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∗ Multiple gravity assist (MGA) trajectory design requires the solution of a mixed-integer

programming problem, to find the best sequence amongst all possible combinations of candidate

planets and dates for spacecraft maneuvers. Current approaches require computing times

rising steeply with the number of control parameters, and strongly rely on narrow search spaces.

Moreover, the challenging multi-objective optimization needs to be tackled to appropriately

inform the mission design with full extent of launch opportunities. This paper describes a

methodology based upon a trajectory model to transcribe the mixed-integer space into a discrete

graph made by grids of interconnected nodes. The model is based on Lambert arc grids obtained

for a range of departure dates and flight times between two planets. A Tisserand-based criterion

selects planets to pass-by. Dynamic programming is extended to multi-objective optimization

of MGA trajectories and used to explore the graph, guaranteeing Pareto optimality with only

moderate computational effort. Robustness is ensured by evaluating the relationship between

graph and mixed-integer spaces. Missions to Jupiter and Saturn, alongside challenging comet

sample return transfers involving long MGA sequences are discussed. These examples illustrate

robustness and efficiency of the proposed approach in capturing globally optimal solutions and

wide Pareto fronts on complex search spaces.
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®𝑣∞ = hyperbolic excess velocity vector relative to a planet, km/s

Δ𝑣 = manoeuvre impulse, km/s

\ = azimuthal angle of excess velocity at departure, rad

𝜙 = elevation angle of excess velocity at departure, rad

𝑘 = elevation angle of excess velocity at departure, rad

𝛿 = deflection angle due to planetary swing-by, rad

𝑟𝑝 = swing-by periapsis, km

𝛾 = rotation angle due of planetary swing-by, rad

𝑇 = time of flight between two planets, s

𝛼 = time fraction at which the maneuver occurs

𝑡 = epoch of planetary encounter, MJD2000

𝑁𝑟𝑒𝑣 = number of revolutions around the Sun

𝑓 = cost function

𝐷𝐸𝐹 = Defect

𝐷𝑆𝑀 = Deep Space Manoeuvre

𝐹𝐸 = Full Evaluation

𝑆𝑂𝐷𝑃 = Single-Objective Dynamic Programming

𝑀𝑂𝐷𝑃 = Multi-Objective Dynamic Programming

Subscripts

max = maximum

dep = departure

arr = arrival

Superscripts

- = before the fly-by

+ = after the fly-by

I. Introduction

In interplanetary missions, multiple gravity assist (MGA) transfers make use of successive close passages, also called

swing-bys or fly-bys, with planets or other celestial objects to change the spacecraft heliocentric velocity. This

permits gaining or loosing energy with no propellant expenditure, thus allowing exploration of regions of the Solar

System that would otherwise be too demanding to reach. For example, Galileo [1], Cassini [2], and the more recent

BepiColombo [3], Parker Solar Probe [4], Solar Orbiter [5], and JUICE [6] required or will require multiple fly-bys with
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Venus, Earth or even Jupiter to reach the desired scientific orbit.

The design of such missions presents the complication that the trajectory structure, namely the planetary sequence,

is not known a priori, but is the objective of the optimization itself, leading to a complex mixed-integer non-linear

programming (MINLP) problem [7, 8], also known in literature as a hybrid optimal control problem (HOCP) [9]. This

is one of the most challenging optimization problems, as it requires the solution of a combinatorial problem mixed with

optimal control theory. MINLP/HOCP can be seen as two coupled optimization problems: (1) the combinatorial part,

aiming at choosing the optimal sequence of fly-bys, and (2) the continuous part, aiming at identifying one or more

locally optimal trajectories for a candidate planetary sequence in terms of planetary phasing, swing-by parameters and

thrust arcs. The MGA problem complexity arises from the fact that these two components are highly coupled. In other

words, whilst the quality of a candidate sequence depends highly upon the solution of the continuous optimization, a

variation of even a single fly-by body will correspond to a significantly different trajectory path. This in turn requires

a different set of continuous variables to be optimised. As such, continuous optimization of the MGA problem is

characterized by multiple locally minimum solutions and an optimizable parameter space of complex configuration.

Problems that have been tackled in literature to design MGA trajectories can be broadly divided into two main groups:

(1) fixed-sequence problem (i.e., assuming the knowledge of the MGA sequence) and (2) variable-sequence problem

(i.e., the sequence is not known a priori).

If the MGA sequence is known, a very useful option to find trajectories that visit the selected planets is represented

by (deterministic) grid approaches. These make use of systematic scan of the search domain in terms of launch window

and transfer times between consecutive planetary encounters, usually coupled with incremental pruning techniques, in

order to reduce the dimensions of the search space. These are useful for the design of ballistic MGA trajectories when

virtually no manoeuvre effort is required. In fact, approximated Δ𝑣 manoeuvres at planetary swing-bys are generally

assumed and the optimization routine, usually single-objective, looks for trajectories that reduce such Δ𝑣 to a trivially

small number. For example, NASA’s STOUR programme [10–12] considers the difference between the incoming and

outgoing planet-spacecraft relative velocities (in magnitude) at the planetary encounter as a measure of the Δ𝑣-cost for

a given planet-to-planet phase. ESA’s GASP programme [13] employs the so-called powered swing-by model [14]

to link successive legs of the overall MGA mission at each planetary encounter, assuming a Δ𝑣 manoeuvre occurs

at the moment of closest approach during a planetary swing-by. GASP solutions are then used to inform successive

optimization with either a Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Differential Evolution (DE) or

Simulated Annealing (SA). ESA’s SOURCE algorithm [15] uses Δ𝑣 manoeuvres applied immediately after the planetary

encounters, allowing the estimation of the cost of a planet-to-planet phase. The main attractive feature of deterministic

solution strategies is that the set-up that guarantees global optimum solutions is known a priori. However, the use of

approximated Δ𝑣 manoeuvres at planetary swing-bys does not necessarily correspond to actual Deep Space Manoeuvres

(DSMs) in real-world mission scenarios, and the relationship between the different manoeuvre models is not generally
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reported. Moreover, the number of routes to be evaluated and stored represents a computational issue, that is amplified if

DSMs are considered. Therefore, stochastic metaheuristics are also largely considered to find optimal trajectories for a

fixed MGA sequence, among which GAs (e.g., [16, 17]), DE (e.g, [18–20]) and PSO (e.g., [13, 21, 22]) represent valid

alternatives. The main advantage of using metaheuristic strategies is that the solution vector does not need a first-guess

solution, as they employ an adaptive process to manage the exploration of the search space. However, such approaches

are stochastic in nature and thus the set up to consistently converge to optimal solutions is not known a priori and is

always problem dependant [18, 21, 23].

To deal with MGA trajectory design without a priori knowledge of the gravity-assist sequence, stochastic metaheuristic

strategies are generally employed. Alongside the aforementioned drawbacks of stochastic metaheuristics, they can

require quite intense computational effort to handle the mixed-integer complexity of MGA trajectory design. To mitigate

such drawbacks, stochastic metaheuristic strategies are usually employed over very small search spaces in terms of

launch dates, transfer times and DSM locations. Due to the mixed-integer nature of the problem at hand, an approach

based on nested loop optimization was presented in [24–27]. In nested optimization, an integer GA is used on the outer

loop to search for the optimal MGA sequence. The quality of such sequences is assessed in the inner loop by looking for

single-objective optimal solutions, employing continuous design variables and using a combination of PSO and DE.

Computational effort rises steeply (to reach the order of multiple days of parallel computing) with the dimensions of the

search space. A similar approach is employed in [28], where a gradient-based single-objective optimization is used for

the inner loop strategy, but with no guarantee of consistent convergence to optimal solutions. This is a typical issue of

metaheuristic strategies. Ant Colony Optimization (ACO) has also been employed [29], to construct MGA sequences

that are Δ𝑣-optimal, by exploiting DSMs at the apses of planet-to-planet transfer arcs. This assumes knowledge of the

departing date and use of a simplified dynamical model for planetary orbits. Strategies based on hidden-genes GA

have also been employed in [30, 31] and used to find minimum Δ𝑣 solution for MGA trajectories, assuming that the

launch happens anytime within a window spanning a 30-days range. A hybridization between incremental tree-graph

exploration and a bio-inspired probabilistic algorithm has also been proposed in [32], in order to find optimal solutions

with respect to propellant consumption for missions to asteroids, Jupiter and Mercury.

Most of the above optimization methods, either on fixed-sequence or variable-sequence problems, used single-

objective optimization, minimizing the overall Δ𝑣 consumption. However, beyond the challenge of finding the global

optimum of a complex MINLP/HOCP, practical mission feasibility studies for MGA trajectory design also require

an accurate description of the topology of the feasible search space, rather than only the identification of a global

optimum. Hence, a realistic mission study may be more akin to a multi-objective optimization problem, in which

multiple objectives that are competing with each other in the mission design need to be optimized simultaneously.

For the multi-objective formulation of the MGA problem, primarily stochastic metaheuristics have been employed.

A non-dominated-sorting GA (NSGA-II) has been employed in [33], assuming a maximum of three swing-bys and no
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DSMs during the transfer. NSGA-II has also been used in [34], in conjunction with parametric spreading. It is also

used as the outer loop optimizer in [35] with monotonic basin hopping and a sparse nonlinear optimizer as inner loop

optimizers. This results in quite intense computational effort, spread over massive parallel computations. The concept

of a hidden-genes GA for multi-objective optimization is used in [36], constraining the bounds of the launch date to a

one-month range and assuming a maximum of three fly-bys for missions to Mercury and Jupiter, and a maximum of

four fly-bys for missions to Saturn. A multi-objective variant of both ACO [37] and PSO [38] has been employed to

optimize MGA transfers with the knowledge of the planetary sequence. An agent-based mimetic algorithm has also

been introduced [39] for multi-objective optimization assuming a priori the MGA sequence used to reach Saturn. This

also considers no DSMs during the transfer.

From the discussion above, there is a gap in literature regarding the exploitation of the advantages of deterministic

strategies to handle the multi-objective optimization of MGA trajectories in a robust and efficient manner. This gap

includes the need to mitigate the main issues of metaheuristic strategies, primarily related to the dimensions of the

search space, the implied computing time and the required a priori knowledge of the trajectory sequence or DSMs

positions. Therefore, in order to address this gap, the novelties introduced in this paper are the following:

• Multi-objective optimization of MGA transfers with DSMs is performed in a deterministic manner. The MGA

trajectory design problem is transcribed into a graph of interconnected nodes that are linked by an approximated

Δ𝑣 occurring at each planetary swing-by. To mitigate one of the issues related to such an approach (i.e., the high

number of routes to be considered), dynamic programming principles [40] are extended to these transfers in order

to handle the multi-objective optimization. In this way, efficiency in automatically exploring the meaningful

search space is guaranteed, with the minimum computational effort possible. An energy-based criterion based

on the Tisserand parameter [41] is employed during the search for reachable planets that may be used to aid the

transfer.

• An analytic procedure based on approximated Δ𝑣 (i.e. velocity defect) removal and employing position constraints

is used to assess the relationship between manoeuvre model types. This is used to address a key issue of

deterministic approaches, i.e., the correspondence between the grid optimization and actual DSMs. In this way,

the robustness of the process is assured, allowing good representation of any manoeuvre required during the

mission.

• Very large search spaces are considered in the optimization of long MGA sequences, in the context of a test case

based on a comet sample return mission scenario.

The whole procedure provides wide Pareto fronts for the missions of interest whilst significantly reducing the

computational effort needed to find solutions. It also identifies novel transfers with respect to current literature for

missions to Jupiter and Saturn. Therefore the main disadvantages of deterministic and metaheuristic strategies are thus

mitigated because (1) dynamic programming guarantees, by means of a computationally efficient process, global Pareto
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optimality on the transcribed space; (2) the relationship between thrust model types is demonstrated.

