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• Comparative analysis performed for an-
aerobic low temperature long chain fatty
acids degrading microbiomes

• Variation in the richness and diversity of
the microbiomes linked to inoculum char-
acteristics

• Core archaeal genera included 3–7 taxa,
including Methanobacteria and
Methanosaeta.

• Core bacterial taxa are complex (>2000),
fermentative, many with unknown func-
tions.
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Fats, oil and grease, and their hydrolyzed counterparts-long chain fatty acids (LCFA)make up a large fraction of numer-
ous wastewaters and are challenging to degrade anaerobically, more so, in low temperature anaerobic digestion
(LtAD) systems. Herein,we perform a comparative analysis of publicly available Illumina 16S rRNAdatasets generated
from LCFA-degrading anaerobic microbiomes at low temperatures (10 and 20 °C) to comprehend the factors affecting
microbial community dynamics. The various factors considered were the inoculum, substrate and operational charac-
teristics, the reactor operation mode and reactor configuration, and the type of nucleic acid sequenced. We found that
LCFA-degrading anaerobic microbiomes were differentiated primarily by inoculum characteristics (inoculum source
and morphology) in comparison to the other factors tested. Inoculum characteristics prominently shaped the species
richness, species evenness and beta-diversity patterns in themicrobiomes even after long term operation of continuous
reactors up to 150 days, implying the choice of inoculum needs careful consideration. The generalised additivemodels
represented through beta diversity contour plots revealed that psychrophilic bacteria RBG-13-54-9 from family
Anaerolineae, and taxaWCHB1–41 andWilliamwhitmaniawere highly abundant in LCFA-fedmicrobial niches, suggest-
ing their role in anaerobic treatment of LCFAs at low temperatures of 10–20 °C. Overall, we showed that the following
bacterial genera: uncultured Propionibacteriaceae, Longilinea, Christensenellaceae R7 group, Lactivibrio, candidatus
Caldatribacterium, Aminicenantales, Syntrophus, Syntrophomonas, Smithella, RBG-13-54-9, WCHB1–41, Trichococcus,
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Proteiniclasticum, SBR1031, Lutibacter and Lentimicrobium have prominent roles in LtAD of LCFA-rich wastewaters at
10–20 °C. This study providesmolecular insights of anaerobic LCFA degradation under low temperatures from collated
datasets and will aid in improving LtAD systems for treating LCFA-rich wastewaters.
1. Introduction

Fats, oils and grease (FOG) constitute amajor organic fraction of various
wastes and wastewaters generated from food preparation (restaurant, cafe-
teria) and processing, oils processing (palm oil, olive oil etc.), dairy, slaugh-
terhouse and wool scouring (Holohan et al., 2022). Certain wastewaters,
typically considered as carbohydrate-rich, for example, corn to ethanol
thin stillage andmunicipal wastewatersmay also constitute high concentra-
tions of FOG (Dereli et al., 2015; Keating et al., 2018; Petropoulos et al.,
2018). Typical estimates of municipal wastewaters generated per capita
are 120–170 L per day, containing 50–150 mg/L of FOG (Holohan et al.,
2020; Petropoulos et al., 2018). Another example of a highwastewater gen-
erating industry is dairy processing,wherein conservative estimates suggest
generation of about 0.4-trillion liters of dairy wastewaters annually with
the FOG fraction ranging from 0.3 to 40 g per liter of wastewater (Singh,
2019). This FOG fraction is an important substrate for anaerobic digestion
due to its highermethane production potential relative to the carbohydrate
and protein-fractions (Alves et al., 2009). Furthermore, majority (~90 %)
of the total organic carbon, and thus, the methanogenic potential of FOG
is conserved within the hydrolysis products - long chain fatty acids
(LCFAs) (Hanaki et al., 1981), which indicates LCFAs as key substrates in
the anaerobic FOG degradation pathway. However, a number of challenges
are associated with the anaerobic digestion of LCFAs including: i) sludge
flotation and washout induced by LCFAs; ii) mass-transfer limitations im-
posed by formation of hydrophobic LCFA layer around sludge aggregates
(Singh, 2019); iii) decrease in cell permeability (Zhou et al., 2013); iv) inhi-
bition of enzyme activity (Zheng et al., 2005); v) disruption of cellular en-
ergy functions; vi) increased solubilization of microbial lipid bilayer and
membrane proteins (Desbois and Smith, 2010). Overall, the impact is re-
duced methane production and treatment efficiency due to the inhibition
of multiple trophic groups in the anaerobic digestion pathway- hydrolytic
bacteria, syntrophic bacteria and methanogenic archaea (Davidsson et al.,
2008; Hwu and Lettinga, 1997; Lalman and Bagley, 2001, 2000; Sun
et al., 2013).

High-rate low temperature anaerobic digestion (LtAD) of wastewaters
at their discharge temperatures has the potential to achieve energy neutral-
ity (Gao et al., 2014; McKeown et al., 2009). However, at temperatures
≤20 °C, the challenges associated with LCFA degradation are exacerbated
due to a decrease in LCFA solubility, substrate uptake kinetics and mass
transfer, and impeded mixing due to the increase in bulk viscosity (Singh,
2019). Maintaining growth rates and activities of syntrophic bacteria and
methanogens is fundamental to LtAD operation and process stability, how-
ever these microbes have inherently slow growth rates which further de-
crease at low temperatures (Cai et al., 2021). Previously, the abundance
and activity of keymicrobial taxa has been linked to improved functionality
of LtAD processes by application of various strategies such as microbial
acclimation, optimization of operational parameters or utilization of spe-
cialized reactor designs (Bialek et al., 2014; Dev et al., 2019; Park et al.,
2012; Wang et al., 2020). Acclimation of inoculum to treatment environ-
ment, such as substrate and operational characteristics, has been shown
as a useful strategy in enhancing the LtAD applications (Darko et al.,
2022; Kurade et al., 2020; Lendormi et al., 2022). Based on the understand-
ing that the type of inoculum seeded at start up may affect the functional
potential and adaptability of the anaerobic microbiome during reactor
operation, inoculum sourced from psychrophilic conditions (~5 °C) have
been used for LtAD of various substrates. Inoculum obtained from frozen
natural sites were employed for seeding anaerobic reactors treating brew-
ery and municipal wastewaters at 15 °C (Petropoulos et al., 2019; Xing
et al., 2010). Alternatively, inoculum pre-adapted to psychrophilic
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conditions were used, for example, granular sludges acclimated to
17–20 °C were used for treating volatile fatty acids (VFA)-based and
carbohydrate-rich wastewaters in expanded granular sludge bed reactors
(EGSBs) at 5–15 °C (Esparza-Soto et al., 2013; Syutsubo et al., 2008).

