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In the context of aircraft applications, the overall design process can be challenging due to the different
aerodynamic requirements at several operating conditions and the total associated computational
overhead. For this reason, the use of low order models for the optimisation of complex non-linear
problems is sometimes used. This paper addresses the challenge of transonic aerodynamic design
optimisation through the integration of a set of neural networks for the prediction of integral values,
the classification of flow features and the estimation of flow field characteristics. The design method
improves the computational efficiency relative to an expensive design process driven by Computational
Fluid Dynamics (CFD) evaluations. The approach is used for the multi-point, multi-objective optimisation
of a compact aero-engine nacelle in which the design outcomes are validated using a CFD in-the-
loop optimisation strategy. It is demonstrated that the method based on the neural network capability
identifies similar nacelle designs at a 75% reduction in the overall computational cost, a drag uncertainty
prediction within 2.8%, and a predictive accuracy for the classification metric of 98%. For downselected
configurations, the main flow characteristics in terms of peak Mach number, pre-shock Mach number
and shock location are well predicted by the neural network models compared with the CFD-based
evaluations.
© 2023 The Author(s). Published by Elsevier Masson SAS. This is an open access article under the CC BY

license (http://creativecommons .org /licenses /by /4 .0/).
1. Introduction

For many aerospace applications, the design and optimisation 
of aerodynamic components is complex due to the large num-
ber of design variables, the non-linearity of transonic flow aero-
dynamics and the considerable cost of the overall process [1]. 
Different strategies have been developed to overcome these chal-
lenges. They include adjoint methods [2], surrogate models [3], 
hybrid routines that combine lower- and higher-fidelity evalua-
tions [4] and feature-extraction approaches based on dimension-
ality reduction techniques [5]. Over the last years the advances in 
high-performance computing architectures have enabled the gen-
eration of large amounts of data. For this reason, machine learning 
within fluid mechanics has been used recently for different ap-
plications [6]. Ji et al. [7] carried out a comprehensive literature 
review of machine learning methods for aerodynamic shape opti-
misation. In particular, neural networks have been employed for 
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a wide range of aerodynamic studies to drive the design process 
[8–10]. Secco et al. [11] investigated the application of artificial 
neural networks (ANN) for the prediction of lift and drag coeffi-
cients in wing-fuselage configurations. Overall, the model was built 
with 40 input variables, in which three were related to the operat-
ing condition (altitude, Mach number and angle of attack) and the 
rest were geometry parameters to define the wing shape. The aero-
dynamic database was generated with a full-potential code. For an 
independent database, the method had an average absolute error 
of 0.004 for the lift coefficient and 5 airframe drag counts. Lopez 
et al. [9] combined artificial neural networks and a dimensional-
ity reduction capability based on the active subspace method for 
the optimisation of a transonic compressor fan blade. The ANNs 
were used to estimate the gradients across the design space and 
identify the active design subspaces (ADS). Through an iterative 
process in which the converge of the eigenvectors was monitored, 
a final ANN was built in the reduced space. It was demonstrated 
that this approach improves the accuracy in the predictions. For 
example, the coefficient of determination R2 for the compres-
sor efficiency was increased from 0.89 to 0.94 when the ANNs 
were trained in the original high-dimensional space and in the 
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Nomenclature

Roman Symbols

A Area
CD Nacelle drag
CP Pressure Distribution
D Drag
f Non-dimensional factor
L Length
M Mach Number

Greek Symbols

β Boat-tail angle
φ Force
ρ Density

Superscripts and Subscripts

∞ Freestream
EoC End of cruise
hi Highlight
if Initial Forebody

iM Increased Mach number
max Maximum radius
nac Nacelle
post Post-exit
pre Pre-entry
te Trailing Edge

Acronyms

ANN Artificial Neural Network
CFD Computational Fluid Dynamics
CST Class Shape Transformation
DSE Design Space Exploration
GCI Grid Convergence Index
LHS Latin Hypercube Sampling
MFCR Mass Flow Capture Ratio
MOO Multi-objective optimisation
NN Neural Network
RANS Reynolds Averaged Navier Stokes
RSM Response Surface Model
reduced dimensional space, respectively. The developed method 
was used for optimisation studies, and relative to a state-of-the-
art adjoint-based process, the developed capability yielded a de-
sign with similar aerodynamic performance and a reduction in the 
computational cost of 35%. The same data-driven method was also 
successfully employed to investigate the effect of tip leakage ax-
ial momentum flux on the efficiency and stability range of an axial 
fan [12]. Bouhlel et al. [13] developed a framework for aerofoil 
design and optimisation at subsonic and transonic flow regimes 
with ANNs. The tool used 14 design variables to define the aero-
foil shape and the data was obtained with RANS CFD. During the 
training process, the gradient information across the design space 
was used to enhance the prediction accuracy of the aerodynamic 
coefficients. The developed surrogate model was used within an 
optimisation design process in which the derived aerofoils were 
compared with the shapes obtained from expensive CFD-based op-
timisations. For example, for a transonic case with M = 0.72 at 
fixed lift of CL = 0.82, both design methods identified a similar 
aerofoil shape with a difference of 0.1 drag counts. Neural net-
works (NN) have been also used for flow feature identification and 
classification. Bosson and Nikoleris [14] investigated supervised 
learning techniques for aircraft trajectory applications. A range of 
machine learning algorithms were considered and it was found 
that the best classification accuracy was achieved with a multi-
layer perceptron (MLP) feed-forward ANN. The process yielded a 
NN model with a predictive accuracy of approximately 97%. Within 
the context of aerodynamic design, another key aspect is the capa-
bility to predict flow characteristics in terms of scalar and vector 
fields of the targeted aerodynamic design shape. This is pertinent 
when the process is closely linked with other disciplines in a mul-
tidisciplinary design environment [15,16]. For example, Bhatnagar 
et al. [17] developed a method to carry out flow-field predictions 
around aerofoils using convolutional NNs. The approach resulted in 
pressure and velocity estimations with a mean square error lower 
than 10% and a computational cost reduction of 4 orders of mag-
nitude relative to RANS calculations. Zuo et al. [18] developed a 
multi-head perceptron neural network architecture to predict in-
compressible flow-fields around aerofoils. A convolutional neural 
network was used for the aerofoil parameterisation and, in combi-
nation with the aerodynamic inputs of Reynolds number and angle 
of attack, a multi-head perceptron was trained for the prediction 
of the velocity and pressure field. For an independent dataset, 
2