The paper is structured as follows: section II introduces the problem and the specific approach followed; section III

describes the method of generating feasible MGA sequences by means of the Tisserand parameter; section IV discusses

the graph transcription employed and the specific graph structure of the search space; section V describes dynamic

programming as an efficient way to deal with the exploration of possible transfer strategies in the transcribed space;

section VI discusses the relationship between the transcribed and the un-transcribed space, presenting an analytical

procedure to estimate the effect of adding DSMs between two planets; finally, section VII presents numerical test cases

useful to demonstrate the efficiency and robustness of proposed methodologies, when applied to complex mission

scenarios involving large search spaces and long MGA sequences.

II. Problem Definition
The MGA trajectory design is a global optimization problem in its nature. For a given planetary sequence, several

locally optimal trajectories exist in terms of planet encounters, manoeuvres and fly-by parameters. The objective function

exhibits a complex dependency on the control parameters. Solving the MGA problem automatically, i.e., finding the

planetary sequence and a trajectory that are optimal with respect to some mission-related criteria, corresponds to solving

a MINLP/HOCP problem. In such problems, there is a function 𝐹 (𝑥, 𝑦) to be minimized, depending on both integer (𝑥)

and continuous-varying variables (𝑦). The function 𝐹 (𝑥, 𝑦) can either include one single objective or a number 𝑛𝑜𝑏 𝑗 of

competing objectives to be optimized simultaneously. A general MINLP contains the following structure:

Minimize: 𝐹 (𝑥, 𝑦) = 𝑓1 (𝑥, 𝑦), . . . , 𝑓𝑘 (𝑥, 𝑦), 𝑘 = 1, . . . , 𝑛𝑜𝑏 𝑗

where 𝑥 ∈ Z𝑛𝑖𝑛𝑡 , 𝑦 ∈ R𝑛𝑐𝑜𝑛𝑡 , 𝑛𝑐𝑜𝑛𝑡 , 𝑛𝑖𝑛𝑡 ∈ N

Subject to: 𝑔𝑖 (𝑥, 𝑦) ≤ 0, 𝑖 = 1, . . . , 𝑚 ∈ N

𝑥𝑙𝑏 ≤ 𝑥 ≤ 𝑥𝑢𝑏, 𝑥𝑙𝑏, 𝑥𝑢𝑏 ∈ Z𝑛𝑖𝑛𝑡

𝑦𝑙𝑏 ≤ 𝑦 ≤ 𝑦𝑢𝑏, 𝑦𝑙𝑏, 𝑦𝑢𝑏 ∈ R𝑛𝑐𝑜𝑛𝑡

(1)

where 𝑔𝑖 (𝑥, 𝑦) represents the constraints of the problem at hand (e.g., overall mission duration or Δ𝑣) and 𝑚 is their

number; (𝑥𝑙𝑏, 𝑦𝑙𝑏) and (𝑥𝑢𝑏, 𝑦𝑢𝑏) represent box constraints, i.e., lower and upper bounds for (𝑥, 𝑦), respectively.

In the case of MGA trajectory optimization, the design variables include the sequence of planets to be visited, which

is included in the integer vector set 𝑥, as well as the visiting epochs and other continuous variables which describe

spacecraft manoeuvres, such as the fly-bys or DSMs, all of which will be included in the continuous-varying vector 𝑦.

The functions 𝐹 (𝑥, 𝑦) and 𝑔𝑖 (𝑥, 𝑦) would then represent critical mission parameters such as the Δ𝑣 cost of the entire

transfer and the mission duration, as well as other mission-specific objectives.

Figure 1 shows an example trajectory which follows an Earth (E) – Venus (V) – Mars (M) sequence (EVM) with
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Fig. 1 Example of an EVM trajectory with DSMs on both EV and VM legs.

DSMs on both EV and EM legs. Table 1 provides a description of the integer and continuous variables involved in

the problem at hand. In this example, vector 𝑥 includes a total of 3 objects (i.e., the planets), and vector 𝑦 includes 10

variables, defining all of the events necessary to characterize the trajectories followed by the spacecraft between each

planet. The model used here is the so-called MGA-DSM [21, 42, 43], on which a DSM is assumed to occur between

two consecutive planetary encounters. In this model, a propagated arc in two-body dynamics (i.e. Keplerian arc) is

assumed after each object encounter (i.e. for the departing and swing-by planets) until the DSM epoch is reached. This

is followed by another Lambert’s arc between the DSM location and the next planetary encounter.

One should notice that the number of optimizable parameters could rise sharply if either more complex transfer

options or more complex dynamical frameworks are implemented, such as low thrust manoeuvres and multi-gravity

field models. Other strategies are also found in literature to model the transfers between two planetary encounters,

such as multiple-shooting algorithms [44]. Furthermore, primer vector theory [45] may be used to mitigate some

of the difficulties associated with the MGA-DSM model, by defining the nature and number of manoeuvres needed

between any two planetary encounters. However, for the purposes of the present paper, the MGA-DSM model is deemed

sufficient to provide representative trajectories of the MGA problem.

In this study, we consider𝐹 (𝑥, 𝑦) being a function of two objectives to be optimized, i.e., 𝐹 (𝑥, 𝑦) = ( 𝑓1 (𝑥, 𝑦), 𝑓2 (𝑥, 𝑦)),

for which:


𝑓1 = 𝑣∞,𝑑𝑒𝑝 +

𝑛𝑖𝑛𝑡−1∑︁
𝑖=1

Δ𝑣𝑖 + 𝑣∞,𝑎𝑟𝑟

𝑓2 =

𝑛𝑖𝑛𝑡−1∑︁
𝑖=1

𝑇𝑖

(2)

where 𝑣∞,𝑑𝑒𝑝 and 𝑣∞,𝑎𝑟𝑟 are the spacecraft velocities relative to the departing and arrival body, respectively, and Δ𝑣𝑖
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Table 1 Integer and continuous variables for the MINLP instance of the MGA problem with DSMs.

Integer variables (𝑥) Description
𝑥𝑖 ,∀𝑖 = 1, ..., 𝑛𝑖𝑛𝑡 Objects in the sequence (𝑛𝑖𝑛𝑡 is the number of integer variables)

Continuous variables (𝑦) Description

[𝑡0, 𝑣∞,𝑑𝑒𝑝 , \, 𝑘, 𝑇, 𝛼]1

For the first planet-to-planet leg: 𝑡0 is the launch date; 𝑣∞,𝑑𝑒𝑝 is
the spacecraft velocity relative to the departing body; (\, 𝑘)

define the heliocentric direction of the spacecraft launch as per
[42]; 𝑇 is the transfer time between two bodies; 𝛼 is the time

fraction at which a DSM is performed.

[𝑟𝑝 , 𝛾, 𝑇, 𝛼]𝑖 ,∀𝑖 = 2, ..., 𝑛𝑖𝑛𝑡 − 1 For all the successive planet-to-planet legs: 𝑟𝑝 and 𝛾 are
periapsis and inclination of the fly-by hyperbola, respectively.

are the DSMs magnitude on each planet-to-planet leg of the transfer.

Solving the multi-objective optimization of MGA sequences as formulated in Eq. (1) and (2), with no a priori

knowledge of the problem, would only be feasible for formulations with very small search domains for both integer

variables 𝑥 and the continuously-varying vector 𝑦. This implies either small fly-by sequences and/or launch windows,

transfer times, etc. Hence, it is evident that solving the mixed-integer formulation of the MGA problem requires a

process of refinement in order to manage this complexity efficiently. To do so, the following pipeline is used, briefly

introduced here, and expanded in successive sections:

• A criterion to select successive planetary encounters is used (section III). This is mainly to assess the feasibility of

different sequences in designing the mission under consideration, without wasting effort in un-promising areas of

the search space.

• A transcription of the problem from a mixed-integer formulation to a discrete optimization is useful (section IV)

to explore the search space in an efficient manner. This involves exploitation of the properties of the sub-structure

of the problem and allows suitable graph-traversing techniques to be applicable (section V).

• A refinement step is finally implemented (section VI) which takes each qualifying solution identified in the

previous steps and finds all of the relevant parameters of the original problem.

III. Generation of MGA Sequences via a Tisserand Graph
The first step of the solution of MGA trajectory design, i.e., the combinatorial optimization of feasible sequences,

usually appears within the logic of multi-fidelity processes [46]. Within this paradigm, Tisserand graphs [41] are often

used as the lowest fidelity approximation. These graphs represent a valid option to quickly assess the feasibility of

different sequences connecting two celestial objects.

A Tisserand graph is a tool which makes use of energetic consideration to build different gravity-assist sequences
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Fig. 2 Orbits at different 𝑣∞ at Venus, Earth, Mars, and Jupiter. Some resonant orbits are also represented for
Venus, Earth, and Mars.

[41, 47]. It has been used over the past decades for trajectory design of interplanetary missions. Some examples include

the Galileo Orbiter’s trajectory design [48], as well as Europa Orbiter design [49, 50]. The Tisserand graph has also

been employed in building the winning trajectory of the 6𝑡ℎ edition of the Global Trajectory Optimization Competition

(GTOC) [51]. Several modified versions were developed to adapt it to specific purposes, as in the Saturn moon tours

[52], the case of the circular-restricted 3-body problem [53], and low-thrust propulsion trajectories [54].

The Tisserand graph can be obtained by parametrizing the spacecraft orbit with respect to the velocity relative to the

gravity-assist body, also called infinity velocity ®𝑣∞ (see [41, 47] for more details). Figure 2 represents a Tisserand graph

where each point corresponds to a spacecraft orbit, in terms of apoapsis 𝑟𝑎 and periapsis 𝑟𝑝 , that crosses Solar System

planets (Venus to Jupiter in this case) at different ®𝑣∞. Intersections between lines represent possible transfer orbits

between two planets, i.e., orbits that cross two planets at the same time. Figure 2 also highlights different resonant orbits

at Venus, Earth, and Mars. These are useful to connect two different planets when the change of the orbit induced by a

single fly-by is not sufficient (usually due to the minimum altitude above the planet that the spacecraft can have during

the gravity-assisted manoeuvre). Non-resonant ballistic trajectories can also be used to bridge the gap between different

contours, especially if small bodies are involved in the transfer (e.g., Saturn moons) [55]. However, transfer orbits on

Tisserand graph only exist from an energetic point of view, since the graph contains no explicit information regarding the

planetary phase and transfer time, and any approximation employed should be taken with care as it might not correctly

map into higher fidelity models [41, 56]. Apart from planetary sequences, information on infinity velocities needed to

reach specific orbits can also be sought from Tisserand graphs, and used as non-linear constraints to reduce the search

space of successive optimization processes [15].

Therefore, exploring a Tisserand graph consists in the evaluation of the effect of all the possible sequences of
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planetary swing-bys as modelled by the parameters of the Tisserand invariant. In this way, it is possible to automatically

enumerate all the planetary sequences and excess velocities that are feasible to reach the desired target orbit, by

connecting different contours when intersections occur. This is performed by a Breadth First (BF) search strategy [57],

and the full algorithmic implementation is described in [56, 58, 59], similarly to [41, 47]. The number of combinations

to explore is usually manageable by complete enumeration strategies like BF, since a maximum of 4-5 swing-bys is

sufficient to reach any object in the Solar System. It also generally results in transfer times from 5 to more than 20 years

(see section VII). Nevertheless, one can envisage applications such as Jupiter and Saturn moon tours [48, 49, 52] in

which longer sequences might be needed, depending on specific mission-related constraints. Therefore, incomplete

enumeration processes [60] may be relevant.

(a) (b)

Fig. 3 EVEMMMJ sequence compared to EVEEJ (a) and EVEMEJ (b).

