-
mator is given in this section.

4.3.1 The EKF as State Estimator

The EKF is a recursive least squares approximate state estimator
of nonlinear dynamical systems based on first order linearisation. The
cost function to be minimised is:

EL(x(n) - 2(n))T(x(n) - %(n))]

where x(n) and %(n) are the state vector and the estimated state vector
respectively (Refs 12, 19).
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Consider the dynamical system:

x(ntl) = £(x(n), u(n), n) + I(x(n))w(n)
y(n) = h(x(n), u(n), n) + y(n) (4.4)
x(n) : is the state vector
u(n) : is the input vector
y(n) : is the output vector
w(n) : is zero mean white process noise, ie:

ELw(n)] = 0, ELw(n)w' (k)] = Q5
v(n) : is zero mean white measurement noise, ie:

E[y(n)] = 0, ELy(n)y' (k)] = Re,,

and w(n), v(n) are not correlated each other and with
the initial state vector, ie:
ELu(n)y" (M1 = 0, EQw(n)x"(n )] = 0, ELy(n)x"(n )] = 0

‘Then the EKF algorithm for the estimation of the state vector

is given by the following prediction and update equations:

where:

Prediction

1<)

n/n-1 = f(Zn_l, L‘n_19 n-1) _

I
Pn/n-l ann-an * I‘n-lqr

n-1

Correction , (4.5)

1<)
|

n gn/n-l * Jn[l(n) - Hngn/n-l]

_ _ T T -1

Po = Pn/n-l Pn/n-lHn[HnPn/n-lHn * R] HnPn/n-l
_ T T -1

dy * Pn/n-lHn[HnPn/n-lHn *R]

Zn/n-l is the estimation of the state vector at the nth step
based on information up to the previous step.

Pn is the error covariance matrix ie:
P, = EL(x(n) - %(n))(x(n) - %(n))'].

-n
[}
GﬂCD
1< [+h

Ig_én_l n BX
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Eqns 4.5 can be considered as a separation into update at the
measurement times and prediction between measurement times as it is
schematically shown in Fig. 4.2.

prediction

J/ Xn+m/n+m-1
‘ prediction {t‘~“correction
. 2 §n+m
Xn+1/n = “n+m-1
1 ¢ /-1 7 = %041 o y(n+m)
y(n-1)o n
n-1 n n+l n+m-1, n+m

Fig. 4.2 The EKF state prediction and
correction procedure

Notice that EKF linearises the equations around the latest best
estimate of the state and it requires a priori knowledge of the stati-

stics of the initial state %o/0 and Po/o’

4.3.2 The EKF as_Parameter Estimator

The EKF can also be used as parameter estimator if the problem
of identification will be set up correctly and care will be taken for
the utilisation of the algorithm.If the vector a of the unknown parame-
ters has to be estimated, the dynamical system can be rewritten as
follows:

x(n+l)
y(n) =

(n), n) + T(x(n))w(n) (4.7)
(n), n) + v(n)

Including the unknown parameters in the state vector the system
~of Eqns 4.7 becomes:
x*(n+1)

y(n)

"

“(*(n), w(n), n) + T (MWD (g g
(x*(n), u(n), m) + y(n)
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where:

An EKF can then be used for the estimation of the augmented
states 5*(n) and therefore for the estimation of the states and the pa-
rameters of the initial system (Eqns 4.7).

As the EKF is a non-linear estimation procedure even if the system
to be identified is linear, there is no guarantee of convergence nor is
the Pn matrix necessarily any accurate estimate of the covariance of the
estimation errors.

Because linearisation is applied to the normal stochastic state-
space represantation and not to the inovation representations (y(n) -

- H:g*n/n_l) the EKF is an approximate parameter estimator (Ref. 19).
Problems of convergence and low statistical efficiency are often reported
in the literature. Nevertheless if care is taken in its utilisation the
algorithm appears to work well and has been very popular among users

- over the past fifteen years. The major disadvantage of the EKF method

is that it requires knowledge of the a priori covariances which are
unknown for the parameters but it is simpler and less computer-time
demanding than the more advanced maximum 1ikelihood estimation.
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4.4 The Estimation of the Longitudinal
Aerodynamic Derivatives of X-RAEl

The estimation of the aerodynamic derivarives of the longitudinal
model of X-RAEl is tried out in this section. Pitch rate q is assumed to
be the only measurement available corrupted by small amounts of white
noise with RMS level of 0.01 rad/sec. It is the response to small ampli-
tude deflections of the elevator about its trim position. No attempt was
made to model the sensors and the actuators of the system which is consi-
dered free of process noise.

The model to be identified is of the following form:

2= Agx + B gy (4.9)
y = Cgx +v(t)
where:
x, X, 0.704 -9.804
. z, 1z, 28.575 0.236
LG
mu mw mq -0.047
0 0 1 0
-0.390
Z
- M
Blg .
b))
o
CLG=_00 1 o:l
— T
x=|u w g B:I u=1

v(t) = vq(t) , white gaussian measurement noise with

E[v_(t)] = 0, E[v_(t)v_(t-T)] = R&(t-T) and
q q q 2 2
R = (0.01) (rad/sec)
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If the variation of the derivatives is modelled as a random

walk accounting for the mismatch between the system and the model when

the parameters are

?..(*
y
where:
x* =
3 —.xl
w = | w
- X

not known, the augmented system becomes:

p=J
oo
10

0 Q W

0]5*+ y

and

T
W ] white gaussian noise
™

with E[w(t)] = 0, E[w(t)w'(t-1)] = Q(t-1)

The simulated pitch rate is derived from the equivalent discrete
system of the continuous time Eqns4.9 (Apx DE) as follows:

_u(n+1)7
w(n+l)
q(n+l)
8(n+1)

y(n) =

1+quS was 0.704TS _9‘804Ts, u(n)
: ZuTs 1+szS 28.575TS 0.236TS w(n) .
muTs mwTs 1+quS -0.047TS q(n)
0 0 TS 1 8(n)
-0.390Ts
z T
+ N5 In(n)
mnTs
0

[o 01 o]ﬂn)+yM)

where TS = 0.01 secs is the sampling period (or the integration

step for the EKF).
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The augmented system to be identified by the EKF becomes:

*(n+l) = £(x*(n)
(n) = h(x*(n),

< 1
— e
3
~
~—
-+~
<<
~—~
3
~

where:

— , -
(1+Tsx5)x1+Tsx6x2+0.704Tsx3-9.804Tsx4-0.39Tsn

Tsx7x1+(1+Tsx8)x2+28.575Tsx3+0.236Tsx4+x9Tsn

T XqaXqtT X1 X+ (14T X1, )X5-0.047T _X,+x,,T_7
£(x*(n), n(n)) = s71071 's71172 s712°73 s"4 "13's 7.
T X4ytx

s73 74
0

s O —
- -

0 0

0 0

T'(x*(n)) = Ts <::>
Ts
QO .

h(x*(n), n(n) =0 0 1 0 0 ... o];*m

The measurements are assumed to be obtained every 0.05 secs.
Therefore, the equations for state prediction for the EKF are evaluated
every TS = 0.01 secs and they are corrected every measurement update ie.
every 0.05 secs. Full derivation of the F and H matrices and of the noise
covariances can be found in Apx PI.1.

The elevator deflections are assumed to be a pseudorandom gaussian
sequence of zero mean and standard deviation UU = 0.01 rad. The trimmed
conditions are assumed known whereas the derivatives are 50% in error
initia]]y,‘with the initial error covariance matrix set to the correspo-
nding error values.
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The nominal values of the derivatives and the estimated ones by
the EKF after 50 secs are summarised in Table 4.1.

Estimated Derivatives
perivetives | 10 Pessurement | Hesurenent nois
Xy -0.097 -0.0984 -0.0984
X 0.039 0.0374 (?) 0.0579 (?)
z, -0.775 -0.7879 -0.8936
z, -5.399 -5.3977 -5.4507
ZU -15.887 — —
m, 0.185 0.1805 0.1517
m, -2.782 -2.7819 -2.7986
mq -18.117 -18.1170 -18.2888
mn -175.890 | -175.8903 -175.3183

Table 4.1 Nominal and estimated aerodynamic derivatives
Longitudinal model.

As it can be seen from the above Table and particularly from
the recursive estimates of the derivatives (Figs 4.4 to 4.11), the
estimates of Xur X 2y and m, are relatively poor; especially X is
dramatically affected by the measurement noise. The small deflections
of the elevator about its trim position can explain the poor estimation
of these derivatives.

As U = 0 and u = 0, the model to be identified is eventually
the following:

W z, 28.575 0.236 W Zﬂ )]
= -0.047 +

] mw mq 0 q mn

] 0 1 0 B 0
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Therefore, good estimates of 2y Zps Mo, M and mn could be

expected. Their values converge at about 28 secs bJ% ZU is difficult to
be identified. This can be explained by the transfer function of the
complete Tongitudinal model (Egns 4.9), between the elevator deflection
7 and the pitch rate q.

The transfer function between 7 and q is:

a(s) . s(Ags” + Bgs + )
n(s) As4 + Bs3 + C52 +Ds + E
where:
Aq = mn
Bq = muxn + mwzn - (zw + Xu)mn
Cq = (zumw - muzw)xn - (xﬁmw - muxw)zn + (xuzw - xwzu)mn
A =1 '
B = - Xy =2y - mq
C = zwmq - 28.575mw - X7, Y xu(mq + Zw) - 0.7O4mu + 0.047
D = - xu(zwmq - 28.575mw + 0.047) - 0.0472w - O.236mw +

+ Zu(xwmq - O.704mw) - mu(28.575xw - 9.804 + 0.7042w)

E = xu(0.047zw + 0.236mw) - Zu(0.047xw - 9.804mw) -
- mu(0.23§xw + 9.804zw) + 9.804(zumw - muzw)

As it can be seen from the above transfer function, znappears
only in the Bq and Cq coefficients and all the terms involving zn and

XU are negligible compared to the terms involving mn; in all frequencies:

Bq coefficient: muxn = -0.072
mwzn 44.198

(zw + Xu)mn = 966.691

Cq coefficient: (zumw - muzw)xn = -1.230
(xumw - muxw)zn = -4.173
(xuzw - xwzu)mn = -97.430
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nor Zﬂ can be identified from q records

as they little affect the pitch rate. Terms also involving X and m,

are very small compared to other terms in the g/m transfer function

and this could be one more reason for the poor estimation of these

derivatives and their dependance on the measurement noise.

Other inputs like square waves or trains of multisteps were

also tried with similar results (Apx PI.1).

4.5 The Estimation of the Lateral Aerodynamic Derivatives of X-RAE1l

The estimafion of the lateral aerodynamic stability and control

derivatives of the lateral model of X-RAEl from roll and yaw rates only,

is presented in this section. The model to be identified is of the form:

where:

[523

LT =

LT

LT

2= A gx + B qu
y = Clx + y(t)
Y -0.561 -29.767
L, Ly L.
N, Ny N,
| 0 1 -0.025
0 Y
¢
2.4
Le 85
4.182 N
8
0100
| 0 0 1 0]
- AT
v p r © y

9.804

(4.10)

-—
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. AT
v(t) = l:vp Vr] , white gaussian measurement noise with

E[v(t)]

0, E[y(t)y'(t-1)] = RB(t-T) and

Ro| 0.0000 0
0 0.0001

The simulated data are derived from the equivalent discrete
system with sampling period Ts =0.005 secs:

v(n+l) 1+YVTS -0.561TS. -29.767Ts 9.804TS v(n)
p(n+1) _ LVTS. 1+LpTS LrTs 0 p(n) .
r(n+l) Nst NpTS 1+NrTs 0 r(n)
p(n+1) 0 Ts -0.025TS 1 @(n)
0 YT E(n)
. LETS 2.485TS C(n)

-

and the augmented system is:

X" (n+1)

"
1=h
—~~
<

»*
Py
3
N
<
—~
e
S
SN
o+
—
—
>
*
Py
3
N
S
=
=
3
e

where:

x*(n) rg Y

v Yg Lv
- : T
1% ""?14]

T
w(n) = Wy Wy W . ng:] , gaussian white noise

n
<
o

with E[w(n)] = 0, E[w(n)w' (k)] = Qs
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)x1—0.561Tsx

5

T Xox,+

s"771 147

(

2

-29.767Tsx

3

+9.804Tsx

4

+T x
S

)

sx8

Xo*T XgXa*T X

$7973

s71071 ©

u,+2.485T _u

s 2

TeX11%1 X%

£(x*(n), u(n)) =
’ stz-O.OZSTSx

3

h(x*(n), u(n)) =

+H(1+T x +4.182T uq+T,

2 13)%3
+x4

X

14Y2

642

and P(g*(n)) similar to that appearing in the longitudinal model.

The aileron and rudder deflections are pseudorandom gaussian

Ug = 0.01 rad.

The EKF is started up with initial values of the derivatives 50% in error
(more details can be found in Apx LA.2).The estimates of the derivatives

sequencies with zero mean and standard deviations U£ =

after 50 secs and their nominal values are shown in Table 4.2 whereas

their time histories can be found

in Figs 4.12 to 4.21.

Estimated Derivatives
Nominal
Derivatives Measurement noise
of $0.01 rad/sec
Yv -0.336 -0.3215 (?)
Yg 3.909 ?
Lv -0.414 -0.4582
L -13.360 -13.2223
Li 2.412 2.6635
LE -142.902 -140.6240
Nv 0.558 0.5557
Np -0.622 -0.6210
Nr -1.426 -1.4099
NC -18.015 -18.2482

Table 4.2 Nominal and estimated aerodynamic derivatives

Lateral model.



- 65 -

As it can be seen from Fig. 4.13 Yg is not identifiable. Evalu-

ating the transfer function between the rudder deflection  and the

yaw rate r the following expression can be obtained:

r(s) _ Ars3 + Brs2 + Crs + Dr
C(s) ~ as 4 Bs® + cs2 + Ds + E
where:
Ar = Ng
Br Yg + N Lg ( + Yv)N§ .
Cr = (L Np p) < (Y N + 0. 561N )L C + (YVLp + Q.561LV)Ng
Dr = 9'804(NVL§ - LVNQ)
A =1
= -y -Lp-Nr
C = Ler Ner + YV(Nr + Lp) + 29.767N + 0.561L
D = YV(Ner-- Ler) + 29'767Lva - 0.561Ler -
- NV(29.767Lp - 0.561Lr) - 9.804(Lv - 0.025NV)

E = 9.804(Ler - Ner) + 0.245(LVNp - Nva)

Derivative Yg appears only in coefficients Br

and its
r

contribution to their values in all frequencies is small compared to

contributions from terms involving NQ:

B coefficient: NVYg = 2.181
= -1.546
?ELQ Y )N5 246.733
+ = .
p v''{
Cr coefficient: (LVNp - Nva)Yg = 30.148

(Y Np +0.561N )Lg 1.297
(Y L +0.561L )Ng = -76.685

Therefore, as Ng is the dominant factor in Br and Cr

coefficients

Yg is not expected to be identifiable from yaw measurements only.



- 66 -

Derivative Yv also does not converge satisfactorily to its steady
value but rather wonders about it (Fig. 4.12). This can be justified by
the Bode plots of the terms

¥(s)/8(s), Y v(s)/C(s), Y

of the Y-equation of motion and by the input that is used (pseudorandom
sequence) for the identification. of the lateral derivatives.

As it can be seen from Fig. 4.3, Yvis identifiable at low frequ-
encies only ( w <15 rad/sec )(1). Therefore, a rudder input with a low
frequency spectrum is more suitable than a pseudorandom sequence which
theoretically contains almost all the frequency spectrum with uniformly
distributed power.

2.88E1 T . = 1 . |
_l:l= nnﬂnnr;nnaun: ginertial term
—Ouu
R.ARER g
==
a
2. ]
_Hmn" 6 ot 0°® ' w® p® p!
TT T T LTI T o T T T
4.80E1 - J
28880 4 “"0adiocaada 1 ov-term
S il SR Tl o Sttt ——-— - - control term
- N
8,808 -
o
R, Jd . 9., 4, R
-7.88EQ - - = A
- 0"

Fig. 4.3 Bode plot of the Y-equation terms

(1). "“If at a given frequency the magnitude of a term is large compared
with the other terms, it has a great influence within the equation of
motion. Its derivative is well identifiable at this frequency. If a term
has a small influence, its derivative can not be identified. As a rule

of thumb, a derivative is considered to be identifiable when its term
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has a magnitude of at least 10% of the largest term’s magnitude. If the
inertial term is small only ratios of the derivatives can be identified."

in "Practical Input Signal Design"
" Plaetschke E. and Schulz G.
paper, AGARD LS-104 "Parameter Identification", Nov. 1979
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Chapter 5

THE SOF TWARE

5.1 Introduction

The computer implementation of the equations of motion of X-RAEl
and the identification algorithms is considered in this chapter. The
purpose of the software development is twofold:

1. To support the mathematical modelling of X-RAEl, ie:

a) Derive the aerodynamic stability and control derivatives
for a range of flight velocities.

b) Computg the trim conditions for straight, level, horizo-
ntal flights of different velocities.

c) Develope simulation programmes for the complete 6-DOF non-
linear model of X-RAEl and for the linear longitudinal and
lateral models.

2. To implement the parameter identification algorithms ( EKF )
for the estimation of the aerodynamic stability and control
derivatives of X-RAEl.

5.2 Software for the Mathematical Modelling of X-RAE1l

Programme RPVDER.FOR has been developed for the computation of
the aerodynamic derivatives of X-RAEl. It is a FORTRAN prcgramme and it
can be easily used for any subsonic aircraft when similar data are avai-
lable.

