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Abstract

Diversity in human capital is widely seen as critical to creating holistic and high quality research, especially in
areas that engage with diverse cultures, environments, and challenges. Quantifying diverse academic collaborations
and its effect on research quality is lacking, especially at international scale and across different domains. Here, we
present the first effort to measure the impact of geographic diversity in coauthorships on the citation of their
papers across different academic domains. Our results unequivocally show that geographic coauthor diversity
improves paper citation, but very long distance collaborations has variable impact. We also discover “well-trodden”
collaboration circles that yield much less impact than similar travel distances. These relationships are observed to
exist across different subject areas, but with varying strengths. These findings can help academics identify new
opportunities from a diversity perspective, as well as inform funders on areas that require additional mobility
support.
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I. INTRODUCTION

International collaboration is a key part of scientific research, with the exchange of ideas from diverse
sources leading to numerous breakthroughs. A recent paper by [Sugimoto et al., 2017] showed that
researchers with affiliations to more than one country during their career, so-called “mobile” researchers,
had a significant boost in citations over their non-mobile colleagues. Indeed, several well established
international initiatives (Marie Curie Staff Exchange, German DAAD, Royal Society International Ex-
change) fund researcher mobility between countries and across disciplines. An important facilitator in
long-distance collaboration is the ease of air transportation between locations.

A. Relevant Research

Collaboration in science is not new. Despite being often seen as a contemporary practice, research
collaboration has always existed—although many collaborators were invisible from the authors’ lists
[Shapin, 1989]. Already in the early 19th Century, a scientist like Einstein - who is wrongly seen as a
“lone genius” — was collaborating with colleagues on many aspects of his research [Janssen and Renn,
2015], [Pyenson et al., 1985]. The first discipline t o e xhibit c ollaboration in t he f orm o f co-authorship
was chemistry. Already in 1900, 34% of papers in the field h ad m ore than o ne a uthor, c ompared with
10% in physics and less than 1% in mathematics [Gingras, 2010].

After the second world war, the large influx of research funding and the era of “big science” has led
to an important rise in collaboration activities and, as consequence, of multi-authored papers [Wuchty
et al., 2007]. Since the beginning of the 1950s, most papers have more than one author in the natural and
medical sciences [Cronin et al., 2003], [Franceschet and Costantini, 2010], [Galison, 2003], [Persson et al.,
2004], [Wuchty et al., 2007], while single authorship remained the norm in social sciences and humanities
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until the early 2000s [Lariviere et al., 2015]. In the latter group of disciplines, social sciences and arts
and humanities have distinct practices: while the majority of papers in social sciences are the results of
collaboration, single authorship remains the norm in arts and humanities [Lariviere et al., 2006]. At the
other end of the spectrum, fields such as high energy physics have author lists that have gone beyond 5000
names, a phenomenon named hyper-authorship [Cronin, 2005]. Such decline in single authorship has had
long been predicted [Price, 1986], and shown empirically in the work of Harriet Zuckerman [Zuckerman,
1967]. Indeed, focusing on Nobel Laureates between 1900 and 1959, she shows that after 1920, most of
the laureates’ papers are the result of collaboration. The rise in collaborative activities can also be linked
with an increase in international collaboration [Sonnenwald, 2007], [Wagner and Leydesdorff, 2005],
which is also observed in all fields but the arts and humanities [Lariviere et al., 2006]. Such growth is
observed both in terms of the share of papers that are in international collaboration, as well as the number
of countries involved [Lariviéere et al., 2015].

1) Multi-Faceted Nature of Collaboration: Several factors can be associated with this rise in re-
searchers’ collaborative activities. The first factor is the ease with which technology allowed researchers
to communicate and conduct research [Katz and Martin, 1997]. Since the advent of the digital age,
technologies such as the Internet, email and online communication platforms such as Skype, Zoom, or
Teams have allowed researchers to exchange data, meet, and write papers at a distance with much more
ease than what was previously possible. Despite those technologies, previous research shows that there
remains an effect of distance, where researchers are more likely to collaborate with colleagues that are
physically closer [Abramo et al., 2009], [Catalini, 2018], [Gieryn, 2002], [Hoekman et al., 2010]. Another
factor is its epistemic effect—i.e. its effect on scientific impact [Wray, 2002]. Science is increasingly
complex, and larger teams are therefore necessary to tackle contemporary scientific problems. This has
been shown empirically, as collaborative research is associated with higher citation rates [Franceschet and
Costantini, 2010], [Narin et al., 1991], [Wuchty et al., 2007]. This is specifically true for international
collaboration [Glénzel, 2001]. This can also be associated with infrastructure: big science infrastructures
have become so expensive that they have to be shared, often internationally. This is particularly true for
smaller countries [Luukkonen et al., 1992]. This positive relationship has been observed already in the
early 20th century [Lariviere et al., 2015]. A third factor is policies from funders and universities. Indeed,
some countries have made policies that emphasized collaboration, especially international [Abramo et al.,
2009]) or interdisciplinary [of Sciences et al., 2005]. Such policies are based on the fact that countries’
resources are limited, and that collaboration is considered to lead to more important scientific results. A
fourth factor is specialization: in a context where researchers are increasingly specialized, collaboration
allows for researchers with complementary expertise to work together on a research problem [Franceschet
and Costantini, 2010].