Tisserand graph exploration is thus very useful for obtaining a wide range of planetary encounters that are feasible

from an energetic point of view, and one might recognize transfers that approximate global optimality for a given transfer

scenario. A good application is the Earth (E) – Jupiter (J) scenario, where an automatic exploration of the Tisserand

graph finds 27 sequences with 3 to 5 fly-bys for an infinity velocity range of 3 to 5 km/s at the Earth and as low as

5 km/s at Jupiter with step sizes of 1 km/s between different contour lines. Few seconds of computational time are

needed to scan the Tisserand graph on a standard laptop (i.e., 4 GHz single core). Despite the relatively high number of

trajectory options, the convenient search space transcription (section IV) in conjunction with dynamic programming

approach (section V) leads to manageable computational effort (section VII). A robust and efficient exploration of the

whole search space can be performed without a priori knowledge on the solution or the need for stochastic metaheuristic

strategies. It should be noted that while an explicit exploration of integer search space is described here (via Tisserand

graph), the process can also be implicitly implemented simultaneously with the mixed-integer search of MGA sequences

(as discussed in section V), with no conceptual or computational difference.
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Fig. 4 EVEMMMJ transfer exploiting 2:1 and 3:1 resonant transfers on the successive MM legs.

Ultimately, Tisserand graph exploration provides a quick process to explore the integer search space and, as

demonstrated by Figure 3, captures efficiently all notable solutions. Figure 3 depicts only 3 solutions out of the 27

sequences identified, including the well-known EVEEJ (Figure 3.a) and the EVEMEJ (Figure 3.b) considered, for

example, for Galileo mission [1] or JUICE [6, 61]. Moreover, other very notable solutions are also identified, such as an

EVEMMMJ with 2:1 and 3:1 resonant ratio on each consecutive MM leg. This well-approximates the theoretical global

optimum resulting from a fully ballistic transfer with lowest possible 𝑣∞,𝑑𝑒𝑝 and 𝑣∞,𝑎𝑟𝑟 (i.e., half ellipse transfer from

Earth to Venus on the first leg and half ellipse from Mars to Jupiter on the last leg). Figure 4 depicts such a transfer,

which is identified automatically by the multi-objective MGA design described in section IV.

Thus, all the feasible sequences that are identified by the Tisserand map complete exploration are stored and used in

successive steps (section IV) to find trajectories between planets.

IV. Optimization of MGA Transfers
The second step of the overall framework consists in exploring the search space in terms of planets’ phasing and

DSMs for sequences of planets that come from the Tisserand map analysis. Compared to existing literature, the

efficiency of the whole process lies on this second step, i.e., in finding globally optimal Pareto fronts for any sequence

identified. This is achieved by means of a multi-objective dynamic programming (MODP) algorithm that solves this

task. However, to apply dynamic programming principles, the MGA problem needs to be transcribed into a multi-stage

decision process, in which the optimization of a given sequence is performed sequentially, i.e., one planet-to-planet

leg at a time. This section deals with this transcription process, while section V describes the MODP as a method to

explore the transcribed search space.
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A. Search Space Transcription

The idea is to consider for any given planet-to-planet leg a DSM occurring immediately after each planetary

encounter, i.e., 𝛼𝑖∀𝑖 = 1, ..., 𝑛𝑖𝑛𝑡 − 1 from Table 1. In this way, each planet-to-planet leg can be modelled as a Lambert

arc linking two successive planetary encounters. The cost of the given leg is the velocity discontinuity Δ𝑣 between

incoming and outgoing spacecraft relative velocities with respect to the planet, which are solutions of Lambert problem

for the given leg. These Δ𝑣 can be considered as infinity velocity defects, which represent impulsive manoeuvres applied

after each planetary encounter. The defects are computed as:

Δ𝑣 =


| |®𝑣+∞ | − |®𝑣−∞ | | if 𝛿 ≤ 𝛿𝑚𝑎𝑥√︁
|®𝑣+∞ |2 + |®𝑣−∞ |2 − 2|®𝑣+∞ | |®𝑣−∞ | cos(𝛿𝑚𝑎𝑥 − 𝛿) otherwise

(3)

where ®𝑣−∞ and ®𝑣+∞ are the spacecraft velocities relative to the swing-by planet before and after the encounter, respectively;

𝛿 is the angle between ®𝑣−∞ and ®𝑣+∞ (positive in the 180 degree-range counter-clockwise) and represents the change of

direction between the incoming and outgoing legs of the fly-by; 𝛿𝑚𝑎𝑥 is the maximum possible deflection at the fly-by

for the incoming relative velocity ®𝑣−∞ and reads as:

𝛿𝑚𝑎𝑥 = 2 arcsin ©«
(
1 +

𝑟𝑝,𝑚𝑖𝑛 |®𝑣−∞ |2

`𝑝𝑙

)−1ª®¬ (4)

with 𝑟𝑝,𝑚𝑖𝑛 being the minimum periapsis of the fly-by hyperbola as in [41] and `𝑝𝑙 the gravitational constant of the

fly-by planet. In other words, if the required deflection 𝛿 ≤ 𝛿𝑚𝑎𝑥 , the vectors ®𝑣−∞ and ®𝑣+∞ can be aligned with the fly-by,

while if 𝛿 > 𝛿𝑚𝑎𝑥 , then a direction change needs to be incorporated at greater Δ𝑣 cost.

It should be noted that ®𝑣−∞ and ®𝑣+∞ are solutions of the Lambert problem between two consecutive swing-bys for a

given time of flight 𝑇𝑖 . Thus, the overall Δ𝑣 consumption accumulated along the MGA mission ultimately depends on

the ephemerides of the objects, through their heliocentric velocities at the encounter epochs which define ®𝑣−∞ and ®𝑣+∞. In

this way, the 𝑦 vector from Eq. (1) and Table 1 only includes the departing date from the first object (𝑡1) and the transfer

times between successive objects (𝑇𝑖), i.e. 𝑦 = [𝑡1, 𝑇1, . . . , 𝑇𝑛𝑖𝑛𝑡−1]. This step reduces the number of decision variables

in the continuous domain.

The main advantage of modelling the problem using defects is that each planet-to-planet leg depends only upon

the previously visited object through the vector ®𝑣−∞ (see section IV.B). To usefully exploit this property, the decision

variables are applied over grids of departing dates and transfer times between two successive planetary encounters. The

problem is thus transcribed into a discrete optimization problem of finding the assignment of planetary visiting epochs

that minimizes some user-defined functions (as the ones in Eq. (2)). As an example, considering a transfer from object

𝑎 to 𝑑, with fly-bys at objects 𝑏 and 𝑐, the optimization of the overall [𝑎, 𝑏, 𝑐, 𝑑] sequence is performed in successive
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stages:

• Lambert problems are solved over a grid of departure dates and transfer durations for the first leg, i.e., 𝑎, 𝑏.

• At the start of the next leg, namely 𝑏, 𝑐, departure dates are updated using the arrival epochs at 𝑏 from the previous

leg, plus the range of duration for the current leg towards 𝑐. This step is repeated for all consecutive legs.

• For each fly-by in the sequence, for all the incoming routes to a planet, that correspond to the different departure

epoch and transfer times from the previous leg, the incoming relative velocity ®𝑣−∞ is compared with the outgoing

relative velocity ®𝑣+∞ for routes to the next flyby (for matching arrival and departure times) and the defect is

computed as from Eq. (3).

Tisserand-informed exploration of planetary fly-bys as from section III also identifies the need for resonant orbits

on legs that visit the same planet consecutively. These can occur when the time of flight is such that the spacecraft

encounters the same point for two encounters. Such transfers are characterized by a ratio of integers between the planet

and spacecraft orbit periods. The details of resonant orbits can be obtained analytically via derivation of post-fly-by

relative velocity vector characteristics [28]. Thus, if the Tisserand exploration has identified a resonant leg within an

MGA sequence, this is not generated by standard Lambert solvers, which give issues for resonant transfers. For a given

approach vector ®𝑣−∞, an infinite number of post fly-by resonant solutions exist, for the defined resonance. They differ in

the inclination of the resonant orbit. This range of different inclination solutions can be retained for consideration at the

next fly-by, or a baseline assumption of minimal inclination change can be assumed, leading to a simplification of the

problem structure.

B. Graph Structure of the Search Space

Discrete problems are usually modelled with a search space consisting of grids of connected nodes. A common

example is the Traveling Salesman Problem (TSP), where a salesman needs to visit a given number of cities, each

representing a search node. The nodes are connected by paths of a fixed length. As an optimization problem, the

shortest path or tour around all cities is sought. The TSP example may be translated to MGA missions. A spacecraft

needs to fly-by several planets and each combination of planets will have an associated cost, usually Δ𝑣-driven. It should

be noted that this analogy is only relevant for the transcribed MGA problem, which define visiting epochs that can vary

discretely on grids.

As described in section IV.A, the cost of the path connecting two objects is associated with the Lambert arc

connecting both objects at their respective encounter epochs. Figure 5 illustrates the spacecraft trajectory between two

points 𝑃 𝑗 and 𝑃𝑘 . 𝑃 𝑗 and 𝑃𝑘 each have an associated encounter epoch 𝑡𝑒𝑛𝑐( ·) . Therefore the time of flight between the

two is uniquely defined (i.e., 𝑇 = 𝑡𝑒𝑛𝑐
𝑘

− 𝑡𝑒𝑛𝑐
𝑗

) and, consequently, also the Lambert arc between these two points, for a

given number of revolutions and energy solution. The spacecraft cost of connecting planet 𝑗 and 𝑘 at their respective

visiting epochs is given by the impulsive manoeuvre Δ𝑣 as in Eq. (3). Consequently, the cost of a given leg is not unique
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Fig. 5 Sketch of spacecraft trajectory and Δ𝑣 between point 𝑃 𝑗 and 𝑃𝑘 .The spacecraft is moving from point 𝑃 𝑗

and 𝑃𝑘 on the red track, having visited previously object 𝑃𝑖 .

but depends upon the point prior to 𝑃 𝑗 , which will define the ®𝑣−∞, 𝑗
. Thus, to uniquely define the cost of a given leg

between 𝑃 𝑗 and 𝑃𝑘 , one also needs to consider the previously visited one, say 𝑃𝑖 , so that for the triplet (𝑃𝑖 , 𝑃 𝑗 , 𝑃𝑘),

there exists a unique cost. One should note that this optimal sub-structure property in the form of a triplet of individual

nodes is common to all problems where fly-bys are to be considered (e.g., [62]).

Because of this sub-structure of unique triplets, the search space can be modelled as a graph made by interconnected

nodes. Each node includes a couple of points with their encounter epochs. Following the example of section IV.A,

on an overall [𝑎, 𝑏, 𝑐, 𝑑] sequence of objects, and their encounter epochs, say [𝑡1, 𝑡2, 𝑡3, 𝑡4], respectively, one has the

following nodes [𝐴, 𝐵, 𝐶]:

• 𝐴 = (𝑎𝑡1, 𝑏𝑡2)

• 𝐵 = (𝑏𝑡2, 𝑐𝑡3)

• 𝐶 = (𝑐𝑡3, 𝑑𝑡4)

Consequently each node includes a trajectory linking two consecutive objects being visited at the specified epochs.

When connecting two consecutive nodes, the first object in one node must be equal to the second object included in

the previous node. The cost of each connection between two nodes is then given by the Δ𝑣 in Eq. (3). In this space,

the cost between consecutive nodes is unique, which is the main advantage of modelling the search space in this way.

Moreover, the problem is now formulated in a way such that the solution can be seen as a combination of independent

sub-problems, i.e., the transfers between the triplets of planets (𝑃𝑖 , 𝑃 𝑗 , 𝑃𝑘). Therefore, the sequence of objects has

become a sequence of nodes, allowing dynamic programming techniques to be applicable to the problem at hand.

V. Graph Exploration via Dynamic Programming
Although the transcription process described in section IV.A is similar in related works [10–13, 15], in the present

paper the sub-structure of unique triplets as described in section IV.B is usefully exploited to obtain globally optimal

transfers in the transcribed search space via dynamic programming principles. Therefore the discrete problem of MGA
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missions is conveniently modelled as a tree-graph. Each node of the graph represents a transfer that can be incrementally

constructed expanding one or more of its branches, i.e., adding a trajectory leg. In this way, the problem can be seen as

a multi-stage decision process, in which the overall construction of MGA sequences is reached by making a series of

lower-level choices, i.e., the selection of nodes between two different depth-levels of the tree-graph. This also allows to

better handle the constraints from Eq. (1), as branches that do not fit those boundaries are pruned out from the search

space. Thus, two steps are necessary when expanding a tree-graph: (1) branching the nodes, (2) selecting the branched

nodes to be kept for further expansion.