For any AD system, inoculum and substrate characteristics, and opera-
tional conditions such as temperature, HRT, SRT are important parameters
for efficient treatment (Mao et al., 2015; Siddique and Wahid, 2018). In
LtAD systems, slow growth of microbes and reducedmicrobial activity sug-
gest inoculum characteristics are a crucial factor (McKeown et al., 2012;
Pavlostathis and Giraldo-Gomez, 1991). One challenge for LtAD processes
is obtaining inoculum which has microbial consortium needed to match a
treatment scenario, since most AD reactors currently operate at mesophilic
conditions. Due to the easier availability of mesophilic inoculum, they have
been used in LtAD of municipal and industrial wastewaters (El-Kamah
et al., 2010; Enright et al., 2009; Fia et al., 2012; Keating et al., 2018;
McHugh et al., 2006; Sheldon and Erdogan, 2016; Singh et al., 2019b,
2019a; Trzcinski and Stuckey, 2010; Zhang et al., 2012). These studies
suggested that the enrichment of specific taxa during reactor operation is
subject to not only the initial composition of the inoculum and resultant a
priori effects, but also the operational conditions such as temperature, for
example, development of psychrophilic anaerobic microbial consortium
in hybrid reactors treating acidified wastewaters needed a long duration
(1243 days) (McKeown et al., 2009). Moreover, microbial composition of
most abundant taxa from low temperature studies has similar abundance
profiles suggesting a prominent role of temperature (Trego et al., 2021).
Knowledge regarding LtAD of wastewaters is limited for recalcitrant waste-
waters rich in FOG and/or LCFA. Therefore, the general applicability of
inoculation approaches for psychrophilic anaerobic digestion should be
ascertained through empirical testing due to inherent instability of perfor-
mance in these systems (Tiwari et al., 2021; Yao et al., 2020).

LtAD systems are complex, involving interactions betweenmultiple bac-
terial groups and the archaea to ultimately degrade an organic substrate to
methane. Core microbiomes are composed of shared amplicon sequence
variants (ASVs) that are consistently present at all tested conditions and
are likely to participate in basicmetabolic processes in a niche. This concept
has been widely applied to understand composition of microbial communi-
ties involved inmetabolic processes of anaerobic digesters (Mei et al., 2016;
Peces et al., 2018; Xu et al., 2018). We have previously deduced the active
core microbiomes from anaerobic dynamic sludge chamber fixed film
reactors treating LCFA-rich wastewaters (Singh et al., 2022), however,
the presence of a ‘collated core microbiome’ in LtAD reactors fed with
similar wastewaters is yet unknown and needs attention. Moreover, insta-
bility in the microbial interactions in AD systems can lead to inhibition of
syntrophic bacteria and the methanogens which ultimately can cause a
buildup of acids and reactor acidification (Maurus et al., 2021). Corre-
spondingly, despite the robustness and stability of AD processes, there is
limited knowledge regarding the complexity of the microbial community
at different operational conditions (Cabezas et al., 2015). In full-scale AD
systems treating brewery wastewater, methanogenic activity correlated
with microbial community evenness at any time demonstrating a strong
relationship between community structure and its function than its
environment (Werner et al., 2011; Wittebolle et al., 2009), due to the
higher capacity of microbial consortia to use redundant functional path-
ways conferring robustness and resilience to the microbial community
(Carballa et al., 2015). Recently, the importance of microbial interaction
networks linking to their process performance at fluctuating operational
conditions has been highlighted for improved understanding of the stability
of AD process (Saha et al., 2020). Fed-batch reactors operated with varying
frequencies of repeated organic load shocks (at every 2, 4, 6, and 8 days),
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showed deterioratedmethane productivity and a loss in network connectiv-
ity at the least frequent organic shock loads (8 day-intervals) (Mercado
et al., 2022), suggesting a breakdown in microbial interactions for stable
AD process. Even in stable mesophilic AD reactors, correlational network
analyses showed microbial interactions demonstrate successional patterns
such as decreased network complexity (Wu et al., 2016). Hence, the stability
of this complex microbial network is crucial for optimal functioning of AD
systems and understanding the relationships between complexity and stabil-
ity in microbial interaction networks may aid in optimizing the anaerobic
treatment performance of the LtAD systems. Typically, interactions between
taxa are generated using co-occurrence or interaction network analyses (Xu
et al., 2020; Zhu et al., 2021). However, the accurate representation of micro-
bial networks requires datasets havingmultiple replicates for each variable in
order to achieve strength in the obtained relationships between taxa (Hugerth
and Andersson, 2017). Furthermore, any ‘causal relationships’ arising from
the analytical biases in the experimental and sampling methodology or anal-
yses may deviate the network outcomes. Hence, it is important to assess if in-
teractions between taxa are stable, thereby inferring the stability of the
constructed network. Complexity-stability relationship defines the relation-
ships in a group by evaluating how two species are connected (Yonatan
et al., 2022). A change in species abundance reflects a change in species inter-
actions and can be assessed by evaluating the topology of inferred network
wherein a high connectance suggests that a local perturbation in the abun-
dance of one or a few species is expected to propagate and affect the entire
community much more substantially than a system with low effective
connectance. Evaluation of complexity-stability relationship in LtAD systems
treating LCFA-rich wastewater will help indicate the stable microbial niches
that underpin process stability in such systems.

Accordingly, this study examined the bacterial and archaeal community
diversity (alpha and beta) and core microbiomes from 106 16S rRNA
datasets that were obtained from research studies investigating LCFA treat-
ment in LtAD systems. Furthermore, various factors were assessed includ-
ing: inoculum, substrate, operational, reactor operation mode and reactor
configuration, and the type of nucleic acid sequenced, for their role in
shaping the microbial community diversity (richness, evenness and beta-
diversity). Based on the key driving factors, microbial clusters were deter-
mined from the collated dataset. The novelty of this work is that, for the
first time, the microbial community diversity and core microbiomes were
deduced from collated datasets from LtAD systems undertaking LCFA deg-
radation. Environmental fitting of the clusters, their correlational networks
and stability of the correlational networks were assessed, to obtain insights
into the factors driving the microbial community dynamics of anaerobic
LCFA degradation at low temperatures.

2. Methods

2.1. Data collection and description

Publicly available 16S rRNA microbial community sequencing datasets
on anaerobic LCFA degradation at 10 and 20 °C were retrieved along with
their operational and experimental data. Selection of the 16S rRNA datasets
was limited to samples sequenced on Illumina platform to avoid systematic
biases and enabling higher quantitative power. In this study, 16S rRNA
sequences were obtained from 106 samples from three peer-reviewed pub-
lications featuring publicly available data fromNCBI sequence read archive
(SRA) (https://www.ncbi.nlm.nih.gov/sra). Metadata was extracted for in-
oculum characteristics (inoculum source, inoculummorphology), substrate
characteristics (type of substrate), operational characteristics (loading rate,
operational temperature).

