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Abstract
In this work, open-loop position tracking using low-cost inertial measurement units is aided by Takagi-Sugeno velocity
classification using the subtractive clustering algorithm to help generate the fuzzy rule base. Using the grid search
approach, a suitable window of classified velocity vectors was obtained and then integrated to generate trajectory seg-
ments. Using publicly available experimental data, the reconstruction accuracy of the method is compared against four
competitive pedestrian tracking algorithms. The comparison on selected test data, has demonstrated more competitive
relative and absolute trajectory error metrics. The proposed method in this paper is also verified on an independent
experimental data set. Unlike the methods which use deep learning, the proposed method has shown to be transparent
(fuzzy rule base). Lastly, a sensitivity analysis of the velocity classification models to perturbations from the training orien-
tation at test time is investigated, to guide developers of such data-driven algorithms on the granularity required in an
ensemble modeling approach. The accuracy and transparency of the approach may positively influence applications
requiring low-cost inertial position tracking such as augmented reality headsets for emergency responders.
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Introduction

The ad hoc tracking of humans in global navigation
satellite system (GNSS)-denied environments is an
increasingly urgent requirement given over 55% of the
world’s population were reported to inhabit urban
environments in 2018, places that are prone to GNSS
signal fading and multipath effects.1 In narrowband
ranging for instance, the received signal in a severe
multipath environment will be the sum of multiple car-
rier signals having different amplitudes and phases,
thus distorting the range measurement.2 For tracking
emergency responders, the development of GNSS-inde-
pendent systems has the potential to save the lives of
casualties through enhanced operational efficiency, as
well as the lives of responders themselves through
improved situational awareness. A shift in reliance
from GNSS is also valuable for maritime and aeronau-
tical navigation due to advances in spoofing and dis-
ruption caused by personal privacy devices.3,4

While many positional tracking technologies have
been proposed to tackle the problem including

ultrawideband (UWB), radio frequency identification
(RFID), wireless fidelity (Wi-Fi) and vision systems,
most are not ad hoc methods, requiring careful deploy-
ment and configuration of transmitters and receivers
into the tracking space a priori.5–10 Although bread-
crumbing, the opportunistic placement of RFID tags
upon arrival at the site of an incident, was proposed by
Renaudin et al.,11 it has been reported sub-optimal due
to the potential destruction of tags during operation and
difficulties in retrieval afterward.12 While visual odome-
try (VO) systems use cameras to track position using
natural features and are infrastructure independent, they
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suffer from sensitivity to lighting conditions and feature-
less spaces.13

Inertial sensors are self-contained sensors that
involve creating an inertial element which remains fixed
relative to the inertial reference frame, i, a frame fixed
with respect to the distant stars. Inertial measurement
units (IMUs) typically consist of three mutually ortho-
gonal gyroscopes measuring the angular velocity of the
sensor body frame, b, relative to the i-frame, expressed

in b, denoted vb
ib. Similarly, accelerometers measure

specific force, f b
ib . Low-cost, lightweight, small-sized

micro-electromechanical systems (MEMS) IMUs are
found in many modern electronic devices such as
smartphones and virtual reality (VR) headsets. From
literature, there are three approaches to low-cost IMU
position tracking that trade generalization to different
motions for accuracy of trajectory estimation.

Strapdown inertial navigation

In strapdown inertial navigation, position is estimated
relative to a known initial condition by integrating mea-
surements, a process of dead reckoning.14 When navi-
gating small distances on Earth using low-cost IMUs,
the local geographic form of the navigation equations
suffice assuming15:

(i) The contribution from the Earth’s rotation of
;15�h21 is considerably less than the noise and
bias stability characteristics of the gyros.

(ii) The transport rate of the navigation frame, n,
pointing North, East, and down (NED), over the
Earth’s surface is negligible due to traveling small
distances compared to its radius.

(iii) Coriolis acceleration contributions are negligible
compared to the noise and stability characteristics
of the accelerometers.