Amongst algorithms usually employed to scan tree-graphs, Depth First (DF) or Breadth First (BF) strategies are the

most common [57]. These are known to be complete strategies, i.e., they allow identification of the global optimum in

discrete/combinatorial problems by keeping all of the possible branched nodes whilst in the selection step. However, for

practical space-related applications, this usually implies an infeasible number of trajectory branches to be evaluated and

kept in memory. Beam Search (BS) algorithms might represent a very useful alternative [60], since the computational

effort is bounded by heuristics that prevent the exploration of non-promising branches, so that only a limited number

of nodes are kept at the selection step. For this reason, BS sacrifices the guarantee of global optimality in favour of

computational efficiency.

A. Single- and Multi-Objective Dynamic Programming

Dynamic programming mitigates the computational burden associated with exhaustive DF/BF searches while

guaranteeing global optimality for the problem at hand. To do so, dynamic programming exploits Bellman’s principle of

optimality to make optimal decisions of the sequences to be kept for further consideration at the selection step of the

tree expansion. The Bellman’s principle of optimality (in its single-objective formulation) states that regardless of the

node at which the spacecraft currently is on the tree-graph, the optimal set containing this specific node would include

the optimal subset of nodes before and after the visited one [40].

Fig. 6 Tree-graph with common node at the third depth-level.
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In other words, if the graph expansion happens to arrive at the same node at a specific tree-depth from different

paths, then only the path with the minimum objective value is useful to be kept for further consideration. Figure 6 shows

a representation of this principle. One notices that, at the third depth-level, the tree expansion reaches node 𝐼 from four

different paths, namely: 𝐴𝐶𝐼, 𝐴𝐷𝐼, 𝐵𝐸𝐼, and 𝐵𝐹𝐼 (one should recall that each node is made by a couple of objects

and their visiting epochs as from section IV.B). Assume now that the cost of sequence 𝐵𝐹𝐼 (e.g., 𝑓1 or 𝑓2 as from Eq.

(2)) is the lowest among all the other sequences that arrive in node I. Thus, any other node added after I (namely 𝐾

and 𝐿) would imply an increase in cost that is the same for all the sequences. Hence 𝐴𝐶𝐼, 𝐴𝐷𝐼 and 𝐵𝐸𝐼 need not be

kept for further consideration, since they will always be worse than 𝐵𝐹𝐼 in terms of cost function for any successive

node added. On the other hand, all the sequences that do not have any node in common at the given tree-depth, namely

𝐴𝐶𝐺, 𝐴𝐶𝐻 and 𝐵𝐹𝐽, are kept for further expansion alongside 𝐵𝐹𝐼. This ultimately allows a sensible reduction of

the number of paths that need to be kept in memory when exploring the tree. Therefore, in discrete optimization

problems, single-objective dynamic programming (SODP) allows identification, in an automatic manner, the sequence

that minimizes a specific objective with the lowest number of paths to be stored in memory.

(a) (b)

Fig. 7 Representation of different paths arriving to the same node at a specific tree-depth in the 𝑓1, 𝑓2 plane (a)
and effect of adding a node to the same sequences (b). Dotted lines link nodes on the Pareto front.

The Bellman’s principle of optimality can be also extended to handle multi-objective optimization. The extended

principle states that, regardless of the node at which the spacecraft currently is on the tree-graph, the Pareto-optimal set

containing this specific node would include the Pareto-optimal subset of nodes before and after the visited one [63].

Analogously to the SODP case, if multiple sequences arrive at the same node at a given tree-depth, then only the paths

belonging to the Pareto front are useful and so need to be kept for further consideration.

This can be seen intuitively following the same example of Figure 6. All the sequences that share the same node at a

given tree-depth (i.e., the node 𝐼 at the third level in this case), can be represented in a space with objective functions

𝐹 (𝑥, 𝑦) = 𝑓1 (𝑥, 𝑦), ..., 𝑓𝑘 (𝑥, 𝑦) as main axes. For the sake of simplicity, let’s consider just two objectives 𝑓1 and 𝑓2 (e.g.,
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as from Eq. (2)). The representation of the nodes in such space is given in Figure 7.a. As an example, one identifies a

Pareto front with sequences 𝐴𝐷𝐼, 𝐵𝐸𝐼 and 𝐵𝐹𝐼, while 𝐴𝐶𝐼 is the dominated sequence. Adding any node to these

sequences, e.g., node 𝐾 , would imply a variation in all the objectives, namely Δ 𝑓1 and Δ 𝑓2 in Figure 7.b, which is the

same for all the sequences. Therefore the Pareto front is preserved for the sequences 𝐴𝐷𝐼𝐾, 𝐵𝐸𝐼𝐾 and 𝐵𝐹𝐼𝐾, and

any sequence dominated before adding node 𝐾 is still dominated by the addition of this node, and so is not needed for

further expansion. Therefore in an analogous way to the SODP case, in discrete optimization problems, multi-objective

dynamic programming (MODP) allows identification of the optimal Pareto front with the lowest number of paths to be

stored in memory in an automatic manner.

When expanding the tree-graph, one can either: (1) generate the list of feasible planetary sequence by means of

Tisserand-based information as from section III and then apply the tree expansion on each of them (explicit variant), or

(2) exploiting the same Tisserand information directly at the tree-expansion step (implicit variant). One notices that

the two options come with the same computational effort in terms of Lambert arcs solved and defects computed. In

this paper, the tree-graph expansion branches new trajectory legs only if the sequence is within a pre-loaded list of

sequences (which is the result of section III). One also notices that since the multi-objective optimization is performed

on the transcribed space, it is important to keep all the different planetary sequences that arrive at the target planet, to

then assess the leveraging in the refinement step for a correct trade off analysis. This is because different planetary

sequences can perform in different ways in the refinement step (see also section VII.D). In other words, if two different

planetary sequences arrive to the same node, one should keep them both.

VI. Refinement of Solutions with Mid-course DSMs
To sum up, by applying the transcription process described in section IV.A, the problem is in practice decomposed

into two consecutive sub-problems: firstly, the multi-objective discrete optimization, which aims at identifying promising

MGA paths with respect to competing mission criteria, and secondly, a refinement step aimed at optimizing the

continuous design variables given a fixed sequence and visiting epochs. The key aspect of the proposed method is

assessing the relationship between manoeuvres from the MGA-DSM model and the defects model. This section focuses

on this relationship, and it shows the robustness of the proposed approach (i.e., transcription + SODP/MODP application)

in representing mission scenarios that are easily convertible into higher-fidelity models (e.g., the MGA-DSM one).

The insertion of a DSM to remove an infinity velocity defect at the next fly-by is here used to establish the relationship

between the manoeuvre and the corresponding correction of the defect. The incoming defect dependency on a preceding

mid-course DSM is thus obtained. This dependency is referred to as leveraging ratio, i.e., the ratio between the defect

and a preceding DSM. A crucial consideration is the maintenance of the subsequent rendezvous with the target planet

for the fly-by, as well as the removal of the defect.

The DSM is assumed to take place at a time 𝑡0 on a planet-to-planet leg, while the successive planetary encounter
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occurs at 𝑡 𝑓 . The DSM is derived in a reference frame which has �̂�𝑣 , �̂�𝑝 and �̂�𝑛 as unit vectors, which are components

along the velocity vector, in-orbit plane perpendicular to the velocity vector and out-of-plane normal, respectively. The

DSM has an impact on the position vector achieved at the epoch of the fly-by. Therefore, a constraint vector ®𝐶 should be

considered that maintains the relative position error with respect to the swing-by planet and the infinity velocity defect

at zero. The constraints are thus ®𝐶 = [®𝑟𝑟𝑒𝑙 ,Δ𝑣∞]𝑇 , for which ®𝑟𝑟𝑒𝑙 = ®𝑟 − ®𝑟𝑝𝑙 is the difference between the spacecraft and

planet position vectors at 𝑡 𝑓 (i.e., ®𝑟 and ®𝑟𝑝𝑙 , respectively), and Δ𝑣∞ is the infinity velocity defect at 𝑡 𝑓 . The control

variables are thus ®𝑈 = [Δ®𝑣(𝑡0), 𝑡 𝑓 ]𝑇 , on which Δ®𝑣(𝑡0) = [𝐷𝑆𝑀𝑣 , 𝐷𝑆𝑀𝑝 , 𝐷𝑆𝑀𝑛]𝑇 is the manoeuvre vector, written in

the reference frame identified by �̂�𝑣 , �̂�𝑝 and �̂�𝑛 as define above.

The required change in the constraint vector is
[
0 0 0 −Δ𝑣∞

]𝑇
. The increment in the control Δ ®𝑈 is found

approximately from a single Newton-Raphson like iteration by:

𝜕 ®𝐶
𝜕 ®𝑈

Δ ®𝑈 =

[
0 0 0 −Δ𝑣∞

]𝑇
(5)

via inversion of 𝜕 ®𝐶
𝜕 ®𝑈

. From Eq. (5), the vector [0, 0, 0,−Δ𝑣∞]𝑇 corresponds to the required change in the constraint

vector ®𝐶, and the matrix 𝜕 ®𝐶
𝜕 ®𝑈

is defined as follows:

𝜕 ®𝐶
𝜕 ®𝑈

=


𝜕®𝑟𝑟𝑒𝑙 (𝑡 𝑓 )
𝜕Δ®𝑣 (𝑡0 )

𝜕®𝑟𝑟𝑒𝑙 (𝑡 𝑓 )
𝜕𝑡 𝑓

𝜕 | ®𝑣𝑟𝑒𝑙 | (𝑡 𝑓 )
𝜕Δ®𝑣 (𝑡0 ) 0

 (6)

where ®𝑣𝑟𝑒𝑙 = ®𝑣 − ®𝑣𝑝𝑙 is the spacecraft velocity vector relative to the fly-by planet computed at time 𝑡 𝑓 (®𝑣 and ®𝑣𝑝𝑙 are the

spacecraft and planet velocities at 𝑡 𝑓 , respectively). In Eq. (6), the term 𝜕 | ®𝑣𝑟𝑒𝑙 | (𝑡 𝑓 )
𝜕𝑡 𝑓

= 0 because the acceleration due to

the Sun’s gravity is the same for both spacecraft and planet (see also Appendix for further details).

By computing the State Transition Matrix (STM) Φ between 𝑡0 and 𝑡 𝑓 one has:

Φ =


𝜕®𝑟 (𝑡 𝑓 )
𝜕®𝑟 (𝑡0 )

𝜕®𝑟 (𝑡 𝑓 )
𝜕®𝑣 (𝑡0 )

𝜕®𝑣 (𝑡 𝑓 )
𝜕®𝑟 (𝑡0 )

𝜕®𝑣 (𝑡 𝑓 )
𝜕®𝑣 (𝑡0 )

 (7)

Using 𝜕®𝑟 (𝑡 𝑓 )
𝜕®𝑣 (𝑡0 ) =

𝜕®𝑟𝑟𝑒𝑙 (𝑡 𝑓 )
𝜕Δ®𝑣 (𝑡0 ) , then:

𝜕®𝑟𝑟𝑒𝑙 (𝑡 𝑓 )
𝜕Δ®𝑣(𝑡0)

=

[
𝜕®𝑟 (𝑡 𝑓 )
𝜕®𝑣 (𝑡0 ) �̂�𝑣

𝜕®𝑟 (𝑡 𝑓 )
𝜕®𝑣 (𝑡0 ) �̂�𝑝

𝜕®𝑟 (𝑡 𝑓 )
𝜕®𝑣 (𝑡0 ) �̂�𝑛

]
(8)

Moreover, one has:

𝜕®𝑟𝑟𝑒𝑙 (𝑡 𝑓 )
𝜕𝑡 𝑓

= ®𝑣(𝑡 𝑓 ) − ®𝑣𝑝𝑙 (𝑡 𝑓 ) (9)
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where ®𝑣(𝑡 𝑓 ) and ®𝑣𝑝𝑙 (𝑡 𝑓 ) are again the spacecraft and planet velocities computed at 𝑡 𝑓 , respectively.