the proposed architecture resulted in flow-field predictions with 
a mean square error of approximately 10−5, 10−6 and 10−7 for 
the X-velocity, Y-velocity and pressure, respectively. Sabater et al. 
[8] trained a multi-layer perceptron for transonic flow-field predic-
tion. The method was successfully used to predict the flow around 
the NLR7301 profile, in which as input variables the angle of at-
tacked varied from -3◦ and +5◦ and the Mach number ranged from 
0.3 and 0.75. This approach was extended to the NASA Common 
Research model in which the Mach number changed from 0.5 to 
0.88 and the MLP was used to predict the pressure distribution 
along the wing. It was demonstrated that the method was suit-
able for the prediction of shock-wave location and its intensity. 
Neural networks have been also successfully used in inverse de-
sign processes that aim to derive an aerodynamic shape that fulfils
the user-prescribed targeted flow physics. Rai and Madavan [19]
proposed a design strategy called parameter-based partitioning of 
the design space in which neural networks and polynomial fits 
were used. The process was successfully demonstrated in the re-
design of a turbine aerofoil from a modern jet engine. Sun et al. 
[20] developed an inverse aerodynamic design method for tran-
sonic aerofoils and wings in which the shapes were described with 
11 and 78 variables, respectively. The approach was used to iden-
tify geometries that fulfil specified aerodynamic requirements in 
terms of targeted lift, drag and momentum coefficients. A database 
was generated and different ANNs were built to predict the in-
tegral values. It was demonstrated that the approach yielded an 
aerofoil and wing shape definition with an aerodynamic perfor-
mance within 2.5% of the targeted metrics. Kharal and Saleem 
[21] employed neural networks to predict an aerofoil geometry 
from a prescribed pressure distribution (Cp). The aerofoil was de-
fined with 15 design variables and the Bezier-PARSEC parameter-
isation [22]. The method was applied for an incompressible flow 
regime and the database was generated with a panel method. It 
was concluded that a feed-forward backpropagation NN identified 
aerofoil geometries that met the user-prescribed Cp distributions. 
Neural networks have been also used for multidisciplinary stud-
ies that encompassed fluid-structure interaction investigations [23]
or for aero-acoustic predictions [24]. Other studies have studied 
the efficacy of machine learning for calibrating turbulence models 
[25,26].

These previous studies using neural networks methods high-
lighted their suitability for a variety of aerodynamic design prob-
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Fig. 1. Non-linearity of nacelle aerodynamics for key variables of Mach number (M) and massflow capture ratio (MFCR).
lems. Although the focus of this work is on the broader develop-
ment and integration of different neural network architectures in 
a comprehensive design process, the test application is the design 
of a nacelle for a modern ultra high-bypass-ratio aero-engine. Fu-
ture civil aero-engines are expected to operate with larger bypass 
ratios than current in-service architectures [27]. The aim is to re-
duce the specific thrust, improve the overall propulsive efficiency 
and, therefore, reduce the engine specific fuel consumption [28]. 
These new engine configurations may have larger fan diameters, 
which poses several challenges in the design process. If traditional 
design rules are used and the engines are accordingly scaled, the 
overall nacelle drag, weight, and effects of aircraft integration will 
increase [29]. For this reason, it is expected that the next genera-
tion of civil turbofan engines will have compact nacelles to meet 
the expected benefits from the new engine cycles [30,31]. The 
design and optimisation of compact aero-engine nacelles is a chal-
lenging problem due to the non-linearity associated with transonic 
aerodynamics and the wide range of operating conditions that are 
encountered throughout the flight envelope. For example, Fig. 1
shows the nacelle drag sensitivity to the two key operating condi-
tions of Mach number (M) and massflow capture ratio (MFCR) for a 
compact aero-engine nacelle [32]. For a fixed flight Mach number, 
the nacelle drag coefficient (CD ) increases as the massflow capture 
ratio reduces caused by the flow acceleration around the nacelle 
lip. For a constant MFCR, CD sharply increases at high M because 
of the compressibility effects and strong shock waves that mani-
fest at those flight regimes. Due to the large changes on nacelle 
drag across different operating conditions, this aerodynamic design 
problem is typically addressed with a multi-point, multi-objective 
strategy to ensure aerodynamic robustness [32].
3

Previous nacelle design and optimisation studies have consid-
ered methods based on CFD in-the-loop or low order modelling. 
Tejero et al. [32] developed a framework for the optimisation 
of 2D axisymmetric compact aero-engine nacelles. Several multi-
point, multi-objective optimisations (MOO) were carried out for a 
range of different normalised nacelle length (Lnac/rhi) and trailing 
edge radius (rte/rhi). The process only considered operating condi-
tions within the cruise segment in which the drag was minimised. 
Across the design space investigated, the mid-cruise nacelle drag 
varied by approximately 40%. The method was subsequently ex-
tended to accommodate a design and optimisation capability for 
3D non-axisymmetric nacelle configurations [33]. It was used to 
quantify the impact of the intake droop and scarf angles on the 
nacelle drag characteristics of a compact aero-engine nacelle with 
Lnac /rhi = 3.1 and rte /rhi = 0.91. The optimisation process was also 
based on cruise-type flight conditions. Different intake droop and 
scarf angles were considered and an independent CFD in-the-loop 
3D MOO was carried for each configuration. Across the range of 
angles the mid-cruise nacelle drag changed by 3.5%. Schreiner et 
al. [34] carried out several optimisations for a range of 2D axisym-
metric aero-engine nacelles in which Lnac/rhi varied from 4.3 to 
2.5. The process included flight conditions of the cruise segment 
as well as off-design windmilling scenarios [35]. It was found that 
compact nacelle architectures are more sensitive to windmilling. 
For example, a nacelle length reduction of Lnac/rhi from 4.3 to 3.1 
results in a mid-cruise drag benefit of around 15% if the downse-
lection is based on cruise-type conditions. However, this erodes to 
10.4% once windmilling considerations are taken into account. Silva 
et al. [36] developed a multi-point aerodynamic design method for 
ultra high-bypass-ratio turbofan engines. The design strategy con-
sidered critical operating conditions such as mid-cruise, low speed 
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at high angle of attack and crosswind. The process was not based 
on a optimisation process but in a manual design strategy. Rel-
ative to a baseline geometry with inlet separation at crosswind 
conditions, the redesign of the intake and external cowl to achieve 
fully-attached flow resulted in a 5.1% penalty at mid-cruise condi-
tions.