The datasets included (Fig. 1):
Study 1 (Singh et al., 2019a) – Three different mesophilic inocula (two

municipal digestates – Viniikanlahti Digestate (VD), and Rauhola Digestate
(RD), and one granular sludge (GS)) from Finland were assessed for meth-
ane production from LCFA-rich synthetic wastewater at 10 and 20 °C in
batch assays in a 200-d batch incubation. The three mesophilic inocula
were sourced from reactors originally operated at 33–37 °C. Sixty 16S
3

rRNA sequences (SRA: SRP164945) and the associated metadata generated
during study were used for analysis in current study.

Study 2 (Singh et al., 2019b) – A mesophilic granular sludge (GS) from
Finland was assessed for methane production from LCFA-rich synthetic
wastewater at 20 °C in EGSB reactors operated in continuous mode. The di-
versity and dynamics of microbial community in the GS were monitored at
98-day operational duration at hydraulic retention times (HRT) of 24 and
18 h. Twenty-one 16S rRNA sequences (SRA: SRP164945) and the associated
metadata generated during study 2 were used for analysis in current study.

Study 3 (Singh et al., 2022) – Anaerobic flocculent sludge treating FOG-
containing dairy effluent at mesophilic conditions was combined with an
anaerobic granular sludge treating dairy wastewater at ambient conditions,
and used as ‘mixed inoculum’ (Singh et al., 2020). This mixed inoculumwas
assessed for methane production from LCFA-rich synthetic wastewater at
20 °C in continuously operated dynamic sludge chamber – fixed film
(DSC-FF) reactors at HRTs of 72, 42.5, 24, 18 and 12 h. The diversity and
dynamics of microbial community in the bottom granular sludge layer
(from DSC) and biofilm layer (in FF) were monitored temporally during a
150-d operational duration (Singh et al., 2022). Twenty-seven 16S rRNA se-
quences (SRA: PRJNA657615), 15 from granules (from DSC) and 12 from
the biofilm (from FF), and the associated metadata, generated during
study 3 were used for analysis in current study.

Studies 1, 2 and 3 were sequenced on an IlluminaMiSeq platform using
the V3-V4 hypervariable regions and the universal bacterial/archaeal
primer sets of 515f-806r (Caporaso et al., 2012).Meta-analysis of anaerobic
LCFA-degrading microbiomes was performed to elucidate the factors that
differentiate microbial communities, the factors being:

• inoculum characteristics (inoculum source (RD, VD, GS, mix), and, inoc-
ulum morphology (suspended, granular, mixed)),

• substrate characteristics (substrate type - no substrate, acetate, LCFA-rich
dairy, and LCFA percentage (COD basis) in feed), LCFA mixture in the
studies 1–3 contained palmitate, stearate, oleate and linoleate in a ratio
of 30:15:45:10 on COD basis. Palmitate and stearate are saturated
LCFAs, whereas oleate and linoleate are unsaturated LCFAs, and were
used to simulate complex LCFA-rich wastewaters.

• operational characteristics (organic loading rate (gCOD/L for batch and
gCOD/L·d for continuous reactors), and operational temperature (10 °C,
20 °C)),

• reactor operation mode (batch or continuous), and reactor configuration
(batch digester, EGSB, DSC-FF), or,

• the type of nucleic acid sequenced (total vs active community).

The categorical and numerical data associatedwith the different sample
groups in the studies 1,2, and 3 are listed in Supplementary Table 1.

2.2. Bioinformatics

Weprocessed each dataset separately, using open-source bioinformatics
pipeline QIIME2 (Bolyen et al., 2019). Initially, the 2 × 300 bp paired-end
Illumina Miseq sequences were demultiplexed and quality trimmed using
Phred quality score of 20 giving an amplicon length of 291 bp. Deblur
Algorithm within QIIME2 was then employed to recover ASVs (Amir
et al., 2017). All three studies generated independent BIOM files, with the
summary statistics as follows:

Study 1 (n=60 samples, p=132,855ASVs)with summary statistics of
reads per samples as [1st Quartile: 31,096; Median: 39,426; Mean:
42,679; 3rd Quartile: 45,342; Max: 404,084]
Study 2 (n= 21 samples, p= 24,890 ASVs) with summary statistics of
reads per samples as [1st Quartile: 33,783; Median: 39,656; Mean:
45,573; 3rd Quartile: 49,517; Max: 134,193]
Study 3 (n= 44 samples, p= 75,972 ASVs) with summary statistics of
reads per samples as [1st Quartile: 116,199; Median: 130,783; Mean:
129,344; 3rd Quartile: 147,509; Max: 206,969]

https://extranet.cranfield.ac.uk/,DanaInfo=www.ncbi.nlm.nih.gov,SSL+sra


Fig. 1. Schematic representation of the datasets, methodological steps, collation workflow and statistical analyses employed in this study.
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To combine these studies together, we have used our recently published
collation strategy for comparative analysis (Keating et al., 2020; Mills et al.,
2022; Thom et al., 2022). Briefly, the 16S rRNA sequences from multiple
studies were combined by finding the species that are shared between the
studies. It was achieved bymatching ASVs from each study to the reference
database and collating these matched ASVs into a single biom file. The se-
quences without sequence- level assignments were removed. We found
from the previous studies that the resolution of species taxonomy is highly
dependent on the choice of database, amplicon V-region, and the type of
classifier, which we explored in Keating et al. (2020). Our workflow relied
on utilizing a newer “Bayesian Lowest Common Ancestor (BLCA)” algo-
rithm (Gao et al., 2017) as opposed to “Naïve Bayes Classifier” (used in
QIIME2) to align the ASVs against the reference database. SILVA SSU Ref
NR release v138 was the reference database used (Quast et al., 2013).
BLCA approach resolves more ASVs at sequence level resolution, a require-
ment to recover as many full-length 16S rRNA sequences, reduce data loss,
and preserve beta diversity between samples after collation. The limitation
of meta-analyses is read loss, either due to use of inefficient classifier, or a
lack of sequences availability in the reference database to train the classi-
fier. As can be seen in Supplementary Figs. S1–S3, the overall beta diversity
patterns between the uncollated and collated datasets were largely pre-
served as shown byMantel analyses. After collation, the summary statistics
were: collated (n= 125 samples, p= 9,950 ASVs) with summary statistics
of reads per samples as [1st Quartile: 34,717; Median: 45,219; Mean:
73,416; 3rd Quartile: 118,898; Max: 402,853]. Out of the total of n =
125 samples, we retained only reactor biomass samples (n=108 samples),
a further 2 samples were removed after performing additional quality
checks (removing Chloroplasts and Mitochondria and any samples <5000
reads) leaving a total of 106 samples with 4661 full-length ASVs.

Using the full-length 16S rRNA ASVs within QIIME2, the q2-alignment
method MAFFT (Katoh and Standley, 2013) was used to create multi-
sequence alignment of ASVs, and afterwards a mask is applied to remove
phylogenetically ambiguous alignments to obtain rooted phylogenetic
tree using FastTree (Price et al., 2010) within q2-phylogeny framework.
4

2.3. Statistical analyses

The collated abundance table with taxonomy, phylogenetic tree, and
metadata was processed using the microbiome seq packages in R. The R
scripts used for statistical analysis are available at http://userweb.eng.
gla.ac.uk/umer.ijaz/bioinformatics/ecological.html (accessed on 1
January 2023) and R's microbiomeSeq package accessible at http://
www.github.com/umerijaz/microbiomeSeq (accessed on 1 January
2023).