Then, to evaluate the following:

𝜕 |®𝑣𝑟𝑒𝑙 | (𝑡 𝑓 )
𝜕Δ®𝑣(𝑡0)

=

[
𝜕 | ®𝑣𝑟𝑒𝑙 | (𝑡 𝑓 )
𝜕𝐷𝑆𝑀𝑣

𝜕 | ®𝑣𝑟𝑒𝑙 | (𝑡 𝑓 )
𝜕𝐷𝑆𝑀𝑝

𝜕 | ®𝑣𝑟𝑒𝑙 | (𝑡 𝑓 )
𝜕𝐷𝑆𝑀𝑛

]
(10)

one uses:

𝜕 |®𝑣𝑟𝑒𝑙 | (𝑡 𝑓 )
𝜕𝐷𝑆𝑀𝑖

=
𝜕 (®𝑣(𝑡 𝑓 ) − ®𝑣𝑝𝑙 (𝑡 𝑓 ))

𝜕𝐷𝑆𝑀𝑖

· �̂�𝑟𝑒𝑙 =
𝜕®𝑣(𝑡 𝑓 )
𝜕𝐷𝑆𝑀𝑖

· �̂�𝑟𝑒𝑙 (11)

on which 𝜕®𝑣 (𝑡 𝑓 )
𝜕𝐷𝑆𝑀𝑖

=
𝜕®𝑣 (𝑡 𝑓 )
𝜕®𝑣 (𝑡0 ) · �̂�𝑖 , for each 𝑖 = 𝑣, 𝑝, 𝑛.

Therefore, it is possible to compute 𝜕 ®𝐶
𝜕 ®𝑈

as defined in Eq. (6) using Eq. (8), (9) ans (10), and thus Δ ®𝑈 from Eq. (5).

This is again evaluated via STM along the nominal trajectory for different values of 𝑡0. The leveraging ratio Δ𝑣∞/|Δ®𝑣 |

can also be derived as a function of 𝑡0, i.e., repeating the evaluation over a sequence of values of 𝑡0 to assess the efficiency

of adding a DSM to remove a successive defect, as done in section VII.C. Its maximum value, corresponding to the

minimum |Δ®𝑣 | over the trajectory, can then be obtained and used to inform successive refinement stages on the position

of the mid-course DSMs. The terms 𝜕®𝑟 (𝑡 𝑓 )
𝜕®𝑣 (𝑡0 ) and 𝜕®𝑣 (𝑡 𝑓 )

𝜕®𝑣 (𝑡0 ) used in Eq. (8) and (11) are obtained from the standard STM as

in Eq. (7) for the trajectory between 𝑡0 and 𝑡 𝑓 .

Hence, the refinement process takes all or a given subset of solutions from the grid optimization and reconstructs

the fly-by parameters and mid-course manoeuvres as in the MGA-DSM model with the guess on: (1) departing dates

and transfer times provided by the grid optimization and (2) optimal location of the manoeuvres with the help of the

analytical procedure on the described with Eq. (5) to (11). Thus, the Δ𝑣 defects can be replaced with DSMs occurring

after a fraction of the transfer time between two consecutive swing-bys, according to the MGA-DSM model. It is

important to note that the defects solutions are not approximations of the complete problem, but full solutions, i.e.,

solving the same fitness function 𝑓𝑖 (𝑥, 𝑦) as for the refinement process. The visiting epochs and planetary fly-by

parameters, variables encoded in vector 𝑦, identified in the defect model, only need to be refined in case a lower Δ𝑣

solution exists in the same neighborhood. The refinement process in the MGA-DSM model is carried by re-optimizing

the solutions using a PSO. To reconstruct MGA-DSM model parameters from defects model the definition of launch

angles (\, 𝜙) and fly-by parameters (𝑟𝑝 , 𝛾) described in [21] is used. Departing epoch in 𝑦 vector is allowed to vary on a

± 30 days-range with respect to the corresponding grid optimization values, while visiting epochs and fly-by parameters

on a ± 15 % range. Typically, few seconds are needed for the PSO to converge (approximately 40 iterations with 1200

particles on 4 GHz laptop).

For this process to be efficient, defects solutions must be close enough to the real minimum solution for the refinement

step. This is shown in Figure 8, representing on the ( 𝑓1, 𝑓2) plane different trajectories on an overall EVV mission that

arrive at the same node. Recall that a node in the MGA graph transcription is made by a couple of objects (VV in this
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Fig. 8 𝑓1 and 𝑓2 values for different EVV trajectories arriving at the node (V,𝑡1,V,𝑡2) computed with models of
different fidelity.

case) and their encounter epochs ( 𝑡1 = -589 MJD2000 and 𝑡2 = -183 MJD2000 in this example). The maximum defect

allowable is 2 km/s (see also later section VII.B, which explains the roughly one-month gap in Figure 8. One appreciates

that all the solutions incoming to a given node belong to a single-funnel structure [23]. Therefore, the SODP/MODP

selection process as from section V is robust as it allows to capture all the different funnels of the MGA problem not

losing information in the transcription process, and such funnels are then efficiently refined within higher-fidelity models

since no multi-funnels are found for a single node under evaluation.

Figure 8 also provides an illustration of the potential value obtained from using STM-based predictions to the

MGA-DSM model. STM-based solutions are accurate in the sense that they provide a better estimate of the solutions in

higher-fidelity models (average offset between STM-based model and defects model is about 400 m/s) as well as the

representation of the overall funnel. This suggests that including the procedure described by Eq. (5) to (11) while in the

branching step as from section V could be beneficial, because DSMs lie closer to the fully optimized solutions. The

price is a relatively small increase in computational cost due to STM evaluation at each node. One should also notice

that defects solutions and STM-based solutions converge to the same MGA-DSM solutions, so including STM-based

approximation is a compromise between computational effort and solution quality and depends upon the mission

application. It is worth noticing that one might consider the use of a manoeuvre at fly-by periapsis at a lower Δ𝑣 cost,

and thus a better 𝑓1 estimate (e.g., as in [13]). For the present pipeline, this might be considered at the refinement

stage, rather than at the exploration step, since such an implementation would scale down the Δ𝑣 costs, not altering

significantly the topography of the search space. Therefore, a simple Δ𝑣 as in Eq. (3) is deemed sufficient to provide

accurate results for the application considered.

20



VII. Numerical Results and Discussion
Applications of the pipeline presented in sections III, IV, V and VI are here discussed. These follow a trend of

increased complexity and are briefly introduced here:

• A transfer towards Saturn is optimized with respect to the two objectives 𝑓1 and 𝑓2 as in Eq. (2), assuming the

sequence from Earth to Saturn to be known, i.e., EVVEJS. This is like the Cassini design problem proposed by

ESA †. However, compared to most of the literature on the same problem, the multi-objective optimization is

tackled here. One tries to explore the launch window to find suitable swing-by dates for the proposed sequence,

as well as DSMs. This is done to assess the ability of the proposed pipeline in identifying Pareto-optimal paths

(section VII.A) and to test the efficiency of using the transcription process alongside SODP/MODP approaches

when exploring the transcribed search space (section VII.B). An analysis of the relationship between manoeuvre

types (i.e., defects and DSMs) is included to prove the robustness of the methodology in representing primary

missions of interest (section VII.C).

• One now assumes that the sequence reaching Saturn is not known but needs to be selected as part of the

multi-objective optimization process (section VII.D). It will be shown that it is possible to identify sequences that

are competitive with respect to the well-known EVVEJS and that contribute to the Pareto front. To do so, a much

wider exploration with respect to current literature is performed, both in terms of transfer times between planets

and number of revolutions between two consecutive encounters.

• Novel transfer options are explored in the context of a sample return mission towards comet 67P/Churyumov-

Gerasimenko, the same target as Rosetta mission [64] (section VII.E).

The following discussion highlights the advantages of the approach presented in this paper, which are:

• Fly-by sequences, departing dates, transfer times, number of revolutions around the Sun and manoeuvres size and

location do not need to be known a priori.

• Search spaces are substantially larger than those presented in similar problems in current literature.

• Optimal trajectories with respect to competing mission objectives in an overall multi-objective optimization can

be obtained in an efficient and robust manner, also showing novel transfers with respect to literature.

A. Multi-Objective Optimization of EVVEJS Sequence

The multi-objective optimization of Cassini-like EVVEJS sequence [2] is here assessed. The optimization is

performed on the transcribed space as from section IV.A. In this case, the Δ𝑣 computed as in Eq. 3 may lead to larger

values. This is because they are manoeuvres applied immediately after departure from a fly-by, so are not representing

DSMs in a real mission design context. A simple post-processing step as described in section VI is needed and again

proves the robustness of the method in converging to benchmark solutions.
†https://www.esa.int/gsp/ACT/projects/gtop/, last accessed March 2022
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Table 2 Optimization scenario for EVVEJS sequence for a launch in 1997.

Design variables Values and bounds
Sequence Known: EVVEJS

Departure velocity magnitude 𝑣∞,𝑑𝑒𝑝 ∈ [3, 5] km/s
Maximum defect at each fly-by Δ𝑣 ∈ [0, 2] km/s

Launch window 𝑡0 ∈ [−1095.5,−730.25] MJD2000
Number of revolutions about the Sun 𝑁𝑟𝑒𝑣 ≤ 1

Transfer times between planets 𝑇1 ∈ [30, 400] days 𝑇2 ∈ [100, 470] days
𝑇3 ∈ [30, 400] days 𝑇4 ∈ [400, 2000] days

𝑇5 ∈ [1000, 6000] days

The optimization scenario is described in Table 2 for a launch window in 1997. One should notice that transfer time

bounds are chosen from available literature for benchmarking ‡ [21]. For the grid optimization, step size in start date

and durations, 𝑠𝑡𝑠 and 𝑠𝑡𝑑 , respectively, are chosen to be 𝑠𝑡𝑠 = 𝑠𝑡𝑑 = 3 days for EVVE sub-sequence evaluation and

𝑠𝑡𝑑 = 6 days for EJS sub-sequence. Larger step sizes are admissible for transfers to the outermost planets since these are

less sensitive to grid sizes due to their increased orbital periods [15].

Fig. 9 Pareto front of 𝑓1 and 𝑓2 objectives as from MODP optimization for EVVEJS. Primary missions of
interest for the scenario are highlighted.

The effect of 𝑠𝑡𝑠 and 𝑠𝑡𝑑 alongside the maximum defect admissible at each fly-by is crucial when assessing the

efficiency of the proposed approach and it is always a compromise between solutions quality and computational effort

(see section VII.B). One notices that a discretization using fractions (e.g. 1%) of the planets’ orbital period would

make the performance of the algorithm less dependent on the scale of the problem, and the range of geometry explored

at each of the leg remains the same as in the fixed step sized case. In any case, the selected setup allows to obtain

all the missions of interest for the given transfer scenario with a wide Pareto front and reduced effort (as in section

VII.B), ranging from less than 6 years to almost 18 years of transfer time, as shown in Figure 9. The Pareto front is
‡https://www.esa.int/gsp/ACT/projects/gtop/, last accessed March 2022
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comprehensive in that it correctly identifies the primary mission of interest, which are: (1) the actual Cassini mission,

i.e., a fast transfer to Saturn of about 7 years; (2) the Cassini-2 problem solutions with relaxed time constraints, i.e.,

solutions with about 9.9 years, corresponding to the best-known time constrained solution; (3) optimal solutions for the

given transfer scenario with transfer duration of about 17.3 years.