2) Importance of Distance & Diversity: Despite the importance of digital technology in making long-
distance collaboration possible, in person collaborations are still conducted. In this context, the possibility
of traveling between two cities can be hypothesized to have an effect on the likelihood of collaboration,
and reduce the effect of physical distance. Previous analyses [Ploszaj et al., 2020] have been performed,
using data on flight capacity and frequency, as well as collaboration. Using a sample of four universities
in the United States, they have shown that more flights between cities and the proximity of airports to
universities are linked with higher numbers of collaborations. Unsurprisingly, collaboration was higher in
cases where direct flights can be obtained between the cites. [Catalini et al., 2020] also show that not only
does travel cost constitute a friction to collaboration, a reduction to this friction leads to a increase in
higher-quality projects. However, air travel is not necessarily associated with academic success. Research
in [Wynes et al., 2019] has shown, using a sample of researchers from the University of British Columbia
(Canada) that, once controlling for age and discipline, air travel emissions were not associated with higher
impact measures, although traveling was associated with higher salaries. Recent work at university level by
[Guo et al., 2017] showed that the connectivity of universities via the air transport network is an important
indicator of ranking growth for the universities, even after accounting for economic development.
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Figure 1: Diversity analysis of coauthorship networks. In (a) we plot the global flight connections. (b)
gives the corresponding plot for a selection of academic collaborations. (¢) introduces the factors that
compose our distance metric. (d) introduces the corresponding factors for the diversity metrics. (e) lists
the metrics we use.

B. Contribution

Building on these ideas, we use the air transport network to quantify the geographical diversity in paper
coauthorships. The air transport network is a network of connections between cities (nodes) where the
edges are flights. We use it to define measures of diversity between the researchers based in these cities,
with full details provided on how we do this in the methods section. We focus on establishing a link
between the geographical diversity of coauthors on a given paper and the number of citations that paper
receives. As shown in Figure 1, a novelty is to develop distance and entropy measures for diversity on
the coauthorship network and evaluate the variation of the Average Relative Citation (ARC) score against
these.

The rest of the paper is structured as follows. In Section II we present the key results. In Section III,
we present the robustness of our results to potential confounding variables, such as the effect of university
rankings. In Section IV we examine the results by subject area and location, in order to examine subject
and geographic specific differences. We provide details of the data and methods we use for this analysis in
Section V. We discuss implications on individual academics, universities, funders, and government policy
in Section VI. In the Appendix, we include some additional results.

II. RESULTS
A. Main Discoveries

Diverse Collaborations Lead to Higher Citations. Our primary main discovery is that for a relatively
simple notion of diversity measured by the entropy of the probability of forming a collaboration, the ARC
score is highly correlated with the entropy, as seen in Figure 2(a). We are aware of certain confounding
variables, chiefly the potential effect that university rankings has on citations [Clauset et al., 2015]. We
show that this correlation persists even when accounting for this. We also reveal some popular "well-
trodden” 2-, 3-, and 4-way collaboration paths in Figures 2(b)-(c).

Well-Trodden Paths and Extreme Distances Lead to Relatively Lower Citations. Our secondary
main discovery is that the aforementioned “well-trodden” paths yield relatively lower citation than similar
distances and that extremely long distance collaborations have variable or reduced citation. Using the air
transport network distance metric, we show in Figure 3(a) how diversity initially benefits collaboration until
distance takes its toll and impedes frequent exchange of ideas. Local spikes in the number of collaborations
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Figure 2: Headline results showing that diverse collaborations lead to greater ARC. (a) shows the
relationship between weighted airport network distance entropy and average ARC score. (b) and (c)
give examples of popular collaboration routes at the country and city level respectively.
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Figure 3: Relationship between average weighted airport network distance and average ARC score,
showing that well trodden paths and extreme long distance collaborations can reduce ARC. In (a) we
look at the overall relationship, before breaking it down by (b) academic domain and (c) country.
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exist in the general data set, specific academic domains, and specific countries. These spikes correspond
to well-trodden collaboration paths - see Figures 2(b)-(c) (highlighted by a black box in Figure 3) also
correspond to local ”dips” in ARC scores. That is to say, well-trodden collaboration paths do not yield as
much citation as similar distances between other collaboration locations. We observe this pattern across
all domains and countries, but note exaggerated effects in certain cases, e.g., long distance collaboration
is more detrimental in clinical medicine (possibly due to the practical and timely nature of its practice).

A North-South Divide Exists in Collaborative Research. Finally, our third main discovery is that
a divide exists in the composition of collaborative research, with most collaborations occurring between
researchers located in the global north. When looking at pairs of collaborations (where a collaboration
between more than two authors contains multiple pairs), we see from Figure 1(b) that 94% of collaboration
pairs are between researchers in the global north.
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Figure 4: Binned comparison of (a) average weighted airport network distance, (b) weighted airport
network distance entropy, (¢) weighted entropy of coauthor location, and (d) average university rank
weight against ARC Score.

B. Detailed Analysis of Effect of Distance, Diversity, and University Rank on ARC Scores

In Figure 1(e), we briefly introduce four important measures whose relationship with ARC scores we
are interested in investigating. We give a more detailed explanation of these here, with the full derivation
of the measures presented in Section V. We also identify some key patterns we see in the relationships
with ARC score, which can be seen in Figure 4.

1) [Collaboration Distance] Average Weighted Airport Network Distance. This is a measure of
the average distance between collaborators on a given paper. The distance is the weighted network
distance on the flight network. Based on the work of [Gastner and Newman, 2006], an edge on the
network is assigned a weight

effective length of edge (7, j) = Ad;; + (1 — A) (1)



where d;; is the Euclidean distance between nodes 7 and j, and A is a parameter that controls the
importance of physical distance against graph distance. From Figure 4a, we see a positive correlation
between citations and this measure of distance. However, past a certain point, we see that the number
of citations decreases. We can conjecture that the large average distance could mean that these
coauthors are in remote areas, geographically and in terms of transport links.