Whilst the majority of nacelle studies in the open literature 
are based on numerical simulations, there are very limited inves-
tigations of surrogate modelling for nacelle applications. In this 
respect, only low order models that use Kriging interpolation for 
regression-type functions have been used for design and optimisa-
tion [33,37,38]. Tejero et al. [33] developed an adapted method 
that combines RANS data and low order modelling. Relative to 
the expensive full CFD in-the-loop strategy, it was demonstrated 
that the overall computational overhead can be reduced by 50% 
for compact 3D non-axisymmetric configurations. Fang et al. [37]
carried out the multi-objective optimisation of a non-axisymmetric 
nacelle with Lnac/rhi = 3.5. The process comprised a design space 
exploration capability, a surrogate modelling module to build Krig-
ing interpolation models and a genetic algorithm for the MOOs. 
Zhong et al. [38] developed a tool for laminar flow nacelle design. 
The method included a DOE capability, RANS simulations, a Kriging 
method as machine learning technique and the adaptive simulated 
annealing (ASA) algorithm [39]. The design objective was to max-
imise the delay of boundary layer transition at transonic conditions 
with M∞ = 0.78. The overall process resulted in a new configura-
tion with 7% larger laminar area than the baseline geometry.

Whilst different neural networks have been used for several 
aerodynamic applications, their combination to model aspects such 
as regression, classification or flow field prediction have not been 
considered within an overall design process. In the context of 
optimisation for compact ultra-high bypass ratio aero-engine na-
celles this may be required to ensure low values of mid-cruise 
drag (regression), meet off-design requirements (classification) and 
guarantee specific flow field topologies (feature prediction). In this 
respect, the novelty of this paper is in the development of a set 
of neural network modelling capabilities to drive the optimisa-
tion process for transonic applications while ensuring aerodynamic 
robustness of the identified configurations. To assess the overall 
computational method, the derived nacelle geometries are com-
pared with the ones obtained from a computationally expensive 
CFD in-the-loop optimisation approach.

2. Methodology

This work is based on the method developed by Tejero et al. 
[32,40] for the aerodynamic analysis of civil aero-engine nacelles. 
The design process can define a parametric nacelle geometry, per-
form CFD simulations or interrogate low order models to evaluate 
the drag, and carry out a multi-point, multi-objective optimisation. 
A detailed description of the different modules that compose the 
approach were previously provided [32,40]. Therefore, only a brief 
description of the methods is given in this paper.

The design process incorporates a parametric nacelle definition 
based on the Class-Shape Transformation (CST) method [41], which 
has been adapted by Christie et al. [42,43] to use intuitive design 
parameters [30]. The shape of a nacelle aero-line is controlled with 
7 intuitive variables: rhi, Lnac, rte, ri f , fmax, rmax and βnac (Fig. 2a) 
[32]. The grids are multiblock structured [44] (Fig. 2b), and the vis-
cous and compressible steady Favre-averaged Navier-Stokes equa-
tions are solved with Ansys Fluent [45] using a double-precision, 
implicit and density-based method (Fig. 2c). The k − ω Shear-
Stress Transport (SST) turbulence model [46] with a Green-Gauss 
node based scheme and a second-order upwind spatial discreti-
sation is used. The thermal conductivity is computed with the 
kinetic theory and the Sutherland’s law is employed to calculate 
4

Fig. 2. Overview the computational methodology.

the dynamic viscosity [47]. The nacelle drag characteristics are 
computed with a modified near-field method [32] based on an in-
dustrial standard thrust-drag accounting approach [48]. The multi-
point, multi-objective optimisation can be driven by CFD evalua-
tions or by low order models. For previous surrogate-based studies 
the process was driven by Kriging interpolation response surface 
models [40], and the capability with neural networks has been 
added for this investigation. The Optimized Multi-Objective Parti-
cle Swarm Optimization (OMOPSO), developed by Sierra and Coello 
[49], is used for the multi-point, multi-objective investigation due 
to its proven capabilities for global optimisation [50,51]. This is a 
gradient-free method and, as such, the optimisation routine starts 
with a design space exploration instead of a single initial geom-
etry as for gradient-based algorithms. The influence of the initial 
design space exploration on the optimal design space identified by 
the OMOPSO method was investigated by Sanchez-Moreno et al. 
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Fig. 3. Overview of artificial neural network architecture. Based on Goodfellow et al. [60].
[52] in nacelle applications. A total of 16 independent optimisa-
tions were performed with different design space explorations and 
it was demonstrated that OMOPSO has a low variability to find 
the optimal design space and has a reasonable convergence rate. It 
outperformed the genetic algorithms NSGA-II and IBEA [52].

The computational approach has been extensively used in the 
past for sensitivity analysis as well as numerical CFD validations 
were performed [32]. The grid convergence was calculated for dif-
ferent mesh sizes with approximately 40k, 70k and 145k cells. The 
mesh size with 70k cells had a GCI of 0.3% on nacelle drag and was 
selected for this study. The accuracy of the computational approach 
has been quantified with available experimental data for 2D ax-
isymmetric nacelle configurations. The study covered a wide range 
of Mach numbers (0.65<M<0.95) and MFCR (0.40<MFCR<0.76). It 
was determined that across the cruise segment the nacelle drag 
was typically within 3.5% of the measured data [32].