The navigation frame can thus be treated as inertial
such that vb

ib’vb
nb and f b

ib’f b
nb resulting in the simpli-

fied acceleration term:

annb =Rn
b f

b
nb + gn ð1Þ

where annb is the acceleration of the sensor relative to
the n-frame expressed in the n-frame, f b

nb is assumed to
be the measured specific force from the accelerometer,
gn is the sum of acceleration due to mass attraction and
the centrifugal acceleration due to Earth’s rotation
expressed in the n-frame and Rn

b is the rotation matrix
whose columns represent the cosines of the angles
between the unit basis vectors of the b and n-frames.
This matrix evolves with the gyro measurements to first
order accuracy according to:

Rn
b, t =Rn

b, t�1 I+Dt sk(vb
nb, t)

� �
ð2Þ

where Dt is the sample time and sk(vb
nb, t) is the skew-

symmetric matrix of vb
nb:

sk(vb
nb, t)=

0 �vz vy

vz 0 �vx

�vy vx 0

2
4

3
5 ð3Þ

While rotation matrices have been used to parame-
trize orientation, quaternions are equally applicable
and Euler angles may be preferred for maneuvers not
exceeding 10� in attitude.16

Due to drift in the gyros and for initialization, mea-
surements of vector fields induced by gravity and the
geomagnetic field are used as cues in an Attitude and
Heading Reference System (AHRS) to help converge
and maintain accurate Rn

b estimates.17,18 As noted by
Woodman,19 accurate Rn

b estimates are crucial in posi-
tioning as they are required to compensate for the gn
term in equation (1).

With Rn
b from the AHRS, annb may therefore be inte-

grated by Euler discretization as in equations (4) and
(5) assuming constant acceleration between epochs.

vnnb, t = vnnb, t�1 +Dt annb, t ð4Þ

xnnb, t = xnnb, t�1 + vnnb, tDt+
1

2
annb, t Dt

2 ð5Þ

Although this approach works well for navigation
and strategic grade IMUs, they have noise and bias sta-
bility characteristics several orders of magnitude better
than commercial IMUs.20 Thus, despite a well-tuned
AHRS algorithm, errors accumulate in annb resulting in
a positional error that grows cubically with time.21

Heuristic approaches

Methods of position tracking that augment the double
integration of acceleration with heuristic assumptions
are promising alternatives. Two such methods in
human tracking include pedestrian dead reckoning
(PDR)22,23 and zero velocity updating (ZUPT).21,24

Both take advantage of the periodicity of human gait
to better estimate displacement between strides while
an AHRS handles orientation. Although they improve
on strapdown inertial navigation, bounding the posi-
tional error growth linearly with the number of steps,
PDR suffers from reduced generality to other types of
motion such as vehicular and unconventional motions
such as side-stepping and jumping.25 ZUPT restricts
placement of the IMU to the foot, risking damage to
the sensor.26 Furthermore, it also mandates a time-
consuming calibration of the IMU’s gyro and acceler-
ometers beforehand such as the method presented by
Glueck et al.27
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Data-driven approaches

Given the limitations of the previous methods, data-
driven approaches have been explored to replace the
numerical integration steps in strapdown inertial navi-
gation with deep learning regression models.

Inertial Odometry Network (IONet),13 and Robust
Neural Inertial Navigation in the Wild (RoNIN)28 used
supervised machine learning, performing sequence-to-
one regressions of windowed IMU data from smart-
phones to estimate more accurate trajectories. While
RoNIN regressed velocity vectors in the x-y plane of
the navigation frame before integration, IONet directly
regressed polar displacement vectors from IMU data.
In contrast to the sensor placement restrictions imposed
by heuristic approaches, these aimed for competitive
tracking accuracy regardless of sensor attachment on
the human body. Despite presenting improvements in
trajectory prediction over conventional strapdown and
heuristic methods, Silva do Monte Lima et al.29 showed
that guaranteeing acceptable model performance across
disparate data sets remains a problem. Furthermore,
the number of parallel nonlinear steps in neural net-
works learnt by backpropagation makes them not only
difficult to interpret but also vulnerable to adversarial
examples.30 They are thus challenging to certify and
implement in safety critical applications.

In this work, a classification approach is applied to
estimating velocity vectors from IMU data for a given
sensor mode of carriage on the human body. The func-
tionality of the approach and sensitivity to orientation
errors are investigated using the Oxford Inertial
Odometry Data Set (OxIOD)31 and the data set from
RoNIN.32 The contributions of this paper are:

(i) A subtractive clustering (SC) Takagi-Sugeno (TS)
fuzzy classification approach to mapping IMU
data to velocity vectors before integration for tra-
jectory estimation. Unlike other data-driven algo-
rithms that use deeply learnt regression models,
the proposed SC-TS method produces a model
that is transparent as input-output relations can
be visualized in surface plots and membership
functions (encoded by a mean and standard
deviation).