2) [Collaboration Diversity] Weighted Airport Network Distance Entropy. This measure also looks
at the weighted network distance between coauthors. It uses a more direct measure of diversity -
the entropy of these distances. In Figure 4b we see that as this measure of diversity increases, the
number of citations also increases consistently, showing a clear trend between diversity and citations.

3) [Alternative Collaboration Diversity] Weighted Entropy of Coauthor Location. In this alternative
measure of diversity, we consider the entropy of the geographic locations of the coauthors. In this
case a weighted entropy measure is used (not to be confused with the weighted distances introduced
previously). The “weight” in this case incorporates the centrality of node on the flight network, as
well as university rankings. Again we see in Figure 4c that as this measure of diversity increases, the
number of citations also increases consistently, showing a clear trend between diversity and citations.

4) [Important Confounding Factor] Average University Rank Weight. This measure weights cities
by the average world ranking of the universities located within a certain radius. This is important
to consider, as the reputation of a university can have a significant effect on the number citations
received by papers produced by its researchers [Clauset et al., 2015]. In Figure 4d we see a strong
correlation between the university rank weights and number of citations. This effect seems to flatten
out somewhat as the average weight increases. This could be indicating that the effect of university
rankings is less important for the top universities. However, it could also come from our specific
choice of the construction of the weights. The exact nature of this relationship is outside the scope
of this work.

In each of the plots comprising Figure 4 the data is binned. In each case, we also plot the number of
papers that are in each bin. In addition to the main results already presented, we see that the variability
of the Average ARC score increases for large values of each of these measures. We can see that these
cases correspond to a very small number of papers, and so this is not unexpected.

C. Robustness of Results to Parameter Choices and Confounding Variables

There are two key situations in which we check the robustness of the results obtained. The first of these
concerns the key configuration parameter A, which controls the balance between Euclidean distance and
flight hop distance in (1). In our case, we choose a value of \ = Wloo’ as this gives some interpretability
which we lose for larger choices, as detailed in Section V. However, the results we observe can also be
seen for different choices of A. One exception to this is that for much larger choices such as A = %,
the weighted distances are completely dominated by the Euclidean distances. In this case we lose the
interpretation of “Well-trodden paths”. Further discussion is presented in the Appendix.

Secondly, as noted above, it is well known that there is a strong link between university rankings and
paper citations [Clauset et al., 2015]. The relationship of interest in our case is therefore the effect that
our distance and diversity measures have on ARC score, specifically not occuring via university rankings
(since this is a relationship that is already well understood). In order to disentangle these effects, we
explicitly account for the confounding effects of unversity rankings. We see that the patterns already
observed still persist having done so. In Section III we present the full analysis controlling for this effect.

In particular, the results displayed in Tables I and II give evidence to support our claims.

III. STATISTICAL ANALYSIS OF RESULTS

So far we have presented results which have been largely qualitative in nature. We have observed two
distinct trends in the average ARC score with increasing average distance and entropy of distance between
coauthors. However, we now wish to quantify these results. Motivated by the patterns of the points in



Figure 4a, we first define a model to check for the existence, location and significance of the “peak™ we
observe in the relationship between average weighted network distance and ARC score.

A. Average Weighted Airport Network Distance

In order to check for the existence and location of a peak, we fit a piecewise linear model, limited to
two pieces. The model can be summarised as:

Flz) = a1 +bz x<zx* )

as+ b x>zx*

where a;, by, as, by are such that f(x) is continuous at x*. The model is fitted for a range of values x*, and
is optimized to find the value of x* for which the residual sum of squares is lowest. The optimal value
" gives the estimated location of the peak. We can test whether a statistically significant peak exists by
checking that the corresponding gradients by, by are significantly > 0 and < 0 respectively!. In Figure 5
we see an example of what this fit looks like. Our analysis confirms what we intuitively saw in Figure
4a, with a statistically significant increase and decrease in average ARC before and after the peak®. We
emphasise that our goal here is not to accurately model the relationship that we observe, but merely to
confirm the existence of this peaked shape that we see in the data. For this purpose, a simple piecewise
linear model works well. More complicated models may capture the relationship better, but that is outside
the scope of this work.

This does not yet tell the full story. As before we can test for the pattern detailed above after removing
the effect of university rankings, as mentioned in Section II-C. The effect that they have on citations
received by papers is already well studied [Clauset et al., 2015]. We can see this clearly if we plot the
(binned) university rank weights (as defined in (6)) against the average ARC scores. We do this in Figure
6 and see an almost linear relationship.

Disentangling how much of the relationship between average weighted distance and ARC score occurs
via university ranks is a potentially difficult task, and we do not focus on that in our work. Instead, we take
a conservative approach, removing as much of the effect of university ranks as possible by directly fitting
ARC score against average university rank weights, and removing that effect before fitting the piecewise
linear model of ARC score against average weighted distance. Specifically, letting y4rc be the ARC score
for each paper, d4y be the average weighted airport network distance between the coauthors and w4y
the average university rank weights of the coauthor locations, we first estimate §yarc from yapc ~ way.
Then we fit our piecewise model yarc — Jarc ~ f(dav), where f(zx) is defined as in (2).

We compare the unadjusted fit (as seen in Figure 5) with the corresponding fit having adjusted for
the effect of the university ranks in this way, with the results given in Table I. We see that the observed
increase stays almost constant, as does the peak location. However, the decrease that we observe seems
to be at least partly tied in the the University ranks.

Method T* by p-value b p-value
Before adjusting || 1.60 0.25 0.00 -0.08 0.00
After adjusting || 1.65 0.24 0.00 -0.04 0.00

Table I: Fitting a piecewise linear model for ARC score using average weighted airport network distance,
before and after adjusting for the effect of university rankings

Further analysis is presented in the Appendix, where we use stratification to support the results presented
here.