2.1. Neural network method

For this study, a range of different neural networks are used to 
drive the optimisation process. They account for the non-linearity 
associated with transonic aerodynamics and reduce the overall 
computational cost of a multi-point, multi-objective optimisation 
with respect to a full CFD in-the-loop approach. The data to build 
the response surface models is gathered with a Design Space Ex-
ploration (DSE). Within the context of computer experiments, sev-
eral techniques can be used to populate the design space. A review 
of different space-filling techniques has been summarised by Pron-
zato [53]. Among different space filling methods such as random, 
full-factorial or Latin Hypercube sampling (LHS), the LHS technique 
[54] was used in this study to efficiently cover the design space. 
This investigation considers a relatively low dimensional space and 
the sampling technique of LHS is adequate. However, it is im-
portant to emphasise that as the dimensionality of the problem 
increases more advances methods, e.g. adaptive sampling tech-
niques, should be considered. Other sampling techniques such as 
adaptive space filling approaches may be computationally more ef-
ficient than the used standard LHS method [55]. However, the aim 
of this study is to provide initial guidelines regarding the influ-
ence of the number of samples on the prediction accuracy. For 
this work, a set of independent design space explorations based 
on LHS with different number of samples have been considered. 
Based on the CFD evaluations from the DSE, a range of neural 
networks are generated to drive the nacelle optimisation. These 
include capabilities for the prediction of nacelle drag integral val-
ues (regression-type), for the identification of flow characteristics 
(classification-type), and for the estimation of flow-fields.
5

Within the context of neural network architectures, the first 
and last layers are the input and output layers, respectively 
(Fig. 3a). The ones in the middle are the hidden layers (Fig. 3a) 
and their number depends on the complexity of the system that is 
going to be modelled [56]. ANNs can be classified into two main 
groups: (a) feed-forward NNs in which the signal flows strictly 
from the input to the output layer and (b) recurrent NNs that 
allow for feedback loops between neurons. For this work a Multi-
Layer Perceptron (MLP) [57] has been used, which is a class of 
feed-forward ANNs.

In ANNs a neuron is connected with all of those in the previous 
layer through weight coefficients (Fig. 3b) [58]. The output of a 
neuron k can be computed as:

uk =
m∑
j=1

wkjx j (1)

Where x j and wxj are the input signals and the weighting coef-
ficients coming from the j neurons in the previous layer, and uk is 
the sum of the weighted inputs to the neuron k. For the model to 
achieve a better fit of the given data, a constant parameter for each 
neuron is added which is called bias bk [58]. Additionally, an ac-
tivation function (ϕ) is used to limit the neuron output amplitude 
(yk) [58,59].

yk = ϕ(vk) = ϕ(uk + bk) (2)

The selection of the activation function depends on the com-
plexity of the system that is modelled. The Rectified Linear unit 
(ReLu) activation function (Eq. (3)) is commonly used for MLP due 
to its simplicity [60]. However, this activation function provides a 
gradient equal to 0 for every vk < 0 [61], which can prevent learn-
ing as the neuron is not activated throughout the back-propagation 
process [62].

frelu(vk) =max(0, vk) (3)

Other activation functions use logistic equations due to their 
balance between linear and nonlinear behaviour [61]. They can 
be divided into (a) the sigmoid activation function (Eq. (4)) that 
spans from 0 to 1 and (b) the hyperbolic tangent activation func-
tion (Eq. (5)) which spans from -1 to 1. A well-known drawback 
of these logistic functions is that the gradients at the bounds tend 
to 0 [63]. This is known as the vanishing gradient problem and 
slows down the network training because the weights and biases 
are barely changed during the back-propagation process [63].
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Table 1
Neural network hyperparameters considered.
Hyperparameter Range

Neurons 8, 16, 32, 64, 128, 256
Hidden layers 1, 2, 3, 4, 5
Activation functions ReLu, sigmoid, tanh

f sigmoid(vk) = 1

1+ e−vk
(4)

ftanh(vk) = tanh(vk) (5)

Training the networks consist on finding the set of neuron 
weights and biases that minimises a cost function [64]. Different 
cost functions can be used depending on the particular applica-
tion. During the training of neural networks for integral nacelle 
drag and flow-field prediction, the relative root mean square error 
(σCD , Eq. (6)) was selected. An accuracy function, which calculates 
how often predictions equal labels, was used for classification-type 
NNs.

σCD =
√√√√ 1

N

N∑
i=1

(
CC F D
D − C ANN

D

CC F D
D

)2

(6)

The gradient descent ADAM optimiser was used for the train-
ing the neural networks due to its fast convergence, computational 
efficiency and suitability for problems with large datasets and pa-
rameters [65]. A potential problem that arises when training neu-
ral networks is the overfitting of the data. This not only happens 
when the architecture of the network is oversized and too many 
neurons and hidden layers are used but also when too many back-
propagation cycles are conducted in the training process [66]. This 
leads to a generalisation problem where the network is not able 
to predict accurately the output for a different dataset than the 
training one [66]. For this reason, an independent dataset for val-
idation is compiled to quantify the accuracy of the NN surrogate 
models, and is also generated with a Latin Hypercube Sampling 
(LHS).

Different hyperparameters are considered during the training of 
the NNs (Table 1). A full factorial for the different combinations of 
hyperparameters is performed to tune the surrogate models. The 
selection of the NNs is based on the minimum prediction error in 
the independent dataset.