Table 3 Results for Cassini-like mission compared to solutions from defect model and refinement. When a
manoeuvre is not present between two planetary encounters, a ’−−’ is included. 𝐷𝐸𝐹 stands for ’defect’.

Event Cassini [2] Defects solution Refined solution
Earth departure Oct. 6, 1997 Nov. 23, 1997 Oct. 20, 1997

𝑣∞,𝑑𝑒𝑝 4.25 km/s 4.01 km/s 4.00 km/s
−− −− −−

Venus fly-by Apr. 21, 1998 May 22, 1998 Apr. 29, 1998
𝐷𝑆𝑀2 = 0.466 km/s 𝐷𝐸𝐹2 = 1.97 km/s 𝐷𝑆𝑀2 = 0.431 km/s

Venus fly-by Jun. 20, 1999 Jul. 01, 1999 Jun. 26, 1999
−− 𝐷𝐸𝐹3 = 0.604 km/s −−

Earth fly-by Aug. 16, 1999 Aug. 20, 1999 Aug. 18, 1999
−− 𝐷𝐸𝐹4 = 0.214 km/s −−

Jupiter fly-by Dec. 30, 2000 Jan. 01, 2001 Jan. 11, 2001
−− −− −−

Saturn arrival Jul. 01, 2004 Jun. 06, 2004 Sep. 19, 2004
𝑣∞,𝑎𝑟𝑟 5.59 km/s 5.47 km/s 5.17 km/s
𝑓1 10.3 km/s 12.3 km/s 9.60 km/s
𝑓2 6.73 years 6.61 years 6.91 years

Details and trajectory representations can be found in Tables 3, 4 and 5, as well as in Figure 10, 11 and 12, for both

Cassini, Cassini-2 and optimal solution sequences, respectively. The solutions identified correspond closely within few

days to referenced solutions. One notices that to the best knowledge of the authors no reference solutions exist for the

optimal sequences (Table 5 and Figure 12), again proving the efficiency of the pipeline in comprehensively solving the

multi-objective optimization. The Pareto front in Figure 9 suggests that Cassini-2 solution is still constrained in terms of

duration and significant improvements in terms of 𝑓1 objective can be obtained. This is confirmed in Table 5, where the

infinity velocity at Saturn is leveraged by a large DSM on the last leg at the price of an increased 𝑓2 value (see also later

section VII.C).

Table 4 Results for Cassini-2 like mission compared to solutions from defect model and refinement.

Event Cassini-2 § Defects solution Refined solution
Earth departure Nov. 13, 1997 Nov. 23, 1997 Nov. 11, 1997

𝑣∞,𝑑𝑒𝑝 3.26 km/s 3.88 km/s 3.30 km/s
𝐷𝑆𝑀1 = 0.480 km/s −− 𝐷𝑆𝑀1 = 0.462 km/s

Venus fly-by Apr. 29, 1998 May 20, 1998 Apr. 30, 1998
𝐷𝑆𝑀2 = 0.398 km/s 𝐷𝐸𝐹2 = 1.83 km/s 𝐷𝑆𝑀2 = 0.398 km/s

Venus fly-by Jun. 27, 1999 Jul. 02, 1999 Jun. 28, 1999
−− 𝐷𝐸𝐹3 = 0.682 km/s −−

Continued on next page
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Table 4 – Continued from previous page
Earth fly-by Aug. 20, 1999 Aug. 21, 1999 Aug. 20, 1999

−− −− −−
Jupiter fly-by Mar. 31, 2001 Apr. 18, 2001 Apr. 01, 2001

−− −− −−
Saturn arrival Apr. 09, 2007 Apr. 24, 2007 Apr. 04, 2007

𝑣∞,𝑎𝑟𝑟 4.24 km/s 4.21 km/s 4.24 km/s
𝑓1 8.38 km/s 10.6 km/s 8.40 km/s
𝑓2 9.40 years 9.41 years 9.39 years

Table 5 Results for optimum solution in the given mission scenario compared to solutions from defect model
and refinement.

Event Defects solution Refined solution
Earth departure Nov. 13, 1997 Nov. 10, 1997

𝑣∞,𝑑𝑒𝑝 3.63 km/s 3.59 km/s
−− 𝐷𝑆𝑀1 = 0.694 km/s

Venus fly-by May 10, 1998 May 01, 1998
𝐷𝐸𝐹2 = 1.16 km/s 𝐷𝑆𝑀2 = 0.180 km/s

Venus fly-by Jun. 02, 1999 Jun. 29, 1999
𝐷𝐸𝐹3 = 0.0933 km/s −−

Earth fly-by Aug. 27, 1999 Aug. 26, 1999
𝐷𝐸𝐹4 = 0.139 km/s −−

Jupiter fly-by Jun. 18, 2002 Jun. 12, 2002
−− 𝐷𝑆𝑀5 = 1.70 km/s

Saturn arrival Mar. 02, 2015 Feb. 05, 2017
𝑣∞,𝑎𝑟𝑟 4.27 km/s 2.08 km/s
𝑓1 9.29 km/s 7.55 km/s
𝑓2 9.30 years 19.2 years

(a) (b)

Fig. 10 Cassini-like EVVEJS transfer with departure date in 1997 as resulting before (a) and after (b) the
refinement process.
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(a) (b)

Fig. 11 Cassini-2 EVVEJS transfer with departure date in 1997 as resulting before (a) and after (b) the
refinement process.

(a) (b)

Fig. 12 Optimal solution for EVVEJS transfer scenario with departure date in 1997 as resulting before (a) and
after (b) the refinement process.

B. Assessment of Single-/Multi-Objective Dynamic Programming on MGA Trajectory Optimization

In multi-objective optimization of the transcribed MGA trajectory design, a full evaluation (FE) of all possible

combinations of departing dates and transfer times in an MGA sequence usually makes the number of possible routes to

rise exponentially with the number of planets. This issue is mitigated via SODP and MODP approaches (see section V).

The key question is how feasible FE, SODP and MODP are when executed on a typical laptop. This is answered here by

assessing the stages of evaluation and numbers of evaluation per stage for the EVVEJS example considered in Table 2.

These are:

• The number of Lambert arcs evaluated (𝑁𝐿)
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• The number of defects computed (𝑁𝑑)

• The number of routes stored for FE (𝑁𝑟 ,𝐹𝐸), SODP (𝑁𝑟 ,𝑆𝑂𝐷𝑃) and MODP (𝑁𝑟 ,𝑀𝑂𝐷𝑃)

The rate of rise in 𝑁𝐿 , 𝑁𝑑 , 𝑁𝑟 ,𝐹𝐸 , 𝑁𝑟 ,𝑆𝑂𝐷𝑃 and 𝑁𝑟 ,𝑀𝑂𝐷𝑃 depends critically on the discretization considered in

evaluating each leg (i.e., step size in start 𝑠𝑡𝑠 and duration 𝑠𝑡𝑑), and on the non-linear constraints applied, generally on

the maximum Δ𝑣 defect at each encounter. Therefore a parametric study is performed to assess the feasibility of FE,

SODP and MODP with respect to the step size for start date and durations, 𝑠𝑡𝑠 and 𝑠𝑡𝑑 , respectively, and the maximum

defect Δ𝑣𝑚𝑎𝑥 . Table 6 highlights the cases considered here. The 𝑁𝑟 values represent the number of different routes

for each sub-sequence terminating with the given leg. For example, for the leg VE, 𝑁𝑟 is the number of routes of the

sub-sequence EVVE.

Table 6 Values used in parametric study for multi-objective optimization of EVVEJS.

𝑠𝑡𝑠 [days] 𝑠𝑡𝑑 [days] (EVVE) 𝑠𝑡𝑑 [days] (EJS)
Case 1 2 2 4
Case 2 3 3 6
Case 3 5 5 10

To achieve computational efficiency, Δ𝑣 defects should be the minimum possible, but subject to the condition that

locally optimal solutions are not lost, and the Pareto set characteristics are retained. This implies an upper limit on

the DSM in-between two consecutive swing-bys, which is related by the leveraging ratio (i.e., ratio between Δ𝑣 defect

and precedent DSM). Table 7 represents the computational effort in terms of terms of 𝑁𝐿 , 𝑁𝑑 , 𝑁𝑟 ,𝐹𝐸 . 𝑁𝑟 ,𝑆𝑂𝐷𝑃 and

𝑁𝑟 ,𝑀𝑂𝐷𝑃 with respect to the case considered.

Table 7 Computational effort for SODP, MODP and FE. No defects are computed on the first leg of the
transfer, thus a ’−−’ is included. The Δ𝑣𝑚𝑎𝑥 = 2 km/s.

Case 1
𝑁𝐿 𝑁𝑑 𝑁𝑟 ,𝑆𝑂𝐷𝑃 𝑁𝑟 ,𝑀𝑂𝐷𝑃 𝑁𝑟 ,𝐹𝐸

EV 34,038 −− 2,249 2,249 2,249
VV 14,880 418,314 1,462 10,924 26,263
VE 11,718 271,932 4,764 66,249 1,190,503
EJ 64,160 1,910,364 1,772 28,170 4,864,556
JS 670,536 2,216,772 278,910 6,145,707 2,754,878,045

Totals 795,332 4,817,382 278,910 6,145,707 2,754,878,045

Number of points in Pareto front 560
Optimum for 𝑓1 9.447 km/s

Case 2
𝑁𝐿 𝑁𝑑 𝑁𝑟 ,𝑆𝑂𝐷𝑃 𝑁𝑟 ,𝑀𝑂𝐷𝑃 𝑁𝑟 ,𝐹𝐸

EV 15,128 −− 995 995 995
VV 6,572 123,380 643 3,403 7,869

Continued on next page
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Table 7 – Continued from previous page
VE 5,208 79,732 2,105 20,302 240,687
EJ 28,035 562,035 780 8,479 654,155
JS 292,734 650,520 121,213 1,754,661 246,966,060

Totals 347,677 1,415,667 121,213 1,754,661 246,966,060

Number of points in Pareto front 333
Optimum for 𝑓1 9.494 km/s km/s

Case 3
𝑁𝐿 𝑁𝑑 𝑁𝑟 ,𝑆𝑂𝐷𝑃 𝑁𝑟 ,𝑀𝑂𝐷𝑃 𝑁𝑟 ,𝐹𝐸

EV 5,550 −− 362 362 362
VV 2,475 27,150 225 798 1,642
VE 1,875 16,875 741 4,586 29,102
EJ 10,143 119,301 277 1,837 49,196
JS 103,707 138,777 42,454 340,078 11,146,629

Totals 123,750 302,103 42,454 340,078 11,146,629

Number of points in Pareto front 205
Optimum for 𝑓1 9.566 km/s km/s

Fig. 13 Example of EVVEJS tree exploration. Crossed paths are pruned by SODP application. Accumulated
Δ𝑣 up to the given tree level are also shown. The bold path is 𝑓1-optimal.

The number of Lambert problems solved 𝑁𝐿 and the number of defects 𝑁𝑑 decreases when coarser grids are

considered. As can be seen, the number of different MGA paths evaluated and stored in memory by each of the

methods is substantially lower for both SODP and MODP when compared to FE. This can also be seen from Figure 13,

explicitly showing an example for EVVEJS tree exploration using SODP. Two different sequences arrive at common

node (𝑉, 𝑡7, 𝐸, 𝑡8) at level 3, but only the bold one is kept for further expansion since the accumulated Δ𝑣 is lower.

The same happens at level 4, where the node (𝐸, 𝑡8, 𝐽, 𝑡10) is reached by three routes, but only one is kept for further
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consideration.

Table 7 can also be used to infer approximate run times for the scenario considered, as the overall procedure is

dominated by Lambert arcs and defects computations. Typically, around 1 microsecond is usually needed to compute a

single Lambert arc [65–67] on standard laptop (i.e., 4 GHz single core), whilst for the defects computation times of only

few nanoseconds are necessary. Therefore, no more than a few seconds are needed for the optimization even for the

finest step-size cases (e.g., Case 1), making the whole procedure efficient for most interplanetary missions considered

here. One notices that the number of evaluations for all of the legs depends upon the discretization scheme considered,

and coarser grids would greatly reduce the effort.