Alpha diversity metrices. Statistical analyses were performed in R
using the tables generated as above and metadata associated with the
study. The Vegan package (Oksanen et al., 2016) was used for the anal-
ysis of alpha and beta diversity in microbial samples. For alpha diver-
sity, the indices used were: (i) rarefied richness – to represent the
estimated number of species in a rarefied sample (to minimum library
size); (ii) Shannon entropy – to represent a measure of balance within
a community. R's aov() function was used to calculate the pair-wise
analysis of variance (ANOVA) p-values which were then drawn on top
of alpha diversity figures.

Beta diversity. For beta diversity, the dissimilarity in species community
composition between pairwise comparisons of bacterial communities were
represented in Principal Coordinate Analysis (PCoA) ordination plots by
calculating two different distance metrices using Vegan's cmdscale() func-
tion: (i) Bray Curtis, which considers the species abundance count; and
(ii) Unweighted Unifrac, which considers the phylogenetic distance be-
tween the branch lengths of ASVs observed in different samples, calculated
using the phyloseq package (McMurdie and Holmes, 2013).

Core microbiome and differential heat trees. The core microbiome analysis
for each of the clusters obtained from collated dataset was carried out, con-
sidering a prevalence of 95 % for all ASVs (Lahti et al., 2019) was deter-
mined using the library microbiome (Shetty et al., 2017). Differentially
expressed clades in the clusters obtained from collated dataset were visual-
ized as heat trees (Foster et al., 2017) (using adjustedWilcoxin p-value test)
in the library metacoder.

https://extranet.cranfield.ac.uk/umer.ijaz/bioinformatics/,DanaInfo=userweb.eng.gla.ac.uk+ecological.html
https://extranet.cranfield.ac.uk/umer.ijaz/bioinformatics/,DanaInfo=userweb.eng.gla.ac.uk+ecological.html
https://extranet.cranfield.ac.uk/umerijaz/,DanaInfo=www.github.com+microbiomeSeq
https://extranet.cranfield.ac.uk/umerijaz/,DanaInfo=www.github.com+microbiomeSeq
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Environmental Fitting. To see if changes in covariates (LCFA % and tem-
perature) have an impact on microbial community structure, we fitted
smooth surfaces of the covariates on ordination plot (PCoA in this case)
using penalized splines by employing ordisurf() function from R's Vegan
package (Oksanen et al., 2016). The method uses generalised additive
model (GAM) by regressing the covariate as C ~ S (Dim1, Dim2), where
Dim1 and Dim2 are the ordination scores extracted from PCoA and S () is
a spline function. The environmental variables - LCFA % and temperature
fitted well i.e., p < 0.05.

CODA-LASSOModel. In presence of a relationship between the environ-
mental variable and microbial taxa abundance, regression fitting was per-
formed using CODA-LASSO model. To see the relationship between
environmental covariates (LCFA % and temperature) and the minimal sub-
set of microbes that can explain them, we used the variable selection
approach where through penalized regression on the set of all pairwise
log-ratios (Susin et al., 2020)we identified two disjoint subsets ofmicrobes,
those that are positively associated, and those that are negatively associated
with the covariate of interest. Briefly, we used the CODA-LASSO approach
(Lu et al., 2019) where the abundance of individual covariate yi (LCFA% or
temperature) is modeled as yi = β0 + β1 log (x1i) + … + βj log (xji) + ϵi
(for i-th sample and j-th species, with xji being the microbe abundance)
with the constraint ∑

k≥1
βk ¼ 0 (i.e., all β-coefficients sum up to 1),

and these regression coefficients β = (β0,…,βj) are estimated to minimise
∑i=1
n (yi − β0 − β1 log (x1i) − … − βj log (xji))2 + λ∑k≥1|βk| subject to

∑k≥1βk = 0 (using a soft thresholding and projection algorithm) for n sam-
ples. Here, λ is the penalization parameter in LASSO shrinkage terms
λ∑k≥1|βk| which forces some of the β-coefficients to go zero, particularly
those that do not have a relationship with the covariates and serves as a
means to do variable selection. The non-zero β-coefficients are then divided
into two groups, those that are positively associated with the environmental
covariate, and those that are negatively associated with the environmental
covariate, respectively. For this purpose, we used coda_glmnet() function
from R's coda4microbiome package (Calle and Susin, 2022). We have used
the top 100 most abundant genera in the CODA-LASSO model.

Generalised Linear Latent Variable Model. To find the relationship be-
tween microbial communities and sources of variation (inoculum source, in-
oculum characteristics, temperature, substrate, nucleic acid type whether DNA
or cDNA, reactor configuration, LCFA %, organic loading rate (OLR)), we
have used Generalised Linear Latent Variable Model (GLLVM) (Niku
et al., 2019), which extends the basic generalised linear model that
regresses the mean abundances μij (for i-th sample and j-th microbe) of indi-
vidual microbes against environmental covariates xi as above by incorpo-
rating latent variables ui as g(μij) = ηij = αi + β0j + xiTβj + uiTθj, where
βj are the microbe specific coefficients associated with individual covariate
(a 95 % confidence interval of these whether positive or negative, and not
crossing 0 boundary gives directionality with the interpretation that an in-
crease or decrease in that particular covariate causes an increase or de-
crease in the abundance of the microbe), and θj are the corresponding
coefficients associated with latent variable. β0j are microbe-specific inter-
cepts, while αi are optional sample effects which can either be chosen as
fixed effects or random effects. To model the distribution of individual mi-
crobes, we have used Negative Binomial distribution. Additionally, the ap-
proximation to the log-likelihood is done through Laplace approximation
(LA)withfinal sets of parameters in glvmm() function being family= ‘neg-
ative.binomial’, method = “LA”, and control.start = list (n.init = 5, jitter.
var = 0.1) that seemed to fit well. This, we did for top 100 most abundant
genera in our datasets. In addition, the factor loadings θj store correlations
of microbes with the residual covariance matrix Σ = ΓΓT where Γ =
[θ1…θm] for m latent variables. This residual covariance matrix gave co-
occurrence relationship between microbes that are not explained by envi-
ronmental covariates as above.

Complexity-Stability relationships. To understand complexity-stability re-
lationship in our dataset, we have estimated the effective connectance D2

after fitting a regression model to samples overlap in terms of species
they share and the sample dissimilarities (Yonatan et al. (2022). This
5

precludes the need to infer co-occurrence relationship explicitly, leading
to D2 serving as a proxy for stability. As per author's recommendation, D2

was obtained by the slope of regression fitted to the dissimilarity-overlap
plot to the 25% top overlap values for the paired-wise dissimilarity/overlap
values forN samples in a given category (suspended, mix, or granules) from
a total of N(N − 1)/2 paired-wise values.