3. Results and analysis

This investigation is based on a compact nacelle configuration 
envisaged for future civil aero-engines [67] with a fixed normalised 
nacelle length of Lnac/rhi = 3.1, and four intuitive variables (rmax , 
ri f , fmax and βnac) vary during the optimisation process (Fig. 2a). 
Different flight conditions that are encountered during the flight 
envelope are considered to ensure aerodynamic robustness of the 
derived nacelle shapes. They are mid-cruise, perturbations to as-
sess the sensitivity to flight Mach number and MFCR as well as 
an off-design windmilling diversion scenario (Table 2). This range 
of transonic conditions presents a significant challenge for the op-
timisation process due to the high non-linearity of the problem 
considered (Fig. 1). For this study, the nacelle drag (Eq. (7)) for 
the conditions encountered during the cruise segment (mid-cruise, 
increased Mach number (iM) and end-of-cruise (EoC) in Table 2) 
is minimised during the MOO, and a classification criteria was 
set for the diversion case. As a threshold for the classification 
metric, it was defined that designs exhibiting an axial extent of 
boundary layer separation larger than 10% of the nacelle length 
(Lsep/Lnac = 0.1) at windmilling diversion were not acceptable, and 
6

Table 2
Flight conditions considered during the multi-point, multi-objective nacelle opti-
misation process.
Condition Mach No. MFCR type

mid − cruise 0.85 0.70 regression
iM 0.87 0.70 regression
EoC 0.85 0.65 regression
diversion 0.65 <0.5 classification

therefore, were excluded of the optimisation process. Schreiner et 
al. [34] identified a weak linear correlation between the drag at 
mid-cruise and windmilling diversion conditions. The study was 
based on the multi-point, multi-objective optimisation of a com-
pact aero-engine nacelle in which the mid-cruise as well as diver-
sion were regression metrics. It was found that some CFD effort 
during the optimisation routine was focused on regions of the de-
sign space with low cruise drag but unreasonable large drag at 
diversion. For this reason, this work uses the diversion condition 
with a classification metric to reduce the CFD overhead of the op-
timisation and target likely optimal regions of the space.

CD = Dnac
1
2ρ∞V 2∞Ahi

= φpre + φnac + φpost
1
2ρ∞V 2∞Ahi

(7)

3.1. MOO with a CFD in-the-loop approach

To establish a baseline for the surrogate-based optimisation 
with neural networks, a MOO was performed with an expensive 
CFD in-the-loop approach. The process is started with a design 
space exploration based on a LHS in which 400 nacelle designs 
are evaluated by numerical simulations. Following generations of 
the genetic algorithm are formed of 50 designs. The hypervolume 
of the Pareto front is monitored and the process is stopped when 
the hypervolume changes less than 1% in three consecutive gen-
erations. The design process is driven with the three regression-
type objectives functions (Table 2), in which the nacelle drag for 
CD−cruise , CD−iM and CD−EoC is minimised. In addition, it is en-
sured that the prescribed maximum axial extent of the separated 
flow region along the fancowl (Lsep/Lnac < 0.1) is achieved for the 
windmilling diversion scenario. As such, this off-design condition 
is used as a classification function. The multi-point, multi-objective 
optimisation results in a three dimensional Pareto front that can 
be represented with a 2D projection on the CD−cruise and CD−iM
space and coloured by CD−EoC (Fig. 4). It highlights the trade-off 
between the different flight conditions considered. Four different 
configurations have been downselected to provide a better insight 
into the aerodynamics of compact aero-engine nacelles. They are 
the design with minimum CD−cruise (A1), CD−iM (A2), CD−EoC (A3) 
and a trade-off between the three objectives functions (A4). Rela-
tive to A1, the mid-cruise increases by 5.6%, 6.1% and 2.8% for A2, 
A3 and A4, respectively. The design with minimum CD−cruise has 
a penalty of 16.7% in nacelle drag at an increased Mach number 
(CD−iM ) compared with A2. This changes to 36.0% and 7.3% for A3 
and A4, respectively. This variability demonstrates the large sensi-
tivity of compact nacelles with Lnac/rhi = 3.1 to an increased flight 
Mach number of M = 0.87. The design A1 has a 3.2% larger drag at 
end-of-cruise (CD−EoC ) relative to A3, which increases to 8.7% and 
6.9% for A2 and A4, respectively.

The changes on the nacelle drag characteristics for the designs 
in the Pareto front are accompanied by differences in the asso-
ciated flow characteristics (Fig. 5). While the designs A1 and A3 
have a single shock, the nacelles A2 and A4 present a double shock 
structure. All four designs have a shock at X/Lnac ≈ 0.50 but a dif-
ferent pre-shock Mach number. Relative to the configuration A1 
(lowest CD−cruise), the designs A2 and A3 have an increment in 
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Fig. 4. Pareto front identified with the CFD in-the-loop method.

Fig. 5. Mis distribution for downselected designs from the CFD in-the-loop method.

pre-shock Mis of 0.075 and the nacelle A4 of 0.03. There are also 
differences in the initial flow acceleration around the nacelle lip 
which results in changes of peak Mis . Relative to the design A1, 
the peak Mis increases by 0.03 and 0.015 for A2 and A4 and re-
duces by 0.01 for A3.

This CFD in-the-loop approach accounts for cruise-type condi-
tions and a windmilling diversion scenario in which regression and 
classification metrics are used. This is to ensure aerodynamic ro-
bustness for key operating points. Although the CFD in-the-loop 
optimisation has resulted in a well-populated Pareto front (Fig. 4), 
this has a relatively large computational cost. For this reason, there 
is a desire to expand the nacelle design approach to a surrogate-
based optimisation method.

3.2. MOO with neural networks

3.2.1. Effect of sample size on predictive accuracy
A key aspect of surrogate modelling is to define an adequate 

number of samples to build the RSM. This should be based on 
the trade-off between an acceptable predictive accuracy and the 
cost to build the model. In this respect, four independent design 
space explorations based on a LHS of 100, 200, 400 and 800 na-
celle designs were considered as inputs for the NN models. This 
gives a ratio between the number of samples and degrees of free-
dom (Ns/NDO F ) of 25, 50, 100 and 200. The total computational 
cost of generating these databases is approximately 6.25%, 12.5%, 
25.0% and 50.0% relative to the full CFD in-the-loop optimisation. 
An independent set of 400 nacelle configurations, also based on 
7

the LHS technique, was compiled to assess the predictive accuracy 
of the different neural networks.