One should also expect degradation of the Pareto front characteristics with larger step sizes and lower Δ𝑣𝑚𝑎𝑥 ,

as shown Figure 14. It can be seen from Figure 14.a that increasing the defects limit to a value higher than 2 km/s

does not produce significant variations of the Pareto front, whilst too aggressively pruning might result in imprecise

Pareto set representation. The DSM leveraging ratio varies typically between 0.5 and 6.5 in most of the interplanetary

missions considered here (see also section VII.C), so for example a maximum defect of 2 km/s implies a maximum

DSM magnitude of about 0.310 km/s in the extreme leveraging case (note that 6.5 is still a high leveraging ratio and will

be generally less than that). Thus, Δ𝑣𝑚𝑎𝑥 = 2 km/s seems appropriate to truthfully represents Pareto front characteristics

for the missions at hand. Figure 14.b highlights the impact of the step size with respect to the Pareto representation. A

fine search (Case 2) is usually preferrable, if computationally acceptable, as coarser step sizes can degrade the solutions

quality relatively quickly (Case 3). However, this choice is always a compromise between computational effort and

solution quality, so that in this sense Case 2 seems the most balanced. The results also show the 𝑓1 optimum solutions

converging with increasing defect size for different interval considered, giving high confidence in the optimality for a

given step size.

(a) (b)

Fig. 14 Pareto fronts for EVVEJS scenario varying with the Δ𝑣𝑚𝑎𝑥 (a) and Case number (b).
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To conclude, if defects are to be used as the only processing stage, i.e., with no further optimization in MGA-DSM,

then small intervals (Case 2) are useful to use with MODP, providing accurate results (section VII.E) and are less

consequential in terms of route numbers than other strategies. If another optimisation stage is envisaged, then a larger

interval could also potentially be used (Case 3) with greater efficiency for the whole process.

C. Converting Defects into DSMs

A key feature of the pipeline described in this paper is the relationship between infinity velocity defects and DSMs.

Therefore, assessing the relationship between these two manoeuvre types is important to the understanding of the whole

pipeline. The analytical approximation described in section VI is employed here. This allows the derivation of the

leveraging effect obtainable from a DSM, i.e., the dependency of an infinity velocity defect on a preceding DSM. As can

be seen from both Table 3, 4 and 5, large defects occurring in the Venus-Venus leg of EVVEJS are replaced by DSMs,

reducing from more than 1 km/s to approximately 400-600 m/s. The Δ𝑣 occurring in all of the other legs are virtually

reduced to zero by means of the refinement process.

In the fully optimized solution after the refinement, the defect at the start of the second leg, i.e., VV, has been

removed by lowering the infinity velocity at the first Venus fly-by, with a DSM applied in the first leg. This happens in

the case of both Cassini-2 and the optimal solution, while nominal Cassini experiences a higher velocity increment at

the Earth departure. The lower initial infinity velocity at Venus causes a large defect at the second Venus encounter, but

this is corrected by a DSM in the second leg where the high efficiency of the DSM is seen. The grid-based solution

has higher cost, i.e., Δ𝑣 prediction, than the refined solution, because the refinement redistributes the infinity velocity

defects to maximally utilise the DSM leveraging.

This is noticed from the leveraging ratios computed on each leg of the EVVEJS transfer both for Cassini, Cassini-2,

and optimal solution in Figure 15. The parameter represented is the ratio of the infinity velocity defect corrected to the

magnitude of a DSM, versus the time fraction elapsed into the segment. The plot illustrates that in the second segment,

i.e., the Venus-Venus leg, the peak ratio is the highest in all the cases considered, and so implies that any infinity velocity

defect can be efficiently corrected with a much smaller DSM, which is what happens in the refinement step. In the

Earth-Venus leg, the ratio is generally less than 1 but exceeds 1 towards the end of the leg, reaching approximately 1.4.

The efficiency in this segment is clearly much less than Venus-Venus segment. It is also interesting to notice that in

the last Jupiter-Saturn leg for both Cassini and Cassini-2 scenarios (Figure 15.a and Figure 15.b), the leveraging ratio

remains below 1 for all of the time elapsed in the segment, reaching its maximum value, i.e., 1, only at Saturn encounter.

This suggests that a DSM is not useful to leverage infinity velocity at Saturn, as also confirmed by refined results in

Table 3 and Table 4. In the case of optimal solution (Figure 15.c), the peak of the leveraging ratio on the last leg is higher

than 1 around the mid-region of the last Jupiter-Saturn leg. Therefore, it is more efficient to remove most of the infinity

velocity at Saturn with a large DSM between the last two planets as again proved by the refinement process in Table 5.
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(a) (b)

(c)

Fig. 15 Leveraging ratios per leg considered for Cassini (a), Cassini-2 (b) and optimal solution (c).

D. Multi-Objective Optimization of Earth-Saturn Missions

One then assumes that the sequence to reach Saturn is not known but needs to be selected as part of the optimization

process. Table 8 highlights the set up for this scenario. One should notice that the time bounds are larger than those

considered in Table 2, and multiple revolutions around the Sun (up until 2 full revolutions) are admissible for the

innermost planets (i.e., if Venus, Earth, or Mars are involved in the transfer).

Table 8 Optimization scenario for Earth-Saturn mission for a launch in 1997.

Design variables Values and bounds

Sequence
Unknown. Any planet can be chosen among:

Venus, Earth, Mars, Jupiter, Saturn. Maximum
number of planets: 6.

Departure velocity magnitude 𝑣∞,𝑑𝑒𝑝 ∈ [3, 5] km/s
Maximum defect at each fly-by Δ𝑣 ∈ [0, 2] km/s

Launch window 𝑡0 ∈ [−1095.5,−730.25] MJD2000
Continued on next page
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Table 8 – Continued from previous page
Number of revolutions about the Sun 𝑁𝑟𝑒𝑣 ≤ 2

Transfer times between planets 𝑇 ∈ [50, 750] days If any leg has V, E, M
𝑇 ∈ [500, 5000] days If any leg has J or S
𝑇 ∈ [400, 2500] days If 𝑁𝑟𝑒𝑣 ≥ 1

With such a scenario, a total of 11 sequences are identified, whose paths on Tisserand map are represented in Figure

16 and their Pareto fronts in Figure 17. Such Pareto fronts result from the specific mission scenario considered in Table

8, where less than one revolution is considered when either Jupiter or Saturn are present in a leg. One expects further

reduction in 𝑓1 in the region of the 24-25 years of transfer times if this hypothesis is removed.

(a) (b)

Fig. 16 Tisserand plots of Earth-Saturn options (in shaded grey) with interesting sequences highlighted
(coloured lines). Squared region in plot (a) is zoomed in plot (b).

Fig. 17 Pareto front of Earth-Saturn options for the optimization scenario considered.

It can be noted that Cassini-like transfers following an EVVEJS sequence, in cyan in Figure 16, still represent the 𝑓1
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optimal solution for short mission durations, i.e., approximately 7 years of transfer time, while other sequences like

EVEJS or EVEEJS, in blue and orange in Figure 16, respectively, become competitive for longer mission durations, i.e.,

more than 10 years.

One can see that EVEJS seems to dominate EVVEJS for mission durations at about 10 years of transfer time. This

mission option is characterized by a large defect in the EJ segment as reported in Table 9, as a single Earth fly-by usually

is not sufficient to increase the spacecraft apoapsis to Jupiter orbit without the use of a large manoeuvre. In fact, a quick

analysis of the leveraging ratio in Figure 18 shows that an optimal manoeuvre location in this segment should be at the

very beginning of the leg, i.e., in the same position of the defect (i.e. to remove the velocity defect at the next Jupiter

encounter). However, the defect at Jupiter is already relatively small, so the manoeuvre is likely not to be as effective as

in the EVVEJS case, where high efficiency is seen in the VV leg, as demonstrated in the refinement step shown Table 9.

Trajectories for EVEJS both before and after the refinement are shown in Figure 19, where one can see the manoeuvre at

the very beginning of the EJ segment.

Table 9 Results for the ≈ 10 years EVEJS solution in the given mission scenario.

Event Defects solution Refined solution
Earth departure Oct. 22, 1997 Oct. 20, 1997

𝑣∞,𝑑𝑒𝑝 3.73 km/s 3.99 km/s
−− −−

Venus fly-by Mar. 26, 1998 Mar. 24, 1998
𝐷𝐸𝐹2 = 0.425𝑘𝑚/𝑠 −−

Earth fly-by Aug. 04, 1999 Aug. 02, 1999
𝐷𝐸𝐹3 = 1.63𝑘𝑚/𝑠 𝐷𝑆𝑀2 = 1.44𝑘𝑚/𝑠

Jupiter fly-by Apr. 09, 2001 May 12, 2001
−− −−

Saturn arrival Sep. 09, 2007 Oct. 14, 2008
𝑣∞,𝑎𝑟𝑟 4.18 km/s 4.13 km/s
𝑓1 9.96 km/s 9.56 km/s
𝑓2 9.88 years 10.9 years

In addition, it is possible to identify a new 𝑓1 optimal solution for the Earth-Saturn mission scenario considered.

This is the case of the EVEEJS sequence, outperforming the missions identified in section VII.A, in terms of 𝑓1 value,

at the price of increased total transfer time 𝑓2. The trajectory is depicted in Figure 20 and the corresponding values are

shown in Table 10.

A general consideration is that the topology of the search space is correctly captured for any of the sequences

identified (section VII.A), and the grid optimization alongside the dynamic programming approach already provides a

very powerful tool to perform an accurate trade off analysis with very short computational effort (approximately 20

minutes on a 4 GHz laptop, see section VII.B). This is particularly useful in preliminary mission analysis (see also later

section VII.E) when multiple mission options are often required with little work time allowed. Also there is very little

a priori knowledge of the structure of the final trajectory. With this methodology, all the possible feasible trajectory
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Fig. 18 Leveraging ratios per leg considered for EVEJS transfer for a departure date in 1997 and a transfer
duration of about 10 years.

(a) (b)

Fig. 19 EVEJS as from grid optimization (a) and refinement (b) for a departure date in 1997 and a transfer
duration of about 10 years.

options are identified and can then efficiently initialise successive optimizations using higher-fidelity models.

Table 10 Results for optimal EVEEJS in the given mission scenario.

Event Defects solution Refined solution
Earth departure Jun. 24, 1997 Jul. 24, 1997

𝑣∞,𝑑𝑒𝑝 3.77 km/s 3.75 km/s
−− −−

Venus fly-by Sep. 27, 1998 Oct. 10, 1998
𝐷𝐸𝐹2 = 0.609𝑘𝑚/𝑠 𝐷𝑆𝑀2 = 0.525𝑘𝑚/𝑠

Earth fly-by May 23, 2000 Jun. 16, 2000
𝐷𝐸𝐹3 = 0.0751𝑘𝑚/𝑠 𝐷𝑆𝑀3 = 0.057𝑘𝑚/𝑠

Continued on next page
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Table 10 – Continued from previous page
Earth fly-by Feb. 14, 2007 Feb. 18, 2007

−− −−
Jupiter fly-by May 08, 2011 May 11, 2011

−− −−
Saturn arrival Apr. 23, 2021 Apr. 16, 2021

𝑣∞,𝑎𝑟𝑟 3.09 km/s 3.08 km/s
𝑓1 7.54 km/s 7.41 km/s
𝑓2 23.8 years 23.7 years

E. Comet Sample Return Missions

A mission scenario involving cometary objects amongst the Jupiter Family Comets (JFCs) is explored in this section.