The inputs to the programme are:
1. Geometrical mass and inertia characteristics of the RPV.
2. Longitudinal stability and control derivatives in the form
of curve slopes (C]a, C]d, ey Cmn).
3. Parameters derived from ESDU data sheets.
4. Velocity of the RPV.
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The output is given in the file RPVDER.DAT and consists of:
1. The normalised longitudinal derivatives in body-axes.
2. The system and input matrices of the linear longitudinal
model.
3. The normalised lateral derivatives in body-axes.
4. The system and input matrices of the linear lateral model.

A flowchart of the programme RPVDER.FOR is given in Fig. 5.1.

INPUT

1. Geometry of RPV

2. Mass and Inertia Characteristics

3. Aerodynamic Characteristics
(CLO, CLG, e e Cmn)

4. Thrust Derivatives

5. Parameters fkom ESDU data sheets

6. Trim Conditions

L4

COMPUTE

Longitudinal Derivatives in Stability-Axes
(C.G. on the mean aerodynamic chord)
Apx LA.1l

TRANSFORM

Longitudinal Derivatives in Body-Axes
(C.G. on the mean aerodynamic chord)
Apx LA.1

Fig. 5.1 Flowchart of the programme RPVDER.FOR
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COMPUTE

Longitudinal Derivatives in Body-Axes
(C.G. displaced laterally to its final position)
Apx LA.1

COMPUTE

Normalised Longitudinal Derivatives
Apx LA.1

o

QUTPUT

Normalised Longitudinal Derivatives

DERIVE

System (ALG) and Input (BLG) matrices
for the state-space Longitudinal model

T T
x=[u wq 8]
u=_[n 51'jT
OUTPUT
Ae B
\
COMPUTE

Lateral Derivatives in Stability-Axes
Apcs A.2, A.3, A.4, A.5

Fig. 5.1 contd. Programme RPVDER.FOR
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TRANSFORM

Lateral Derivatives to Body-Axes
Apcs A.6, LA.2

COMPUTE

Normalised Lateral Derivatives
Apx LA.Z2

QUTPUT

Normalised Lateral Derivatives

DERIVE

System (A ;) and Input (BLT) matrices
for the state-space Lateral model

T T .
x=[v pr ¢]
u=[E T]T
A\
OUTPUT
Ar B
END

Fig. 5.1 contd. Programme RPVDER.FOR
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5.2.2 Trim Conditions

The FORTRAN programme TRIM.FOR has been implemented for the
computation of the trim conditions of X-RAE1l for straight, horizontal
flights of a range of flight velocities.

Inputs: ‘

1. Geometry and aerodynamic characteristics of X-RAEL.

2. Required flight velocity.

Qutputs (File TRIM.DAT):
. Angle of attack.
. Elevator setting.
Throttle setting.
Lift.
Drag.
Pitching moment.
Thrust.

N O O AW N
e e e e e

A flowchart of the programme TRIM.FOR is shown in Fig. 5.2.

INPUT
Geometry of RPV
Aerodynamic Characteristics
. Thrust Characteristics

oW N =
. .

. Required Flight Velocity

Specify accuracy

4

Newton-Rampshon method
for trim conditions (Section 3.2.5)

NO Results

acceptable ?

QUTPUT
Trim Conditions

END

Fig. 5.2 Flowchart of the programme TRIM.FOR
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The complete 6-DOF equations of motion of X-RAEl as they are
described in Chapter 3 have been used for a simulation study. A simula-
tion programme - RPVPI.CSL - has been deve]oped'to accomodate these
equations. The simulation language used is the Advanced Continuous
Simulation Language (ACSL).

The general structure of the programme is shown in Fig. 5.3 and
the main features of it are given bellow:

Inputs:
Time histories of elevator, aileron and rudder deflections and

throttle settings.

Qutputs:
1. Rectilinear velocities and accelerations, angular rates and

angular accelerations in body axes.

2. Velocity and X-RAE1l position w.r.t. earth.

3. Orientation of X-RAE1l in form of Euler angles.

4. Lateral derivatives in stability and body axes as functions
of the angle of attack.

Programme RPNLG.CSL has been developed in ACSL language to simu-
late the Tinear longitudinal model of X-RAEl. It uses the longitudinal
derivatives as they are computed by the programme RPVDER.FOR.

The inputs to the programme are elevator deflections and varia-

tions in throttle settings, and

the outputs are the perturbed longitudinal motion quantities.

The structure of the programme RPVLG.CSL is shown in Fig. 5.4.
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RPV DATA
1. Geometry
2. Mass andInertia Characteristics
3. Aerodynamic Characteristics

Cc, ,C ,...,C)
L, "Ly ' m

!
4. Parameters from ESDU Data Sheets

\
U, vV, W
== Longitudinal Aerodynamic | E,
% Forces and moments >
:gﬁzg:::: Lateral Aerodynamic M
N, EE E Derivatives A > -
. S
-
5 B
[+3}
c 2% UV, W a6
BT : ~EN . = »
v (=}
s M = °
U, V, W | Engine Model ~EN o
——ety M1 SN
e
[ra)
@E ®E ¥ EG
m Earth to Body —

P, Q, R

\y

Equations for Euler Angles

J'Q’ @’ T

Body to Earth p——m> Xg
U, vV, W

= - and —> g
integration P——> 2

,,m‘--““*/"""‘"""':"’;““ e

_BAT5.3 Simulation programme RPVPI.CSL

D ———

— T WMo < Lriiap
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u, Longitudinal Derivatives
Xy X, Xy X, X, X
u’ "w w? g’ g’ T8
9 S z,7,2.,2,1., 1,

u’ w’ w’ q’ n’ 6

, T
L My Mr Mg Wi My, Mg

W

4

Earth to Body

u, w,

a,

d‘)

Linear
Longitudinal Equations of Motion

q

Integration

lle

Fig. 5.4 Simulation programme RPVLG.CSL

5.2.3c Simulation of the Linear Lateral Model

The Tinear lateral equations of motion of X-RAE1l have been impleme-
nted by the ACSL programme RVPLT.CSL. The lateral derivatives computed

by the programme RPVDER.FOR are used as input data.

The inputs to the programme are aileron and rudder deflections

about their trim positions, and

the outputs are the perturbed lateral motion quantities.

The structure of the programme is shown in Fig. 5.5.
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v
| Lateral Derivatives Ea S
: = e
% Yv’ Yp’ Yr" Yg’ Yg o
LV’ pr LI’" Lg, Lg MA «

Ny Moo Mo By N N v

[1=] o >
e o
) '; E 505
i G i
Earth to Body > &
e
(3}
-
<
-

p, r

A

Euler Equations

I

Fig. 5.5 Simulation programme RPVLT.CSL

5.3 Software for the Parameter Identification of X-RAE1

The computer implementation of the EKF algorithms for the
identification of the longitudinal and lateral aerodynamic stability
and control derivatives of X-RAEl is presented in this section.

Programme EXKAL.FOR has been developed for the identification
of the aerodynamic derivatives of X-RAEl.

Certain types of inputs (pseudorandom noise, square waves and
multisteps) are selected and the outputs of the longitudinal or lateral
~ models of the equivalent discrete systems are simulated.

An EKF is then implemented to identify the parameters of the
models. The estimates of the aerodynamic derivatives and the Kalman
filter gains as well as the diagonal of the error covariance matrix
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are given in the output file EXKAL.DAT. Plots of the time histories of
the estimates can also be provided.

The user has to supply the subroutines for the creation of the
A, B and C matrices of the equivalent discrete system, the system
function f of the augmented system and the matrix F for the EKF.

A f]owéhart of the programme EXKAL.FOR is shown in Fig} 5.6

INPUT

. Number of states

. Number of inputs

. Number of outputs

. Number of parameters to be identified
Number of iterations

(=2 NI S ) BN~ N VS B AC I

Covariance matrix Q

SPECIFY
1. Integration step (sampling period)
2. Measurement interval

SELECT SYSTEM INPUT
1. Pseudorandom gaussian sequence

2. Square wave
3. Multistep

SELECT
Measurement noise

INITIALISE EKF

go/o Po/o

®

Fig. 5.6 Flowchart of programme EXKAL.FOR
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Measurement YES

time ?

NO SIMULATE
System output

Prediction Eqns of EKF

Measurement YES

available ?

Correction Eqns of EKF

NO

4

2. Kalman

QUTPUT

1. Estimates

filter gain

3. Error covariance matrix

Iterations
finished ?

Fig. 5.6 contd. Flowchart of programme EXKAL.FOR
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Plots YES
,requiy
PLOT
NO Estimates
A
END

Fig. 5.6 contd. Flowchart of programme EXKAL.FOR

— e e e - a— m— — —

Subroutine SMTCS creates the system matrices A, B and C of the
equivalent discrete system given the number of states, number of inputs,
number of outputs and the samplingperiod. It has to be supplied by the

user.
A(1S,1S) QUTPUT: System matrix
B(IS,INP) QUTPUT: Input matrix
€(10,1S) QUTPUT: Output matrix
H INPUT : Sampling period
IS INPUT : Number of states
INP INPUT : Number of inputs

—t

NPU

_|

10 : Number of outputs

Subroutine SYFN gives as output the system function of the
augmented system and it has to be suppliéﬂ by the user.
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F(IAS) ' QUTPUT: System function

X(IAS) INPUT : Augmented state vector

U(INP) INPUT : System input vector

H INPUT : Sampling period (integration step)

IAS INPUT : Number of states of the augmented system
INP INPUT

: Number of inputs

The matrix F for the EKF algorithm is generated by this subrou-
tine which has to be supplied by the user.
PHI(IAS,IAS) QUTPUT: Matrix F

X(IAS) INPUT : Augmented state vector

U(INP) INPUT : System input vector

H INPUT : Integration step

IAS INPUT : Number of states of the augmented system
INP INPUT : Number of system inputs

5.3.2d Other Subroutines

1. Subroutine SQW (INP,H)
It generates a set of square waves.

2. Subroutine MLSTP (INP,H)
It creates a set of multisteps

3. Subroutine RANDOM (INP)
It generates gaussian random noise
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Chapter 5

CONCLUSIONS - RECOMMENDATIONS

A six-degrees of freedomdynamically nonlinear mathematical mode)
of an experimental RPV has been developed. Non-linear aerodynamic effects
and cross-coupling terms have been ignored while Euler angles have been
employed for the attitude definition of the RPV. (Sensor and actuator
characteristics have not been included in the modelling).

From the model developed, simulated data can be provided for
flight regimes below stall ( a< 100) and pitch angles of less than sixty
degrees.

The linearised longitudinal and lateral models for straight,
level, horizontal flight at 30 m/sec have also been derived. Phugoid
and dutch roll modes have been computed and found to exhibit low damping
ratios. Aflight control system has to be designed to control these modes.
An unstable spiral mode was found but it would not appear to present any
obvious difficulties as it is characterised by a large time constant.

The identification of the aerodynamic stability and control
derivatives has been undertaken. Pitch, roll and yaw rate measurements
corrupted by small amounts of measurement noise have been used while
an EKF has been implemented for the estimation of the aerodynamic deri-
vatives.

Small amplitude pseudorandom deflections of the elevator have
been applied for the identification of the longitudinal derivatives.

It was not possible to identify the zn derivative from pitch rate
measurements as it has negligible effect on the pitch rate. However,
good estimates have been obtained for the majority of the longitudinal
derivatives.

Small amplitude pseudorandom sequencies were used as aileron
and rudder inputs. Accurate estimates of the lateral derivatives with
the exception of Y_ and Yv have been obtained from roll and yaw rate
measurements.

It was difficult to identify Yg since it is not a dominant term
in the transfer function between yaw rate and rudder deflection. Yv could
have been identified more accurately through use of 1low frequency
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rudder inputs. It is felt that estimation of the Yv derivative may be
obtained more accurately by using latax measurements.

With a view to improving the mathematical model of the RPV, the

following recommendations are suggested:

1. As flight test data is acquired non-linear aerodynamics and
cross-coup]ing terms may be included in the model.

2. Quaternions should be used instead of Euler angles to enable
a greater range of manoeuvres to be represented.

3. An atmospheric model could be developed to model gusts. Its
inclusion in the overall model would make the latter more
realistic. ’

4. The sensor and actuator characteristics could also be modeled.
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2. Engine Model




- 98 -

1. Longitudinal Aerodynamic Derivatives

The longitudinal aerodynamic derivatives of X-RAEl are estimated
in this section. Most of the estimation is based on static wind-tunnel
tests of a model fitted with a wing with rounded tips. Measurements from
a model with a wing with skid tips are used .when other data are not

available.
A-C.y C.6.  N.P. A-C.y
ot
hc
L
I
h ¢

Fig. A.1-1 X-RAE1l longitudinal geometry (Ref. 3)

S = 0.9307 m2

¢c =0.353 m

s, = 0.2576 n°

]t =1.182 m

h, = 0.24 (skid tips)
h = 0.3

hn = 0.55 (skid tips)
hno- 0.31

x" =-0.036 m

Table A.1-1 X-RAE1l longitudinal geometry (Ref. 3)
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From Table A.1-1 the following Table A.1-2 is constructed to be
used for the estimation of the longitudinal derivatives (Ref. 1).

_ St1
v =—S—C— = 0.955
chno

F = 7 = 0.099

n
.\ _
Vi = T+F ° 0.869

ch s
kp = - EE: = 0.21 (skid tips)
Hn = hn - h=0.21

Table A.1-2 X-RAE1 parameters for the estimation of the
longitudinal derivatives.

1.1 Lift Derivatives

8C S
s L 2t L Be
CLa— 5 - 2t Sal(l Ba) (Ref. 1)
where:
BE _ 0.47 (Ref. 3, skid ti )
% -0 ef. 3, skid tips)
BCL
- L
a =5 = 4.53 frad (Ref. 3) (2)
8C
a, = t = af 3 = 3.10 /rad (Ref. 1) .(3)
1~ Bay St(l - Be/Ba) : )
Then:
eC

CL, * 5o = 498 /rad @)

1"
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S, 1

t Be
C, =¢C = 2d,; =5~ (
Ld L&Itai1 1 Sc 6a

Therefore (Eqns 1, 3 and Table A.1-1):

N
L. ac
a 8(§v¥

= 2.78 /rad (5)

1.1.3 Lift Derivative w.r.t. Pitch Rate

C C +C
. Lq quwing Lq tail
where:
]t St
CL 2a1—]"—s— = -0.92 /rad (Ref. 2) (6)
qlwing
c = 22°c = 5.75 /rad (Ref. 2) (7)
qutai] ¢ La
Then according to Egns 3 and 4 and to Table A.1-1, CL becomes:
q
BCL
CL é A = 4.83 /rad (8)
g 8(3)
T
1.1.4 Lift Derivative w.r.t Elevator Deflection
Via
T°2
C, == (Ref. 1) (9)
Lﬂ ]t (1 - an/]t)
where :
X BCLt
a, = —Eﬁ_ and is estimated by the following two

expressions:
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d 'kn
= — (Ref. 1)
dCLlC 0 ‘1%
m
dn =80 . 5.1°  (Ref. 3)
ac, |. " iC
Llc =0 4

Therefore a, = 1.76 /rad and Eqn 9 gives:

——— v —— —— —— — —— — — —

C =-C, H (Ref. 1) , so according to Table A.1-2 and Eqn 4
my Ly D
Cm becomes:
a BCm
Cma "B - -1.05 /rad (11)

t
C =¢C -—C (Ref. 2)
M~ Maltail € Lgltai
Therefore (Eqn 5 and Table A.1-1):
BCm
Cm £ - -9.32 /rad (12)

¢ 8(y)
T
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— et - o— —— o —— — — o — — — — — — — —

cC =¢C + C
mq mq|w1’ng mqltai]
where:
c = e (Ref. 2)
mqlwing ¢ quwing
]t
C = -—C (Ref. 2)
mqltai] ¢ qutai]
Then from Table A.1-1 and Eqns 6 and 7, Cm becomes:
q
BCm
C = = -19.15 /rad 13
Mg B(do) (13)
2VT

— e Yo e a— — — Ga— —— o —— —— — . w—— —— ——— S —— — — — —

So (Table A.1-1, Eqn 10):

s _M_ _
Cmn * & 1.63 /rad (14)

for the drag coefficient, where CD is computed by applying regressional
analysis to wind-tunnel data (Ref. 3).
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Then:
C = 0.0227 and
D
(0]
k = 0.0514
Therefore:
C. = 0.0227 + 0.0514C2 (15)
D L,

According to Egn 15 the derivative of the drag coefficient
with respect to angle of attack is:

o .
=t 2 = 2C C = 0.466C, /rad (16)
a 8a Lw Law LW

Cp

If the viscous drag coefficient is defined as

CZ
. L
CD = CD oYy then
806
CDa * 5 - 0.0801(3Lw /rad (17)

2. Engine Model

— e —— —

An analytical method for the computation of the thrust characte-
ristics of X-RAEl is used . A graphical method, as opposed to the ana-
lytical one, is impossible to be used due to lack of sufficient data.

The available power PaV for a fixed pitch propeller is given

by the formula (Ref. 4):
M a S W .3
-V (18)
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where:
Mbr : Brake torque moment.
r : Distance of a representative blade element of the propeller
from the axis of rotation.
B° : Representative blade setting angle w.r.t. the zero 1ift
direction of the blade profile.
: Zero 1ift drag coefficient of the propeller profile.
: Blade area.
: Wing area. _
: Weight of the RPV - assumed constant.