For the different databases (Ns = 100, 200, 400 and 800), a 
range of NNs were built to predict the nacelle drag across the 
design space for the regression objective functions, i.e. CD−cruise , 
CD−iM and CD−EoC (Table 2). The full factorial combination of hy-
perparameters presented in Table 1 were considered to tune the 
models and reduce the predictive uncertainty. A cross-validation 
of each NN with the independent nacelle data was performed to 
quantify the relative root mean square error (σCD as defined in 
Eq. (6)) on the nacelle drag model’s prediction. As an example, 
Fig. 6 shows the effect of the different hyperparameters on the na-
celle drag uncertainty for the database with Ns = 400. It highlights 
that the active function selection has a large impact on the model 
accuracy for the three objective functions of interest (CD−cruise , 
CD−iM and CD−EoC ). For this non-linear data, the ReLu function 
(Eq. (3)) gives lower values of σCD than sigmoid (Eq. (4)) and tanh 
(Eq. (5)). For example, for mid-cruise conditions (CD−cruise), the 
minimum achievable σCD is 2.5%, 3.9% and 3.8% for ReLu, sigmoid 
and tanh, respectively. Within the generated NNs with the ReLu 
function, it was observed that an appropriate selection of neurons 
per hidden layer is needed to achieve low values of nacelle drag 
relative root mean square error. The best performing NNs were ob-
tained when the network was formed by 64 or 128 neurons per 
hidden layer. This was consistently found for the three operating 
points (Fig. 6). Conversely, the total number of hidden layers for 
the NN architecture has a relatively low impact on the drag un-
certainty. For example, for the mid-cruise low order models with 
a fixed ReLu activation function and 128 neurons per hidden layer, 
a variation in the total number of hidden layers between 1 and 5 
changes σCD between 2.5% and 3.2%. The same relative importance 
of the three hyperparameters, i.e. activation function, neurons per 
hidden layer and total number of hidden layers, was found for the 
other databases with Ns=100, 200 and 800 designs.

The NN architectures with the minimum relative root mean 
square (σCD ) on the predicted nacelle drag of each condition 
(CD−cruise , CD−iM and CD−EoC ) and sample size (Ns = 100, 200, 
400 and 800) was identified (Fig. 7). For the three flight regimes 
there is a pronounced reduction on σCD when Ns increases from 
100 to 200. The relative root mean square error asymptotically re-
duces for Ns > 200. For example, an increment by a factor of two 
in the CFD overhead to generate Ns = 800 relative to Ns = 400, 
only reduces σCD by 0.14%, 0.20% and 0.10% for CD−cruise , CD−iM
and CD−EoC , respectively. For a fixed Ns the greatest predictive er-
ror is always found for CD−iM , due to the larger non-linearity at 
this relatively high Mach number (M = 0.87). For this study the 
acceptable threshold in terms of predictive accuracy is defined at 
σCD =5.0%, which was demonstrated to predict the gradients across 
the design space for 2D axisymmetric low order models in na-
celle applications [40]. As such, the NNs generated with Ns=100 
do not meet the criteria and are not consider further in this inves-
tigation. To provide an insight of the cross-validation, Fig. 8 shows 
a comparison between the CFD and the NN generated with Ns = 
400 for mid-cruise conditions (CD−cruise ). It shows the good pre-
dictive capability of the low order model with a relative root mean 
square error (σCD ) of 2.5% in which there are no designs that have 
a prediction error above 10% and only 2.0% of the designs have 
σCD > 5%.

Previous investigations have highlighted that compact nacelles 
are more sensitive to off-design windmilling conditions compared 
with conventional architectures [34]. As previously described, a 
diversion windmilling condition is used during the multi-point, 
multi-objective optimisation process to improve the aerodynamic 
robustness of the derived nacelle configurations (Table 2). This 
flight condition has been treated with a classification approach in 
which the axial extent of the boundary layer separation was lim-
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Fig. 6. Influence of the neural network hyperparameters on the nacelle drag prediction (regression) for the database compiled with Ns=400. The symbol × marks the 
minimum σCD value.
Fig. 7. Effect of Ns sampling on predictive accuracy for CD−cruise , CD−iM , CD−EoC .

ited to a maximum of 10% of the nacelle chord (Lsep/Lnac = 0.1). 
The training process for the classification neural network is based 
on maximising the predictive accuracy across the design space 
for which the NN and CFD predictions are equal, i.e. both predict 
that the axial extent of flow separation is below or above 10% of 
Lnac . However, it is important to note that an optimisation process 
driven by a low order model with a classification approach should 
also reduce as much as possible the false-positives, i.e. designs for 
which the CFD predicts flow separation larger than 0.1·Lnac and 
the NN predicts that the criterion in the maximum Lsep/Lnac is 
met. This is to ensure that the optimisation process is not driven 
to regions of the design space which are not feasible due to the 
imposed classification requirement. A set of classification-type NNs 
were generated for the databases Ns=200, 400 and 800. Only the 
sigmoid function was considered because the NN output can be 
interpreted as a probability distribution function [61]. A full fac-
torial combination was performed for the other hyperparameters, 
8

Fig. 8. Example of cross-validation for the regression neural network at mid-cruise 
conditions for the database compiled with Ns=400.

i.e. neurons per hidden layer and total number of hidden layers. 
Fig. 9 presents the predictive accuracy of the generated NNs in 
which the colour indicates the percentage of designs in which NN 
and CFD labels are the same and the number marks the false-
positives. Whilst the regression-type NNs presented a large influ-
ence of the number of neurons per hidden layer in the model’s 
uncertainty (Fig. 6), this was not identified for the classification-
type NNs (Fig. 9). Overall, increasing the sample size from 200 
to 800 increases the predictive accuracy and reduces the number 
of false-positives. For the best NN architectures identified during 
the full factorial combination of hyperparameters, it was found 
that the overall classification accuracy of the NN models was 96%, 
97% and 98% with 8, 3 and 0 false-positives for the models built 
with Ns = 200, 400 and 800, respectively (Fig. 9). The designs 
which were wrongly classified were assessed at mid-cruise con-
ditions to evaluate the effect of this wrong prediction within an 
optimisation process. For the NN model generated with Ns=200 
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Fig. 9. Influence of the neural network hyperparameters on boundary layer flow separation classification for the windmilling diversion scenario. The symbol � marks the 
maximum accuracy.
in which 8 designs were false-positives, one nacelle design ex-
hibited a 2.0% greater cruise drag relative to the minimum drag 
identified in the design space exploration. This is within the un-
certainty of the CD−cruise regression model, i.e. σCD = 3.5% (Fig. 7). 
Therefore, it was concluded that the RSMs generated with Ns = 
200 may not be suitable for use within an optimisation process. 
Conversely, the three false-positive designs from the NN gener-
ated with Ns=400 had a mid-cruise drag above 20% of the mini-
mum value identified in the DSE. As such, it is not expected that 
these configurations will be identified during a multi-point, multi-
objective optimisation. This confirms the suitability of this low 
order model with Ns = 400 for aero-engine nacelle optimisation 
studies.