Such missions have been identified as future milestone in the context of the ESA Cosmic Vision 2050 [68]. The

scenario considered here is reported in Table 11. The increased complexity of such scenario mainly results from the

high number of object encounters, the extended launch window (between 2030-2040) and transfer times as well as the

trajectory structure in terms of spacecraft revolutions about the Sun. The target comet is assumed to be known, and is

67P/Churyumov-Gerasimenko, i.e. the same target of ESA’s Rosetta mission [64]. Compared to the scenarios in section

VII.A and VII.D, the additional constraints considered for this optimization problem are: (1) the transfer time on each

phase of the mission 𝑡𝑝 (either to go to the comet or to return to the Earth) should not exceed 8 years, (2) the time 𝑡𝑤

between cometary rendezvous and departure should be within 6 to 12 months to account for science phase operations.

Table 11 Optimization scenario for comet sample return mission for a launch in 2030-2040.

Design variables Values and bounds
Target comet 67P/Churyumov-Gerasimenko

Sequence Unknown. Any planet can be chosen among: Venus,
Earth, Mars. Maximum number of objects: 10

Departure velocity magnitude 𝑣∞,𝑑𝑒𝑝 ∈ [3, 5] km/s
Maximum defect at each fly-by Δ𝑣 ∈ [0, 2] km/s

Launch window 𝑡0 ∈ [10957.5, 14610] MJD2000
Number of revolutions about the Sun 𝑁𝑟𝑒𝑣 ≤ 2

Maximum time on each transfer phase (either
to go to the comet or to return to the Earth) 𝑡𝑝 ∈ [0, 8] years

Science phase time 𝑡𝑤 ∈ [6, 12] months

Transfer times between planets
𝑇 ∈ [50, 750] days If any leg has V, E, M
𝑇 ∈ [300, 2500] days If any leg has 67P
𝑇 ∈ [400, 2500] days If 𝑁𝑟𝑒𝑣 = 1

The objective is to explore the whole 10-years launch window to find suitable trajectory options to go to the comet

and return subject to the constraints. Thus, MODP-based approach is considered with the following objectives: (1) the
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(a) (b)

Fig. 20 EVEEJS as from grid optimization (a) and refinement (b) for a departure date in 1997 and a transfer
duration of about 24 years.

first objective is to maximise the spread in launch dates, i.e., to look how many opportunities exist to go to 67P and

return within the constraints in Table 11; (2) minimize the overall mission cost computed as follows:

𝑓1 =


𝑣∞,𝑑𝑒𝑝 +

𝑛𝑖𝑛𝑡−1∑︁
𝑖=1

Δ𝑣𝑖 + Δ𝑣𝑎𝑟𝑟 + Δ𝑣𝑑𝑒𝑝 + (𝑣∞,𝑎𝑟𝑟 − 4 𝑘𝑚/𝑠) if 𝑣∞,𝑎𝑟𝑟 > 4 km/s

𝑣∞,𝑑𝑒𝑝 +
𝑛𝑖𝑛𝑡−1∑︁
𝑖=1

Δ𝑣𝑖 + Δ𝑣𝑎𝑟𝑟 + Δ𝑣𝑑𝑒𝑝 otherwise
(12)

where 𝑣∞,𝑑𝑒𝑝 and 𝑣∞,𝑎𝑟𝑟 are the departing and arrival infinity velocities at the Earth, respectively; Δ𝑣𝑖 are the

manoeuvres on each leg of the transfer (either on the way to the comet or on the return phase to the Earth); Δ𝑣𝑎𝑟𝑟 and

Δ𝑣𝑑𝑒𝑝 are the manoeuvres required for the rendezvous and the departure with the comet, respectively. The 𝑓1 function

considers a free return to the Earth if the 𝑣∞,𝑎𝑟𝑟 ≤ 4 𝑘𝑚/𝑠 (considered as a reasonable maximum threshold for a free-Δ𝑣

re-entry in the Earth atmosphere [69]). To ensure a suitable distribution in the departing dates over the large launch

window (10 years), all the paths that depart the Earth with different launch epochs and that are compliant with the

constraints are retained at any selection steps of the MODP expansion. In other words, at each level of tree expansion,

all those paths that arrive at a common node and have different departure dates are saved (i.e., in this case the path

(𝐸𝑡2, 𝑉𝑡3) − (𝑉𝑡3, 𝑉𝑡7) − (𝑉𝑡7, 𝐸𝑡8) from Figure 13 would be saved alongside (𝐸𝑡1, 𝑉𝑡4) − (𝑉𝑡4, 𝑉𝑡7) − (𝑉𝑡7, 𝐸𝑡8)).

The MODP exploration informed by Tisserand-based criterion automatically allows identification of a very high

number of trajectories (109) involving up to 6 fly-bys with Solar System planets for a total of up to 10 objects in

the overall sequence. The overall launch window exploration remains efficient (see section VII.B) and only takes

approximately 1.5 hours (4 GHz laptop). Figure 21.a illustrates the 𝑓1 cost of reaching the comet with the sequences

identified by the pipeline, with respect to the launch date at the Earth, while Figure 21.b shows the cost of the return
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(a) (b)

Fig. 21 Cost of transfers towards 67P (a) and back to the Earth (b) with respect to launch and arrival date,
respectively.

Fig. 22 Comet sample return trajectory to 67P involving an EVEE-67P trajectory to the comet (black path)
and a 67P-EEVE transfer on the way back (magenta path).

phase with respect to the arrival date at the Earth. The two phases are here separated for the sake of representation, i.e.,

only those sequences that arrive to the comet and that can be completed with a return phase are shown, and the 𝑓1 cost

refers to the single phase under consideration. One notices that the reversed sequences like EVEE-67P and 67P-EEVE

provide the cheapest transfers towards the comet and back to the Earth, respectively. This transfer is shown in Figure 22

and the corresponding events and values are reported in Table 12. No large manoeuvres are required either in the defect

approximation, or in the refined solution, showing very good correspondence between defect solutions and refined ones.
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Table 12 Results for optimum solution for the given comet sample return mission scenario.

Event Defects solution Refined solution
Earth departure Jul. 15, 2031 Jul. 05, 2031

𝑣∞,𝑑𝑒𝑝 4.31 km/s 3.89 km/s
−− −−

Venus fly-by Dec. 17, 2031 Dec. 17, 2031
−− −−

Earth fly-by Oct. 26, 2032 Oct. 28, 2032
−− −−

Earth fly-by Oct. 26, 2034 Oct. 28, 2034
𝐷𝐸𝐹4 = 0.743𝑘𝑚/𝑠 −−

Comet arrival May 08, 2011 May 11, 2011
Δ𝑣𝑎𝑟𝑟 1.33 km/s 1.24 km/s

Comet departure Mar. 16, 2037 Mar. 16, 2037
Δ𝑣𝑑𝑒𝑝 1.14 km/s 1.14 km/s

−− −−
Earth fly-by Oct. 22, 2040 Oct. 22, 2040

−− −−
Earth fly-by Oct. 22, 2042 Oct. 22, 2042

𝐷𝐸𝐹7 = 0.0874𝑘𝑚/𝑠 −−
Venus fly-by Mar. 13, 2044 Mar. 07, 2044

𝐷𝐸𝐹8 = 0.0262𝑘𝑚/𝑠 −−
Earth arrival Aug. 21, 2044 Aug. 11, 2044
𝑣∞,𝑎𝑟𝑟 4.02 km/s 3.78 km/s
𝑓1 6.48 km/s 6.27 km/s
𝑓2 13.1 years 13.1 years

A general consideration is that the defect model will give the most accurate predictions for near-ballistic transfers

with zero or low DSM requirement and shows greater divergence from fully optimized solutions where large DSMs

are needed. The procedure has proven again to be efficient in exploring a mission scenario of complex configuration,

demonstrating the ability to identify multiple mission options for practical preliminary analysis of future missions.

VIII. Conclusions
The paper presented a robust and efficient approach to the multi-objective optimization of complex MGA transfers.

The pipeline employed uses processes that consider: (1) an energetic approach based on the Tisserand parameter in order

to understand feasible MGA sequences; (2) approximated Δ𝑣 manoeuvres, i.e., velocity defects at planetary encounters,

allowing efficient exploration of the search space in terms of launch window and transfer times; (3) refinement of

selected solutions accounting for fly-by parameters and DSMs between two consecutive swing-bys, in the so-called

MGA-DSM model. Specifically, robustness is ensured by the evaluation of the relationship between the different

manoeuvre types. Dynamic programming is used to efficiently exploit the structure resulting from the MGA path

planning step. In this way, multi-objective dynamic programming (MODP) is used as a method to explore the transcribed

search space, guaranteeing the global Pareto optimality of competing mission objectives. The ability of the proposed
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approach in identifying globally optimal paths was tested against mission to Jupiter and Saturn, similar to the JUICE and

Cassini missions. The results obtained demonstrate the effectiveness in representing wide Pareto fronts with a complex

configuration, for well-known trajectories. Indeed, in such cases the method allowed identification of the Δ𝑣-global

optimum without any need for a priori knowledge of the solution (e.g., on the gravity-assist sequence, the departing date,

transfer times and DSMs) in an efficient way. Wider search spaces are used compared to those in existing literature, as

well as new transfer scenarios towards the aforementioned planets that populate very wide Pareto fronts. Numerical

results show that the proposed pipeline is also suitable for exploring novel scenarios such as sample return missions

towards comets, where the complexity mainly lies in (1) the extended launch window considered, and (2) the structure

of the trajectories themselves, requiring up to six fly-bys for the overall mission.

Appendix
The term 𝜕 | ®𝑣𝑟𝑒𝑙 | (𝑡 𝑓 )

𝜕𝑡 𝑓
from Eq. (6) is shown to be zero by considering that:

(𝑣𝑟𝑒𝑙 (𝑡 𝑓 ))2 = ®𝑣𝑟𝑒𝑙 · ®𝑣𝑟𝑒𝑙 = (®𝑣 − ®𝑣𝑝) · (®𝑣 − ®𝑣𝑝) (13)

where ®𝑣 and ®𝑣𝑝 are the spacecraft and planet velocities with respect to the central body, respectively, and 𝑣𝑟𝑒𝑙 = |®𝑣𝑟𝑒𝑙 |.

The partial derivative with respect to arrival time 𝑡 𝑓 is:

2𝑣𝑟𝑒𝑙 (𝑡 𝑓 )
𝜕𝑣𝑟𝑒𝑙 (𝑡 𝑓 )
𝜕𝑡 𝑓

= 2®𝑣𝑟𝑒𝑙 ·
𝜕®𝑣𝑟𝑒𝑙
𝜕𝑡 𝑓

(14)

Therefore, one has that:

𝜕𝑣𝑟𝑒𝑙 (𝑡 𝑓 )
𝜕𝑡 𝑓

=
®𝑣𝑟𝑒𝑙 · 𝜕®𝑣𝑟𝑒𝑙

𝜕𝑡 𝑓

𝑣𝑟𝑒𝑙 (𝑡 𝑓 )
(15)

as well as:

𝜕®𝑣𝑟𝑒𝑙
𝜕𝑡 𝑓

=
𝜕®𝑣
𝜕𝑡 𝑓

−
𝜕®𝑣𝑝
𝜕𝑡 𝑓

(16)

The use of the partial derivative here signifies a partial where initial position is constant but final time is allowed to

vary. In this case the above partials with respect to time are equivalent to the full-time derivatives of velocity. These

time derivatives of planet and spacecraft velocity are evaluated at the point of rendezvous with the planet. Thus:

𝑑®𝑣
𝑑𝑡 𝑓

=
𝑑®𝑣𝑝
𝑑𝑡 𝑓

= − `

𝑟3
𝑝

®𝑟𝑝 (17)

i.e., both objects accelerate with the same gravitational acceleration as they are co-located. Therefore:
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𝜕®𝑣
𝜕𝑡 𝑓

−
𝜕®𝑣𝑝
𝜕𝑡 𝑓

= 0 (18)

and so 𝜕𝑣𝑟𝑒𝑙 (𝑡 𝑓 )
𝜕𝑡 𝑓

= 0, using Eq. (15) and (16).
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