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Abstract: Non-destructive testing (NDT) of aerospace structures has gained significant interest,
given its non-destructive and economic inspection nature enabling future sustainable aerospace
maintenance repair operations (MROs). NDT has been applied to many different domains, and there
is a number of such methods having their individual sensor technology characteristics, working
principles, pros and cons. Increasingly, NDT approaches have been investigated alongside the use of
data fusion with the aim of combining sensing information for improved inspection performance
and more informative structural health condition outcomes for the relevant structure. Within this
context, image fusion has been a particular focus. This review paper aims to provide a comprehensive
survey of the recent progress and development trends in NDT-based image fusion. A particular
aspect included in this work is providing critical insights on the reliable inspection of aerospace
composites, given the weight-saving potential and superior mechanical properties of composites for
use in aerospace structures and support for airworthiness. As the integration of NDT approaches for
composite materials is rather limited in the current literature, some examples from non-composite
materials are also presented as a means of providing insights into the fusion potential.

Keywords: image fusion; non-destructive testing; NDT fusion; aerospace structures; composites;
inspection; maintenance and repair

1. Introduction

Competitiveness in aviation operations has depended on the constant adoption of con-
tinuous flights, requiring sustainable maintenance services. A maintenance and repair or-
ganisation (MRO) is a service establishment that provides maintenance, repair and overhaul
functions to operators to keep their aircraft utilised. While airlines had their engineering
departments to perform maintenance at the initial time of commercial aviation, outsourcing
options have become popular due to the increment in operation volume [1]. In addition,
regulatory authorities have forced companies to organise their cores as directives of reg-
ulations. MROs have introduced flexibility between aviation operation and maintenance
processes, providing a variety of special maintenance centres that specialise in a particular
component, such as engine or structural maintenance [2]. MROs have the vital mission in the
aviation market of not only maintaining the sustainability of operations but also reducing
costs because aircraft grounding impacts efficiency and “the ratio of” flight time to operat-
ing expenses. The daily cost of an aircraft being out of operation can be considered to be
GBP 200,000 on average [3] (based on reasonable average estimates: a narrow body aircraft
(200 passengers × 8 journeys × GBP 100 = GBP 160,000); wide body (350 passengers
× 1 journey × GBP 800 = GBP 280,000)). Moreover, unscheduled maintenance due to
unexpected problems also highly impacts expenses. According to the IATA, wide-body jets
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were predicted to have a cost of more than USD 6.5 billion in unplanned maintenance ow-
ing to delays and cancellations in 2017. Appropriately scheduled maintenance, including
shorter downtimes, avoiding unnecessary disassembly and minimizing unexpected delays
and possible human errors, is crucial to reducing the grounding time of aircraft.

Structural components are a significant element in terms of inspection and hence
maintaining airworthiness. MROs spend significant time checking structural components,
which accumulates to typically≈30% of the costs [4]. Note that hidden (non-visible) defects
(damages) inside the structure hinder operation in the medium to longer term. Several
conventional inspection methods need a removal process that lengthens the maintenance
time. Advanced non-destructive inspection/technique (NDI/NDT) methods are already
popular in structural checks for detecting the occurrence of any defect in an early stage. The
NDT is a powerful tool for detecting damages in the structures that formed during both
the manufacturing and service stages [5,6]. However, it is a formidable task to design a
generic inspection procedure, considering the restrictions caused by regulations, operations,
capabilities and costs. Obtaining more informative and determinative inspection outcomes
should provide cost-effective maintenance which reduces the time and effort for individual
inspection methods, especially after the pandemic period, in which there was a high
workforce loss of 2.3 million personnel in global aviation [7].

Composite structures have become attractive for many industrial sectors due to their
good strength and stiffness per unit weight [8–10]. In aviation, the volume of the composite
structures used in an aircraft, such as the fuselage, wings, and empennage, has risen day by
day. Accordingly, it is a vital requirement to identify possible damage to aircraft structures
regarding airworthiness. It should be noted that understanding the structure will help in
exploring the problems and related solutions. For this reason, possible defect types that
can occur in a composite structure must first be understood. Then, the characterisation and
measuring of a defect in the structure must be performed precisely if possible. Here, mea-
suring refers to correctly establishing the defect’s location, size and significance. Structural
health monitoring (SHM) methods have ensured useful strategies for inspecting aerospace
composites in various recent studies [11–14].