It is important to note that, for a targeted accuracy of the ANN, 
the number of samples compiled during the design space explo-
ration will increase with the dimensionality of the problem. For 
very high number of dimensions, the developed method in this 
work may have limitations. As such, for high dimensional spaces, 
this approach may be combined with dimensionality reduction 
techniques to ensure a tractable method to build low order mod-
els. For this purpose, feature extraction or feature selection could 
be used. In particular, the design and optimisation strategy devel-
oped by Lopez et al. [9] has been demonstrated to be a feasible 
approach due to its proven scalability capabilities.

3.2.2. Flow prediction neural network
Aerodynamic shape design is a multidisciplinary discipline 

where the process is guided not only from aerodynamic consider-
ations but also from other constraints imposed by aero-structural 
or aero-acoustical requirements [68]. For the investigated design 
space of compact aero-engine nacelles, small changes in the geo-
metric shape can lead to large differences in the drag and asso-
ciated flow features. For this reason, a neural network capability 
was developed to predict the isentropic Mach number distribu-
tion along the fancowl. As previously, the hyperparameters were 
also tuned to minimise the relative root mean square error on the 
Mis prediction (σMis ). A full factorial of the different hyperparam-
eters combinations presented in Table 1 was considered for the 
different models built with Ns=200, 400 and 800. For these neural 
networks with different Ns values, it was found that the activation 
function does not have a large impact on the model’s accuracy. For 
example, Fig. 10 shows the effect of the different hyperparameters 
for the database compiled with 400 samples. For a fixed number 
of hidden layers and neurons per hidden layer, the three activa-
tion functions (ReLu, sigmoid and tanh) have similar σMis . Across 
the range of hyperparameters, the lowest σMis was approximately 
1.1%, 1.3% and 1.2% for the activation functions ReLu, sigmoid and 
tanh, respectively. As for previous regression-NNs, ReLu has the 
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best prediction capabilities. The same conclusion was obtained for 
the other Ns values of 200 and 800, in which the best performing 
network had σMis = 1.4% and 0.9%, respectively.

A wide range of different flow-field characteristics are encoun-
tered in the investigated design space of this compact aero-engine 
nacelle with Lnac/rhi = 3.1. For example, there may be config-
urations that have strong initial acceleration around the nacelle 
lip with a first shock wave on the nacelle forebody and a re-
acceleration to terminate in a second shock on the afterbody [32]. 
Other nacelle architectures may present a more controlled acceler-
ation around the nacelle lip to terminate in a single strong shock 
around the nacelle crest or there may be configurations without 
a shock wave [32]. To demonstrate the capability of the NNs, the 
isentropic Mach number prediction along the nacelle for a set of 
configurations is presented in Fig. 11. This is carried out for per-
turbations in the two key design variables of rmax and fmax , which 
have large impact on the nacelle drag and aerodynamic character-
istics [32]. Whilst the NN derived with Ns = 200 has errors in the 
peak Mis and shock location prediction, the other two NNs com-
piled with Ns = 400 and 800 are able to predict the peak and 
pre-shock Mis within 0.01 and shock location within 0.02·Lnac/rhi .

For the downselected NNs with Ns = 200, 400 and 800, their 
predictive uncertainty across the design space was also quanti-
fied with a statistical analysis of the Mis prediction error along 
the fancowl chord. Fig. 12 presents the relative root mean square 
prediction on isentropic Mach number as a function of the nacelle 
length (X/Lnac). The NNs with Ns = 400 and 800 have similar rela-
tive root mean square error (σMis ). For the initial nacelle forebody 
with X/Lnac < 0.1 and the nacelle aft end with X/Lnac > 0.8, 
σMis is below 0.8% and 0.4%, respectively. A slightly greater un-
certainty arises in the region of 0.1 < X/Lnac < 0.8 due to the 
expected errors in accurately identifying the shock locations, in 
which there is a maximum σMis of approximately 1.6%. This in-
creases to σMis = 2.0% when the neural network is trained with 
200 samples (Fig. 12).

It has been demonstrated that building neural networks with 
Ns = 200, 400 and 800, i.e. Ns/NDO F = 50, 100 and 200, results 
in adequate regression metamodels for nacelle drag prediction 
(Fig. 7). They meet an acceptable prediction uncertainty of σCD <

5% [40] across the three operating conditions of interest (CD−cruise , 
CD−iM and CD−EoC ). However, the NN with Ns = 200 showed a 
larger uncertainty in the boundary layer flow separation classifi-
cation of nacelles under windmilling diversion conditions (Fig. 9) 
as well as limited capabilities to predict the associated flow-field 
characteristics (Fig. 11). Although the low order models generated 
with Ns=800 are more accurate than those with Ns=400 (Fig. 7, 9
and 12), the relative improvements are modest in comparison with 
the greater CFD cost. Based on this consideration, it was concluded 



F. Tejero, D.G. MacManus, F. Sanchez-Moreno et al. Aerospace Science and Technology 136 (2023) 108208

Fig. 10. Influence of the neural network hyperparameters on the Mis prediction for the model compiled with Ns=400. The symbol × marks the minimum σMis value.

Fig. 11. Neural network for Mis prediction at mid-cruise conditions across the design space.

Fig. 12. Statistical analysis of the predictive uncertainty on Mis as a function of the 
nacelle axial location.

Table 3
Final Hyperparameters for the models generated with Ns=400.

Hyperparameter mid− cruise iM EOC diversion Flow − field

Neurons 128 128 128 32 128
Hidden layers 2 1 2 3 4
Activation functions ReLu ReLu ReLu sigmoid ReLu

that the accuracy of the NNs generated with Ns=400 was suffi-
cient for the design and optimisation of compact civil aero-engine 
nacelles. A summary of the hyperparameters that were used to 
compile the different surrogate models with Ns=400 is presented 
in Table 3.