: vf = 2W/pS

= E UV UV A
T O

If the altitude effects are ignored, Pav becomes:

5-Vo - koV3 (19)

Pav = Ki&gVp - koVp

where:

k1 = [Mbr(fullvthrott]e)]/rtanB'
1 ¢ throttle setting (from O to 1).
k2 constant to be computed.

)

rtanB’= p/2 and p is the propeller pitch.

AComputation of kl

Assume that Pbr(full throttle) is 50% of 1.9 Kw at 14000RPM (losses
not modelled in the Pav equation and bad engine perfofmance, Table 3.1)
Then:
Mbr(fu11 throttle) = Pbr(fu]1 throttle)/2nn

where
Pbr(full throttle) = 950 Watts and
n = 14000RPM = 14000/60 sec™! (Table 3.1)

k1 then becomes: k1 = Pbr(f‘ t.)/pn (p=6inches), ie:

k1 = 26.7154 Wsec/m (20)
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Computation of k.,

If a maximum speed of 35 m/sec is assumed,the required power Pre
for an RPV mass of 16 Kgr is: '

Pro = 3 PVSSCoV, = 618.24 Watts.
‘where: : 2
Cp = €y + ke
20
, v
W =mg = 16g

Allow a throttle margin and an all-up weight greater than 16 Kgr.
So, assume:

Pav = 700 Watts at 35m/sec,full throttle. (21)

Then Eqns 19, 20 and 21 give:

k, = 0.0055 W(m/sec)™ " (22)

If T is the thrust produced by the propeller, T = Pav/vT and
according to Eqns 19, 20 and 21 the thrust model is

T = 26.71546T - 0.0055V (23)

2
T

2.2 Derivatives Due to Thrust

(24)

8T _ .
%, 26.7154 (25)
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APPENDIX A.2

DERIVATIVES DUE TO SIDESLIP

1. Side Force Due to Sideslip
2. Rolling Moment Due to Sideslip
3. Yawing Moment Due to Sideslip
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Appendix A.2

DERIVATIVES DUE TO SIDESLIP

ESDU Data Sheets are used for the estimation of the lateral
derivatives due to sideslip. A1l the derivatives are assumed to be
given in stability axes unless it is stated otherwise.

1. Side Force Derivatives Due to Sideslip ( Yv )

-8 1
Yvoev / 2PVpS

1.1 Ejggi&gqx Side_Force Derivative

h
l%!=|1$l= 0.139  (Apx A.7)
Then F = 0.012 (Item 79006)
2b
ey i 11.04  (Apx A.7)
A=7.48 (Apx A7) | tpen F = 0.820 (Item 79006)
A = 0.87 (Apx A.7) w
2 hbFF s
_ h W, 4.951z1 Sbs
Youp = (00714 + 0,674 81— + ——¥ (23 0.12)]—22  (Item 79006)
bs bs
2 HbFF h s
= [0.0714 + 0.674 41— + T‘w(“’%l‘ﬁo‘l - 0.12)]22 -
bs bs
= 0.1085 (Apx A.7)

‘Therefore:

YVWB = -0 .1085
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From Apx A.8:

Jg = 0.7513 ;= 1.304 J, = 0.91
¢, =1.88 /rad S_=0.1093 me
aF
Then: S
_ e
Yo = - JBJTJWCLQF < = -0.199
Y.p = -0.1969

Yv = -0.3054
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2. Rolling Moment Derivatives Due to Sideslip ( Lv)

-

Isolated Body

1.8

- _bTbm
va— -0.014 5 5 % -O.OOOSab (Apx A.7)
where:
Q, ¢ body incidence measured from its
zero-1ift value (in degrees)
va = -0.0005ab
Wing-body interference
ho
- -0.139  (Apx A.7)
H 0125 (AxAT) | 1= “vh = ~0.0076 (Item 73006)
b - px A 1+ W/HT(A) ~
W - 0.449
- = 0. (Apx A.7)
A =7.48 then (Item 73006), f(A) = 1.08
Therefore:

Lvh = -Q.0119
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. Then va = [va]o (Item 80033)
A% =
|:va]o _ fl(x)
- = - . (\)
CL A 2 va
-t ° 0.0016 (Item 80033)
A =7.48 L
X =0.87
Therefore:
va = -0.0016CL

where CL is the wing 1ift coefficient.

2.3 Contribution of Fin to

——— am owon 4. —— —— — — ——

Rolling Moment Derivative Due to Sideslip ( LvF) (Item 82010)

Lep = YVF(chosa - 1Fs1na)/b
where:
a : angle between stability x-axis and longitudinal
body axis (ie. angle of attack).

Then (Apx A.8), the rolling moment derivative due to sideslip becomes:

L= -0.1969(8.87cosa - 109.51sina)
vF 263.8

— v — —— —— — p——— — — — — om— — — — o— —

+L

vh L

v vb viW

Lv = -0.0005(1b - 0.0119 - 0.0016CL -0.1969(8.87cosa - 109.51sina)/263.8
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3. VYawing Moment Derivatives Due to Sideslip ( Nv)

_8v 1
N, =gy / 7PVrSb

3.1 Wing-Body Yawing Moment Derivative Due to Sideslip ( NVWB) (Item 79006)

— e m—— e — —— —— — — — — —— — — — —

52 2 1
-N = [0.2575 + 19—-(0 0008-19—- 0.024)][1.39 hl -0 39352§l§
Vm'id Sbs Sbs ;g Sb |
= 0.0515 (Apx A.7)
1 - 0.5]b
Nowg = N t ———Y (Item 79006)
viWB Void b vWB |

where

1 : distance of C.G. from the nose of fuselage (1=0.681 m)

Then

viB = -0.0363

3.2 Contribution of Fin to

Yawing Moment Derivative Due to Sideslip ( NvF) (Item 82010)

N.=-Y _(l-cosa + z

v = YeelE psina)/o

where:
a : angle between stability x-axis and 1ongitudina1
body axis (ie. angle of attack).

Then according to Apx A.8, NVF is:

NvF = 0.1969(109.51cosa + 8.87sina)/263.8

— - — ——— ——— —m —— ——— — — — — — — — —— — — to— —— —

v o Yue Y N so,

N = -0.0363 + 0.1969(109.51cosa + 8.87sina)/263.8




APPENDIX A.3

DERIVATIVES DUE TO RATE OF ROLL

1. Side Force Due to Rate of Roll
2. Rolling Moment Due to Rate of Roll
3. Yawing Moment Due to Rate of Roll
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Appendix A.3

DERIVATIVES DUE TO RATE OF ROLL

The lateral derivatives due to rate of roll are estimated in
this appendix using ESDU Data Sheets. A1l the derivatives are assumed
to be given in stability axes unless it is stated. otherwise.

1. Side Force Derivatives Due to Rate of Roll ( Yp)

Y , 1
/ ng Sb

Y = T

o
I

Zac | %& = -0.0136  (Apx A.1)

b
Then: Y
[-2], = 0.078  (Item 81014) , therefore
L
Yo = 0-078C,

1.2 Contribution of Fin to Side Force Derivative

— e a— e ————— ——— p— — — — — — — — —— — — o—

bt
el 1.36  (Apx A.8)

F

Then, k2 = 0.975 k3 =1 (Item 83006)

z
L -1 (Apx A.8)

z

F
Also k, = 0.625 (Item 83006)

1
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Then (Item 83006) :

.. Sghe  (Zfcosa - T;sina)/b - aaw/e(pb/vT) - Baa/B(pb/VT)
= (kg koK ]

) [
p 1 2°3" Sb _
(ZE - Zch)/b

where:

a : angle between stability x-axis and longitudinal
body axis (ie. angle of attack).

Bﬁw/B(pb/VT) = 0.18 sidewash term due to wing (independent
from angle of attack variations).

BBG/B(pb/VT) sidewash term due to body (function of
’ angle of attack). It is given w.r.t.

k = [2F - (Zfcosa - Tisina)]/b (Item 83006).

According to Apx A.8, Y _ becomes:

pF

YpF = -0.3133[(11.32cosa - 110.19sina)/263.8 - 0.18 - Bﬁa/B(pb/VT)]

1.3 Estimation of Side Force Derivative

ies

Yp = 0.078CL - 0.3133[(11.32cosa - 110.19sina)/263.8 - 0.18 - Baa/B(pb/VT)]
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2. Rolling Moment Derivatives Due to Rate of Roll ( Lp)

BL 2

8L, 1

k=—-2_ﬂ_:1

(alo)M': two dimensional lift-curve slope (

BA.a-7.48 (apx A7)

Litana,) = 1.66°  (Apx A.7)
4

AE = tan
A =0.87 (Apx A.7)

Then (Item A.06.01.01):

pr = -0.2438

———— ——— — — — —— — — —otn  w—— — —— — o— o— —

-~
-

2n )

- Sk T*es .
LpF = YpF(chosa - 1zsina)/b  therefore (Apx A.8):

F

LpF - YpF(11.32cosa'l 110.19sina)/263.8
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From Item A.06.01.01, LpT = -0.127 based on St and bt'
Then: ’ 2 2
LpT = -0.127*0.55tbt/5b Hence (Apx A.7):

—
I

pT = -0.0019

2.4 Estimation_of the Rolling Moment Derivative (Item 85010)

Lp =-0.2457 + YpF(11.32cosa - 110.19sina)/263.8
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3. Yawing Moment Derivatives Due to Rate of Roll ( Np)

BN 1 2
N, = gp / 7 PVySH

— v — o — — — o o— -—— — — — — —

Yawing Moment Derivative Due to Rate of Roll ( pr) (Item 81014)

Linear contribution to N

pW

N
[-tﬂ"]o = -0.034 (Item 81014, Fig. 1)
L

Nonlinear contribution to N

pW

. .
_B.E_ = 1.23 (Item 81014, Fig. 3)

O =

@

a

8Cr
where Ba ¢ viscous drag-curve slope (per degrees).

Then BCB
=-0.034CL +1.23—=—

pr 8a

CL : wing 1ift coefficient.

— e i vt e

oF = -YPF(Tgcosa + Egsina)/b

hence :

NpF = -YpF(110.19cosa + 11.32sina)/263.8
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so,

= -0.034CL + 1.23—Q - YpF(110.19cosa +11.32sina)/263.8

Np 8a




APPENDIX A.4

DERIVATIVES DUE TO RATE OF YAW

1. Side Force Due to Rate of Yaw
2. Rolling Moment Due to Rate of Yaw
3. Yawing Moment Due to Rate of Yaw
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Appendix A.4

DERIVATIVES DUE TO RATE OF YAW

The derivatives due to rate of yaw are estimated in this appendix.
Their derivation is based on ESDU Data Sheets. A1l the derivatives
are expressed in stability axes.

1. Side Force Derivatives Due to Rate of Yaw ( Yr)

-8y, 1
Yo =gr / ZPVySh

therefore (Apcs A.7 and A.8):

YrB = -0.0109

— e e e o ———— . — —— — — — — — — p— o—

i (1Fcosa + stina)/b

Jy=l

From Apx A.2 (Section 1.2), [Y _] = -0.2164 . Then, Y
VFTy - rf

becomes (Apcs A.7 and A.8): W 1

YrF = 0.2164(109.51cosa +8.87sina)/263.8

Yr = -0.0109 + 0.2164(109.51cosa + 8.87sina)/263.8)
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2. Rolling Moment Derivatives Due to Rate of Yaw ( Lr )

L
r

DB 1y 2

Lrw N Lrp * LrP +‘Lr€ * er
where:
Lrp : due to wing planform
er : due to dihedral (er = 0)
Lre : due to wing twist
L.¢ : due to flaps (er = 0, flaps not deflected)
L L
rp _ 1 rD 4
= g(Ay)
L Hence L = 0.1243C
1 “rp _ . rp L
= 0.1219 021 .
5(1;7 CL 0.12 (Item 72 Fig. la) v
g(A,) = 1.02 (Item 72021 Fig. 1b)
-3
Lre
- - -0.00185 /degree

Then, for g(A;) = 1.02 and € = 1°
aq

So

washout ,

Lew = 0.1243C

L 0.00189

where CL is the wing 1ift coefficient

= -0.00189
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LrF = YrF(chosa - 1Fsina)/b

So, from Apx A.8

Lo =Y

o rF(8.87cosa - 109.51sina)/263.8

—— ——— — — v—— — — — ———— ———— G- —— —— — — —— — — — —

8.87cosa - 109.51sina)/263.8

L, = -0.00189 + 0.1243C + Y (
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3. Yawing Moment - Derivatives Due to Rate of Yaw ( Nr)

BN 1, 2
N = gr / 2PV7D

—————————— rB
]gsbs
N -0.01 therefore (Apx A.7):
rB b2
S
NrB = -0.0022

Ny, N,
-0 YA
New = o CDO i C
0 L
A=7.48, A= 0.87, A, = 1.66°
. 4
N C _ .
( L / Do) = -0.168 (Item 71017 Fig. la) Nr
A=l =2 = -0.1621
D
(Nro / CDo) °
A =0.87 .
N T = 0.9675 (Item 71017 Fig. 1b)
( ro / DO)
A=1
N 2 _ .
(Cr. / C) = -0.008 (Item 71017 Fig. 2c)
v L', _ N
A=0.5 r
77 - | —7¥ = -0.009
(N 7/ cf) - -0.01 (Item 71017 Fig. 2c) C
v A=1
_ 2
Hence Ny = -0.1621cDO - 0.009C,

and CL : wing 1ift coefficient

CD : wing drag coefficient at zero 1ift
0
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Np = -YrF(1Fcosa + Zrsina)/b

So, from Apx A.8:

N 109.51cosa + 8.87sina)/263.8

rF = Y

- — o ——— —— - —— —— ———— ——— —— — — —— o— — —— — {—

Nr N NrB * Nrw * NrF
Nr = -0.0022 - 0.162ICD - 0.00QCE - YrF(109.51cosa + 8.87sina)/263.8

0]




APPENDIX A.5

DERIVATIVES DUE TO AILERON DEFLECTION

1. Rolling Moment Due to Aileron
2. Yawing Moment Due to Aileron
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Appendix A.5

DERIVATIVES DUE TO AILERON DEFLECTION

The rolling moment and yawing moment derivatives of X-RAEl due
to aileron deflection are given in this appendix. The side force due
to aileron deflection is assumed negligible. A1l the derivatives are
expressed in stability axes.

X
!
0 ' . -y
C
1 I | 1
b
,bf

Fig. A.5-1 Aileron geometry of X-RAEl

bi = 0.4588m bf = 1.932m c =0.357m

1. Rolling Moment Derivative Due to Aileron Deflection ( LE)

o 2% bf/j
Bg = Plreg ¢f YV
b./2
i 8L _ 1.2
Then, B "7 pVT 0.5626
BCL ,
. BE - 1.79 /rad  (Apx A.9)

8L 1 2
LE BE / 5 DVTSb = -0.2291 /rad




- 124 -

2. Yawing Moment Derivative Due to Aileron Deflection ( NE)

The yawing moment due to aileron deflection is caused by the
difference on drag between up and down aileron (only vortex drag is

assumed). Then, the. components that produce the yawing moment are:
Starboard : CLOACL/nA
Portboard : 'CLoACL/nA.

 where:

b, - b,)8C
i 1 2. clbg L .

AC_ = AL/ ZpVIS = S ! g6 (Fig. A.5-1)
Then:

C, AC

g—gg - 1o Lla  (Fig. A1)

1= (b + b.)/4  (Fig. A.5-1)

Therefore Ne © 8—2 / %pv.erb = 0.0195C,  /rad

where CLo’ 1ift coefficient about which the variation in 1lift
coefficient due to aileron deflection takes place.



APPENDIX A.6

DERIVATIVES DUE TO RUDDER DEFLECTION

1. Side Force Due to Rudder
2. Rolling Moment Due to Rudder
3. Yawing Moment Due to Rudder
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Appendix A.6

DERIVATIVES DUE TO RUDDER DEFLECTION

The aerodynamic derivatives of X-RAE1l due to rudder deflection
are estimated in this appendix. A1l the derivatives are given in body
axes.

1. Side Force Due to Rudder (Y

)

If wing, body and tailplane interference is assummed, the
side force derivative due to rudder deflection can be expressed as:

8C

BY _ F1 2
8C = B9 BT 2 PVTSF

where

B lift-curve slope of fin due to rudder deflection.

Then, according to Apcs A.8 and A.9, Yg becomes:

13

Y B—Q/%pv S = 0.1184 /rad

g

2. Rolling Moment Derivative Due to Rudder ( Lg)

BL _ BY -

§§-= §§'ZF so, according to Apx A.8
3& l 2 B3
Lg e / > pVTSb 0.00398 /rad

3. Yawing Moment Derivative Due to Rudder ( N_)

C

@D
=2
@
<
!
(14

— = - =1 SO: N

BN , 1 2 _
ae ar 'F ¢ BC / > PV Sh = -0.0492 /rad
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XRAE-1 USEFUL DETAILS
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1. X-RAE1 Geometry

WING WITH ROUNDED TIPS

Area (S) 0.9307 m?
Span (b) 2.638 m
Mean Chord ( c) 0.353 m
Aspect Ratio (A) 7.48
Sweepback of Quarter chord ( A%) 1.66°
Taper Ratio ( A) 0.87
Distance of the Centre of Gravity from
leading edge of mean chord 0.34c = 0.121 m
AILERON
Span 0.7366 m
Chord 0.055 m
TAILPLANE
2
Area ( St) 0.2576 m
Span (b, ) 0.2575 m?
Mean Chord ( ct) 0.2995 m
Tail Arm ( ]t)
(Distance of C.G. to tailplane
mean quarter-chord) 1.182 m
Tail Volume ( Stlt/Sc ) 0.932
ELEVATOR
e -Span 0.860 m
Chord 0.063

Table A.7-1 X-RAE1 geometry (Ref. 1)
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2. Centre of Gravity Nominal Position, Cross-Sectional Areas and

Side Elevation Area

The centre of gravity is assumed to be the centroid of the.
cross-section through the longitudinal position of it ( 0.34c aft of
leading edge of mean chord).