Defect localisation and characterisation are vital steps in NDT application, with their
own parameters that affect maintaining sustainable aviation operation and airworthiness.
That structural recognition and comprehensive knowledge of possible defects will ease
maintenance operations, followed by sustainable aviation, is not in doubt. In this article,
the fusion approaches already used in NDT studies have been investigated in terms of ap-
plication potential for aerospace structures. The related algorithms and their evaluation are
presented and discussed. It should be emphasised that NDT fusion is still a fresh research
topic, and utilizing image fusion strategies for NDT defect detection application when
applying the individual inspection methods is not satisfactory [15]. This comprehensive
review study, which stems from a current PhD study exploring advanced NDT fusion of an
ultrasonic phased array and pulsed thermography for inspection applications in composite
structures, contributes the following:

• It introduces the current studies on NDT image fusion and evaluation strategies;
• It provides a reference source for the NDT-based fusion attempts;
• It reports the limited amount of work existing in fusing NDT techniques (particularly

for composite structures);
• It fills the research gap of comprehensively reviewing image fusion for NDT inspection

(particularly towards composite structures).

The rest of this paper is structured as follows. A brief discussion of the primary
NDT techniques is given in Section 2. The basic principles of image fusion are discussed
in Section 3. Section 4 includes fusion strategies and rules for various NDT techniques
discussing principles and examples. Section 5 discusses the evaluation of fusion, focusing
on performance metrics. Section 6 provides insights from the survey into NDT fusion and
future prospects. Conclusions are drawn in Section 7.
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2. NDT Method Preliminaries

There is a variety of inspection technology approaches. Their use depends on the
structure or material to be inspected, cost and effectiveness. Method-wise, they offer
pros and cons, and hence a requirement analysis can be a good starting point to be able
to select an appropriate method for the relevant inspection application. Note that each
technique utilises a different sensing technology and property. A useful categorisation of
NDT methods relative to defect types has been seen in previous works [16–18]. Table 1 lists
a snapshot of the standings of such methods, which relate to those presented in this review
paper [17]. We also include an indicator of “applicability” as suitable, weak or limited. This
relates to the level of information outcome of the NDT method for the said defect type and
defect detection performance (ability). For example, X-ray-based NDT is challenged by
detecting delamination defects in general, with open delamination possible to detect using
X-ray computed tomography (CT). Moreover, we give a brief description of these main
inspection methods.

Table 1. NDT method standings relative to defect types.

METHODS
Defects X-ray Ultrasonic Penetrant Magnetic Eddy Thermography Acoustic

Particle Current Emission

Porosity or Voids X X � � � � X

Delamination � X � X X � X

Debonding X X � X X � X

Foreign X X � � � � X
Bodies

Cracks � X � X X � X

Surface X � X X X X X

Internal X X X � � � X

Limit Orientation-
dependent

Dead zone
effect

Only open
to surface

defects

Ferromagnetic
materials

only

Conductive
materials

only

Small
thickness

Lack of size
and shape

Advantage
Inspection

process
is simple

Portable and
good depth
resolution

Suitable
for mass-

manufactured
products

Rapid for
complex
surfaces

Suitable
for hard-
to-reach

areas

Useful
for quick
response

Effective
for active

defects

Applicability→ suitable (X); weak (X); limited (�).

X-ray radiography is a well-established technique which provides a permanent record
(using the X-ray-sensitive film) and is used in NDT inspection. X-rays (or γ-rays, which
have a better penetration ability) passing through the sample and the radiation intensity
are different if any defects are encountered (see Figure 1c). This principle was successfully
used to discriminate different materials for an object by using neutron and X-ray beams
simultaneously [19]. However, it can provide a 2D line scan, and it might be difficult to
identify the depth information in the case of defect characterisation or localisation. X-ray CT
is a developed version that can give 3D images with depth information. The authors of [20]
applied X-ray CT with terahertz testing to obtain 3D images for CFRP composite defect
characterisation. Even though both can give 3D images using different wavelengths and
frequencies of electromagnetic radiation, they were used together to obtain the optimum
contrast and resolution. It should be noted that the inspection process is simple, while the
equipment can be complex and have a high cost. Radiography also raises health concerns
and is performed with care. In addition, both have limited capabilities because of the
orientation of delamination or crack defects, as shown in Table 1 [17].
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Another important method is ultrasonic inspection, which uses ultrasound wave
propagation inside materials (Figure 1b). Using analysis of the reflections because of the
abnormalities in an internal structure allows measuring the characteristics such as the
thickness or depth of any defect. Although advanced ultrasonic tools provide 3D C-scans
and cross-sectional B-scans to obtain sufficient information about a structure; quantifying
and locating defects might be challenging and require complementary techniques when
multiple close reflections [21] or near-surface defects [22] occur. The authors of [22] also
showed the challenging points of processing ultrasonic data due to the multiple echoes
caused by structural noise.