(ii) A novel optimization approach to data pre-
processing showing how IMU and ground truth
data (experimental data) can be aligned in head-
ing for consistency between sequences during
training and testing.

(iii) A sensitivity analysis by Monte Carlo simulation
investigating the loss in accuracy of the SC-TS
method with increasing disparity between the train-
ing and test modes of carriage. To the authors’ best
knowledge, this has not been reported elsewhere
and paves the way to the creation of an ensemble
tracking approach offering accurate tracking
across a range of sensor-body attachments.

The remainder of the paper is structured as follows.
Data pre-processing shows how the input and output
data were obtained, including the optimization method
which ensured their alignment in heading. The SC-TS
classification model and its tuning are then outlined.
The results show trajectories estimated by the proposed
method compared with competitive algorithms, verifi-
cation on an independent data set and results from the
sensitivity analysis. A discussion of the results is pre-
sented followed by a conclusion and direction of future
work.

Data sets and pre-processing

Data used to train the models and evaluate the approach
were obtained from the OxIOD data set, containing 158
sequences of smartphone IMU and ground truth data
for various devices and modes of carriage. The subset,
‘‘large scale,’’ was used since it featured less repetitive tra-
jectories through a building’s corridors, more consistent
with natural human motion. Figure 1 shows the ground
truth trajectory for a floor one sequence generated by
the visual-inertial odometry system.

Training between various sequences was most effec-
tive when input IMU data and output ground truth
data were expressed in a common reference frame. The
locally-level frame, l, was chosen which is like the navi-
gation frame but free in heading. During training, this
frame was defined at the start of the sequence by the
ground truth system and IMU input data aligned to it
such that both inputs and outputs were expressed in
ltrue. This was achieved by first obtaining the IMU’s b-
frame orientation relative to limu, R

limu

bimu, k
, using

Madgwick et al.’s Extended Complementary AHRS
Filter.33 AHRS parameters Knormal, Kinit and tinit of 0.5,
10.0, and 3.0 s respectively were used for reliable initia-
lization.34 The magnetometer was not used due to the
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Figure 1. Floor one ground truth trajectory from ‘‘large scale’’
OxIOD data.
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potential for hard and soft iron bias interference in the
indoor environment causing heading deviations. As a
result, the heading estimate from the AHRS was
entirely dependent on the initialization conditions,
which, relative to the ground truth’s reference frame,
may be inconsistent between sequences. For each
sequence therefore, Rlimu

bimu, k
was composed with a con-

stant heading alignment orientation, R
ltrue
limu

, found by
solving the nonlinear constrained optimization problem
which minimized the mean square velocity error
(MSVE) between the ground truth and integrated spe-
cific force:

argmin

R
ltrue
limu

2SO(3)

1

n

Xn
i=1

vltrueltrue btrue
�
ð

R
ltrue
limu

R
limu

bimu

� �
f bimu

limu bimu
+

0
0
g

2
4

3
5dt

0
@

1
A

2

ð6Þ

that is:

argmin

R
ltrue
limu

2 SO(3)

1

n

Xn
i=1

vltrueltrue btrue
� vltruelimu bimu

� �2

ð7Þ

where vltrueltrue btrue
was obtained by taking the derivative of

the ground truth positional data:

vltrueltrue btrue, k
=

xltrueltrue btrue, k
� xltrueltrue btrue, k�1

Dt
ð8Þ

Some portions of xltrueltrue btrue
were found to contain

spurious readings possibly due to the visual inertial
odometry failing in occasional featureless spaces. A
Hampel filter was therefore applied to clean the data,
replacing values greater than 2s from the local median
of a 200-sample window as shown in Figure 2.

Taking the derivative in equation (8) was noisy so a
zero-phase Butterworth lowpass filter was applied with
a cut-off frequency of 5Hz. A non-causal filter was
used to avoid introducing phase distortion in the train-
ing data which may otherwise affect the accuracy of
velocity classification at test time. These filtered veloci-
ties were the labels for the classification algorithm to
learn for the corresponding inputs.