3. Results and discussion

3.1. Statistical distribution of the samples

A high correlation (Mantel statistic: R2 ≥ 0.96; p < 0.01) between the
original full ASV table and the reduced ASV table in the collated dataset
obtained for each study. This indicated a minimal loss of beta diversity
even with the removal of ASVs which were not present in the reference
database. Application of BLCA approach has shown to resolve ASVs at
sequence level resolution, and reduce data loss between samples after colla-
tion in microbiomes from other engineered systems such as microbial
electrosynthesis (Mills et al., 2022) and drinking water treatment systems
(Thom et al., 2022). The 25 most abundant classes are shown in Figs. S1–
S3 for individual and collated datasets to provide visual cues in terms
of how similar the datasets are after filtering out ASVs. Among the top
25 most abundant classes, the archaeal classes Methanobacteria and
Methanosarcinia and the bacterial classes Aminicenantia, Caldatribacteria,
Bacilli, Gammaproteobacteria, Synergistia and Clostridia were observed in
all the collated datasets from the three studies.

3.2. Diversity of anaerobic LCFA-degrading microbial communities

We assessed the impact of factors - inoculum source and morphology,
reactor operation mode and nucleic acid type on the microbial diversity
(richness and evenness) of LCFA-degrading microbial communities in
LtAD systems. Our datasets included four inocula sources – RD, VD, GS
and mixed source (mix); which differed in their morphologies and desig-
nated as ‘suspended’ (for RD and VD), ‘granular’ (for GS), and ‘mix’ (for
the mixed sludge source) (Fig. 2A). These inocula were seeded in anaerobic
reactors that were operated in batch or continuous-mode and sampled
on different days with subsequent extraction and sequencing of either
the whole DNA (representing entire microbial community), or the cDNA
(representing the active community).

Microbial diversity – richness and evenness (Fig. 2A) differed in the
sample groups based on the factors - inoculum source and morphology,
nucleic acid type and reactor operation mode (p < 0.001) (Fig. 2A). Micro-
bial diversity for sample groups closely followed their seed, based on the in-
oculum source and morphology. Reactors seeded with suspended sludges
(RD and VD) had similar microbial diversity during the 200-d experimental
duration, despite being fed with different substrates (no substrate, acetate,
or dairy wastewater) (Fig. 2A). The reactors with mixed sludge (mix) had
similar richness and evenness (p > 0.001) compared to the seed popula-
tions, even after continuous operation in DSC-FF reactors for a period of
150 days. In comparison, in the EGSB reactors seededwith granular sludge,
microbial richness decreased during continuous operation (marked by sym-
bol+) but the richness did not further change (Fig. 2A). During continuous
flow operation of EGSB, high levels of LCFA in feed contribute to the loss in
granular sludge integrity which results in washout. The lack of retention of
washed outmicrobes in the EGSB reactors likely resulted in the reduction of
species richness of the bioreactor and deteriorated performance for anaero-
bic LCFA degradation (Singh et al., 2019b). In comparison, the suspended
sludges when fed with identical LCFA-rich wastewater were in closed
batch systems, where the risk of washout was substantially reduced.
Taken together, these new insights suggest inoculum characteristics, reac-
tor configuration and operation structuring the abundance and diversity
of anaerobic sludges.

Diversity between the samples (beta diversity) was displayed through
PCoA plots explained 52.2 % of the variation in abundances, and 41.11 %
of the variations in phylogeny (Fig. 2B). The samples were grouped into



Fig. 2. Diversity in the microbiomes of the inocula and reactor samples collated in this study, categorized by combination of different factors - inoculum characteristics,
substrate characteristics, reactor type and nucleic acid type. (A) Alpha diversity box plot in inocula and samples represented by rarefied richness and Shannon evenness.
Samples are grouped based on inoculum source used as seed. PERMANOVA explains significant variability in microbial community structure from different bioreactor
compartments and at different HRTs. Lines for panels A, B, C and D connect two sample groups at statistically significant levels indicated by asterisks as * (p < 0.05),
**(p < 0.01) or ***(p < 0.001). (B) Beta diversity in inocula and samples represented through principal coordinate analysis (PCoA) plots calculated using Bray-
Curtis and unweighted UniFrac distances.
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three distinct clusters on the PCoA plot when using composition (Bray-
Curtis distances) and their phylogeny (UniFrac distances). The factor that
significantly contributed to the beta diversity was primarily the inoculum
source (R2 = 0.44–0.52, p < 0.001), with no overlap between ‘granular’,
‘suspended’ and ‘mix’ clusters. To a substantially lower extent, the inoculum
morphology, operational temperature, substrate characteristics, reactor
configuration and operational parameters (LCFA percentage (LCFA%),
OLR) contributed to the variability in the observed beta diversity (R2 =
0.01–0.03, p < 0.1).

The results presented herein suggest the seed microbial community
diversity continues to exert influence on the microbial community di-
versity and this effect is still pronounced during periods of long-term op-
eration in both open reactor systems (up to 150 d) and closed systems
(up to 200 d), irrespective of operating conditions or substrate. Anaerobic
consortia have optimum growth at mesophilic temperatures 30–37 °C
(Pommerville, 2014). At low temperatures (≤ 20 °C), the substrate uptake
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rate and microbial growth kinetics decrease (Nedwell, 1999; Singh
et al., 2019a). The syntrophic bacteria and methanogenic archaea
have long doubling times. For example, at 35–37 °C the methanogenic
genera Methanosaeta and Methanobacteria have doubling times of 4–9 d
and 6–35 h respectively, whereas the syntrophic bacterial genera,
Syntrophomonas and Syntrophus have doubling times of 11–50 h. According
to the Arrhenius model, the doubling times become considerably longer
(~2-times) with every 10 °C decrease in temperature, which means the
doubling time for LCFA-degrading syntrophic bacteria would increase to
30–154 h at 20 °C, and 62–318 h at 10 °C. Therefore, longer microbial
retention times are needed to maintain treatment efficiency. Moreover,
abundances of these syntrophic bacteria are lower than that of fermentative
bacteria and methanogenic archaea in LtAD systems treating LCFA (Singh
et al., 2022). Additionally, methane is the terminal product of AD process,
and has lower Gibbs energy change per electron than the other organic
intermediates such as VFAs and carbon monomers (Kleerebezem et al.,
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2015), thus methanogenesis driving the AD process. Hence, inoculum
should be selected with consideration for high β-oxidation and
methanogenesis activity in LtAD systems treating LCFAs, as the initial con-
centrations and activities of syntrophic bacteria and methanogens in the
seed inoculum will influence the LCFA degradation potential.