A .
|
1 | {EEI —
} @c.cG.
—1ho { |
A B

Fig. A.7-1 C.G. nominal position

h0 : lateral distance of C.G. from mean quarter-chord
(negative for C.G. below mean quarter chord).

2V T,’/\‘

C.6. 157.5¢cm

o— 19 CcM o —

15.5cm . ‘ ? |
.1_ \ 13cm /
! i NWIE
W

Fig. A.7-2 Maximum cross-sectional Fig. A.7-3 Equivalent elliptical

area ( Sbm) area ( SBB )
S. = 436.26 cm? S.. = 383.5 cm?
bm : BB .
-4 _
'H * T SBB = 32.99 cm
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Fig. A.7-4 Side elevation area ('Sbs)

_ 2
SbS = 3187.65 cm
2.3 Summary
Body length ( ]b) 210 cm
Maximum cross-sectional area ( Sbm) 436.26 cm2
Equivalent height (H) 23.99 cm
Width (W) 14.8 cm
Lateral distance of C.G. from
mean quarter-chord ( ho) -4.6 cm
Side elevation area ( Sbs) 3187.65 cm2
REFERENCES
1. Trebble W. J. G. "Low-Speed Wind-Tunnel Tests on a Full-Scale

Unmanned Aircraft (X-RAE1)"
Tech. Memo, AERO 2043, RAE, Aug. 1985.
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1. Lift-Curve Slope of Fin (Items 82010, 70011)

c
Centre of : r tF

pressure
3 Th
]F (1F)
- T-* e
z —
Fz) F i
1 - I -
///’> C.G ] 1hBF dBF
2z
mngitudinal crf CrF
dy-Axis Fig. A.8-1 Geometry of X-RAEl Fin

ch 40.0 cm
ctF 36.4 cm
hF = zT 27.2 cm
hBF = dBF 6.0 cm
zCrF 5.00cm
A'LF 8-0 ’
a
mF 107.9 cm

Table A.8-1 Fin Characteristics

Then (Item 82010, Table A.8-1):

p-
!

)‘F:

F

= hF(CrF + ctF)/Z = 1093.44 cm

ctF/CrF
A 1:anA%F = AFtanAiF - (l-XF)/(1+XF) = 0.0968

(l-MZ)%AF - 1.35

2

2,0
= 2hF/SF =1.35

= 0.83

BCL
Ba iFin = 1.88 /rad

n

C
LaF

Hence (Item 70011):




APPENDIX A.8

1. Lift-Curve Slope of Fin

2. Calculation of JB’ JT and Jw

3. Centre of Pressure of Fin
(for derivatives due to sideslip)

4. Centre of Pressure of Fin
(for derivatives due to rate of roll)
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2. Calculation of JB’ JT and Jw (Item 82010)
AF =1.35
JB = 0.7513
hBF/(hBF + hF) = 0.181
bt
i 3.16 (Table A.7-1)
F J; = 1.304
z
£
= =
F
z h
ﬁii =2 = -0.139 then  J, = 0.91
BW
3. Centre of Pressure of Fin
(derivatives due to sideslip) (Item 82010)
Zgq = 0.6 =16.32 cm (Item 82010)
Then
]F =m o+ 0.72[:]1:an1\%F = 109.51 cm (Item 82010)
Zp =z 0t O‘BSZF] = 8.87 cm (Item 82010)
TF = 109.51 cm
zF = 8.87 cm
4, Centre of Pressure of Fin

(derivatives due to rate of

— |

N1
T T

mF + 0.6than

Y4
cr

A%F = 110.19 cm

I*
TF

s

Zr

110.19 cm

11.32 cm

roll) (Item 83006)

(Item 83006)

Pt 0.6hF~= 11.32 (Item 83006)



APPENDIX A.9

1. Lift-Curve Slope of Wing
Due to Aileron Deflection.

2. Lift-Curve Slope of Fin
Due to Rudder Deflection
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1. Lift-Curve Slope of Wing Due to Aileron Deflection

(Items W.01.01.05, C.01.01.03, C.01.01.04)

From Item W.01.01.05 ( 1ogloR = 5.87, out of range) and for
trailing edge transition :

Where (al)oT = BCL/BG

Also:
St _ 0.055
C 0.357

c. : aileron chord
Cq ¢ wing local chord

t/c = 0.141
where (a,) 1 = 8C, /8§

for two-dimensional theoretical flow.

for two-dimensional theoretical flow.

(o),
(al)oT

=0.814

(1)

(a2)oT = 3.225 (Item C.01.01.03)

Then from (1), (2) and Item C.01.01.03

(a,),
(@)1

6C,
0, = g = (%),

0.83

-
n

f

= 0.67 S0, (az)

o

(Item C.01.01.04)

= 2.16 /rad

Therefore

(Item C.01.01.04 no balance)

(2)
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2. Lift-Curve Slope of Fin Due to Rudder Deflection (Item 74011)

BCL
( 5o )pp = 1-88 /rad (Apx A.8)
Cs _
— =0.22 Bc, ( 6,
— = 0.71 ( == ) (Item 74011)
c; = .092m : rudder chord 8g Ba FT
c = .42 m : local fin chord

Subscript T means theoretical value. Then:

8C

—g-gk - 1.13 /rad
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MOMENTS OF INERTIA OF X-RAE1l

(rough estimation)
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MOMENTS OF INERTIA OF X-RAEl

A rough estimation of the moments of inertia of X-RAE1l is given

in this appendix. The RPV is assumed to consist of four parts (wing,

tail, fin and body) with their masses uniformly distributed (Fig. MI.1).

The mass and geometrical characteristics of each part are given in

Table MI.1 and the positions of their centres of gravities w.r.t. body

axes are shown in Table MI.Z2.

Mass Mean Chord | Span Thickness
(Kgr) (cm) (cm) (cm)
Wing 3.55 35.3 263.8 2.5
Tail 0.39 29.95 86.0 1.4
Fin 0.166 40.0 27.2 1.4
Length Radius
Body | 11.434 (cm) (cm)
82.0 9.5

Table MI.1 Assumed mass and geometry of wing,tail,

fin and body of X-RAEL.

Xy = -5.25 X = -122.225 X = -120.9 Xg = 7.709
z, = -4.25 Z; = -22.2 Zp = -8.6 zp = 2.202
Table MI.2 C.G. positions of wing, tail, fin and body

Then the moments

Table MI.3 Moments

w.r.t. body axes.

of inertia of X-RAEl become:

2.1678 Kgr m?
1.6469 Kgr m2

3.6962 Kgr m?

of inertia of X-RAEl



- 134 -

Fig. MI.1 Assumed geometry for the estimation
of the moments of inertia of X-RAEl



APPENDIX LA.1

STABILITY and CONTROL DERIVATIVES at 30 m/sec

Longitudinal Model
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Appendix LA.1

STABILITY and CONTROL DERIVATIVES at 30 m/sec
Longitudinal Model

1. Introduction

The procedure for the estimation of the longitudinal stability
and control derivatives at 30m/sec is given in this appendix.

CL, CD and Cm are referred to, from wind-tunnel measurements,
a nominal C.G. on the mean aerodynamic chord 0.34c aft of the leading
edge. Therefore, the aerodynamic derivatives and the derivatives due
to thrust are first evaluated in body axes through the forementioned
nominal C.G. and they are transformed afterwards to body axes through
the final C.G. (displaced downwards by 4.5 cm, Fig. LA.1-1)

JeT =-0.16 m%- .

L N

11k% <

Fig. LA.1-1 Nominal and final C.G.
OA ¢ nominal C.G.
0 : final C.G.

‘Due to the eccentricity of the thrust axis a thrust moment exists
which has to be balanced by an opposite and equal aerodynamic moment for
steady-state flight. Therefore, Cm # 0 at trim.

The trim values of the aerodynamic coefficients as they are
derived from programme TRIM.FOR are given in Table LA.1-1.
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p = 1.225 KgY‘/m3 a = -0.025 rad
g = 9.80665 m/sec’ c, = 0.298

Vp =300 wsec |G = 0.0%

m = 15.54 Kgr Cm = 0.008

I = 1.6469 Kgrm® | C. = 0.139 /rad
y D,

Table LA.1-1 Trim values for the
Linear Longitudinal model

2. Aerodynamic Derivatives at 30 m/sec

(Derivatives -due to thrust are not included)

The aerodynamic derivatives of X-RAEl at 30 m/sec are presented
in this section. The derivatives due to thrust are excluded.

— o a— — — o m— — o aw— o o— —

(C.G. on the mean aerodynamic chord)

Xy = pVTS(—CD)

Xaw = ZPVpS(C - C

— a
ﬁl = lpV Sczc
45T m
Y losc
pw T TP
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(C.G. on the mean aerodynamic chord)

2
xAu
e2
wa

2
iAq

2
XAv’v
LY
ZAu

L4
ZAw

2
ZAq
e?
Lpw

2
MAu
(V4
MAw

2
MAq

ikucosza - (Xiw +

el 2 el
Xchos a+ (XAu -

1 °] .
Rchqsa - ZAqs1na

el 2 el
Xchos a+ (XAU -
el 2 el
ZAucos a- (ZAw -

] 2 1
ZA cos a + (zAu +

1

W

2zqcosa + iiqsina
fiwcosza + (ika +
ﬁiucosu - Mkwsina
ﬁkwcosa + ﬁkusina
P

ﬁ%wcosa + ﬁ;usina

ol .
ZAu)s1nacosu

o] .
ZAw)s1nacosa

o] .
ZAW)s1nacosa

el .
XAu)s1nacosa

el .
XAw)swnacosa

ol .
XAW)cosas1na

1 1 .
XAncosa - 2A1f1na
el 1 .
Lppcosa + XAns1na 7
ﬁl

+

67004)

1 ;2
2Aws1n a

e] .
ZAus1n a

e] . 2
ZAQS1n a
1 .2
XAws1n a

el . 2
XAus1n a

el . 2
XAUS1n a
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3. Derivatives Due to Thrust - Body Axes
(C.G. on the mean aerodynamic chord)

8T

&7 = -0-011v  (Apx A.1)

BT _

§E&' 26.7154 (Apx A.1)

Then:

e2 _ BT N

XTu = EVCOSQ = -0.011VTcosu

e2 _ BT . _ .

XTw = gvswna = -0.011VTs1na

°? 2 .

MTu = XTu(eT + k) = -0.011VT(-0.115)cosa (Fig. LA.1-1)
2 2 .

ﬁTw = X7, (e * k) = -0.011V,(-0.115)cosa  (Fig. LA.1-1)
ig - g% = 26.7154

MZT - ng(e + k) = 26.7154(-0.115)
6T B&T T ) i

4. Stability and Control Derivatives - Body Axes

(C.G. on the mean aerodynamic chord)

8,
B Xiw ¥ xTw
- iiq
- iiw
2,
- I,
~ Eiq
- I

82
* XTu
e?

No MNeo DKO0 D<o D<o ><o
Feyv OV X C ey OV X WO

=> = o N Ne
K= 3 -

n n

2 =

~N

+

=o

—AMN - N

= <

"
=
~N

=o

0N
[}
=
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Y,
Rn XQ”
°—

I 2§n
0’ -

L MAn
S
O 8¢
Z; =0
ﬁ,T _ MZ
8y 6

5. Stability and Control Derivatives - Body Axes (Item 67004)
(C.G. displaced laterally by k = 0.045 m)

ok
=X
w N
X =X - kX
R - g
WM
° ra
;wzu
g
Iy = 2q -KZ;
Ly =4
[ 0, .
Tu = Mu - kzu
gw i ?W Tk Y M 2
= M- - k(X" + M) + k"X”
o4 gq E’q u) xu
My = Mg - KX
° -
AR
ﬁn i ﬁg kX
7 n '
X. =X
L
M. =M - k}:
8. 6 5y
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6. Normalised Longitudinal Derivatives at 30 m/sec - Body Axes

Xy = iu/m = -0.097
X, =X/m =  0.037

X =%/ /m - = -0.019
g .4

X, =X./m = -0.00044
z, = zu/m = -0.789
Z, * fw/m = -5.496
7 =1 = -0.902
q 2q/m

Z, =12,/m = -0.018
M, = :u/ly = 0.029
M, = R/r, = -3.865
M =R /1 = -12.381
q ﬁq y

M, =R/ = -0.201

[-]

B AR

Mn i ﬁn/? i ;79'079
n T My/ly =179

[-]

X. =X./m = 1.719
81 ﬁaT

M. =f_/I = _-2.595
BT 5T y

A1l values are outputs from programme RPVDER.FOR




APPENDIX LA.2

STABILITY and CONTROL DERIVATIVES at 30 m/sec
Lateral Model
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Appendix LA.?2

STABILITY and CONTROL DERIVATIVES at 30 m/sec
Lateral Model

1. Introduction

The aerodynamic stability and control derivatives of the lateral
model of X-RAE1l at 30 m/sec are given in this appendix. They are first
estimated in stability axes (Apcs A.2 to A.5) and transformed afterwards
in body axes.

2. Stability and Control Derivatives - Stability Axes

N

=1
= 7 PVpSY,

= ZpVShL, Apx A.2

=1
=3 pVTSva

3 pVSbY

p
= 3oV SblL

= 3 pV SN

1
=3 pVTSbYr

ZovsbéL Apx A.4

_1 o2
= 5PV SN

= 2pvsbL

= 2 pvZsbN

~<0
<

~<0 =0 I o
) < vV o<
1]

o
©T YT YO

A.3 .
p Apx

=0

P

»

-

Y

-

Y

=0 e <
1]

-

.

£ Apx A.5
g

20 o
Naa BN |
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3. Stability and Control Derivatives - Body Axes (Item 67004)

?V = ?v

[-] o [ ]

Yp = Yécosa - Y;sina

vV = ?‘cosa + 7’sina

r r p

£, = Eycosa - ;s

v vcosa - st1na

£ = Crcosa + Rrsina - (7 + N)sinacosa
P p 2 r ) T p

Q o, e e o .

Lr = chos a - Np51n a + (Lp + Nr)s1nacosa
N, = N'cosa + L.si

v = Njcosa ,Sina

°© o, 2 o, . 2 o°. o, .,

Np = Npcos a - Lrs1n a + (Lp - Nr)s1nacosu
N_ = N-cos®a + L-sin‘a + (°’ + ﬁ')sinacosa
r r p r p

© [-] (-]

L, = LZcosa - N.sina

3 & 3

N. = R-cosa + Clsina

£ 3 3

° _l 2

o ~l 2

° l 2
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Normalised Lateral Derivatives at 301n/sec

v,=¥/m = -0.33%
o
Yp = Yp/m = 0.175
Y.=9/m = o0.224
L, =L/1, = -0.414
Ly = Ep/lx = -13.360
L. = f}/lx = 2.412
N, =R /1, =  0.558
o
Ny = N /1, = -0.622
N.=R /1 = -1.426
Lg = 1‘_‘5/1X = -142.902
Ne = ﬁg/lz = 4.182
Ve - fg/m = 3.909
L = EQ/I = 2.485
Ne = Ne/1, = -18.015

A1l values are outputs from the programme RPVDER.FOR
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DISCRETISATION OF A CONTINUOUS TIME SYSTEM

The discrete equivalent of a continuous time system is presented

in this appendix. If the continuous time system is expressed in the

state space form, ie:

y(t)

and samples are
system is:

where: x(n) = x(nT), u(n

p=J
{]

d
Bd =
Cd =C
D, =D

taken every T secs, the equivalent discrete

Agx(n) + B u(n)

Cyx(n) + Dyu(n)

) = u(nT), y(n) = y(nT) and

exp(AT) = I + AT  (if T reasonably small)

[ exp(At)dt]B = BT (if T reasonably small)



APPENDIX PI.1

PARAMETER IDENTIFICATION
Longitudinal Model
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Appendix PI.1

PARAMETER IDENTIFICATION
Longitudinal Model

1. Introduction

The matrices F, H and Q of the EKF algorithm for the identifi-
cation of the longitudinal model of X-RAEl are given in this appendix.
The system to be identified is of the form (Ch. 4 page 58 ):

x
*
p=]
+
—
~—
]

(
(

*(n), n(n)) + T(x*(n))w(n)
*(n), n(n)) + v(n)

1
= 1
)

< X

‘The EKF algorithm that is used is the one presented in Ch. 4.
The only difference is the way in which the error covariance matrix is
updated. The expression for Pn is:

) T T
Po = [T - 9 H P ([1-9HT + 3R (1)

This formula is equivalent to that appearing in Egns 4.5 but it
is preferable for the following two reasons (Ref. 1):

1. The right hand-side of Eqn 1. is the sum of two positive
definite matrices. As a consequence, is better conditioned
for numerical computation and will tend to retain more faith-
fully the positive definiteness and symmetry of Pn.