As in RoNIN, input features were windows, length
nwin, of angular velocity and specific force of the IMU
b-frame relative to limu, coordinatized in ltrue:

vltrue
limu bimu

f ltrue
limu bimu

h i
nwin36

ð9Þ

where:

f ltrue
limu bimu

=R
ltrue
bimu

f bimu

limu bimu
ð10Þ

vltrue
limu bimu

=R
ltrue
bimu

vbimu

limu bimu
ð11Þ

Note that the specific force input in equation (10), is
not gravity compensated which represents a departure
from the principles of strapdown inertial navigation. It
was found that using gravity-compensated specific force
reduced the accuracy of trajectory estimated by the
algorithm.

At test time, velocity estimates from the classifier
constructed trajectories by the first order numerical
integration scheme:

xltrueltrue btrue, k
= xltrueltrue btrue, k�1 + vltrueltrue btrue, k

Dt ð12Þ

SC-TS velocity classification models

TS velocity classification models were generated based
on clusters found by the SC algorithm for a given IMU
mode of carriage featured in the data set.

An extension of the grid-based mountain clustering
method, SC is a fast method for clustering high dimen-
sional input data.35 Economou et al.36 used SC to
obtain local models of a skid steer robot’s dynamics
over its steering envelope and Muhammad et al.37 used
the algorithm for accurate stance detection of human
gait. Unlike fuzzy c-means (FCM) and k-means cluster-
ing, SC does not require the number of clusters to be
defined a priori but rather a radius of influence, ra.
While FCM considers the Euclidean distance of each
data point to the cluster center, SC has features that
avoid the influence of outliers. The squash factor, fsquash
controls the extent to which outliers in the feature space
are included in a cluster while the raccept and rreject frac-
tions define the potential of the first cluster center above
and below which a point may be accepted or rejected as a
cluster center respectively. This helps SC avoid returning
marginal cluster centers. Figure 3(a) and (b) show how
the cluster centers returned by SC are less influenced by
outliers than FCM for a small synthetic data set.
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Figure 2. Hampel filter outlier replacement on ground truth
trajectory data.
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A grid search for the optimal ra, fsquash, raccept, and
rreject parameters for the SC algorithm was performed
by observing their effect on the MSVE when training
and then testing on an unseen sequence. MSVE was cal-
culated according to equation (13).

MSVE=
1

n

Xn
i=1

vltrueltrue btrue
� vltruelimu bimu

� �2

ð13Þ

3125 train and test instances were carried out using
combinations of the parameters in Table 1. The lowest
MSVE of 0.05ms21 was achieved for ra =0.3,
twin =0.5 s, fsquash =1.4, raccept =0.45 and rreject =0.35.

twin was found to have little impact on the test
sequence MSVE but an approximately exponential
increase in the sequence computation time was
observed for twin \ 0.5 s. A value of 0.5 s was thus cho-
sen as the optimal in terms of frequency of trajectory
updating.

Results

Figures 4 and 5 show examples of cluster centers found
by the SC algorithm and a surface plot of the TS fuzzy
rule base respectively.

The accuracy of the SC-TS velocity classification
algorithm was tested against four competitive methods

(a) (b)

Figure 3. (a) Cluster centers estimated by FCM and (b) cluster centers estimated by SC.

Table 1. Grid search performed to find the optimal parameters
of the SC algorithm.

ra: 0.30 0.45 0.60 0.75 0.90
twin (s): 0.25 0.50 0.75 1.00 1.25
f squash: 0.60 0.80 1.00 1.20 1.40
r;accept: 0.30 0.45 0.60 0.75 0.90
rreject: 0.15 0.35 0.50 0.65 0.80

Figure 4. Cluster centers and radii found by the SC method in
y-direction specific force.

Figure 5. Surface plot mapping x-y acceleration inputs to x
velocities.
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reported in literature: RoNIN, IONet, strapdown
inertial navigation and ZUPT.

The RoNIN Python code was obtained from
GitHub but as the IONet code was not made public, a
local implementation was made in Matlab to the
authors’ best abilities using details from.38 The latest
gait tracking algorithm from X-IO Technologies was
used as the ZUPT baseline with default parameters.39

The ‘‘large scale’’ subset of trajectories from the
OxIOD data set were used for performance evaluation,
having a mean duration of 150 s. Three general IMU
modes of carriage were identified by their attitude
angles shown in Figure 6(a) to (c). For each sequence
and algorithm, the MSVE, relative (RTE) and absolute
(ATE) trajectory errors as defined by Strum et al.40

were used as performance metrics. For the RTE, the
same definition implemented in the RoNIN code was
used for fairness where it was calculated as the mean
root-mean square error (RMSE) for sub-trajectories of
length one up to the entire sequence length.