(a) (b)

X-ray film

X-ray tube device

Marker
Sample (inspected)

X-ray beam normal to part/film

possible defect

(c) (d)

Figure 1. Basic representations of thermographic, ultrasonic, X-ray and eddy current NDT meth-
ods. (a) Schematic representation of pulsed thermography [23]. (b) Schematic representation of
ultrasonic testing [24]. (c) Schematic representation of X-ray radiography. (d) Eddy current defect
representation [25].

An efficient method for surface and near-surface defects is infrared thermography, which
uses thermal wave propagation caused by temperature differences. Figure 1a presents a basic
schematic representation of pulsed thermographic inspection. The authors of [26] presented an
effective low-velocity impact characterisation for the matrix, delamination and fibre damage
of a GFRP structure with thermography. Surface temperature maps have been used to observe
local temperature changes and maximum temperature differences to help identify defect types.
It should be noted that thin materials restrict infrared thermography due to the challenges of
heat penetration into deeper regions of the material [27].

Liquid penetrant testing that uses the capillary action principle might provide a
practical solution when surface examination of mass-produced items is performed [28].
A particular liquid, known as a penetrant, fills any discontinuities that may be present
when applied to a specimen’s surface. Thus, it can be detected by fluorescence or human
eyes according to the penetrant’s dye type. The main limitation of this technique is being
restricted to surface or open-to-surface defects.
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As can be seen from Table 1, the magnetic particle and eddy current (Figure 1d) meth-
ods are the other surface-effective techniques that use similar principles of forming regular
magnetic fields on uniform materials. In the case of a discontinuity, the magnetic field
deforms because it tends to follow the path having the least resistance [28,29]. However,
magnetic particles and eddy currents are limited by the material types of ferromagnetic
and conductive types, respectively.

Finally, acoustic emission is a reliable and real-time technique that detects the materials’
transient stress waves for early fault detection [30]. While the approach is highly sensitive
to small changes in an active defect, it tends not to be suitable for constant (static) defects.
Moreover, it seems to be an attractive method for electrical defects rather than mechanical
ones, as well as having issues with the defect size and shape aspects [31].

3. Image Fusion

Fusion is a valuable process that combines or integrates information from different
sensors or sources. Image fusion is the technique of integrating several input images of the
same scene into a single fused image, intending to synthesise better quality and perception
of the image features. Note that an image is viewed as a light intensity function f (x, y),
where x and y are the spatial coordinates of each pixel and f refers to the proportional
value of the brightness at each coordinate [32]. Image fusion can combine the brightness,
colour, distance, temperature and other scenery features of images. It should be noted that
image fusion does not simply mean “matching” or “overlaying” of multiple images; it is
a process followed to form a renewed and more meaningful image outcome [33]. Image
fusion can reduce data dimensionality while keeping important information content, hence
supporting a lower storage cost [34]. In principle, image fusion is seen as performing three
main steps: registration, information fusion and representation (refer to Figure 2) [35].

Figure 2. The main steps of a generic fusion structure.

NDT-based image fusion is a challenging topic due to the varied defect sensitivity
and failure mechanisms of the inspection methods. However, these methods incorporate
complementary features to obtain reliable and accurate defect characterisation and take the
best action against an existing situation [36]. In such a fusion application, registration is
the first significant step in having a proper reference for a fused image. The information
from NDT sources should be aligned correctly to obtain the sense results. As well as the
common feature point-based registration, such as for corners or edges, the authors of [37]
presented a type of marker-based referencing which uses the highly reflective or emissive
marks on the surface of the inspected material when the feature points are not detectable
enough. As a vital matter, especially in the medical image fusion field, registration has
been widely investigated with methods ranging from transformation or similarity-based
methods [38,39] to novel AI-based strategies [40,41] in the literature.

Similar to other fields, NDT-based fusion can be classified as level-based by the forms
of information flow: signal-level, pixel-level, feature-level and decision-level fusion [42]. In
signal-level fusion, a fused signal has been formed to obtain better quality by combining
raw sensor signals, which can be modelled as a random variable. As an example, the
authors of [43] applied superposition-based fusion at the signal level to fuse simulated
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defect and experimental defect-free noise. Figure 3 shows a superposition outcome that
is comparable to the presence of the defect in the sample. The authors have stated that
the outcomes have accurate amplitudes for defects as well as back walls and shadowing
effects due to the model’s destructive signal interfering with the back wall signal. This
level of fusion has the highest registration needs in the time and space domain because of
considering an optimal signal distribution problem [44].

Figure 3. (c) An example representation for signal-level combination for a noise-free defect simulation
and defect-free experimental noise. (a) Simulated noise-free defect. (b) Experimentally measured
defect-free noisy back wall [43].