In this case we define significance at the 5% level by checking that the p-values are < 0.05

“Throughout our analysis, we fit the piecewise linear model on the raw (rather than binned) data, but for ease of understanding we show
the fit on the binned plot. However, in practice we find that the results are very similar if we perform a weighted fit to the binned data using
the number of data points in each bin.
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B. Weighted Airport Network Distance Entropy

We now investigate the relationship between weighted airport network distance entropy and ARC score.
In Figure 4b we see that the average ARC score increases as the entropy increases. In order to test whether
this increase is significant, the first step is to fit a linear model of ARC score against weighted distance
entropy, having accounted for university rankings. Specifically, letting y 4z be the ARC score for each



paper, dgnt be the average weighted airport network distance between the coauthors and w4y the average
university rank weights of the coauthor locations, we first estimate ysrc from yarc ~ way. Then we
fit the simple model yarc — Yarc ~ depnr. Again, we emphasise that our goal here is not to accurately
model the relationship that we observe, and that other models may provide a better fit than the linear
model that we use. However, our goal is simply to confirm the existence of a statistically significant trend.

In Table II we see the estimated parameters from fitting the above model, and from fitting the model
without adjusting for university rankings. In each case we see a significant increase in ARC score as
distance entropy increases. In Figure 7 we see the fit of the model, having accounted for university
rankings. A linear model does not capture the behaviour of the data as well as the piece-wise linear
model fit for the average weighted distance metric. In fact, it looks as though the average ARC scores
initially decrease as the entropy increases. The reason for this is that we fit the model with the full data,
but plot the binned data. As we can see from the numbers of papers in each bin, most of the bins have
very few values, and the model fit is dominated by the two large spikes. Thus, in Figure 7, the higher ARC
scores for very small values of the distance entropy are somewhat misleading, as are the corresponding
results for very large values of the distance entropy.

Method b p-value
Before adjusting || 0.69 0.00
After adjusting || 0.66 0.00

Table II: Fitting a linear model for ARC score using weighted airport network distance entropy, before
and after adjusting for the effect of university rankings
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IV. COMPARISONS

Having defined methods to analyse our results quantitatively, and to control for the effect of university
rankings, we now break the overall results down by academic field and coauthor location, in order to gain
a better insight into the trends that are occurring.

A. Results by Academic Field

1) Average Weighted Airport Network Distance: Fistly, we compare different fields based on the
location of the peak in the relationship between average weighted network distance and ARC score.
We also compare the gradients before and after, to see how prominent the peak is. In Table III we see
the results. There are several interesting features we notice here. Firstly, we see that for all the fields but
one, there is a significant positive relationship until a point. Secondly, we notice that we can broadly split
the different fields into three different categories, based on the patterns exhibited:

1) Fields such as Social Sciences, Clinical Medicine and Biomedical research, which exhibit the peaked

form described earlier, with significant increases and decreases.
2) Fields such as Physics, Engineering and technology and Psychology, which exhibit a significant initial
positive relationship, but subsequently plateau, with no significant positive or negative relationship.
3) Mathematics, which does not seem to exhibit any significant relationship.
Lastly, if we examine the point at which there is no longer a positive relationship (either the peak or
the start of the plateau) then we see differences between the field. In Table III we have sorted the fields
by the estimate of z*, and we see that for fields such as Biology and Psychology increasing the average
weighted network distance has a positive effect on ARC scores for much longer than for fields such as
Social Sciences and Engineering and Technology.

Field ¥ by p-value b, p-value

Social Sciences || 1.37 0.38 0.00 -0.10 0.01
Engineering and Technology || 1.43 0.26 0.00 0.01 0.64
Professional Fields || 1.46 0.46 0.00 -0.15 0.00
Clinical Medicine || 1.65 0.34 0.00 -0.10 0.00
Physics || 1.65 0.21 0.00 -0.01 0.79

Health || 1.67 0.27 0.00 -0.07 0.33

Biomedical Research || 1.69 0.25 0.00 -0.06 0.00
Chemistry || 1.76 0.11 0.00 0.04 0.13

Earth and Space || 1.86 0.25 0.00 -0.09 0.00
Psychology || 1.90 0.22 0.00 -0.01 0.75

Biology || 2.72 0.07 0.00 -0.01 0.54
Mathematics || 3.96 0.01 0.65 0.17 0.19

Table III: Comparison of relationships between average weighted network distance and ARC score for
different fields

2) Weighted Airport Network Distance Entropy: We can perform the same comparison for the weighted
distance entropy measure. In this case, we rank the subjects based on their estimated coefficients. We
see from Table IV that whilst the positive relationship between entropy and ARC score exists for every
subject considered, the strength of that relationship varies greatly. Mathematics and Chemistry exhibit a
much weaker relationship than the other subjects, whilst Social Sciences and Clinical Medicine exhibit
the strongest relationship. An important factor to consider here is the number of coauthors that papers
in each field generally have. This measure of diversity only makes sense for papers with more than two
coauthors, but we know that medical papers can sometimes have very large numbers of authors, whilst
mathematics papers often have only a handful. It may be valuable to examine further how this factor
impacts the differing relationships we see here.
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Field b p-value

Mathematics || 0.15 0.00
Chemistry || 0.18 0.00
Psychology || 0.26 0.00
Professional.Fields || 0.28 0.00
Biology || 0.29 0.00