2. To first order, is insensitive to errors in the filter gain
and is to be preferred in numerical computations.

2. The F and H Matrices

The F matrix is computed by the form:
8
-

Then, according to the f expression of the longitudinal model

~

(Ch. 4 page 59 ), the matrix F becomes:



- 146 -

-
"
—

>

Fi,1= 1% Te%s 3,1~ Ts*10
F1,2 = Ts% F3,2 = Ts*n
F1,3 = 0.704Ts F3,3 =1+ TSX12
F1’4 = -9.804TS F3’4 = -0.047TS
F1,5 = Tsh F3,10 = TsX1
F1,6 = Ts%2 F3,11 = Ts%2
F3,12 = T3
F2,1 = Ts%7 F3,13 = Ts7
Fa,2 =1 % TXg
F2,3 = 28.575TS F4’3 = TS
F2,4 = 0.236TS F4,4 =1
Fa,7 = Tsh
Fa,8 = Ts%2
Fa,9 = TsD
A11 the other elements of matrix F are zero.
The matrix H is given by the form:
H= 2L,
Therefore, H = [0 01 00 ... O:l (Ch. 4 page )

3. The Covariance Matrix Q

An estimate of the covariance matrix Q of the variation of the
aerodynamic derivatives is given in this section. The Q matrix is used
only when the system is free of measurement noise to move the estimates
to their correct values.
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The following procedure is applied for the estimation of the

diagonal elements of

Unin
umax

amax

W
max

qnax
wmax

qmax

the Q matrix:

20 m/sec

35 m/sec

10° = 0.175 rad

= umaxtanamax = 6.188 m/sec

30° = 0.524 rad

3g

Wmax/umin = 1.471 rad/sec

Then, using the nominal values of the derivatives (Table 4.1),

we have:

X-equation of motion

‘(u-force)max = Xu“max = 3.395
(w-force)max = xwwmax = 0.241
Z-equation of motion
(ufforce)max = Zuumax = 27.125
(w-for'ce)max = wamax = 33.409
(n-force)max = Znnmax = 8.325
M-equation of motion
(u-moment)max = Mu“max = 6.475
(w-moment)maX = Mwwmax = 17.215
(q-moment)max = qumax = 26.650
(n-moment)max = annax = 92.166

Each diagonal element a of the covariance matrix is then given

by the form:

2
qk =t [wk]



where:

Wk

wc is noise with

k

Then, (Ref. 2):
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is the kth output of the filter shown in Fig.'PI.l-l and

covariance
E%[wg ] = 10% of the corresponding force or moment, ie:
k

1.2 4 _ _
E [wcl] = 10% qumax = 0.340
-2 42 -
E [wczj = 10% wamax = 0.024
24 _ -
E [wc3] = 10% Zuumax = 2.713
r2 4 _ -

E [wc4] = 10% LMooy = 3.341
.2 9 2 -

E [wc5] = 10% Znnmax = 0.833
124 _ -

E [wc6] = 10% Muumax = 0.648
.29 2 -

E [wc7] = 10% MwwmaX = 1.722
.29 . -

E [wcs] = 108 M q, ., = 2.665
124 _ |
E [wcg] = 10% Mnnmax = 9,217

1
“C s + 0.5 W

Fig. PI.1-1 Arrangement for the estimation

.0
30.
45,

12.
29.
340.

nN w
O O O O O o o

of the di

02

agonal elements of Q

A1l the other elements of the covariance matrix Q are zero.
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4. Derivative Estimates

The estimates of the longitudinal derivatives are given in this

section.
Figs P1.1-2 to PI.1-9 are the estimates for a square wave as

elevator input (period 0.1 sec and amplitude 0.005rad).
Figs P1.1-10 to PI.1-17 are the estimates for a multistep as

elevator input (period 0.35 sec and amplitude 0.005 rad).

REFERENCES

1. Jazwinski A. H. "Stochastic Processes and Filtering Theory"
Academic Press, 1970.

2. Papoulis A. "Probability, Random Variables and Stochastic

Processes"
McGraw-Hi1l Kogakusha, Ltd., 1965.
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16,
0

Tlme (secs) x10!l
Fig. PI.1-2 X, estimate (square waveinput)

T T Y

so-
agt
a6
a4
azt
a0
38
36}

34l

Tlme (secs) x101
Fig. PI.1.3 X, estimate (square wave input)
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x10-2
_94

—98?
-100:
-1025
.104E
-108;
—1085
-1103
-112;

-114f

TLme (secs) x1ol

Fig. PI.1-4 z, estimate (square wave input)

-831

-90f
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-9%
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-
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Fig. PI.1-5 z, estimate (square wave input)



11

- 152 -

) SR S S S B e B St une S Yy —————] T T

x10-1
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Tlme (secs)

Fig PI.1-6 m estimate (square wave input)
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.........
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Fig. P1i1-7 m, estimate (square wave input)
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Fig. PI.1-9 m estimate (square wave input)
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Fig. PI.1-10 X, estimate (multistep input)
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Appendix PI.2

PARAMETER IDENTIFICATION
Lateral Model

1. F and H Matrices of the Lateral Model

The F and H matrices of the lateral model of X-RAEl (Ch.4 page 63)
are presented in this appendix. They are derived in a similar way to the
F and H matrices of‘the]oﬁgitudina] model.

The non-zero elements of the F matrix are:

Fi,0°1 % Texs F3,1 = Ts*n

Fyp = ~0-561T, Fio = TeXi

Fy g = ~29.767T, Fyg =1+ T,

Fy g = 9-804T Fi11 = Tehy

Fi,5 = TsX1 F3,12 = Ts¥2

Fi,6 = Ts¥ F3,13 = Ts%3
F3,14 = T4

F2,1 N Tsx7

Fpp =1+ T Fao = T

Fos = Tok Fy,3 = -0-025T

F2,7 N Tsxl

Fag = Ts%o

Fa,9 = Ts¥3

Fa,10 = Ts¥

The H matrix is:
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PROGRAM RPVDER
DIMENSION X(11),Y(11),AE(4,4),BB(4,2)

REAL LF1,LF2,MASS,IX,1Y,1Z,K

REAL MUS,MWS,MRS,MWDS,MNS,MUB,MWB,MEB,MWDB,MNB,MTHB
REAL MU,MW,MQ,MWD,MN,MTH

REAL LVS,NVS,LPS,NPS,LRS,NRS,LXS,NXS

REAL LV,NV,LP,NP,LR,NR,LX,NX,LZ,NZ

DATA (X(I),I=1,11)/0.,0.025,0.05,0.075,0.1,0.125,0.15,
* 0.175,0.2,0.225,0.25/

DATA (Y(I),I=1,11)/0.,0.034,0.075,0.114,0.155,0.2,0.25,
* 0.295,0.345,0.4,0.45/

OPEN(FILE='RPVDER' ,8TATUB="NEW' ,UNIT=7)

D46 909606 3606 36 96 369646 96 9696 0096 3696 36 9690 96 96 36 96 36
c

C RPV GEOMETRY

c

S99 36 353630 36 9636 38 98 3638 96363636 36 36 34 9 90 3636 96 6 ¢

S=.9307
B=2.638
C=.353
AR=7.48
ET=.16
HA=.045
IFi=.0887
LFi=1.0951
ZF2=.1132
LF2=1.1019

963 I 6 I 63 I I I 3 366 FE I I I 3 I I I I I W I I I I A I I I WM

RPV MASS & INERTIA CHARACTERISTICS

3696 I 6 I I I I F I B I 6 FEIE I I I I I I I I H W I H I I I I I NI NN

MASS=15.54
IX=2.1478
I1V=1.6446%
1Z=3.6962

bk 36 96 36 3 36 3 I 36 36 36 6 9636 36 3 36 3 3 I I I 36 I I B B I I I I B I I I I I I NI

RPV STABILITY & CONTROL DERIVATIVES

k36 96 36 3 3 36 6 6 96 36 36 3 3 3 3 36 6 36 36 96 96 3 3 S I 3 3 IS4 6 36 I I I B I B W I B BB I

CLOW=.42
CLAW=4.53
CLO=.398
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CLA=4.98
CLAD=2.78
CL@=4.83
CLN=.49

CDO=. 0227
K=.0514

CMO=, 055
CMA=-1.05
CMAD=-9, 32
CMR=-19.15
CMN=-1.63

2966360 63 39 6 33 U 36 U 36 36 U3 09 96 3

CONSTANTS

&P VI LS

S TE I I I I I I I I I I

. RO=1,225
B=9.80665
PI=3, 1415926

.~ WRITE(6,110)

10 FORMAT(1X,/,S5X, 'ENTER VT,ALPHA,EN’/)
READ(&,%) VT,A,EN
WRITE(7,120) VT

20 FORMAT (1X,/,5X, "ETEADY STATE VELOCITY',F5.1,//)
0036 363606 36 36 36 36 9646 36 36 00 4 0096 3636 9696 3036 063 3636 36 9 363636 30 36 3696 3096 4
DERIVATIVES DUE TO THRUST

(22222 T L TETY Y A A e e

TV==2, %, 0055%VT
TTH=26.7154

l***************************************

AERODYNAMIC COEFFICIENTS

L8306 36 363636 36 36 36 36 36 36 3 36 36 36 36 3 36 96 96 36 36 36 36 36 36 96 36 36 36 36 36 3 3¢ 3¢

CLW=CLOW+CLAW*A
CL=CLO+CLA*A+CLN*EN
CM=CMO+CMA*A+CMN*EN
CD=CDO+K#CLW*CLW

CDA=2. #K*CLW*CLAW
CDVD=2, #CLW# (K~1. /7 (PI*AR) ) #CLAW*FP1/180.
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SHEIIIEIIEIII NI 0T 000000 00 06 009090 40 000600006 0 006
> LONGITUDINAL AERODYNAMIC DERIVATIVES-STABILITY AXES
: (C.8. on the Mean Aerodynamic Chord)

*

SUE I 6 I 6 I I J B B I I I 6 I 36 I 3 I I I I I I B DI I I 6 I I I I I I W I I I I I I I I I NI W

XUS=-RO*VT*5%CD '
XWS=.5#RO#VT#5S* (CLL—-CDA)
X@5=0.0

XWD5=0.0
ZUS=~RO*VT*S»CL
ZWS=~.S5*RO*VT#S* (CLA+CD)
ZES=—.25#RO*VT#5*xCxCLQ
ZWDE=-, 25#RO#5*C*CLAD
MUS=RO*VT*S5*C#CM
MWB=.5#RO*VT*#E*CxCMA
MQS=. 25%RO*VT*#S*CxC*CMQ
MWDS=. 25#RO*S#C*C*CMAD
XNS=0.0

ZNS=~, S*RO®VT#VT#S*CLN
MNS=.5*RO*VT#VT#8#CxCMN

I3 I 5 203 I I I 0360 I I I JE 2 I B2
LONBITUDINAL DERIVATIVES-BODY AXES
(C.B. on the Mean Aerodynanic Chord)

= . -

g 22T I I TSI LI LI ISl ettt Sl dL

XUB=XUS#* (COS (A) ) ##2—- (XWS+ZUS) *SIN(R) #*COS (A) +ZUE* (SIN(A) ) #x2

* +TV#COS (A)
XWB=XWS* (COS (A) ) ##2+ (XUS-ZWS) *SIN (A) *COS (A) —ZUS* (SIN(A) ) %2
* +TV*SIN(A)

XE@B=XQ5*COS (A) —ZAS*SIN(A)

XWDB=XWDS* (COS (A) ) #**#2-ZWDS*SIN(A) #COS (A)

ZUB=ZUS#* (COS (A) ) ##2—- (ZWS—-XUS) *SIN (A) #*COS (A) = XWS* (SIN(A) ) #»2
ZWB=ZWS* (COS (A) ) ¥%x2+ (ZUS+XWS) *SIN(A) #*COS(A) +XUS* (SIN(A) ) #»2
ZEB=ZQ5*COS (A) +XES*SIN(A)

ZWDB=ZWDS* (COS(A) ) #%2+XWDS*#SIN (A) #*COS (A)
MUB=MUS#*COS (A) ~MWE*BIN (A) +TV*COS (A) #* (HA-ET)

MWB=MWS#*COS (A) +MUB*BIN(A) +TV#SIN(A) * (HA-ET)

MEB=MQS .

MWDB=MWDS*COS (A)

XNB=XNE#C05 (A) ~ZNS*SIN(A)

ZNB=ZNS*C0S (A) +XNS*BIN(A)

MNB=MNS

XTHB=TTH

MTHB=TTH#* (HA-ET)

&************************************************

LONGITUDINAL DERIVATIVES-BODY AXES
(C.B. in Final Position)

3k 3 3 3 36 5 6 36 36 3 26 36 96 3 36 36 36 3 I S 36 3 3 D6 6 JE I I W B I I I W I I I I AW
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XU=XUB

XW=XWB

XQ@=XQB-HA*XUB

XWD=XWDB

ZU=ZUB

ZW=ZWB

ZQ=ZQB~-HA*ZUB

ZWD=ZWDB

MU=MUB-HA#*XUB

MW=MWB-HA*XWB _
MRQ=MQB-HA* (XAB+MUB) +HA*HA*XUB
MWD=MWDB-HA#*XWDB

XN=XNB

IN=ZNB

MN=MNB-HA*XNB

XTH=XTHB

MTH=MTHB-HA#XTHB

BEJE 3 I 3 I I I I I I IE I I I H WA W H W I I I I I I I I B I I I W I I I WM I I I I I

NORMALISED LONGITUDINAL DERIVATIVES-BODY AXES
(C.BG in Final Position)

I I I 36 I I I I I I 96616 T I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I DI I I I I

XU=XU/MASS
XW=XW/MASSE
X@=XRQ/MASE
XWD=XWD/MASS
XN=XN/MABS
XTH=XTH/MASS

ZU=ZU/MASE
ZW=ZW/MAES
ZR=ZR/MASS
ZWD=ZWD/MASS
ZIN=ZN/MAES

MU=MU/1Y
MW=MW/1Y
Ma=MQ/IY
MWD=MWD/1Y
MN=MN/1Y
MTH=MTH/1Y

WRITE(7,10) XU,XW,XQ,XWD,XN,XTH

FORMAT (1X,/,5X, "NORMALISED LONGITUDINAL DERIVATIVES-BODY AXES'’

*  ,2(1X/) ,SX,

*  ‘XU=',FB.3,2X, 'XW=‘,FB8.3,2X, 'X@=',FB.3,2X, 'XWD=" ,F8.5,2X,

#  ‘XN=',FB.3,2X, 'XTH=',F8.3)
WRITE(7,20) ZU,ZW,Z@,ZWD,ZN
FORMAT (5X, ‘' ZU=* ,FB.3,2X, 'ZW=" ,FB.3,2X, 'ZQ="' ,FB.3,2X,
# ‘ZWD=',FB.3,2X, ‘'IN=’,FB.3)
WRITE(7,30) MU,MW,MQ,MWD,MN,MTH
FORMAT (5X, ‘MU=’ ,FB.3,2X, ‘MW=’ ,FB.3,2X, 'Ma= ' ,FB.3,2X,
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# 'MWD=',FB.3,2X, ‘MN=’ FB.3,2X, 'MTH=' ,FB.3///)

NI 2222 2T ettt ittt e Lt

LIRI LS

LONGITUDINAL SYSTEM MATRIX

26 36 26 36 336 3 3 36 36 36 3 3 3 I 9636 I I I 36 6 I I 3 I I I I I I I 3 I I 3 3 I 3

Uo=VT+COS (A)
WO=VT#SIN(A)

AS(1,1)=XU+ZU*XWD/ (1-ZWD)
AS(1,2)=XW+ZW*XWD/ (1-ZWD)
AS(1,3)=XQ-WO+ (ZQ+UO) #XWD/ (1-ZWD)
AB(1,4)=-G*COB(A)-B#8IN(A) #XWD/ (1-ZWD)

AS(2,1)=ZU/ (1-ZWD)
AB(2,2)=ZW/ (1-ZWD)
AS(2,3)=(ZQ+U0) /7 (1-ZWD)
AB(2,4)=-G#SIN(A) /7 (1-ZWD)

AS(3,1)=MU+ZU*MWD/ (1-ZWD)
AS(3,2)=MW+ZW*MWD/ (1-ZWD)
AS (3,3) =MQ+ (ZQ+UO) #*MWD/ (1-ZWD)
AB(3,4)=-G*BIN(A) *MWD/ (1-ZWD)

AS(4,1)=0,0
AS(4,2)=0.0
AS(4,3)=1.0
AS(4,4)=0.0

****************************************

LONGITUDINAL INPUT MATRIX

U 36 36 3 IE I I I 36 I 3 H I I I I W I H I I I H I I I I I I I W

BS(1,1)=XN+ZN#*XWD/ (1-ZWD)
BS(1,2)=XTH

BS(2,1)=ZN/ (1-2ZWD)
BS(2,2)=0.0

BS (3, 1) =MN+ZN*MWD/ (1-ZWD)
BB (3,2)=MTH

BS(4,1)=0.0
BS(4,2)=0.0

WRITE(7,101)

1 - FORMAT (5X, ‘LONGITUDINAL SYBTEM MATRIX'/)
WRITE(7,102) ((AS(I,J) ,I=1,4),I=1,4)

2 - FORMAT (4 (F9.3,2X))

WRITE(7,103)

3 FORMAT (1X//5X, ‘LONGITUDINAL INPUT MATRIX'/)
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WRITE(7,104) ((BS(I,J),J=1,2),I=1,4)
04 FORMAT (2 (F9.3,2X))