3.3. Core microbiome of anaerobic LCFA-degrading microbial communities

In LtAD systems methanization requires syntrophy between bacterial
and archaeal groups to undertake successive hydrolysis, acidogenesis,
acetogenesis and methanogenesis. We obtained the core microbiomes in
the three clusters at a very high prevalence (>95 %). Core bacterial
Fig. 3. Core microbiome analysis: heatmaps of the different meta-sample groups de
‘suspended’, (B) Cluster 2 corresponding to mixed inocula samples ‘mix’, (C) Cluster 3
at 0.95 for all groups.
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microbiomes in the clusters ‘suspended’ and ‘mix’ was complex involving
a high number of taxa.We identified the core bacterial taxa in microbiomes
of LCFA-degrading communities in AD, ranging from 5476 in cluster
‘suspended’, 3400 in cluster ‘mix’ and 2075 in cluster ‘granules’. In compar-
ison, fewer archaeal taxa constituted the coremicrobiome, comprising of 7,
7 and 3 taxa in the clusters ‘suspended’, ‘mix’ and ‘granules’ respectively.
Across the three clusters, the prevalent methanogenic archaeal genera
were Methanosaeta and Methanobacteria, whereas the prevalent bacterial
genera were Longilinea, Christensenellaceae R7 group, Lactivibrio, candidatus
Caldatribacterium, RBG − 13 − 54 − 9 from family Anaerolineae,
Aminicenantales and an uncultured taxon from Propionibacteriaceae family
(Fig. 3). These core bacterial genera are known to have fermentative
rived from this study (A) Cluster 1, corresponding to suspended sludge samples
corresponding to granular sludge samples ‘granular’. Minimum prevalence was set
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metabolism and thus,were likely involved in acidogenesis and acetogenesis
steps of anaerobic digestion (Dodsworth et al., 2013; Kadnikov et al., 2019;
Yamada et al., 2007). However, little information is available for the uncul-
tured and candidatus taxa and RBG-13-54-9, which form part of microbial
dark matter (i.e., the microbes that have not yet been obtained in pure cul-
ture, due to either lack of knowledge or inability to supply the required
growth conditions). Such candidatus taxa are well characterized by genetic
sequences but yet remain uncultured due to slow growth rate, or a lack of
knowledge of optimum growth conditions and taxa interdependence (Liu
et al., 2022). An expansion of knowledge base for such obscure LCFA-
degrading bacteria will aid in understanding their role in the LtAD process,
and lead to possible exploitation for bioengineering applications.

LCFAs – unsaturated (linoleate, oleate), as well as saturated (stearate
and palmitate) are known to be anaerobically degraded by 4 bacterial spe-
cies – Syntrophomonas sapovorans, Syntrophomonas curvata, Syntrophomonas
zehnderi, and Thermosyntropha lipolytica to medium chain and short chain
fatty acids. In addition, Syntrophus aciditrophicus can degrade the saturated
LCFAs (palmitate and stearate) to medium and short chain fatty acids
(Sousa et al., 2009). Hence, monitoring these species is important for
estimating the overall LCFA degradation potential. In this study, the
known syntrophic LCFA degraders – Syntrophus and Syntrophomonas were
present in core microbiomes of all three clusters, while Smithella was
present in clusters ‘mix’ and ‘granular’ but not in the cluster ‘suspended’
(Fig. 3). The prevalence of abovementioned bacteria and archaea in
the core microbiomes of different clusters, signifies that they occupy
a range of niches and putative trophic roles in the low temperature
anaerobic treatment of LCFAs. It is likely the prevalent fermentative
bacteria represented in core microbiomes hydrolyzed the LCFA-rich sub-
strates to produce shorter chain fatty acids which were used by the
syntrophic LCFA degraders to produce VFAs including acetate, and also
hydrogen. The acetate and hydrogen were converted to methane
through acetoclastic and hydrogenotrophic methanogenesis by genera
Methanosaeta and Methanobacterium, respectively. While both acetoclastic
and hydrogenotrophic pathways contribute to methanogenesis during
low temperature AD (Keating et al., 2018; Trego et al., 2021), the dominant
methanogenesis pathway at sub-mesophilic temperatures remains the sub-
ject of debate and further work is recommended. From our analysis of 106
sequences obtained from anaerobic LCFA-fed reactors seeded with diverse
inocula, we found Methanosaeta as the most prevalent archaea across the
datasets suggesting a crucial role of Methanosaeta-mediated acetoclastic
methanogenesis in anaerobic low temperature (≤20 °C) LCFA degradation.

Broadly, establishment of methanogenic pathway in anaerobic systems
is affected by the kinetics and thermodynamics of the system and
concentrations of toxicants in the system. However, methanogenesis is
the terminal step in the AD process, and concentration profiles of the
methanogenic precursors, specifically acetate and hydrogen rely on their
concentration in the influent substrate and their generation during the AD
trophic stages of hydrolysis, acidogenesis and acetogenesis. Hence, sub-
strate characteristics will affect establishment of methanogenic pathway
in anaerobic systems. For example, an acetate-rich influent will promote
prevalence of acetate-utilizing methanogens such as Methanosaeta or
Methanosarcina. Additionally, high hydrogen concentrations produced dur-
ing fermentation of substratewill promote prevalence of hydrogen utilizing
methanogens such asMethanobacterium orMethanosarcina. Conventionally
it has been accepted thatMethanosaeta outcompete Methanosarcina at ace-
tate concentrations lower than 1 mM due to their higher substrate affinity
(Conklin et al., 2006), but Methanosaeta has been shown to outcompete
Methanosarcina at higher acetate concentration (>20 mM) (Chen and He,
2015) due to divergent uncharacterized populations ofMethanosaeta dem-
onstrating high acetotrophic activity. At low ambient and psychrophilic
temperatures, hydrogenotrophic methanogenesis is thermodynamically
more feasible compared to acetoclastic methanogenesis. In this meta-
analysis, Methanosaeta was the only acetotrophic methanogen resolved
from Silva database whereasMethanosarcinawas not found. The substrates
used in current study were rich in LCFAs and/or skimmilk powder (rich in
lactose), both of which produce acetate. Each round of β-oxidation of
8

LCFAs produces acetate and hydrogen, additionally, acetate is produced
from lactose. The prevailing metabolic environment in the EGSB and
DSC-FF reactors consisted of acetate (10–75 mg/L) evidencing their pro-
duction from the LCFA-rich wastewaters, which promoted the growth of
Methanosaeta (Singh et al., 2020, 2019b).