Further tests on the RoNIN data set, were per-
formed to verify the SC-TS method. For this data, the
optimization step in equation (6) was not required as

this alignment was provided a priori. Figure 10(a) and
(b) depict the trajectories estimated for the ‘‘a000’’ and
‘‘a010’’ set of sequences respectively.

The SC-TS method and other data-driven
approaches such as IONet and RoNIN initially trained

models to estimate vectors for certain modes of car-

riage of IMU sensor on the body. It was therefore of

interest to investigate how the accuracy of velocity and

position estimation changed due to perturbations from

the orientation featured in the training data.
Using the sequence of Figure 9 (mode three test

sequence), perturbed orientations, ~Rltrue
bimu

, were generated

by composing R
ltrue
bimu

with a perturbation of randomly

generated basis vector, u, and angle, f, incremented in
steps of 5�:

~Rltrue
bimu

=R
ltrue
bimu

ef sk(u) ð14Þ

Due to the randomness in u, the MSVE, RTE and
ATE error metrics for each f were determined by a
Monte Carlo simulation of 1000 samples for f between

(a) (b)

(c)

Figure 6. (a)Mode one attitude angles, (b) mode two attitude angles, and (c)mode three attitude angles.
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0� and 50�. Mean error metrics and 1s error bars are
shown in Figures 11 to 13.

Discussion

Figures 4 and 5 show examples of clusters found in data
and the surface plot of the resulting TS fuzzy rule base
respectively. In Figure 5, it can be seen how positive
accelerations in the x-direction intuitively map to posi-
tive x-velocities in the locally level frame. Observing the
gradients in x and y axes, accelerations in the y-
direction have less influence on the x-velocity output
compared to accelerations in the x-direction. Output
velocities in the x-direction are bounded between about
61 ms21. The SC-TS model is thus more transparent
than other black box models generated by deep
learning.

The mean error metrics in Table 2 show how the
proposed SC-TS method and RoNIN achieved the
same MSVE over the three ‘‘large scale’’ test sequences
of the OxIOD data set with the former achieving a
more than three-fold reduction in RTE and ATE over
the latter. Using the SC method, a mean positional
error rate of 4 cms21 of walking motion can be
expected. As both were provided with the same align-
ment orientation described by equation (7), the TS-SC
method appears to have reduced the rate of inertially-
derived positional error growth at least as well as
sequence-to-one regression methods like RoNIN. The
cumulative distribution function (CDF) plots of the
absolute positional error in Figures 7(b), 8(b), and 9(b)
support this finding. While both SC-TS’s and RoNIN’s
input features were specific force and angular velocity
projected in the locally-level frame, the superior

SC-TS
RoNIN
IONet
ZUPT
Strapdown

(a) (b)

Figure 7. (a) Estimated test trajectories for mode one and (b) CDF of absolute positional error for mode one test trajectory.

(a) (b)

Figure 8. (a) Estimated test trajectories for mode two and (b) CDF of absolute positional error for mode two test trajectory.

Maton et al. 7



(a) (b)

Figure 9. (a) Estimated test trajectories for mode three and (b) CDF of absolute positional error for mode three test trajectory.

(a) (b)

Figure 10. (a) Estimated test trajectory on RoNIN data set sequence a000_3 and (b) estimated test trajectory on RoNIN data set
sequence a010_3.

Figure 11. Plot of MSVE with perturbation angle showing 1s
error bars.

Figure 12. Plot of RTE with perturbation angle showing 1s
error bars.
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accuracy in RTE and ATE of the proposed method
may have been due to the tuning parameters of the SC
algorithm which, found by grid search, helped create a
classification rule base that was less affected by outliers
compared to a deep learning regression model.