Pixel-level fusion integrates the physical parameters of the source pixels given at
specific spatial locations and their neighbourhoods and creates a pixel for the fused image.
The authors of [45] applied the pixel-wise averaging, PCA and wavelet methods by con-
sidering the individual pixel values for each method and combining them. Although this
combination has a better depth resolution and signal-to-noise ratio than the source images,
it is restricted by the large size of the data to be calculated and is time-consuming.

The benefit of image fusion based on feature-level fusion, which acts on properties
such as the edge, shape and texture, is that it achieves a certain amount of information
compression and supports real-time processing. A color moment (including the mean,
variance and skewness features) and texture (mean, standard deviation, smoothness, third-
order moments, consistency and entropy features) fusion example was carried out in [46] to
use the results as the input for a recognition training algorithm. The main advantage of this
fusion is having fewer dimensional feature vectors thanks to the compression. In addition,
the study proved that fusion has increased recognition accuracy and reduces the false
detection rate.

Finally, decision-level fusion is a cognitive strategy where source images are converted
to generate an independent target attribute estimation which is already a representative
symbol for information extraction [44]. A partial density-based fusion was proposed in [47],
using the computation of the single-sensor spatial density estimation. The calculated
partial densities, instead of feature extraction or pixel-wise merging, are merged with a
basic summation fusion rule ignoring the maximum value to provide false alarm reduction.
The main advantage is that this technique explicitly treats the localisation uncertainty
caused by registration problems. Consequently, the selection of the fusion level that will
be applied depends on various parameters, such as the image sources, processed data
type and information that the image has. This should be performed in a scrutinizing
manner according to the overall expectations from the sources and fusion. Now, we will
present current fusion applications that are already used for different materials and various
fields within a generic classification according to the methods they are based on in the
next section.

4. Image Fusion Applications in NDT Inspection
4.1. General Algebraic Approaches

General algebraic (basic mathematical) approaches have been utilised to combine
the source signals, features or estimations pixel-wise as a fusion rule. The selection of the
appropriate fusion rule might depend on the target that needs to be achieved and the nature
of the data collected from different sources. For instance, while division and subtraction are
suitable for detecting temporal changes in different measurements, the maximum approach
might be more applicable to finding complementary information, as seen in [48]. The study
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performed a porosity and distribution analysis for concrete structures using ultrasonic and
ground-penetrating radar (GPR). After the processing (weighting and filtering datasets)
and reconstruction (synthetic aperture focusing technique (SAFT)) steps for both individual
methods, the amplitude values of both methods are added to obtain improved depth
information, adapting the depth point of the maximum amplitude.

The size of the dataset is another crucial parameter in selecting the fusion rule that
will be implemented. For example, the data size must be the same for an addition or
division operation. In addition, a data acquisition system might affect the selection of
fusion methods due to the nature of the produced data. A bimodal imaging system
may need supervision to prevent interference while using two separate imaging systems.
Dual-imaging fusion based on X-ray and neutron images has been offered for material
identification using attenuation differences [19]. It has been used as a single-electron
linear acceleration system with a slight time delay to prevent the system from that type of
interference. It should be noted that here, the acquisition systems for X-ray and neutron
inspection have almost the same beam geometry, and data are ready to fuse directly.
Pixel-wise matching has been performed using extracted neutron attenuation and photon
attenuation values compared with the neutrons and photons of air. As a result of this
pixel-wise fusion, a bivariate histogram has been provided to identify different materials
and their thicknesses without prior knowledge.

The basic mathematical fusion rules can also be used mainly for comparison or com-
plementary with other fusion rules. A good example application of this is in [49], which
includes the basic rules, wavelets and decision-level fusion (kernel density estimation
(KDE)) together. A steel-bearing shell specimen with 15 surface grooves and specific di-
mensions was used experimentally. Although the sum and max fusion rules provided poor
performance, all other rules showed a satisfactory flaw detection capability rather than the
single-sensor yield. Another study in the manufacturing field [50] proposed pixel-based
image merging to improve object measurement using the multi-energy stacks of computed
tomography (CT) images. The primary purpose behind the fusion process is to eliminate
measurement difficulties caused by the sample’s high aspect ratio (thickness to length)
and the variety of absorbing materials. Fusion was applied by finding outshined pixels of
different energy stacks, followed by replacing those pixels. A mean deviation-based evalu-
ation was applied, and the fusion results showed less deviation than the mono-energetic
measurement. Table 2 presents information on the material, defect and source details of the
aforementioned studies. There are more studies available in the papers [46,51–53] that used
these basic rules in a complementary manner. However, the details provided in the papers
are limited. In addition, Table 3 has given mathematical expressions of related fusion rules.

Table 2. Brief information on current studies which use general algebraic fusion rules.