Kinetics in a AD process refers to substrate degradation kinetics and mi-
crobial activity, wherein the substrate degradation kinetics is affected by its
solubilization and uptake by the microbial consortia. An acclimatized mi-
crobial consortium aids in high balanced metabolic activity of hydrolysers,
acidogens, acetogens andmethanogens, aiding in optimal substrate transfer
across the AD trophic groups. In comparison to mesophilic and thermo-
philic conditions, the substrate kinetics at low ambient or psychrophilic
conditions such as 10–20 °C, is affected by reduced substrate availability
to the microbes and the reduced microbial activity at lower temperatures.
The prevailing concentrations of methanogenic precursors, acetate and
hydrogen, structure the dominance of specific methanogenic archaea in
LCFA-rich LtAD systems. Additionally, gaseous diffusion and viscosity in-
crease at low temperatures (Lettinga et al., 2001), thereby altering the
mixing and fluid movement pattern and imposing higher energy require-
ments for mixing the solid (substrate and microbes), liquid (wastewater)
and gaseous (methane, hydrogen, carbon dioxide, hydrogen sulphide)
phases (Eshtiaghi et al., 2013). Recent advances in novel reactor designs en-
able packing of larger amounts of active methanogenic consortia in reactor
(e.g., membrane bioreactors, biofilm reactors) (Månsson, 2020; Szabo-
Corbacho et al., 2021; Wusiman, 2021) and may aid in improving kinetics
of LCFA degradation and microbial activity LtAD in these systems. To the
best of authors' knowledge, hydrodynamic parameters have not yet been in-
vestigated for LtAD of LCFAs, particularly with an emphasis on engineering
the microbial consortia, thus, the impact of these parameters on establish-
ment of methanogenic pathway is not validated in this study.

Heat tree analysis revealed that the prevalence of certain taxa varied
among the three clusters (Supplementary Fig. 4). The Wilcox tests were
performed on the relative abundances of taxa, and the log ratio of means
were drawn when the adjusted p-values were significant after correcting
for multiple comparisons to determine the differentially abundant taxa.
Abundances of taxa belonging to Alphaproteobacteria and Bacteroidia (par-
ticularly Bacteroidales) differed among the clusters following the trend:
suspended > mix > granular. Syntrophomonas abundances followed the
trend: suspended > granular > mix suggesting its prevalence in suspended
sludges, whereas the opposite trend of Geobacteraceae abundances
(mix > granular > suspended) suggests an important active role in LtAD.
Geobacteraceae taxa are important in degradation of palmitate and oleate
at 35–37 °C (Cavaleiro et al., 2020; Hatamoto et al., 2007), due to their po-
tential for LCFA degradation as indicated by presence of long-chain fatty
acyl-CoA dehydrogenase expressing fad E gene (Aklujkar et al., 2010).
Concurrently, Geobacter in syntrophy with Syntrophomonas can scavenge
hydrogen faster than Methanobacterium (Cavaleiro et al., 2020), driving
the Syntrophomonas-mediated LCFA degradation. Many taxa found in the
core microbiomes were uncultured or at candidatus status, representing a
large abundance of microbial dark matter in LtAD systems. There is a
need for understanding the roles of persistent taxa that form the microbial
dark matter for improved comprehension of microbial dynamics especially
during scale up of this technology, and for energy recovery from FOG and
LCFA-richwastewaters at low temperatures. The bacterial genera identified
from the core microbiomes and heat tree analyses in this study may have a
significant role in LtAD of LCFA-rich wastewaters at 10–20 °C. Future work
should validate the roles of key taxa by isolating pure cultures and stable
isotope probe labelled-metagenomics.

3.4. Relationship of environmental variables to microbial community dynamics

Differences in the microbial communities based on their operational
conditions (continuous environmental variables of interest – temperature,
LCFA%, OLR) were explored by using GAM models and represented as
beta diversity contour plots. Before fitting a regression model, such as
CODA-LASSO, it is recommended to employ environmental fitting to
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investigate existence of a relationship. GAM models are employed to re-
gress the environmental variable (continuous) against the scores in reduced
order representation (i.e., scores on dimension 1 and dimension 2), and if
the regression is a perfect fit i.e., GAM p < 0.05 then there is a probable re-
lationship between environmental variable and the associatedmicrobiome.

The beta diversity contour plot with LCFA% values regressed against
the scores of the ordination (PCoA) showed that the three clusters (granu-
lar, mix, suspended) were distinctly apart despite treating LCFA-rich waste-
waters with variations only in their LCFA percentage (Fig. 4A). Since the
regression was a perfect fit (R2 = 0.98, p < 0.05), it showed a relationship
Fig. 4. a) Beta diversity contour plot with LCFA% regressed against the scores of the ordi
from CODA-LASSO procedure as two disjoint sets (those that are positively related, and
model through CODA-LASSO was then further regressed against the true LCFA % to sho
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between LCFA% and the associatedmicrobiomes (Fig. 4B).Anaerobium and
Geotalea were most positively correlated to the LCFA% in substrate,
followed by AD3 (phylum Chloroflexi) and Paraclostridium (Fig. 4C). Based
on current knowledge, these four taxa have fermentative and acetogenic
metabolism (Fincker et al., 2020; Hug et al., 2013; Kutsuna et al., 2019;
Patil et al., 2015; Shelobolina et al., 2008). Similar to the trend obtained
for LCFA%, the contour beta diversity plot with temperature regressed
against the scores of the ordination (PCoA) showed that the three clusters
remained distinctly separated despite being operated at different opera-
tional temperatures (Fig. 5A). The composition of microbes returned from
nation (PCoA) using Generalised AdditiveModel (GAM); b) β−coefficients returned
those that are negatively related with the LCFA%) c) The predictions from the fitted
w agreement.
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CODA-LASSOwas able to segregate between the two temperature niches at
10 and 20 °C. Microbiomes at the two temperatures were clearly separated
in terms of density plot of prediction returned from CODA-LASSO showing
temperature-based delineation in the microbiomes (Fig. 5B). The archaeal
taxa Methanomethylovorans, and bacterial taxa RBG–13–54–9, and p–
1088–a5_gut_group were most positively correlated to temperature sug-
gesting adaptability of these taxa to operational temperatures of 20 °C de-
spite being sourced from mesophilic reactors. In AD reactors fed with
oxytetracycline a temperature reduction from 35 °C to 15 °C increased the
abundance of Methanomethylovorans (Yun et al., 2023), but their precise
metabolic role in LtAD systems seeks further investigation. On the other
hand, taxa from class Phycisphaerae - AKAU3564 sediment group, Pla1 lin-
eage and SM23–30 were most negatively correlated to temperature
suggesting their favorable growth at temperatures of 10 °C (Fig. 5C).
AKAU3564 sediment group has often been found in marine sediments
and psychrophilic anaerobic methane oxidizing consortia along with
sulfate-reducing bacteria from class Deltaproteobacteria (Pernthaler et al.,
2008; Trembath-Reichert et al., 2016; Yu et al., 2022), and despite a low
abundance persisted as an anaerobic methanotrophic archaea in our LtAD
reactors. Due to the lack of data on Pla1 lineage and SM23–30 and
AKAU3564 sediment group in continuous LtAD reactors, it is not possible
to state their role or suitability as an indicator organism for LtAD, but fur-
ther work could explore functional relevance of this uncultured organism.
Notably, no known syntrophic LCFA degraders were found to positively
correlate to the LCFA % across the temperature ranges, indicating a role
of novel taxa in anaerobic degradation of LCFA-rich substrates at
10–20 °C. Differences in microbial community based on OLR are presented
in Supplementary Figs. 5A–C.Metadata regarding the LCFA degradation ef-
ficiency was not available in the original datasets and we recommend
Fig. 5. a) Beta diversity contour plot with temperature regressed against the scores of t
returned from CODA-LASSO procedure as two disjoint sets (those that are positively r
plot returned from the CODA-LASSO segregates the two temperature groups provides
from the procedure).
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correlating microbial taxa active to LCFA degradation efficiency in LtAD
systems in future studies. Moreover, performance of other reactor types,
such as biofilm and membrane reactors should be evaluated for LtAD of
LCFA-rich wastewaters. Hydrodynamics of an anaerobic system may
promote temperature or concentration gradients (pH, substrate, and
dissolved gases) thatmay impact the substrate availability tomicrobial con-
sortia, dissolved gases stripping and the spatial distribution of microbial
populations, and is related to their degree of dispersion, mixing, fluid
pattern (Krsmanovic et al., 2021; Kundu et al., 2013; Lebranchu et al.,
2017). LtAD for LCFA-rich wastewaters is still an emerging area of research
for which the hydrodynamic aspects are important considerations for
future research works.