SO6 636 3 06 B 3 36 3 3 I 3 36 36 36 36 36 6 6 36 3 F I I IE 6 I 3 B BB A H U I U366 B I I I I I I I3

: LATERAL DERIVATIVES-SBTABILITY AXES

D06 B3 I I I I I I I I I3 I B I I U I I I IS I IS I I I I I I B AN

YVE=—, 3054 %, S#RO#VT*E
LVB=, 5#RO#VT#E#B# (~-.0119-.0016%CL
* -. 1969% (ZF 1 #COB(A) ~LF1#8IN(A)) /B)
NVE=, SXRO#VT#ERB* (-, 0363+, 1969% (LF1#COS(A) +ZF 1#EIN(A)) /B)

XC=(ZF2- (ZF2#COB(A) ~-LF2#8IN(A))) /B
XCA=ABS (XC)
Im}
11 IF(XCA.EQ.X(I)) THEN
YPED=Y (1) #XC/XCA
ELSE IF(XCA.LT.X(I)) THEN
YP8D=Y (I-1)+(XCA-X(I-1))#(Y(I)=Y(I-1))/7(X(I)=X(I-1))
YPSD=YPSD#XC/XCA
GO 70 121
ELSE
ImI+1
- GO TO 111
ENDIF
21 CONTINUE
YPFm—, 31334 ( (ZF2#COS(A)-LF2#8IN(A) ) /B-. 18-YPED)
YPS=, S#RO#VT#B#B#* (. 078#CL+YPF)
LPB=,5*RO#VT#S#B#B#* (-, 2457+YPF*(ZFZ*COB(A)-LFZ*SIN(A))/B)
NPS=, S#¥RO#VT#S#B#B# (—. 034#CL+1, 23#CDVD
* =YPF# (LF2#C0OB (A) +ZF2%8BIN(A)) /B)

YRF=,2144%(LF1#COB(A)+ZF1%8IN(A)) /B
YRE=,5#RO#VT#S#B#* (-.0109+YRF)
LRS=, S#RO#VT#B#B#B# (—.00189+.1243%CL

* +YRF# (ZF1#COS(A)-LF1#8IN(A)) /B)
NRS=, S#RO#VT#S#B#B# (-, 0022-. 1621 %CDO0-. 009#CL#CL
* ~=YRF# (LF1#COB(A)+ZF1#SIN(A)) /B)

LXB=.5#RO#VT#VT#5%B* (-, 2291)
NXS=, S#RO#VT#VT#E#B*. 0195%CL

E 903636 06 3 96 96 3 35 3 9 36 36 96 96 6 36 36 3 36 3 9 36 36 3 3 36 36 36 3 3 3696 9 96 36 96 -4

LATERAL DERIVATIVES-BODY AXES

03 B0 3 36 3 3 3 I 6 I I I DI I I I I I I I I I I I I I I I IE W I I I W

Yv=YVS
YP=YPS#COS (A) ~YRE*#EIN(A)
YR=YRE#COS (A) +YPS*SIN(A)
YZ=,S#RO#VT#VTRE*,. 1184
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LV=LVE#COS (A) —NVE#SIN(A)

LP=LPS* (COS (A) ) ##2+NRE* (SIN(A) ) ##2—- (LRS+NPS) #BIN(A) #COS (A)
LR=LRS#* (COS (A) ) ##2-NPS* (SIN(A) ) #%2+ (LPS-NRE) #*SIN(A) *COS (A)
LX=LXS*#COS (A) ~NXE#SIN(A)

LZ=,5#RO#VT#VT#E4B%*. 00398

NV=NVE*#COS (A) +LVE*SIN (A)

NP=NPS# (COS (A) ) ##2—-LRE* (SIN (A) ) ##2+ (LPS—-NRS) *SIN(A) #*COS (A)
NR=NRS# (COS (A) ) ##2+LPS* (SIN(A) ) ##2+ (LRS+NPE) #8IN (A) #COS (A)
NX=NXS#COS (A) +LXS*SIN(A)

NZ=, S#RO¥VT#VT#E#B* (-, 0492)

6 36 I 3 36 36 96 3 3 6 96 I 6 96 I 3 6 36 3 I 3 I 3 I B 36 I 3 B3 I S 6 I I A I I U A I I I I I I N

NORMALISED LATERAL DERIVATIVES-BODY AXES

I3 6 36 96 3 36 6 3 3 6 I U6 U B 6 I 336 S I b 3 I I A U 3 B S I I B I I 396 36 I 03 N

YV=YV/MASS
YP=YP/MAES
YR=YR/MABS
YZ=YZ/MASS

LV=LV/IX
LP=LP/IX
LR=LR/IX
LX=LX/IX
LZ=LZ/1X

NV=NV/1Z
NP=NP/12Z
NR=NR/1Z
NX=NX/1Z
NZ=NZ/1Z

WRITE(7,40) YV,YP,YR,YZ
FORMAT (1X///5X, ‘NORMALISED LATERAL DERIVATIVES-BODY AXES®
*  ,2(1X/),5X, |
* 'YV=',FB.3,2X, 'YP=',FB.3,2X, 'YR=',FB8.3,2X, 'YZ='FB.3)
WRITE(7,50) LV,LP,LR,LX,LZ
FORMAT (5X, ‘LV=' ,FB.3,2X, 'LP=",FB.3,2X, ‘LR=" ,F8. 3,2X,
% ‘LX=’,FB.3,2X,'LZ=',FB.3)
WRITE(7,60) NV,NP,NR,NX,NZ
FORMAT (5X, ‘NV=' ,FB.3,2X, ‘NP=' ,FB.3,2X, ‘NR=" ,FB.3,2X,
# 'NXm',FB.3,2X, 'NZ=',FB.3///)

3696 36 6 6 B 3 96 3 3 96 96 36 36 96 96 3¢ 36 3 I 336 36 363696 3 I I 46 36 3E 3 3 9

LATERAL BYSTEM MATRIX

prrrrrrrrrrye s ¥R LI YA A LA L LS L L L

AB(1,1)=YV
AB(1,2)=YP+WO
AS(1,3)=YR-UO
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AS(1,4)=G*C0OS(A)

AS(2,1) =LV
AS(2,2)=LP
AB(2,3)=LR
AS(2,4)=0.0

AS(341)=NV
AB(3,2)=NP
AS(3,3)=NR
AS(3,4)=0.0

AS(4,1)=0.0
AS(4,2)=1.0
AS(4,3)=TAN(A)
AS(4,4)=0.0

i***********************************

LATERAL INPUT MATRIX

B b 3 b Bk 6 I I B 6 I I I 6 I I F I I H I I W N

BS(1,1)=0.0
BS(1,2)=YZ

BS(2,1)=LX
BE(2,2)=L2

BS(3,1)=NX
BS(3,2)=NZ

B8(4,1)=0.0
BB(4,2)=0.0

WRITE(7,201)

1 FORMAT (5X, ‘"LATERAL SYSTEM MATRIX‘/)
WRITE(7,102) ((ASB(I,J),J=1,4),I=1,4)
WRITE(7,202)

2 FORMAT (1X//5X, ‘"LATERAL INPUT MATRIX'/)
WRITE(7,104) ((BS(I,J),J=1,2),I=1,4)

CLOSE (UNIT=7)

8TOP
END
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PROGRAM TRIM
OPEN(FILE='TRIM' ,STATUS="NEW' ,UNIT=7)

8=, 9307
C=.353
EM=15.54
6=9.8066465

WRITE(6,1) :
FORMAT(1X,/,5X, "ENTER BTEARDY STATE VELOCITY',/)

READ(&6,%) VT
Q=,.S5#1,225#VTHVT

HA=.045
ET=.16

CLO=, 398
CLA=4.98
CLN=.49

CLOW=.420
CLAW=4,53

CDO=.0227
DK=,0514

CMO=.055
CMA=-1.05
CMN=-1.6&3

WRITE(&6,2)

FORMAT (1X,/5X, ‘ENTER ERROR COEFFICIENT’,/)
READ (&,%) ER

I=0

ClL=(EM#*B) / (Q*5)

A= (CL~CLOW) /CLAW

EN=0.0

ImI+1

EL=Q#8% (CLO+CLA#A+CLN*EN)
CLW=CLOW+CLAW*A

D=Q#8# (CDO+DK#CLW*CLW)
CDA=2, *DK#CLW*CLAW
CM=CMO+CMA*#A+CMN*EN

FX=(1.=(HA/ET) ) # (EL*#SIN (A) -D#COS (A) ) ~EM*B#ESIN (A)
% +QuBHC*CM/ET

FZ= (EM#G-EL) #CO8 (A) ~D#SIN(A)

WRITE(&,11) FX,FZ

FORMAT (5X,F12.9,2X,F12.9)

IF ( (ABS(FX)+ABS(FZ)).LE.ER) BO TOD 20

FXA-(I.—(HA/ET))*((Q*S*CLA+D)*SIN(A3+(EL—Q*S*CDA)*DDB(A))
* ~EM*G#C08 (A) +Q*x8#C#CMA/ET
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FXN=(1.-(HA/ET) ) #Q#S*CLN*SIN(A) +U*S*C*CMN/ET
FZA=(EL-EM*G-0#S#CDA) #*SIN(A) - (Q*S*CLA+D) #*COS (A)
FZN=-Q#S*CLN*#COS (A)

DET=FXA*FZN-FZA*FXN

A=A- (FZN*FX-FXN#FZ) /DET
EN=EN- (FXA*FZ-FZA*#FX) /DET
B0 TO 10 '

0 T=(EM*GB-EL)#BIN(A)+D*CO8(A)
THB= (T+.005S5#VT#VT) /26.7154

WRITE(7,90) 1
0 FORMAT(1X,/,5X, '"NUMBER OF ITERATIONS 1 ‘,14,//)
WRITE(7,100) VT

00 FORMAT (SX, ‘STEADY BTATE VELOCITY 1 ' ,FS.1,/)
WRITE(7,110) A,EN,THS
10 FORMAT (5X, ‘ANGLE OF ATTACK',F14.9,/,5X,
* "ELEVATOR BETTING',F15.9,/,5X,
* *THROTTLE SETTING’,F15.9,/)

AM=G*E*C*CM
WRITE(7,120) EL,D,AM,T

20 FORMAT (5X, 'LIFT' ,F27.9,7,5X,
* "DRAG’ yF27.9,/,5X,
" 'PITCHING MOMENT',F16.9,/,5X,
* *THRUST * ,F25.9/)
WRITE(7,130) FX,FZ
30 FORMAT (5X, ‘FX=',F12.9,7,5X, ‘FZ=",F12.9,/)
WRITE(7,140) ER
10 FORMAT (5X, ‘ERROR 1t *,F10.7)
CLOBE (UNIT=7)
gTOP

END
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PROGRAM XRAE1 &DOF NONLINEAR SIMULATION FOR P1 PURPOSES

CONSTANT §=0.9307 B=2.638 , C=0.353 -
, AR=7.48 ' ET=0.16 , HA=0.045 ...
, ZF1=0.0887 , LF1=1,0951 ..o
, ZF2=0.1132 , LF2=1.1019

CONSTANT MASS=15.54 cne
s IX=2.1678 , IY=1.646% , 171=3.6962

"———| ONGITUDINAL-—-"
CONSTANT CLOW=0.420 , CLAW=4,.53 s
CLo0=0.398 , CLA=4.98 y CLAD=2.78 ...
CLG=4.83 ’ CLN=0.49 vae

CDOW=0.0178, CDOT=0.0049, K=0.0514 o
CMO=0.055 , CMA=-1.05 , CMAD=-%.32 ...
CMR=-19.15 , CMN=-1.63

- @ @ 4= -

"———LATERAL~-—-"

CONSTANT YVB=-0,.3054 -
) LX=—0- 2291 sss
y YZB=0.1184 , LZB=0.00398 , NZIB=-0.04%2

TABLE YSD,1,11/0.0,0.025,0.05,0.075,0.10,0.125,0.15 ...
,0.175,0.20,0.225,0.25 .
,0.0,0.036,0.075,0.114,0.156,0.20,0.25 ..o
,0.295,0.345,0.40,0.45/

CONSTANT TN1=0.0 , TN2=0.0 .
, KN1=0.0 , KN2=0.0

CONSTANT TX1=0.0 ’ TX2=0.0 -
y KX1=0.0 ’ KX2=0.0

CONSTANT TZ1=0.0 ’ TZ2=0.0 e
y KZ1=0.0 ' KZ2=0.0

CONSTANT TT1=0.0 ' TT2=0.0 cea
y KT1=0.0 ’ KT2=0.0
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RO=1.225
G =9.80645
PI=3.1415926

CINTERVAL CINT=0.0035
NSTEPS NSTP=1
VARIABLE TIME=0.0

- CONSTANT TMX =39.99

INITIAL
Voo RPV INITIAL CONDITIONS—=-—-—- "
CONSTANT WVTZ=30 , VZ=0.0 ‘ e
yPZ=0.0 , @Z=0.0 , RZ=0.0 e
yPHZ=0.0, THZ=-0.024524845 , PS5Z=0.0 ces
+DNZ=0.0445%91375 , DZZ2=0.0 , DXZ=0.0 e
y THRZ=0.715571145 cen

+XZ=0.0 , Y¥Z=0.0 , HZ=1000.0

UZ=VTZ*COS(THZ)
WZ=VTZ#SIN(THZ)

END & "OF INITIAL"
DYNAMIC

DERIVATIVE
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CLW=CLOW+CLAW*A

CD=CDOW+CDOT+K*#CLW%*%2

M THRUST~~=—="
T =26.7154%THR-0.00S5#VT##2

Bi=R#V-Q*W-G*SIN(TH) +QP*S* (CL1#5IN(A)~-CD*COS5 (A) ) /MASS. ..
+T/MASS .
B2=Q*#U-P*V+G*COS (TH) #*COS(PH) ...
~GP#S* (CL1*COS (A) +CD*SIN(A)) /MASS
D =EP*S*xCLAD*C/ (2¥MASSHVT* (Ux%2+W*%2) )
D1=1+D* (U*COS (A) +W*BIN(A))
D2=D* (B1#COS (A) +B2#SIN(A))

@D=((I1Z~-1X) #*P*R+GP*S*C*CM-T*ET) /1Y vus
~HA*QP*S* (CL*SIN(A)~CD*COS(A)) /1Y

" STABILITY AXES "

NV =-0.0363+0.1969% (LF1%COS (A)+ZF1*SIN(A)) /B
LV =-0.0119-0.0016*CLW~0.1969* (ZF1#COS (A)-LF1#BIN(A)) /B
X1 =(ZF2-(ZF2#COS(A)~-LF2#SIN(A))) /B
Y1 =ABS(X1)
YPS =X1%YSD(Y1)/Y1 |
YPF =—0.3133# ((ZF2#COS (A) ~LF2#SIN(A) ) /B~0. 1B-YPS)
YP =0.078%CL+YPF
CDVD=2#CLW#* (K—1/ (PI#AR) ) *CLAW*P1/180.0
NP =-0.034%CL+1.23#CDVD-YPF#* (LF2#COS (A) +ZF2#SIN(A) ) /B
LP =-0.2457+YPF*(ZF2#C0OS (A) -LF2#SIN(A)) /B
YRF =0.2164%(LF1%CO8(A)+ZF1#8IN(A)) /B
YR =-0.0109+YRF
NR =-0.0022-0.1621%CDOW-0.009%CLW*#2 ...
~YRF % (LF 1%COS (A) +ZF1#8IN(A)) /B
LR =-0.001B89+0.1243#CLW+YRF#* (ZF1#COS(A)-LF1*BIN(A)) /B
NX =0.0195#CLW
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YPB=YP#*COS (A) -YR*SIN(A)

YRB=YR#*COS (A) +YP*SIN(A)

LVB=LV*COS (A) ~NV*SIN(A)

LPB=LP* (COS (A) ) #%2—- (LR+NP) #*SIN (A) #*COS (A) +NR* (SIN(A) ) #%2
LRB=LR* (COS (A) ) ¥#2—(NR-LP) #SIN(A) #COS (A) ~NP* (SIN(A) ) #%2
NVB=NV*COS (A) +LV*SIN(A) :

NPB=NP#* (COS (A) ) ##2—-(NR-LP) #*SIN(A) #*COS (A) ~LR* (SIN(A) ) #»2
NRB=NR#* (COS (A) ) #%2+ (LR+NP) #SIN (Q) *COS (A) +LP* (SIN(A) ) #%2
LXB=LX#C0OS (A) -NX*SIN(A)

NXB=NX#C0OS (A) +LX*SIN(A)

"————-—AERODYNAMIC FORCE ALONG YB AXIS§-=~—- "
Y=0P*S* (YVB#V+B*YPB#P+B*YRB#R) /VT+QP*8#YZB#DZ

UE=COS (TH) #COS (P5) *U -y
+(SIN(PH) #*SIN(TH) *COS(PS) —~COS(PH) #SIN(PS) ) *V ...
+(COS(PH) #SIN(TH) *COS (PS) +SIN(PH) #*SIN(PS) ) #W

VE=COS (TH) *SIN(F5) *U e
+(SIN(PH) *SIN(TH) #*SIN(PS) +COS (PH) #COS(PS) ) #V ...
+(COS (PH) *EIN(TH) #*SIN(PS) -SIN(PH) #COS (PS) ) #W

WE=-SIN(TH) #U+SIN(PH) #COS (TH) #V+C0S (PH) #*COS (TH) *W

HD=~WE

PHD=P+Q#*TAN (TH) *SIN(PH) +R*#TAN (TH) #+COS (PH)
THD=G#C08 (PH) ~R*SIN(PH)
PSD=(R*COS (PH) +G*SIN(PH) ) /COS(TH)