Sources Material Defect Types Aim Fusion Rule Reference

Ultrasonic and
ground penetration

radar
Concrete Porosity or voids

Investigating
porosity and

distribution of fibres

Sum, difference,
quotient, maxima

and average
[48]

X-ray and
neutron images * 1 Foreign body

Differentiating
materials and

thicknesses
Bivariate histogram [19]

Ultrasonic
simulation and
experimental

measurements

Copper Holes Avoiding costly
physical samples

Summation
(superposition) [43]
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Table 2. Cont.

Sources Material Defect Types Aim Fusion Rule Reference

Eddy current, active
thermography and

magnetic flux
leakage

Steel Cracks
Preventing

single-sensor
domination

Minimum,
geometric mean,
harmonic mean,
product, median,

sum, sumIgnoreMax
and maximum

[49]

Computed
tomography with

different
configurations

Mix material Foreign body Minimizing
measurement issues

Threshold-based
pixel replacement [50]

1 This study tried to detect different materials for an object.

Table 3. Data fusion operations at signal level (amplitudes).

Method Equation 1 Remark

Summation F̃ = ∑
i

Fi
Suitable for fusion of complete

datasets (same size or resolution)

Difference F̃ = ∑
i

Fi −∑
j

Fj
As explained above and for fusion of

simulated and real datasets

Quotient F̃ = ∑
i

Fi
/

∑
j

Fj as explained above

Average F̃ = ∑
i

Fi/k Fusion of incomplete datasets
as well

Maximum F̃ = max
⋃
i

Fi as explained above

Product F̃ = ∏
i

Fi From quotient

SumIgnoreMax F̃ = ∑
i

Fi −max
i

Fi From summation

1 F̃ = fused dataset; Fi , Fj = i and j (source) datasets, respectively; k = number (size) of measurements of the
i datasets.

4.2. Principal Component Analysis

Principal component analysis (PCA) is a well-known statistical technique for reducing
the dimensionality of a dataset. This is carried out via appropriate coordinate transfor-
mation. Here, the main idea is to retain the maximum possible variation while reducing
the dimensionality of the dataset. The new set of variables, referred to as the principal
components (PCs), is generated in such a way that the first few PCs retain most of the varia-
tion (in more detail, the first component retains the maximum variance, with the second
one existing in the subspace that is perpendicular to the first PC) [54–56]. PCs are linear
combinations or mixtures of the original data. Figure 4 illustrates the first and second uncor-
related dimensions as PCs. PCA has already been used in various domains, such as pattern
recognition, image compression, dimensionality reduction and feature extraction [57–60],
as well as NDT applications [61–65].
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Figure 4. Basic projection of PCs as linear combinations of original data.

In the context of NDT fusion, a pixel-level fusion using the PCA and DWT methods
was proposed to detect inclusive defects (copper sheets) with different depths, sizes and
shapes in a GFRP material [66]. Amplitude and phase images from active thermography,
extracted using a Fourier transform, were fed for fusion as inputs. The principle compo-
nents and wavelet coefficients shaped the input images for combination purposes. In terms
of fusion efficiency, the metric used was the signal-to-noise ratio (SNR) between the inputs
and fused images. It was highlighted in the work that the PCA fusion strategy increased
the SNR for the inclusive defects considerably. A similar study [45], including Teflon
inclusions of different depths and sizes for GFRP composites, applied pulse compression to
thermographic images. For transmission, a low peak power and long-duration modulated
wave was used, rather than a short duration and high peak power, to obtain a better
depth resolution and SNR for the inhomogeneities in the structure. The study compared
averaging-, PCA- and wavelet-based fusions, with the latter providing the highest SNR.

Within the remit of CFRP composite-related studies, (It is noted here that carbon fibre-
reinforced polymer (CFRP) composites are the main composite structure used in aerospace
structures rather than GFRP.) the authors of [67] proposed a fusion structure that utilises
multi-frequency lock-in thermography. This approach explores the advantage of detection
characteristics that provide different depth information for various frequencies. In addition,
the authors proposed an optimum frequency selection approach considering the material
thickness and thermal diffusivity. Phased images formed by the signal variation over time
at each pixel were extracted in sequences that indicated thermal changes on the material
surface. PCA was used to detect holes at different depths for a single image by decomposing
a series of phase images to their principal components. A comparison between PCA-,
wavelet- and multi-scale decomposition-based fusion was performed, and the former
fusion approach provided the best edge sharpness and hole contrast detection.

Here, only the fusion strategies referring to composite materials are explained in detail.
For completeness, we provide information on the fusion approaches that utilised different
types of structures (however, the fusion application is a useful example to inform further
work on composites) in Table 4 with their relevant citations.
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Table 4. A list of PCA-based studies for NDT image fusion.