The ZUPT baseline was less accurate than the SC-
TS method and RoNIN, with a mean MSVE almost
eight times larger than the former methods. This was
because ZUPT is intended for foot mounted IMUs
whereby frequent zero velocity instances provide
opportunities for integral drift estimation and compen-
sation. Such instances were not featured in the OxIOD
and RoNIN sequences as the IMUs were sampled from
IMU-equipped smartphones carried on the upper
body. IONet yielded a MSVE twice that of ZUPT, pos-
sibly due to input features being expressed in the b-
frame rather than the l-frame, making it more sensitive
to disparities in orientation featured in training and test
data. Furthermore, since IONet’s output features con-
sist of a distance and change in heading angle, the accu-
racy of its trajectories is highly reliant upon accurate
estimation of the change in heading angle by the deep
neural network. A single erroneous heading change will
thus be penalized heavily by the error metrics, espe-
cially the ATE. Finally, strapdown inertial navigation
was the worst performing baseline due to the rapid
accumulation of errors in the open loop double integra-
tion of gravity-compensated acceleration mentioned
previously.

The validity of the SC method was demonstrated by
applying it to the independent RoNIN data set. Visual
inspection of Figure 10(a) and (b) show how the algo-
rithm captured certain features of the ground truth tra-
jectory but with errors visibly larger compared to the
results from OxIOD. This may be due to the insufficient
capture of stationary periods by the TS models which
resulted in the large translational error seen in Figure
10(a) or the momentary changes in the IMU’s mode of
carriage featured in the RoNIN data set which makes it
a more challenging benchmark than OxIOD.

The sensitivity analysis of the SC-TS method pre-
sented the increase in the MSVE, RTE and ATE that
can be expected with increasing disparity between the
orientation featured in the training data and that used
at test time. This is useful since to achieve generaliza-
tion to varying modes of carriage which may occur dur-
ing natural human motion, RoNIN and IONet both
proposed training models for a given orientation and
then interpolating between them, akin to an ensemble
modeling method. An investigation into the change in
tracking accuracy with deviations from the design
orientation may therefore help developers decide on the
granularity with which the manifold of SO(3) should be
covered by their models to meet a required error metric.
For instance, referring to Figure 11, if a MSVE no
greater than 10 cms21 is required then the algorithm
should train and interpolate between models with a
granularity no coarser than 30�. The impact of this
design choice on the RTE and ATE can also be esti-
mated from Figures 12 and 13.

Conclusion

This work proposed a novel velocity classification
method for more accurate positional tracking of
humans carrying inertial sensors, contrasting with pre-
vious works which used deeply learnt sequence-to-one
regression models. The SC-TS algorithm first identified
patterns in the input data, projected a priori into a
locally-level frame, and encoded the mapping to corre-
sponding velocity vectors in a TS rule base. The inte-
gration of gravity compensated acceleration resulting
in exponential positional error accumulation seen in
strapdown inertial navigation was thus avoided. By sol-
ving a nonlinear optimization problem, it was shown
for the first time how the misalignment between the
locally-level frames defined by ground truth system and
IMU can be found and applied to the sequences of the
OxIOD data set. While others have used deep learning
in their approaches to create black box models, the
proposed SC-TS method is more transparent and inter-
pretable. This may be an added benefit when certifica-
tion of the algorithm is required before implementing
in a safety critical application.

In terms of RTE and ATE metrics, the proposed
SC-TS method outperformed the other baseline meth-
ods achieving mean values of 2.9 and 3.5m respectively

Figure 13. Plot of ATE with perturbation angle showing 1s
error bars.

Table 2. Mean test data error metrics for three modes of
carriage identified.

SC-TS: RoNIN: IONet: Strapdown: ZUPT:

MSVE (ms21): 0.04 0.04 0.73 1.72 0.31
ATE (m): 3.45 12.03 42.20 121.42 28.03
RTE (m): 2.88 13.44 81.70 173.87 16.18

Maton et al. 9



over sequences of about 150 s in duration from the
OxIOD data set. This was likely due to the robustness
of the SC algorithm to outliers in data, with the optimal
tuning parameters being found by grid search. Visual
inspection of results on an independent data set con-
firmed the validity of the method while also revealing
its vulnerability to stationary periods and momentary
changes to the mode of carriage on the body which
could be addressed in future work.

The sensitivity analysis presented the losses that
should be expected due to deviations of the IMU’s
mode of carriage featured in the training data com-
pared with that used at test time, offering a useful refer-
ence for future algorithm developers working toward
an ensemble motion tracking model.
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