Physics || 0.29 0.00
Engineering.and.Technology || 0.30 0.00
Health || 0.30 0.00
Earth.and.Space || 0.35 0.00
Biomedical .Research || 0.38 0.00
Social.Sciences || 0.43 0.00
Clinical.Medicine || 0.56 0.00

Table 1V: Comparison of relationships between weighted network distance entropy and ARC score for
different fields

B. Results by City

Secondly, we compare the collaborations involving certain cities, in order to investigate differences in
the collaboration patterns of their researchers. In Figure 8a we see the plot of average weighted network
distance against ARC score for Beijing, with Figures 8b and 8c showing the results for Boston and London
respectively. The three patterns we can see are noticeably different. For Beijing and London, there are
clear peaks, but the peak for London occurs at less than half that of Beijing. Meanwhile, for Boston, it
appears that there is no peak at all. A closer examination reveals that while there does still appear to be
a peaked relationship, some collaborations only a small distance away from Boston but with very high
ARC scores are distorting this result.

Piecewise Linear Estimation of ARC Score — Beijing Piecewise Linear Estimation of ARC Score — Boston Piecewise Linear Estimation of ARC Score - London

Average ARC Score
Average ARC Sco
I
Average ARC Soo

Average Weighted Airport Network Distance Average Weighted Airport Network Distance Average Weighted Airport Network Distance
(a) Beijing (b) Boston (c) London

Figure 8: Piecewise linear estimation of ARC score using average weighted airport network distance, for
(a) Beijing, (b) Boston and (¢) London

This is certainly interesting, in terms of understanding how these cities collaborate with others. However,
a slight complication arises when comparing cities in this way. Although we can see three distinct patterns
here, it is not yet clear how much of these differences arise from fundamentally different behaviours of
the researchers in these cities, and how much is simply due to the geographies of the cities. For example,
we might expect that the most productive collaborations for researchers from Beijing are those with large
American centres of research, which would generally be a weighted network distance of 2 — 3 away.
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Similarly, for researchers from London, the weighted network distances to major European and American
centres of research will be roughly between 1.2 and 1.9. Finally, the highly productive collaborations that
researchers from Boston have are often from nearby Cambridge (home to Harvard and M.I.T.), or other
East-coast cities with large research institutions.

In order to try and reduce these geographical effects, we can compare cities where we imagine that the
geographical effects would be similar. We see some of these comparisons in Table V. From this we can
see that even between cities with similar geographical effects, there can be a significant difference in the
observed patterns, especially with regards to the magnitude of the initial positive effect that increasing
diversity has.

2k

City T by p-value by p-value
Boston || 3.32 -0.13 0.02 -0.50 0.11
Cambridge (USA) || 0.84 0.43 0.20 -0.23 0.03
New York || 0.90 0.74 0.00 -0.41 0.00
Berkeley || 1.30  0.68 0.00 -0.20 0.10
London || 1.40 0.58 0.00 -0.28 0.00
Oxford || 1.62 0.31 0.02 -0.20 0.15
Edinburgh || 1.98  0.62 0.00 -0.52 0.00
Dublin || 1.43  0.82 0.02 -0.19 0.20
Beijing || 2.96 0.21 0.00 -0.18 0.57
Hong Kong || 242 0.27 0.02 -0.24 0.33

Table V: Comparison of relationships between average weighted network distance and ARC score for
different cities

C. Further Work

In this work, we focus on testing whether there is a significant increase in the average ARC score
as the entropy measures increase, rather than measuring this effect. Similarly, for the average weighted
airport network distance, we look for the existence and location of a peak using a piecewise linear model,
without considering how well this model fits the data. While in each case these models are suitable for
our purposes, further work would be needed to more accurately model the relationships we observe.

Thus far, we have also been using fairly simple models to control for the effect of university rankings.
In order to better understand the results, we may want to fit more complicated models by accounting for
possible nonlinear effects of the variables involved. We may also want to investigate other factors that
may affect ARC scores apart from university ranks, such as economic development.

Finally, our work has been looking at one specific year of data. An interesting extension would be to
investigate if the relationships we have found differ for different years, and if so try to measure how the
changing pattern of airline travel corresponds to the change in collaboration patterns.

V. METHODS

Here we detail the data and methods that we use in our analysis. In particular, in Section V-A we
describe the data and in Section V-B we detail how the measures of diversity that we use are constructed.

A. Data

1) Coauthorship Network: This network consists of collaborations between different coauthors, where
for each collaboration we have the location of each coauthor, an identifier for the paper, and a citation
score for the paper. The citation score relates to the number of citations the paper received, normalized
based on the subject area. This is called the Average Relative Citation (ARC) score. The data consists of
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352,057 papers published in 2005, with coauthors from 21,131 different locations. The locations of the
coauthors are given as cities rather than universities, This means that we need to construct a mapping from
universities to cities in order to incorporate university rankings into our analysis, as we shall describe.

2) Air Transport Network: We take a snapshot of the air transport network in 2005 as a representative
network showing major inter-city connections. Whilst we could have used a year-by-year analysis, we felt
this was over analysing the problem as collaborations are built up over a long time period and synchronicity
with a particular year is unnecessary. The data consists of flight volumes between airports, with 9192
airports and 33075 flight links between them for the year that we focus on.

3) Comparisons: In Figure 1 we see some simple comparisons between the networks of interest. We
explore some of these in more detail here. In Figure 9 we see a random sample of the collaboration
routes (the total number of routes is too large to plot clearly), whilst in Figure 10 we see the air transport
routes. Comparing these, we see a number of differences. Firstly, we see that although there is a strong
connection between the US and Europe in the air transport network, this is far more pronounced in the
collaboration network. The same pattern holds true for the connections between Europe and Asia and Asia
and the US. Indeed, if we restrict ourselves to collaborations with coauthors from two or three different
cities, we can see from Table VI that the top collaboration routes (by ARC score) follow these patterns.