Sources Material Defect Types Aim Reference

Lock-in thermography GFRP composite Foreign body or
delamination

To eliminate non-uniform
heating, low resolution

and noise effects
[66]

Ultrasonic and
vibro-acoustographic

inspection
Steel pipe Holes with different

shapes
To detect holes and

measure their dimensions [21]

Eddy current pulse
thermography

Aluminum alloy or
stainless steel Crack To eliminate background

interference effect [68]

Thermal and
visible images Steel Crack or split

To solve heat diffusion,
reflection and illumination

problems of constituent
methods

[69]

Pulsed thermography GFRP composite Foreign body or
delamination

To enhance the defect
detection capability [45]

Lock-in thermography SS275 steel plate Voids or corrosion
To inspect the contaminant

liner plate (CLP) against
radiation leakage

[70]

Lock-in thermography CFRP composites Holes To find better depth
resolution [67]

4.3. Fourier Transform-Based Approaches

Fourier analysis is a well-known approach in mathematics, covering a large spectrum
of applications (approximating a general function with the sums of more straightforward
trigonometric functions). Fourier analysis decomposes an image into its sine and cosine
components, with the transformation output representing the image in the frequency
domain (the input image is the spatial domain). For completeness, general forms of Fourier
synthesis and analysis equations, respectively, for a periodic sequence of x(n) [71] are
shown below (ck and N refer to Fourier coefficients and period, respectively):

Synthesis : x(n) =
N−1

∑
k=0

ckej2Πkn/N (1)

Analysis : ck = 1/N
N−1

∑
n=0

x(n)e−j2πkn/N (2)

Working in the frequency domain enables easier processing for image fusion. The
work in [72] presents a useful example of Fourier-based NDT image fusion. Using a
Gaussian function, the authors presented a cone-shaped filter in the Fourier domain of X-ray
computed tomography (CT) and ultrasonic testing (UT). The fusion aimed to combine the
advantages of the inspection methods, hence minimising issues such as noise, artefacts and
low resolution. A test sample containing the specific dimensions of the internal channels
was used to perform CT and UT volume measurements. The fused image provided reduced
artefacts and improved the edge contrast compared with using the inspection technologies
independently. It is noted that, as seen in many works in the literature, the Fourier transform
has often been used as a tool to preprocess data prior to feeding them to the fusion rule.

4.4. Wavelet-Based Approaches

The wavelet transform is an appropriate tool to decompose images into high- and
low-frequency components. This makes possible analysis of the features of data over a
certain scale, such as the edges and texture for an image or the frequency for a signal.
Unlike the Fourier transform, which offers a specific frequency wave, it can provide data
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representation for multiple scales with different versions of wavelets. Shifted and scaled
versions of a wavelet can positively impact the resolution in the time or frequency domain
according to the selected parameters. The wavelet transform aims to maintain a good
resolution in the time and frequency domain, contrary to the Fourier transform [73,74].

For an image, the row and column directions must be handled independently when
the original image is divided into four sub-band images. The two-level decomposition
structure is illustrated in Figure 5 for illustration purposes. Each row’s data are first used to
utilise the high-pass filter H and the low-pass filter L, and then the high- and low-frequency
components of the row are obtained by downsampling of the two. The next step is the same
in the column base and continuous for the next decomposition levels iteratively. The low-
pass portion (LL), called the approximation or wavelet coefficients, contains the average
image information, and the high-pass portion (i.e., detail coefficients) has the directional
information of the original image. By using this approach recursively, multi-resolution
wavelet analysis can be performed [75].

Figure 5. Two-level wavelet decomposition structure (recursive filtering and subsampling).

The decomposition level and selection of the proper wavelet filter, one of the most im-
portant steps for wavelet application, should be decided according to the structure, aim of the
transformation and the information that should be emphasised. The authors of [76] proposed
a wavelet energy-based (Emin) filter selection method which considers that the minimum per-
centage of the approximation coefficients and detail coefficient will bring minimal noise. This
is attributed to the minimum amount of low-frequency information in the approximation
coefficient after decomposition. Additionally, a weighted risk factor-based decomposition,
including automatic level selection, is used according to the maximum detail coefficients.
The primary goal of the proposed strategy is to eliminate noise while maintaining appropriate
defect information. The results show that the risk factor-based fusion provided more visual
and qualitative detection than the minimum energy-based approach.