3.2.3. Nacelle design and optimisation
Having established confidence in the predictive accuracy of the 
neural networks, the models (Table 3) were applied within an op-
10
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Fig. 13. Pareto front comparison for a CFD in-the-loop and NN optimisation strategy.
timisation environment to carry out nacelle design studies. The 
optimisation outcomes obtained with the NNs are compared with 
the results from the computationally expensive CFD in-the-loop 
approach (Section 3.1). The optimisation process also started with 
a design space exploration based on a LHS of 400 designs which 
were evaluated with the derived NNs (Table 3). Subsequent genera-
tions from the OMOPSO algorithm used 50 designs and the process 
was monitored with the Pareto front hypervolume change to en-
sure a variation lower than 1% in the last three generations. The 
optimisation process was driven by minimising the nacelle drag 
using the three regression NNs (CD−cruise , CD−iM , CD−EOC ), and 
one classification NN to ensure that the diversion requirement of 
axial extent of boundary layer separation was below 10% of the 
nacelle length.

A comparison between the CFD in-the-loop and surrogate-
based optimisation for the performance metrics and design vari-
ables of the individuals within the Pareto front is presented in 
Fig. 13. It shows that both key aspects in a design process can 
be predicted by the proposed neural network strategy. The mini-
mum CD−cruise identified with the low order model was slightly 
underpredicted relative to the CFD strategy by around 1% whereas 
the mean value was within 0.5%. Similar outcomes were identi-
fied for the spillage drag (CD−spill) (Fig. 13a). Slightly larger dif-
ferences arise for the nacelle drag at an increased Mach number 
(CD−iM ) caused the by higher non-linearity at an increased Mach 
number and the greater predictive uncertainty of the model (Sec-
tion 3.2.1). For example, the minimum CD−iM identified by the 
surrogate-based optimisation was 2.8% larger than the one from 
the CFD in-the-loop strategy. Other key aspect of the presented 
approach is that the design variables of the optimal design space 
are well predicted by the surrogate-based strategy (Fig. 13b). The 
plot is normalised with the bounds of each design variable where 
0 and 1 refer to the optimisation lower and upper bound, respec-
tively. The CFD in-the-loop optimisation required the initial design 
space exploration (DSE) of 400 designs and 30 subsequent genera-
tions of 50 designs each. Conversely, the NN optimisation was only 
based in an initial sampling with Ns=400. As such, the proposed 
nacelle optimisation with neural networks reduces the computa-
tional cost by approximately 75% compared to the CFD in-the-loop 
strategy.

In the context of surrogate-based optimisation, other key re-
quirement is that the flow physics of possible downselected con-
figurations are similar to the ones derived from a CFD in-the-loop 
strategy. As previously described, a capability to predict Mis distri-
butions with neural networks has been developed. In this context, 
four configurations from the surrogate-based optimisation were 
downselected to cover different criteria: minimum CD−cruise (de-
sign B1), minimum CiM (design B2), minimum CD−spill (design B3) 
and a trade-off between the three objectives functions (design B4). 
11
This downselection process is the same as the one that was previ-
ously followed for the configurations “A” from the CFD in-the-loop 
optimisation method (Fig. 5). The isentropic Mach number distri-
bution for the designs B were predicted with the NN low order 
model described in Section 3.2.2 (Fig. 14). The downselected B de-
signs have the same flow characteristics as the A configurations 
in terms of number of shock-waves, their location and pre-shock 
Mis . For the nacelles with minimum CD−cruise (A1 and B1) a simi-
lar shock location was identified but the pre-schock Mach number 
increases by 0.02 for the surrogate-based MOO (Fig. 14a). The de-
signs A2 and B2, lowest CD−iM , depict a double shock structure 
in which the first shock-wave appears at X/Lnac = 0.25 and the 
flow reaccelerates and terminates with a second shock at around 
X/Lnac ≈ 0.50. Both designs (A2 and B2) have the same shock lo-
cations and pre-shock Mis (Fig. 14b). Similar outcomes were iden-
tified for the designs A3-B3 and A4-B4, i.e. minimum CD−EOC and 
trade-off design, respectively (Figs. 14c and 14d). As such, it is 
proven that the NN based method is also able to identify and pre-
dict the same flow physics of downselected configurations as those 
from a more computationally expensive CFD in-the-loop optimisa-
tion.

The findings reported in this work are for a compact nacelle 
with Lnac/rhi = 3.1, which is expected for future civil aero-engines. 
The design space considered is a challenging problem due to the 
non-linearity associated with transonic aerodynamics. As such, it 
is expected that the reported performance of the current neural 
network-based optimisation method is representative across the 
design space of compact architectures.

4. Conclusions

This article describes a design method with neural networks 
for transonic optimisation applications. The process uses low or-
der models for regression, classification and flow-field prediction 
and is used for the design of ultra-high bypass ratio aero-engine 
nacelles. The approach has been coupled with a multi-point, multi-
objective optimisation strategy to identify designs that are aerody-
namically robust across different conditions of the flight envelope.

Relative to a computational expensive CFD in-the-loop ap-
proach, it has been demonstrated that the new developed neu-
ral network capability converges to similar optimal regions of the 
design space. The overall computational cost is reduced by 75% 
with an uncertainty in the regression performance metrics of 2.8% 
and a predictive accuracy for the classification metric of 98%. For 
the surrogate-based optimisation, the associated flow physics of 
downselected nacelles were evaluated with a neural network, in 
which the peak Mach number, shock location and pre-shock Mach 
number were successfully predicted with similar values to the de-
signs derived from a CFD-based optimisation. Overall, the neural 
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Fig. 14. Mis distribution for downselected designs from a CFD in-the-loop (A-label) and NN-based (B-label) optimisation strategy. The “A” designs are evaluated with CFD 
and the “B” designs with the NN flow-field prediction method.
network method enables the optimisation of complex non-linear 
aerodynamic problems in which different design requirement need 
to be fulfilled.
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