As noted in Figure 1, we see a north-south divide in the data, with disproportionately many collabo-
rations occurring between cities in the global north. In particular, the percentages given in Figure 1(b)
are calculated by considering every pairwise collaboration, and noting the location of the two relevant
collaborators.

Two way collaborations Three way collaborations
Countries No. of collaborations | Countries No. of collaborations
Canada-USA 3447 Germany-UK-USA 128
Germany-USA 3043 France-Germany-USA 108
UK-USA 2965 Germany-Switzerland-USA 106
China-USA 2578 Canada-UK-USA 93
Japan-USA 2252 France-UK-USA 93

Table VI: Top two and three way collaborations by country

From this preliminary analysis, we also notice that there are a lot of long-distance collaborations present,
in many cases between cities that do not have direct flights between them. This raises the interesting
question of how journeys with multiple flights act as a barrier to collaboration, and what role is played
by the distance on the air transport network, compared with Euclidean distance. This provides further
motivation for our work.

When performing our full analysis, our focus is on linking the number of citations that each paper
receives with the relationship between the coauthors on the air transport network. More specifically, we
want to see if there is a link between some measure of geographical diversity of the coauthors via the
air transport network, and the ARC score for the paper. Thus, in what follows we split our data by paper
rather than considering summaries over all papers collaborated on by pairs of cities. For each paper we
then have access to a list of the coauthors on it, their location, and the ARC score. This is what we use
for our analysis.

4) University Rankings: One more dataset that we will make use of is the world university rankings,
which comprises the rankings of the top 500 universities each year from 2005 onwards. As before, we
focus on data from the year 2005. This data is necessary for our analysis because, as shown by [Clauset
et al., 2015], there is a relationship between the reputation and ranking of a university and the number of
citations that a paper written by one of its researchers receives. When we look for a relationship between
the number of citations that a paper receives and our various measures of diversity of the coauthors, we
want to make sure that we take this effect into account.



Random Collaboration Routes: Plotting the 10000 Collaborations with the random ARC Scores

Figure 9: Global collaboration route plots

Air Transport Routes

Figure 10: Global air transport route plots
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B. Analysis

We now present the methods we use to investigate the link between geographical diversity of coauthors
on a paper and the number of citations it receives. A key part in this will be defining our measures of
geographical diversity. The first step towards these definitions is to connect our coauthorship data with
our air transport data.

1) Connecting Cities with Airports: There are a number of different ways to connect the coauthorship
data with the air transport data. Firstly, we want to find a distance measure between the cities in the
coauthorship dataset, where this distance is linked to the air transport network. We do this in an effort to
replicate how two collaborating authors from potentially different countries could travel in order to meet
each other. An initial measure of the distance between two cities is the number of flights it takes to travel
between the two. We can calculate this by mapping each city to an airport and then finding the graph
distance between the two airports on the air transport network.

We can improve upon this by incorporating Euclidean distances between the nodes of a graph, as in
[Gastner and Newman, 2006]. This is done by assigning an effective length to each edge

effective length of edge (i, j) = Ad;; + (1 — \) 3)

where d;; is the Euclidean distance between nodes ¢ and j, and A is a parameter that controls the relative
importance of physical distance against graph distance. The weighted network distance between two nodes
is then given by the sum of the effective lengths on the shortest effective path between them. Incorporating
Euclidean distance into our model makes sense intuitively because our distance measure is attempting to
capture geographical diversity of coauthors. We believe an important part of this is the difficulty of two
potential collaborators traveling to meet each other. With this in mind, a long haul flight presents more
of a barrier than a shorter one.

It can be shown that, for the global air transport network, the value of \ that leads to the best replication
of the observed network is 0 or close to it [Gastner and Newman, 2006]. In our model, we choose A\ = ﬁ.
This choice fits with the conclusions of [Gastner and Newman, 2006], but is also useful from a practical
perspective. We measure the Euclidean distances in kilometers, and since the longest distance Euclidean
distance between two nodes on the air transport network is ~ 9000km this means that a journey that
involves multiple flights will always be assigned a greater weighted network distance than one involving
only a single flight. Again, this fits with our intuition about the difficulty of two potential collaborators
meeting, and gives some interpretability to the weighted network distances.

Using this, we calculate the weighted network distance between two cities A and B suing the air
transport network as follows:

1) Mapping Cities to Airports - First, each city is mapped to one or more airports chosen as follows.
We calculate the weighted degrees, on the air transport network, of all the airports within 100km of
the city. The city is then mapped to the five airports with the highest weighted degrees. If there is
no airport within 100km of the city then it is mapped to the nearest airport. We denote the sets of
airports associated with cities A and B as A and B respectively.

2) Calculating Weighted Network Distances - For each pair of airports (a, b),c.4 e We then calculate
the weighted graph distance on the air transport network using the edge weighting given by (3)

3) Calculate Shortest Route - We set the weighted network distance between A and B, which we
denote as dp, to be the minimum of these weighted network distances.

4) Correcting Zero Distances - Sometimes, due to the geographical proximity of two cities, the same
airport might appear in A and B. In this case, the minimum calculated In Step 3 will be 0, even
though the cities may be up to 200km apart. To correct for this, the distance between the two cities
is set to be proportional to the Euclidean distance between them, normalized so that the maximum
value it can take is 1.
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The weighted network distance between the cities A and B is thus defined as

N
dap = ae%ibréB Adp it (1= X) + dSglanso @)

’ n=1
where dfj is the Euclidean distance between ¢ and j, and a = i; — iy — ... — iy = b is the shortest

weighted path from a to b on the air transport network.