=INTEG(UD, UZ)
=INTEG(VD, VZ)
=INTEG (WD, WZ)
=INTEG(PD, FZ)
=INTEG(GD, @2)

BTVTECC
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R =INTEB(RD, RZ)
XE=INTEG(UE, XZ)
YE=INTEG(VE, YZ)
H =INTEG(HD, H2)
PH=INTEG (PHD,PH2)
TH=INTEB (THD, THZ)
PS=INTEG(PSD,PS2)

END & "DF DERIVATIVE"

UPR=U-UZ

WPR=W-WZ

THPR=TH-THZ

ALPHA=A-THZ

HPR=H-HZ

TERMT(TIME.GE.TMX .0OR. H.LE.0.0)

END & "OF DYNAMIC"

END & "OF PROGRAM"
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PROGRAM XRAE1 LINEAR LONGITUDINAL MODEL

INITIAL

"———-AERODYNAMIC DERIVATIVES—-—-"

CONSTANT XU=-0.097 ,XW= 0.037,X0=-0.01%9 ,XWD=-0.00044...
s ZU=-0.789 ,IW=-5.4946,I0=-0.902 ,ZWD=-0.018 ...
sMU= 0.029 ,MW=-3.B65,ME=-12.381,MWD=-0.201

CONSTANT XN=-0.397 ,IN=-16.172,MN=-17%,079 e
s XTHR=1.719,MTHR=-2. 595

| "————ELEVATOR INPUT———-"
CONSTANT TN1=0.0,TN2=0.0,KN1=0.0,KN2=0.0

#————THROTTLE INPUT—==="
CONSTANT TT1=0.0,TT2=0.0,KT1=0.0,KT2=0.0

THO=-0.024524845
G=%.80665
VT0=30.0

CINTERVAL CINT=0.05
NSTEFPS NETP=1
VARIABLE TIME=0.0
CONSTANT TMX=40.0

"—==INITIAL CONDITIONS——-"
CONSTANT UZ=0.0,WZ=0.0,8Z=0.0,THZ=0.0,HZ=0.0

Uo=VTO*COS (THO)
WO=VTO*SIN(THO)

END & "OF INITIAL"

DYNAMIC
DERIVATIVE

"———ELEVATOR DEFLECTION---"
DN=KN1*STEP (TN1) ~KN2#STEP (TN2)

"———THROTTLE INPUT---"
THR=KT1#8TEP (TT1) -KT248TEP (TT2)

"-—-EQUATIONS OF MOTION & BEOMETRY=—-"

UD=XU#*U+XW#W+ (XA-WO) #Q—-G#COS (THO) #TH+XN#DN+X THR*THR s
H(ZURU+ZUWHW+ (ZR+UO) #Q-G#SIN (THO) #TH+ZN#DN) #XWD/ (1~-ZWD) ...

WD= (ZU#U+ZW*W+ (ZR+UO) #Q-G*#SIN(THO) #TH+ZN#DN) / (1—-ZWD) e

QD=MU*U+MW*W+MA*Q+MN#DN+MTHR*THR ‘ ses
+ (ZU*U+ZWxW+ (ZQ+UO) #Q-G*SIN(THO) #TH+ZN*DN) *MWD/ (1~ZWD) ...

THD=Q
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HD=SIN(THO) *U-COS (THO) #W+VTO*TH
U=INTEG (UD,UZ)
W=INTEG (WD ,WZ)
Q=INTEG(BD,Q2)
TH=INTEG (THD, THZ)
H=INTEB (HD,HZ)
END $ "OF DERIVATIVE"
ALPHA= (UO*W~WO*L) / (VTO%*2)
TERMT (TIME. GE. TMX)

END & "OF DYNAMIC"
END & "OF PROGRAM"
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XRAE1 LINEAR LATERAL MODEL

"———AERODYNAMIC DERIVATIVES—--"

CONSTANT YV=-0.33&6 ,YP=0.175 ,YR=0.224...
,LV=-0.414 ,LP=-13.340,LR=2.412...
JNV=0.558  ,NP=-0.422 ,NR=-1.426

B CONTROL DERIVATIVES-———- n

CONSTANT YZ=3.909 ,L2=2.485 ,NZ=-18.015...
yLX=—142,902,NX=4. 182

"————AILERON INPUT=——-"
CONSTANT TX1=0.0,TX2=0.0,KX1=0.0,KX2=0.0

CONSTANT TZ1=0.0,TZ2=0.0,KZ1=0,0,KZ2=0.0

THO=-0.024524845
B=9.806465
VT0=30.0

CINTERVAL CINT=0.005

NSTEPS NSTP=1

VARIABLE TIME=0.0

CONSTANT TMX=40.0

"e—==INITIAL CONTITIONS---"

CONSTANT VZ=0.0,PZ=0.0,RZ=0.0,PHZ=0.0

UO=VTO*COS (THO)
WO=VTO*SIN(THO)
END & "OF INITIAL"

DYNAMIC

DERIVATIVE

"—~-AILERON DEFLECTION--—-"
DX=KX1#STEP(TX1)-KX2%STEP (TX2)
"---RUDDER DEFLECTION---"
DZ=KZ1#STEP(TZ1)-KZ2#5STEP(TZ2)

VD=YV#V+ (YP+WO) ¥P+ (YR-UO) #R+G#C0S (THO) #*PH+YZ#DZ
PD=LV*V+LP*P+LR*R+LX*#DX+LZ%DZ '
RD=NV#V+NP#P+NR*R+NX#DX+NZ*DZ

PHD=P+TAN (THO) ¥R

V=INTEG(VD,VZ)
P=INTEG(PD,PZ)
R=INTEG(RD,RZ)
PH=INTEG (PHD,PHZ)

END $ "OF DERIVATIVE"

TERMT(TIME.GE. TMX)

END $ "OF DYNAMIC"
END # "OF PROGRAM"
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PROGRAM KALMAN

DOUBLE PRECISION T(15),W1i(4) ,EPS,HM,HI
REAL XG(1001),YG(10010)
INTEGER IA1(2)

PARAMETER(15Z=4)
PARAMETER (INPZ=2)
PARAMETER (10Z=2)
PARAMETER (IPZ=10)
PARAMETER (IASZ=14)
PARAMETER(ITZ=1001)

DOUBLE PRECISION AS(ISZ,182),BS(18Z,INFZ),CS(IDZ,182),
* X8(182),X15(182),X26(162) ,U(INPZ) ,US(INPZ),Y(10Z),YB(102),
* Q(1PZ,IP2),R(10Z,102),RI(10Z,102),
% C(10Z,1AS2),CT(1ASZ,102),E(IASZ,1PZ),ET(IPZ,1AS2),
* PHI(IASZ,1ASZ) ,PHIT(1ASZ,1ABZ) ,BM(IASZ,1AS2) ,GP (1ASZ,1AS2),
* JK(1ASZ,102) ,dKT(10Z,1AS2) ,XM(1ASZ) ,XP(1ASZ) ,UNI (IASZ,1ASZ),
* UG (INPZ,1T2),VB(I10Z,1T2),V(102) ,EM(I0Z),ZH(102),
% A1(1ASZ,102),A2(10Z,102),A3(1ASZ,1AS2) ,A4(1ASZ,IP2),
* AS(1ASZ,IAS2),AL(IASZ,IASZ),A7(1ASZ,IASZ)

COMMON UB

DATA IS,INP,I0,1P/4,2,2,10/
DATA R(1,1),R(1,2),R(2,1),R(2,2)/2.014D-7,0.0,0.0,2.014D-7/

DPEN(FILE='EXKAL',STATUS='NEW',UNIT¥17)

B 36 36 36 36 36 3 I I 36 36 I I I I W I I I I I IE W I I I I I I I I I I N

ENTER PROCESS MATRIX QUIP,IP)

%*************************************************
WRITE (&,998)

8 FORMAT (2 (1X/) ,5X, 'ENTER @(I,1),I=1,IP")
READ(5,%) (@(I,1),I=1,IP)
DO 10 I=1,IP
DO 10 J=1,1IP
IF(I.NE.J) @(I,J)=0.0
CONTINUE

U S I 3 6 I DI B B3I 3 I BB U I I B I I 6 I I I I B I I I I I I

ENTER MEASUREMENT AND INTEGRATION STEPS

D636 360636 36 3 6 36 636 36 3 36 66 36 366 36 30 3 36 36 26 36 B0 6 36 96 3 3636 36 36 36 96 96 34 6 3 3 36 9 28 %

WRITE(&,999) |

? FORMAT (1X/5X, "ENTER HM,HI )

READ(S,*) HM,HI

{WRITE(17,1000) HM,HI

)0 FORMAT (2(1X/) ,1X, "MEASUREMENT INTERVAL :°‘,FB.4,’ secs’/
1 1X, " INTEGRATION STEP t',FB.4,' secs’)
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3636 2 36 3 I I 6 I I I H I I F I I I I I I I I I B I I I M I I I F I N

IS ¢ NUMBER OF STATES

INP : NUMBER OF INPUTS

I0 : NUMBER OF OUTPUTS

IP : NUMBER OF PARAMETERS TO BE IDENTIFIED
IAS 1 NUMBER OF AUGMENTED STATES

3 I I I U I6 I I I I I 6 3 3 96 3 I 36 I I I I I I I I I I I I I I I I I B I I I I I I I I
IAS=1S+IP |

3636 3 36 36 36 W I I I 36 I I I 3 I I I W I I I I I I I W I I I I I I I I I I KW I W A
CREATE SYSTEM MATRICES

YT Yy YT rY Y222y ¥ 32 T2 LTI LIS S 2 2L Lyt
CALL SMTCS(AS,BS,CS,HI,IS,INP,IO)

Y YIS YET IS I ALY LA A LI A AL L YLy

SELECT SYSTEM INPUT

I I I I b I I I 6 I I I I 3 I I I HE I I I W I I I3 3 SEHE I I MW I B I I W

WRITE(6,1010)
010 FORMAT (2(1X/) 41X, SELECT SYSTEM INPUT'//
1 1X,’ TYPE 1 @ For BGUARE WAVE'/
2 1X,° TYPE 2 1 For MULTISTEP'/
3 1X,° TYPE 3 + For RANDOM NOISE'//)

READ(S,%*) INPUT

IF(INPUT.EG.1) CALL SG@W(INP,HM)
IF(INPUT.ER.2) CALL MLSTP (INP,HM)
IF(INPUT.E®.3) CALL RANDOM(INP)

W36 9 36U 3660 3636 36 36 26 36 36 36 9 36 36 6 I 3 3 3 36 3 33 36 I I 36 I 36 I 69 3 N

SELECT MEASUREMENT NOISE

F 963 636 I 3 I 96 3 3¢ J6 I 3 I 3 I 36 36 I 3 I I I 3 I I I I W I I I W I I W

WRITE(&,1020)

120 FORMAT(2(1X/) 41X, "’ SELECT MEASUREMENT NOISE'//
1 1X,’ TYPE 1 : IF YOU WANT NOISE'/
2 1X,° TYPE 2 : IF YOU DO NOT WANT NOISE'//)

READ(S5,%) NOISE
IF(NDISE.NE.1) GO TO S0

DO 20 I=1,10
EM(I)=0.0
CONTINUE

WRITE (&,1030)
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030 FORMAT (2(1X/) 41X, ° ENTER COVARIANCE R OF
1 MEASUREMENT NDISE'//)
READ(5,%) ((R(I,J),I=1,10),J3=1,10)
WRITE(17,1040)
040 FORMAT (2(1X/) 41X, 'COVARIANCE R OF MEASUREMENT NOISE'/)
DO 30 I=1,10.
WRITE(17,1050) (R(I,J),J=1,10)
O CONTINUE
050 FORMAT (1X,4F11.5)

EPS5=0.01/DBLE (10)
I=1
CALL BOSCBF (1)
IFAIL=0
CALL BGOSEAF (EM,10,R,10,EPS,T,15,IFAIL)
IF (IFAIL.NE.O) WRITE(&,1040)
040 FORMAT (2(1X/) 41X, ‘ERROR IN BOSEAF'/)
DO 40 I=1,1001
IFAIL=0
CALL GOSEZF(ZH,10,T,15,IFAIL)
IF (IFAIL.NE.O) WRITE(&,1070)
070 . FORMAT (2(1X/) ,1X, 'ERROR IN BOSEZF'/)
DO 40 J=1,10
VG (J, 1) =ZH(D)
0 CONTINUE
0 CONTINUE

I I IE 36 6 I I I 3 3 A I I I I I I I I I I I I I I I I I I I I I I I I A I I I

ENTER INITIAL CONDITIONS

33 3 3 I 3 I I I I 236 I I I I I I I I I W I I I I I I I I I I I I W W

! WRITE (&, 1080)
b80 FORMAT (2(1X/) 41X, ° ENTER AUGMENTED INITIAL
1 STATE VECTOR'//) '
READ(5,#) (XM(I),I=1,IAS)

WRITE(17,1090) (XM(I),I=1,IAS)

)90 FORMAT (2(1X/) ,1X, '‘AUBMENTED INITIAL STATE VECTOR'/
1 17 (1X,F11.4/))
DO &0 I=1,I8
XS(1)=0.0
CONTINUE

DO 70 I=1,1AS
DO 70 J=1,1A8
BM(I,J)=0.0
CONTINUE

WRITE (&,2000)

00 FORMAT(2(1X/) 41X, * ENTER DIAGONAL ELEMENS OF GM'//)
READ(S,#) (GM(I,I),I=1,IAS)

'WRITE(17,2010) (BM(I,I),I=1,IAS)

Lo FORMAT(2(1X/) 41X, ‘DIAGONAL OF BM'/17 (1X,F11.4/))
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WRITE (6,2020) -

2020 FORMAT (2 (1X/) 41X, * ENTER NUMBER OF ITERATIONS'//)
READ(S,*) ITER
NPTS=ITER+1

M 2222222 LTI LTI ITLLLIL L LSS LT ELL TS L LT LT T LYY

THE EXTENDED KALMAN FILTER ALGORITHM

LY A I W

Y Y T 2 L Ty

I=INT (HM/HI)

K=0
J=0

DO B0 L=1,IAS
DO BO M=1,10
C(M,L)=0.0

JO CONTINUE
C(1,2)=1.0
C(2,3)=1.0

CALL TRANS(C,CT,10,IAS)
CALL MTXE(E,HI,IAS,IP)

CALL TRANS(E,ET,IAS,IP)

CALL MULT(E,Q,A4,IA8,IP,IP)
CALL MULT(A4,ET,AS,IAS,IP,IAS)
CALL NULL (UNI,1AS)

10 CONTINUE
DD 100 L=1,INP
L)Y =UB (L ,K+1)
UsS(L)=UB(L,K+1)
00 CONTINUE
CALL MULT1(CS,XS8,Y,10,1S)
IF(NDISE.EQ@.1) THEN
DD 110 L=1,10
VIL)=VB (L ,K+1)
o CONTINUE
CALL ADD1(Y,V,Y,10)
ENDIF
CALL MULT(GM,CT,Al1,I1AS,I1AS,I0)
CALL MULT(C,Al1,A2,10,1A5,10)
CALL ADD(R,A2,A2,10,10,10)
IFAIL=0 ,
CALL FO1AAF(A2,10,10,RI,I0,W1,IFAIL)
IF(IFAIL.NE.O) BO TO 9999
CALL MULT(A1,RI,JK,IAS,10,10)
CALL MULT(JK,C,A3,1AS,10,1AS)
CALL SUB(UNI,A3,A3,1AS,1A8,1A8)
CALL TRANS(A3,A4,1AS,1A8)
CALL MULT(A3,BM,A7,I1AS,IAS,IAS)
CALL MULT(A7,A&,BP,1AS,1AS,1AS)
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CALL MULT (JK,R,A1,IA8,10,I0)
CALL TRANS (JK,JKT,I1AS,I10)
CALL MULT(A1,JKT,A&,I1AS,I0,IAS)
CALL ADD(GP,As4,GP,IAS,IAS)
CALL MULT1(C,XM,YS,I10,1IAS)
CALL SuUB1(Y,YS,Y,I0)

CALL MULT1(IK,Y,XP,IAE,10)
CALL ADD1 (XM,XP,XP,IAS)

XG (K+1)=DBLE (K) #HM

DO 11 L=1,1IP

M=(L—-1) *NPTS+K+1

N=IS+L

YG (M) =XP (N)

1 CONTINUE
IF(MOD(K,10).ER.0) THEN
WRITE(6,12) K
WRITE(17,12) K

2 FORMAT (1X/5X, 'ITERATIONS ' ,IS)

- WRITE(6,13) (XS(M) M=1,18), (XP(M) ,M=1,18)
WRITE(17,13) (XS(M),M=1,18), (XP(M) ,M=1,18)

3 FORMAT(1X,'XS’',10X, 1 ',4F10.4/1X, 'XP’',10X, 't ‘',4F10.4)
WRITE(6,14) (XP(M) ,M=185+1,1IAS)
WRITE(17,14) (XP(M),M=18+1,1AS)

4 FORMAT(1X, 'PARAMETERS 1 ',10F10.4)
WRITE(6,15) (JK(M,1) ,M=1,IAB)
WRITE(17,15) (JK(M,1) ,M=1,1IAS)

S FORMAT(1X, 'KALMAN GAIN : ’',4(5F10.4/15X))

WRITE(&6,14) (GP(M,M) M=1,1IAS)

. WRITE(17,16) (GP(M,M) ,M=1,1AS)