Moreover, a number of other studies in the literature attempted to interpret the ef-
fectiveness of the decomposition level and selected a filter using multiple options over
a specific application [20,77]. For example, a hybrid image fusion structure of wavelet-
based multi-scale transforms (W-MST) and saliency region analysis (SRA) was proposed
to combine the advantages of the terahertz and X-ray CT techniques [20]. Here, the study
compared and contrasted 36 fusion combinations, including various fusion rules, decom-
position levels and basis functions. Experimental samples were formed using glass fibre
(GFRB) with different-shaped inclusions and defects with various thicknesses and depths.
First, saliency maps, which show the indication of the human eyes’ first focus in an image,
were obtained for both methods. Then, the main outline in the low-frequency component
and edge contour information of the high-frequency sub-bands were transmitted to the last
fused image by W-MST. Assessment of these combinations was performed by calculating
the standard deviation (SD), which shows the image’s grey level nature, and spatial fre-
quency (SF), which provides the imaging resolution for the defect details. Among these
combinations, the energy, average gradient and constant fusion strategies showed the
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highest increment between the source and fused images in terms of the two indicators. For
completeness and useful information to the reader, Table 5 lists important current studies
on wavelet-based fusion strategies for different materials and defects. These include the
ones discussed in more detail in this section.

Table 5. A summary of the current wavelet applications for NDT image fusion.

Sources Material Defect Types Aim Reference

Eddy current images (at
two different frequencies) Stainless steel Machined notches To eliminate noise [76]

Terahertz and X-ray CT
techniques GFRP Foreign body or

delamination

To combine higher contrast
of terahertz and higher

resolution of X-ray
[20]

Infrared, visible light and
laser inspections Copper Foreign body, voids or

cracks

To enhance system
stability with the

multi-sensor information
[78]

Visible camera images Wall (non-defined) Cracks
To minimise the

complexity and diversity
of wall images

[79]

Ground-penetrating radar
(GPR) and ultrasonic echo

array (UEA)
Concrete Geometry or foreign body

To achieve enhanced
images of the interior of

concrete
[80]

Eddy current pulsed
thermography CFRP-steel structure Cracks

To remove information on
the texture that hides

defects
[81]

Ultrasonic and
Step-heating

thermography inspections

Carbon/epoxy-
aluminium

Delamination or
debonding

To inspect patch and
binding quality [77]

Eddy current and pulsed
thermography CFRP Impact

To provide comprehensive
information from

impacted CFRP structure
[82]

Ultrasonic, thermographic
images and CAD model * 1 Geometry or voids To provide defect mapping

in the partial CAD model [83]

Eddy current, magnetic
flux leakage and flying

laser spot thermography
inspections

Steel Cracks

To improve near-surface
defect detection in
magnetisable and

conductive materials

[84]

Terahertz images (in
various configurations) GFRP Foreign body or

delamination
To ease detecting deeper

flaws [85]

1 The material is mentioned as aeronautical composites without any details.

4.5. Learning-Based Approaches

Learning-based probabilistic methods have already become popular in the image
fusion field due to their direct link to computer vision problems and capability of automatic
feature extraction. In addition, they have significant potential for representing the complex
characteristics and relationships of the source images and fusion results. Learning enables
more AI-based approaches in inspection applications and can be a useful tool to the
inspection expert, supporting more autonomy in inspection applications. In this section,
we present studies that are already used for the fusion of NDT systems, with some insights
into the proposed methods.

4.5.1. Neural Networks

Artificial neural networks (ANNs) are one of the most useful forms of machine learning
(ML) in several fields, such as classification and pattern recognition. The high-speed
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processing offered by a highly parallel implementation represents ANNs’ greatest potential.
The ability to create simple and accurate models from complicated natural systems with
vast inputs is a strong benefit of ANN applications. They can behave as a functionalised
management system similar to the human brain’s nervous functions. ANNs mimic the
operations of an interconnected arbitrary number of nodes by traversing a number of levels
with the input characteristics [86]. The basic components of an ANN’s structure can be
considered to consist of inputs, weights, a transfer function, an activation function and
bias [87]. The inputs refer to the measurements of the features that will be modified. The
weights are the scalar multiplications responsible for evaluating each input’s significance
and directionality. The transfer function merges the inputs into a single output value in
order to apply the activation function. An activation function captures the information from
the transfer function and transforms that into a more useful form, which will be used in the
next stage. Bias can be considered a systematic error, given as extra input to the system
due to the assumptions during the process [88]. The basic artificial neuron architecture, the
so-called threshold logic unit (TLU), is demonstrated in Figure 6.

Figure 6. Basic neuron architecture, called the threshold logic unit (TLU), showing inputs (I), weights (W),
bias (b), activation function (f) and output (X) [89] .