We choose to map each city to potentially multiple airports in another attempt to recreate real world
travel situations, since the nearest airport to a city may not be the one with the best connections to certain
other cities. The 100km limit is set as the limit that a person might be willing to travel to an airport.
Using a similar intuition to our choice of A, setting the maximum distance to be 1 in the case that two
cities share an airport is to ensure that any journey that contains a flight is considered ‘longer’ than one
that does not.

In Table VII, we can see that the weighted airport network distance is quite highly correlated with the
Euclidean distance. When comparing ARC scores with Average Distance for different values of A, we
will see similar patterns for varying A. This is perhaps unsurprising given these high correlation values.

Airport Network | Weighted Airport Network | Euclidean
Airport Network 1 0.96 0.62
Weighted Airport Network 0.96 1 0.80
Euclidean 0.62 0.80 1

Table VII: Correlations between distance measures

As well as using the air transport network to calculate distances between coauthors, we can use it
to define centrality measures for them. Following [Guo et al., 2017], we want to find a measure of
connectivity for the cities in the coauthorship dataset by associating them with airports in the air transport
data set. That is, we want to find out how connected the cities are within the air transport network, as
opposed to within the coauthorship network. We do this using the same method of calculating a weighted
aggregate of the connectivities of each of the airports associated with a city. For any particular centrality
measure 7, such as eigenvector centrality or betweenness, the weighted centrality of a city A is thus given
by

Ci(A) = 3 Cila) (d) ™ 5)

acA

where A is the set of airports within 100km of A, as before. C;(a) is the centrality of airport a, dS, is
the Euclidean distance between the city A and airport a, and « is a decay parameter that we set to be
equal to 2 as in [Guo et al., 2017].

2) Connecting Cities with Universities: As noted previously, the reputation of a university can have
a large effect on the number of citations a paper written by one of its researchers receives [Clauset
et al., 2015]. Thus, we may want to control for university rankings in our analysis. We can use the
university rankings dataset to do this, but since the nodes in the coauthorship network are cities rather
than universities we will have to use a similar method as we have done for the centrality measures in
order to associate the ranked universities with the cities.

We can construct a university rank weight for each city A as follows. Firstly, we find all the universities
within 20km of the city and call this set (/4. Then we calculate the weight w4 as follows

1
wA—Zl—l—\/?u (6)

ueU A

where 7, is the rank of the university wu.
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There are a number of things to note about this construction. Firstly, we do not use a decay factor.
This is because we are trying to replicate how the coauthorship data is aggregated into cities. Here, the
collaborations from a city are the collection of the collaborations from each university associated with
that city, with no dependence on how far the universities are from the city. Since we do not know exactly
which universities are associated with each city, we use 20km as an estimate. Empirically, this seems to
include the relevant ranked universities for the largest cities of interest. The downside of this method is
that many small towns very close to much larger cities are also given high university rank weights. This is
hard to avoid with the current method, since all we have to match cities with universities are the respective
location coordinates. Moreover, this will not affect our results significantly because these smaller towns
have relatively few edges in the coauthorship network, except in the case when they are home to a large
university. In this case, the large university ranking weight will have been assigned to them correctly.

The exact form of the weight with respect to the rankings is calculated so that the better a ranking is,
the more weight it adds, with the square root term ensuring that this effect is not too dominant. We only
have the rankings for 500 universities, and so for most cities the university set (/4 will be empty. The
+1 means that the baseline weight is 1 rather than 0, since for a specific paper we may want to look at
the product of the university rank weights for its coauthors. For example, a city which did not have any
top 500 universities within its radius would have a weight of 1. Boston has the highest weight of 2.84,
which is unsurprising given its proximity to Harvard and M.L.T.

3) Measures of Diversity: We now present the three measures that we will use to investigate the
relationship between coauthor diversity and paper citations.

(a) Average Weighted Network Distance: We have already outlined a method for calculating a weighted
network distance between two cities. For a specific paper F; with V; coauthors from cities ¢;1, .. ., ¢y, €
C; we can then calculate the average weighted network distance as

1
W Z dcij Cik (7)

2 Cij,Cik eC;

which is the average of the weighted network distances between all the pairs of coauthors on the paper.
This is a simple measure, but it captures the geographical diversity of the coauthors in a sense which
takes into account the difficulty of traveling between their various locations. The intuition behind it
is also clear - a higher average weighted network distance means that on average the coauthors are
further apart both geographically and in terms of travel links, and are thus more diverse in this sense.

(b) Entropy of Weighted Network Distance: A related measure of diversity can be found by calculating
the entropy of the weighted network distances between the coauthors on a paper. We use the Shannon
entropy [Shannon, 1948], defined as

H=— Zpi log(pi) @®)

where the p; in this case are the probability of a certain weighted network distance appearing given
the distribution of distances in our data. We can estimate these probabilities by sorting the observed
distances into bins and then using the bin counts as an empirical distribution estimator.

This measure, also known as Shannon’s diversity index, quantifies the diversity of weighted network
distances between coauthors on a paper. It may be more difficult to see how this measure captures
diversity in a similar sense to our previous measure. In this case a larger value indicates that the
distances between coauthors are more varied. From the viewpoint of one specific coauthor, this would
indicate that they collaborate with coauthors that are varying distances away from them - perhaps one
international coauthor and one from a nearby university. Conversely a smaller value would indicate
several coauthors that are the same distance from each other, such as several coauthors from local
universities. It is worth noting that this measure is only meaningful for papers with more than two
coauthors. With only two coauthors this entropy measure will always be zero, as the entropy of a
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single number is zero.