6 FORMAT(1X, 'COVARIANCE : ‘,4(S5F10.4/15X))
ENDIF

20 CALL MULT1(AS,XS,X18,I1S5,15)
CALL MULT1(BS,US,X25,15,INP)

CALL ADD1(X15,X25,X5,15)
CALL SYFN(XM,XP,U,HI,IAS,INP)
CALL MTXPHI (PHI,XP,U,HI,IAS,INP)
CALL TRANS(PHI,PHIT,IAS,1AS)
CALL MULT(PHI,GP,A&,IAS,IAS,IAS)
CALL MULT(A&,PHIT,A7,1AS5,1AS5,1A8)
CALL ADD(A5,A7,BM,IAS,1AS8,IAS)
J=J+1
IF(K.EQ.ITER) GO TO 140
IF(J.EQ.I) THEN

J=0

K=K+1

60O TO %90

ELSE

DO 130 L=1,1AS

XP (L)Y =XM(L)

DO 130 M=1,IAS
, S GP (L ,M)=GM(L ,M)
b] CONTINUE

G0 TO 120
ENDIF
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.40 CONTINUE

R ITI XTI LTI LIS LIS I gLl g Ll e Ly gL S

L)

. PLOT PARAMETERS

HIIITTI LIS L LI L LI L S it L st lly s

WRITE(6,2030)
2030 FORMAT (2(1X/) 41X, PLOT PARAMETERE 7'//
1 1X, ' TYPE 1 ¢ For YES'/
2 1X,° TYPE 2 1+ For NO'//)

READ(S,%) IPLOT
IF(IPLOT.EQ.2) STOP

CALL SAVDRA
CALL DEVPAP (297.0,210.0,0)
CALL WINDD2(0.0,240.0,0.0,170.0)
DO 160 L=1,1P
DO 150 M=1,NPTS
N=M+(L—1) *NPTS
YG (M) =YG (N)

.50 CONT INUE
CALL PICCLE
CALL CHAHAR(0,0)
CALL MOVTOZ2(20.0,20.0)
CALL GRAF (XB,YG,NPTS,0)
CALL MOVTOZ(150.0,5.0)
CALL CHAHOL('Time (secs)#*.’)
CALL CHAHAR(0,1)
CALL MOVTD2(9.0,100.0)
READ(5,17) IA1(1),IA1(2)

7 FORMAT (1X,2A1)
CALL CHAAL(IA1,2)

60 CONTINUE
CALL DEVEND
sTOP

99 WRITE (&,2040)

240 FORMAT (1X, ‘ERROR IN FO1AAF ")
8TOP

END
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SUBROUTINE SMTCS(AS,BS,CS,H,I1S,INP,I10)
DOUBLE PRECISION AS(1S,1S),BS(IS,INP),CS(10,1S)
DOUBLE PRECISION YV,YZ,LV,LP,LR,LX,NV,NP,NR,NZ,H

DATA YV,Y2/-0.334,3.90%9/
DATA LV,LP,LR, LX/—O 414 ,-13. 360 2.412,-142.902/
DATA NV,NP,NR,NZ/0.558,-0. 622,—1 426,-18.015/

AS(1,1)=1.+YV#H
AS(1,2)=-0.561%H
AS (1 ,3)=-29,767#H
AS(1,4)=9.B804+H
AS(2,1)=LV*H
AS(2,2) =1, +LP#*H
AS (2,3) =LR#H
AS(2,4)=0.0
AS(3,1)=NV#H

AS (3,2) =NP#*H
AS(3,3)=1.+NR*H
AS(3,4)=0.0
AS(4,1)=0.0
AS(4,2)=H

AS (4 ,3)=—0.025%H
AS(4,4)=1.0

BS(1,1)=0.0
BS(2,1)=LX*H
BS(3,1)=4. 182#*H
BS(4,1)=0.0
BS(1,2)=YZ#H
BS(2,2)=2.485%H
BS(3,2)=NZ*H
BS(4,2)=0.0

CS(1,1)=0.0
CS(1,2)=1.0
CS(1,3)=0.0
CS(1,4)=0.0
€8(2,1)=0.0
£S(2,2)=0.0
CS(2,3)=1.0
CS(2,4)=0.0

RETURN
END
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BUBROUTINE SYFN(F,X,U,H,IAS, INP)
DOUBLE PRECISION F(IAB),X(IAS) ,UCINP) H

F)=(1.+X(S)*¥H) #X (1) = S61#H*X (2) —29.767#H%X (3) +9,BO4#H*X (4)
* +X (&) ¥H*U(2)

F(2)=X(7) #H¥X (1) + (1. +X(B) #H) #X (2) +X (P) #H#X () +X (10) #H*U (1)
* +2.485%H*U(2)

F(3)=X(11)#H®¥X (1) +X(12) #H#X (2)+ (1. +X (13) #H) #X (I) +4. 182#H*U(1)
* +X(14) ¥H®xU(2)

F(4)=H#X (2)~0.025#H#X (3) +X (4)

DO 10 I=5,IAS

F(I)=X(I)

10 CONTINUE
- RETURN

END

SUBROUTINE MTXE(E,H,IAS,IP)
DOUBLE PRECISION E(IAS,IP),H

DD 10 I=1,1AS
DO 10 J=1,1P

E(I,J)=0.
10 CONTINUE
DO 20 I=1,IP
J=1+1AS-1P
E(J,I)=H

20 CONTINUE
RETURN

END
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SUBROUTINE MTXPHI (PHI,X,U,H,IAS,INP)
DOUBLE PRECISION PHI(IAS,IA8),X(IAS),UCINP),H

DD 10 I=1,1AB
DO 10 J=1,IAS
PHI(I,J)=0.

10 CONTINUE

PHI(1,1)=1.4X(5)%*H
PHI(1,2)=-,561%H
PHI(1,3)=-2%9.7&67%H
PHI(1,4)=9.804%H
PHI(1,5)=X(1)%H
PHI(1,6)=U(2)%*H

PHI(2,1)=X(7)#H
PHI(2,2)=1.+X(8) #H
PHI(2,3)=X(7)#H
PHI(2,7)=X (1) *H
PHI (2,8)=X(2)#H
PHI (2,9)=X(3)#H
PHI(2,10)=U(1) #H

PHI(3,1)=X(11)%H
PHI (3,2)=X(12) %H
PHI(3,3)=1.+X(13)*H
PHI(3,11)=X(1)%H
PHI (3,12)=X(2)*H
PHI (3,13)=X(3) *H
PHI(3,14)=U(2)*H

PHI(4,2)=H
PHI (4,3)=2-0,025+*H
PHI(4,4)=1.

DO 20 I=5,IAS

PHI(I,I)=1.
20 CONTINUE
RETURN

END
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SUBROUTINE SGW(INP,H)
DOUBLE PRECISION UB(2,1001),8M(2),P,H

COMMON UG
WRITE (&,1000)
000 FORMAT (2(1X/) 41X, ENTER 1 Period’/
1 1X, AND * /
2 1X, Amplitude of SEUARE WAVE'//)

READ(S,%) P, (SM(I),I=1,INP)
WRITE(17,1010) P, (SM(I),I=1,INP)

010 FORMAT(2(1X/),1X, ‘SYSTEM INPUT 1 SRUARE WAVE'/
1 1X,’ Period ‘yF15.4,° secs’/
2 1X,° ' : Amplitude’,4F15.4,° rads’)
P=P/H
N=INT(P/2.)
DD 16 J=1,N

DO 10 I=1,INP
UG (I, J)=8M(I)
0 CONTINUE
DO 20 J=N+1,2#N
DO 20 I=1,INP
. UB(I,J)=-BM(I)
0 CONTINUE
DO 30 J=1,1001-2x%N
DO 30 I=1,INP
UG(I,J+2#N)=UB(I,J)
0 CONTINUE

RETURN
END
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SUBROUTINE MLSTP (INP,H)
DOUBLE PRECISION UGB(2,1001) ,8SM(2),P,H

COMMON UG
WRITE(&6,1000) '
1000 FORMAT(2(1X/),1X,’ ENTER ¢ Period’/
1 1X, AND * /
2 1X, " Amplitude of MULTISTEP'//)

READ (5,%) P, (SM(I),I=1,INP)
WRITE(17,1010) P,(SM(I),I=1,INP)

1010 FORMAT(2(1X/) ,1X, 'SYSTEM INPUT : MULTISTEP'/
i iX,’ Period '9yF15.5," secs’'/
2 1X,’ Amplitude’,F15.5,' rads’)
WRITE(46,1020)
1020 FORMAT(2(1X/) 41X, DO YOU WANT ONE PERIOD ONLY?'/
1 1X,’ TYPE 1 1 IF YES'/
2 ‘ 1X,’ TYPE 2 1 IF NO)

READ(S,%) IPER

P=P/H
L=INT(P/7.)
DO 10 J=1,3%L
DO 10 I=1,INP
 UB(I,J)=SM(I)

10 CONTINUE _

DO 20 J=3#L+i,5%L
DD 20 I=1,INP
 UB(I,J)=-BM(I)

20 CONTINUE

DO 30 J=S#L+1,6%L

DO 30 I=1,INP

UG(I,J)=8M(I)

{0 CONTINUE
DO 40 J=&#L+1,7#L
DO 40 I=1,INP
UG(I,J)=-8M(I)

'0 CONTINUE
IF(IPER.EQ.1) THEN
WRITE(17,1030)

030 FORMAT (16X, ‘ONE PERIOD ONLY')
DO 50 J=1,1001-7%L
DO 50 I=1,INP

. UB(I,J+7#L)=0.0

> CONTINUE
ELSE
DO &0 J=1,1001-7#L
DD &0 I=1,INP
UB(I,J+7#L)=UB(I,J)
CONT INUE
ENDIF

RETURN
END
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SUBROUTINE RANDOM(INP)
DOUBLE PRECISION UG(2,1001),E(2),8C(2,2),ZH(2),T(15) ,EPS
COMMON UG : :

WRITE (6,1000)
1000 FORMAT(2(1X/) ,iX, "’ ENTER MEAN VECTOR'//)
READ(S5,+) (E(I),I=1,INP)
WRITE(4,1010)
1010 FORMAT(2(1X/) 41X, ENTER COVARIANCE MATRIX'//)
READ(S5,+*) ((SC(I,Jd),I=1,INP),d=1,INP)
WRITE(17,1020)
1020 FORMAT(2(1X/) ,1X, ‘'SYSTEM INPUT : GAUSSIAN NOISE'//
1 -1X, 'Mean'/)
WRITE(17,1030) (E(I),I=1,INP)
1030 FORMAT(1X,4F15.5)
WRITE(17,1040)
1040 FORMAT(2(1X/) 41X, ‘Covariance’/)
DD 10 I=1,INP
WRITE(17,1050) (8C(I,J),J=1,INP)
10 CONTINUE ‘ '
1050 ~ FORMAT (1X,4F15.5)

EPS5=0.01/DBLE (INP)
1=2

CALL GOSCBF(I)
IFAIL=0

CALL BOSEAF (E,INP,SC,INP,EPS,T,15,IFAIL)
IF (IFAIL.NE.O) WRITE(&,1060)
1040 FORMAT (2(1X/) ,1X, 'ERROR IN BOSEAF ')
DO 20 I=1,1001
IFAIL=0
CALL BOSEZF(ZH,INP,T,15,IFAIL)
IF (IFAIL.NE.O) WRITE(&,1070)
070 FORMAT(2(1X/) ,1X, ‘'ERROR IN GOSEZF ')
DO 20 J=1,INP
UG(J, I)=ZH(J)
|0 CONTINUE

RETURN
END
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SUBROUTINE MULT(A,B,C,M,N,K)
DOUBLE PRECISION A(M,N) ,B(N,K),C(M,K)

DO 10 I=1,M
DO 10 J=1,K

C(1,J)=0.

DO 10 L=i,N .

10 C(I,3)=C(I,I)+A(I,L)#*B(L,J)

RETURN
END

SUBROUTINE ADD(A,B,C,M,N)
DOUBLE PRECISION A(M,N) ,B(M,N),C(M,N)

DO 20 I=1,M
DO 20 J=1,N
20 C(I,J)=A(I,J)+B(I,J)

RETURN
END

SUBROUTINE SUB(A,B,C,M,N)
DOUBLE PRECISION &(M,N),B{(M,N),C(M,N)

DO 30 I=1,M
DO 30 J=1,N
30 C(I,N=ALI,J)~B(I,J)

RETURN
END

SBUBROUTINE MULT1(A,B,C,M,N)
DOUBLE PRECISION A(M,N),B(N),C(M)

DO 40 I=1,M

C(1)=0.

DO 40 K=1,N

40 C(I)=C(I)+A(I,K)*B(K)

RETURN
END
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SUBROUTINE ADD1 (A,B,C,M)
DOUBLE PRECISION A(M) ,B(M),C(M)

DD 50 I=1,M
50 C(I)=A(I)+B(I)
RETURN

END

'SUBROUT INE suBi (A,B,C,M)
DOUBLE PRECISION A(M) ,B(M),C(M)

DO 60 I=1,M

&0 C(H=A(I)-B(I)
RETURN

END

‘SBUBROUTINE TRANS(A,AT,M,N)
'DOUBLE PRECISION A(M,N) ,AT(N,M)

DO 70 I=1,N
DO 70 J=1,M
70 AT(I, D) =A(J, 1)

RETURN
END

SUBROUTINE NULL (AI,M)
DOUBLE PRECISION AI(M,M)

DO 80 I=1,M
DD 80 J=1,M
AI(1,J)=0,

IF(I.EQ.J) AI(I,d)=1.
80 CONT INUE

RETURN
END

SUBROUTINE MULTC(A,B,C,M,N)
DOUBLE PRECISION A(M,N),B(M,N),C

DO 90 I=1,M
DO 90 J=1,N
90 B(I,J)=A(I,J)*C

RETURN
END
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SUBROUTINE SMTCE(AS,BS5,CS,H,I18,INP,IO)
DOUBLE PRECISION AB(I&,I1S),BS(I1S,INP),C8(10,I8)
DOUBLE PRECISION XUy,XW,ZU,ZW,ZN,MU,MW,MQ,MN,H

DATA XU,XW/-0.097,0.039/
DATA ZU,ZW,ZN/-0.775,-5.399,-15.887/
DATA MU,MW,M@,MN/O.185,-2.782,-18.117,-175.890/

AS(1,1)=1.+XU*H
AS (1,2) =XW*H

AS (1,3)=0.704%H
AB(1,4)=-9,B04#H
AS(2,1)=ZU*H
AS(2,2) =1, +ZW*H
AS(2,3) =28, 575#H
AS(2,4)=0.236%H
AS (3, 1) =MU*H
AS(3,2) =MW*H
AS(3,3)=1.+MR*H
AS(3,4)=-0.047%H
AS(4,1)=0.0
AS(4,2)=0.0

AS (4,3)=H
AS(4,4)=1.0

BS(1,1)=-0.39#H
BS(2,1)=ZN*H
BS (3, 1) =MN#H
BS(4,1)=0.0

£S(1,1)=0.0
£S(1,2)=0.0
C8(1,3)=1.0
CS(1,4)=0.0

RETURN
END

SUBROUTINE MTXE(E,H,IAS,IP)
DOUBLE PRECISION E(IAS,IP),H

DO 10 I=1,IAS
DO 10 J=1,IP
E(I,J)=0.

10 CONTINUE
DD 20 I=1,IP
J=1+1AS-1P
E(J,I)=H
20 CONTINUE

RETURN
END
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SUBROUTINE SYFN(F,X,U,H,1AE,INP)
DOUBLE PRECISION F(IAS) ,X(IAS),U(INP),H

FO1)m(1.+X(5) #H) #X (1) +X (&) #H®X (2) +. 704 #H#X (3) -5, BOA#H®X (4)
* —.39%H*U (1)

F(2)=X(7) #H®X (1) + (1, +X (B) #H) #X (2) +28. S75#H#X (3) +. 236#H*X (4)
* +X (F) #H*U (1)

F(3)=X (10) #H#X (1) +X (11) #H®X (2) + (1. +X (12) #H) #X (3) =, 047#H*X (4)
* +X (13) *#H*U (1)

F(8)=H®X (3)+X (&)

DO 10 I=5,1AS

F(I)=X(I)

10 CONT INUE

RETURN
END
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SUBROUTINE MTXPHI(PHI,X,U,H,IAS, INP)
DOUBLE PRECISION PHI(IAS,IAS),X(1AS),UCINP),H

DD 10 I=1,I1AS
DO 10 J=1,IAS
PHI (I,J)=0.

10 CONTINUE

PHI(1,1)=1,+X(5)#H
PHI(1,2)=X(&)*H
PHI (1,3)=,704#H
PHI(1,4)=-9.804%H
PHI(1,5)=X(1)#H
PHI(1,6)=X(2)*H

PHI(2,1)=X(7)*H
PHI(2,2)=1.+X(8)*H
PHI(2,3)=28.575%H
PHI (2,4)=.236%H
PHI(2,7)=X(1)*H
PHI(2,B)=X(2)#H
PHI(2,9)=U(1)#H

PHI(3,1)=X(10)#*H
PHI(3,2)=X(11)#%H
PHI(3,3)=1.+X(12)%H
PHI(3,10)=X(1)%H
PHI(3,11)=X(2)%H
PHI(3,12)=X(3)*H
PHI(3,13)=U(1)*H

PHI(4,3)=H
PHI(4,4)=1.

DD 20 I=5,IAS
PHI(I,I)=1.
20 CONTINUE

RETURN
END