Next, we applied a GLLVMmodel to analyzewhichmicrobial taxa (from
the top 100most abundant genera) are positively and negatively correlated
with variables. The variables tested included the categorical variables –
inoculum sources (VD, RD and Mix), inoculum type (granular and
suspended), nucleic acid type (DNA), reactor configuration (DSC-FF, and
EGSB), substrate type (LCFA-rich dairy, and distilledwater), and the contin-
uous (numerical) variables – LCFA %, OLR, and temperature. The results
from GAM model showed similar trends to those obtained from GLLVM
models. For example, the genera uncultured Propionibacteriaceae, Longilinea,
Christensenellaceae R7 group, Lactivibrio, candidatus Caldatribacterium,
Aminicenantales, Syntrophus, Syntrophomonas, Smithella, RBG-13-54-9,
WCHB1–41, Trichococcus, Proteiniclasticum, SBR1031, Lutibacter and
Lentimicrobium (Supplementary Fig. 6) are important to methanization of
LCFA-rich wastewaters (Supplementary Fig. 6). Tolumonas was correlated
to low temperatures of 10 °C and high LCFA% of 45 % (Supplementary
Fig. 7). The contour beta diversity plots confirm that pivotal role of the a
priori conditioning on the original microbial biomass for structuring the
he ordination (PCoA) using Generalised Additive Model (GAM); b) β−coefficients
elated, and those that are negatively related with the temperature) c) The density
a graphical assessment of the classification accuracy (top: true; bottom: predicted
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microbiome (Figs. 4A, 5A). This is counter to established theory which
would suggest a more important role of the environmental variables, such
as, LCFA concentrations or operational temperatures for driving commu-
nity assembly and beta diversity.

3.5. Complexity stability relationship

Complexity-stability relationship of the clusters (suspended, mix,
granular) when evaluated using the effective connectance (D2) showed
the clusters were distinct (Fig. 6A), and their dissimilarity versus overlap
plots fitted well using different statistical measures (Jenson-Shannon
divergences, Euclidean distances, and Spearman correlation values)
(Fig. 6B–D). The number of species (n) in the clusters followed trend:
mix > suspended > granules, ranging from 230 to 660 for cluster ‘mix’,
25–65 for cluster ‘suspended’ and 10–50 for cluster ‘granules’ (Fig. 6A).
These trends remained same when using different statistical measures
(Fig. 6A). Connectances for the clusters ‘suspended’ and ‘granules’ were
similar and lower than of cluster ‘mix’ (Fig. 6A), representing redundancy
in taxa for the clusters ‘suspended’ and ‘granules’. High connectance in
Fig. 6.Complexity-stability relationship of clusters (suspended,Mix, granular)where, (a)
25 % overlap values for (b) cluster suspended, (c) cluster mix, (d) cluster granular using
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the cluster ‘mix’ represented an increased contribution of each taxon to
the network, and removal of any of these taxa from the cluster ‘mix’mayde-
stabilize the network. This holds validity since, the cluster ‘mix’ are cDNA
samples and represent the active community in contrast to the total com-
munity represented in clusters granules and suspended. Within a
microbiome, the active community is a subset of the total community that
proliferates under the prevailing metabolic conditions. When operational
conditions change, another redundant taxon may take over and proliferate
to form the new active microbiome. Hence, the complexity-stability
approach helped to assess the stability of clusters in anaerobic LCFA-
degrading microbiomes from batch and continuous LtAD systems. A caveat
of the stability-complexity relationship evaluation in current study is the
lack of datasets from samples sequenced for both total DNA and cDNA,
precluding a direct comparison between DNA and cDNA sequence effects
and is recommended for future works. Future studies exploring stability
of the microbial correlation and interaction networks may help in assessing
the robustness of engineered microbiomes treating LCFA-rich wastewaters
at low operational temperatures in order to select the optimal operational
conditions.
the effective connectance (D2) is calculated based onfitting a linear regression to top
Jenson-Shannon divergences, Euclidean distances and Spearman correlation values.
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4. Conclusions

Our comparative analysis showed inoculum characteristics (inoculum
source, inoculum morphology) shaped the bacterial and archaeal diversity
(species richness, species evenness) and beta-diversity patterns in anaerobic
LCFA-fedmicrobiomes at 10–20 °C.Moreover, a priori effects associated to in-
oculum characteristics played a more prominent role than the LCFA percent-
age in substrate (0–45 %) or operational temperatures (10, 20 °C) in
differentiating beta-diversity patterns in long-term reactor operation in batch
mode (200 d) or continuous mode (150 d). These results suggest that the
microbial community diversity of seed may continue to influence the
microbial community diversity in long-termoperation in open reactor systems
(up to 150 d) as well as closed systems (up to 200 d). Core microbiomes of
LtAD systems fed with LCFAs were found to be complex even at a very high
prevalence (>95 %). The bacterial and archaeal genera represent the
potential for acidogenesis, acetogenesis, β-oxidation and methanogenesis
steps needed for anaerobic metabolism of LCFAs. Abundances of the psychro-
philic bacteria RBG-13-54-9 from family Anaerolineae, and taxa WCHB1–41
and Williamwhitmania were correlated to high LCFA% and may represent
novel LCFA-degrading taxa in LtAD systems. Many taxa found in the core
microbiomes, heat trees and associated with high LCFA% and low tempera-
tures, were uncultured or have candidatus status, highlighting the high
abundance ofmicrobial darkmatter in LtAD systems treating LCFAs at temper-
atures of 10–20 °C. The role of these uncultured taxa needs additional investi-
gation. Complexity-stability analysis showed that ‘granular’ and ‘suspended’
clusters had higher stability, in comparison to the cluster ‘mix’. Future work
exploring the stability of the LCFA-degradingmicrobiomes undermore expan-
sive test conditions at low ambient temperatures would be useful to select op-
timal operational conditions further in view of the a priori effects of inoculum.
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