(c) Weighted Entropy of Coauthor Location: An entropy-based measure that may seem more intuitive
can be found by directly calculating the entropy of the geographical locations of the coauthors of a
paper. We can calculate this as before by discretising the locations into ‘bins’ which are 2-dimensional
in this case. The entropy of the locations then gives a direct measure of geographical diversity, since
a higher value means that the coauthors are more spread out throughout the world, with fewer located
close together in the same ‘bin’. This entropy measure is different to the one used previously in that
it does not concern the actual (weighted network) distances between the coauthors, just whether or
not they are clustered together.

This initial construction does not involve the air transport network distances between coauthors or
the university rank weights of their locations, both of which we have said are important factors. Thus
we can improve it by using the weighted entropy introduced by [Guiasu, 1971]. This is of the form

H=— Z w;p; log(p;) )

where the p; are the probabilities of a certain geographic location bin. The w; are weights which in
our case take the form
ca:

W= (10)
Here, the U, are the averages of the university rank weights of the coauthor locations in the 2D bin
used to calculate p;. The C.;,; are averages of the eigenvector centralities over the bins. We ‘power
down’ C,;, by raising it to a small power because the range is huge (over 10 orders of magnitude)
and we do not want it to dominate the entropy values or university rank weights.
This form for the weights associates more weight with lower ranked universities and less connected
cities. Thus, our measure of diversity rewards papers where the coauthors are not only spread out
geographically but also not well connected on the air transport network. This means that papers with
a higher weighted diversity indicates a greater difficulty for their coauthors to travel to each other,
which is in line with our previous measures. The diversity measure also rewards papers with coauthors
from less highly ranked universities, which helps to counteract the effect reported by [Clauset et al.,
2015] on the effects of university rankings and reputation on citations.

VI. DISCUSSION ON LIMITATIONS AND IMPACT

In terms of limitations, we first acknowledge that funding is a strong confounding variable in the
prominence of citation metrics for papers [Zhou et al., 2020], thus skewing our results to the importance
of funded research. As such, heavy bias towards national-specific funding might lead to a preference
to high citation papers for shorter distances than international distances. So, whilst there is supporting
evidence from literature [de Moya-Anegon et al., 2018] that international collaboration does improve
citation, any diminishing return results analysis might need to consider the impact funding has and the
open challenge of disentangling causal mechanisms between funding and citation. Another consideration
is the relative cost of a flight as a proportion to salary for underfunded researchers and as a proportion
of funding might be lower in the Global South and certainly long-haul flights to the north makes the
problem more severe.

We also believe university ranking is probably the most obvious confounding variable to check for
which indirectly includes aspects such as GDP. For example, if you are collaborating with someone
overseas, whilst GDP may affect the flight cost and frequency, the fundamental motivation might be more
related to academic aspects or the sheer practical distance of the flight. Certainly, there are secondary
factors such as desirability of the travel location [Knight, 2014], the dominance of conference locations in
instigating collaborations [Fraz, 2015], and GDP may discourage early career researchers in low income
countries from making collaboration trips out of their own pocket, or that those without family or care
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responsibilities are more likely to form collaborations [Hu et al., 2014], but we cannot distinguish this
level of granularity within one paper, as there are inherent privilege issues in research for many countries.

Another limitation is that some researchers may use ground or maritime travel, but in general we
believe air travel dominates international and long distance national travel, or at least has a reasonable
approximation to the distance cost irrespective of modality. Therefore small discrepancies in personal
choice might not change the overall statistics much.

In terms of impact on the academic knowledge transfer and international collaboration, there are two
distinct areas that these results can contribute to. (1) Exchange and Mobility: many bilateral schemes (e.g.,
Royal Society International Exchange, German DAAD) dictate which countries are priority countries based
on largely bi-lateral funding agreements and a common scientific priority agenda. Often this overlooks
diversity and especially the global north-south divide highlighted in this paper (94% of collaborations
are between northern hemisphere universities). Beyond travel grants, domain specific researchers can also
benefit from this work (e.g., which countries have the greatest diversity potential for similar distance).
(2) Inform Research Funding Policy: current best practice recognises the need to improve diversity, but
lacks quantitative frameworks. Whilst this work only provides a single dimensional geographic diversity
(though one can argue geography is closely associated with many aspects of culture, ethnolinguistics, and
practices), it provides domain specific data on diversity gaps. This in turn can inform both university policy
as well as add an extra diversity dimension for international partnerships (e.g., current GCRF funding is
only based on income).

VII. CONCLUSIONS

In this paper we have investigated connections between citations that papers receive and how the
coauthors are connected via the air transport network. In particular we have looked at how different
measures of geographical diversity of the coauthors on a paper are related to its ARC score. We have
defined three different measures of diversity, relating to the average weighted (air transport) network
distance between coauthors, the entropy of these weighted network distances and the weighted entropy
of the coauthors’ geographical locations. We have seen interesting relationships in each case. For the
two types of entropy, the average ARC score for a paper increases as the entropy, and thus the diversity,
increases. As the average weighted distance increases, the ARC scores increase up to a point, but then
start to decrease. In all cases there appears to be a link between diversity and citations.

To ensure that there were no obvious global confounding variables that could offer an alternative
explanation for these results, we have also investigated the effects the university rankings have on this
relationship. We have seen that the relationship between the diversity measures and the average university
rank weights is similar to the relationship between the diversity measures and the ARC scores. However,
we have shown that the effects discussed above persist having controlled for the effects of university
rankings. Furthermore, we have seen that different subject areas exhibit different relationships between
diversity and ARC scores. This is also true when we look at collaborations made by researchers from
specific cities.
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