ANNs have been constructed by multi-neurons, which use weights that can learn and
be changed after each iteration through neurons, depending on the accuracy. An ANN
structure is able to make predictions in the form of regression or classification, followed
by a training step for a particular dataset. A recent study [90], as an example, used an
ANN structure to train eddy current (EC) impedance and ultrasonic amplitude inputs,
aiming to overcome problems as a result of the blind zone of ultrasonics on the near-surface
and the electromagnetic skin effect of the EC on the subsurface. The authors employed a
database that included a simulation of signal propagation into an aluminium block with
holes for estimating the depths and radii of the holes in a regression. The ANNs were also
used to characterise and validate the study using real holes experimentally. Mean absolute
error (MAE) calculations were performed to assess the accuracy of the defect estimation
parameters. The experimental results show that the error of the depths and radius estimates
was limited to 4 percent on average, although it showed a peak of 11 percent for one hole.
It is stated that this complementary approach might be promising for investigating more
complex structures and various defect types.

In the theme of the neural network, the recent study on multi-modal infrared image
fusion used a hybrid fusion structure that included a non-subsampled shearlet transform
and a pulse-coupled neural network [91]. Two types of impact-defected fibre-metal hybrid
composite laminates were inspected by vibro-thermography (VT) and pulse thermography
(PT). Three-step feature extraction, feature selection and a fusion method were applied
as shown in Figure 7. Fourier analysis for the frequency domain features and intensity
contrast criterion for the feature selection were used. Feature selection in the time domain
was made using a temperature curve that allowed for determining the thermal contrast over
time. For the fusion, images were decomposed by a shearlet transform, followed by the
weighted mean and pulse-coupled neural network fusion for the low- and high-frequency
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sub-bands, respectively. The fusion results indicated a conspicuous improvement in crack
contrast and detecting the boundary of deformation rather than a single excitation mode.

Figure 7. An example demonstration of three-step integration framework: feature extraction, selection
and fusion [91].

Another important structure for fusion studies is the convolutional neural network
(CNN). This is one of the most beneficial tools for image analysis applications due to its
advanced feature extraction ability through convolution operations instead of standard
matrix multiplication. A CNN may use multiple convolution layers to obtain features hier-
archically, max pooling layers to minimise image sizes and batch normalisation for reducing
internal covariance. A loss function is used to find the difference between the expected
and predicted results and tries to minimise them [41]. Historically, after AlexNet [92],
various CNN-based algorithms have been proposed to gain a better understanding of
image analysis cases. U-Net achieved an efficient feature extraction method even in a small
dataset using structural segmentation [93]. ResNet was developed to overcome gradient
degradation problems in the training of deep neural networks using a residual network [94].
After that, DenseNet was proposed to obtain a densely connected structure by engaging all
layers with each other [95]. GoogLeNet has used an inception module that has multiple ker-
nels of different sizes for convolution to ensure more efficient computation [96]. A couple
of studies that have been published recently have focused on the fusion of NDT methods
through neural networks to inspect various materials, from wooden cultural heritages to
common composites [97–102]. Here, the text will not give the details of these approaches.
(The interested reader can refer to the specific papers cited.) However, Table 6 demonstrates
the sources and aims of those neural network-based research works in various fields. The
use of learning approaches in NDT inspection can greatly benefit the field (classify and
learn image properties, defects characteristics and features). However, their use in this
field is still in its infancy. This is an important part of the PhD study this review paper
stems from.
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Table 6. A summary of the recent neural network-based fusion studies for NDT methods.

Sources Material Defect Types Aim Base Algorithm Reference

Ultrasonic (US) and
eddy current (EC) Aluminum Holes

To overcome
individual sensor

problems
ANNs [90]

Vibro-thermography
(VT) and pulse

thermography (PT)

Aluminium-
BFRP/GFRP Impact

To use the
synergistic effect of

multi-excitation
infrared fusion

Shearlet transform
and a pulse-coupled

neural network
[91]

Magnetic flux
leakage and active

thermography
inspections

High-carbon steel
wire rope Split (broken wires)

To avoid
single-sensor low

precision

Neural networks
and k-nearest

neighbour
[97]

Accelerometer,
microphone, current
sensor and optical

encoder

Cast iron Wearing, cracks, etc.

To optimise feature
extraction and

selection at fusion
level

Deep convolutional
neural networks [98]

Pulsed
thermography and

terahertz inspections

Plant
fibre-reinforced
polymer (PFRP)

Impact

To overcome the
structural

complexity of plant
fibre composites

Unsupervised deep
residual network [99]

Industrial camera
images

Stainless steel
(reflective material)

BrightLine,
deformations,

scratches or dents

To investigate
multi-light

illumination effect
on detection

Lightweight
SqueezeNet
architecture

[100]

Line scan active
thermography and

terahertz inspections
Fir wood Missing and broken

tesserae

To provide NDT
inspection for

preserving cultural
heritage objects

Unsupervised deep
residual network [101]

Continuous-wave
terahertz and

long-wave infrared
(LWIR)

thermography
inspections

Wooden Holes

To introduce an
autonomous

dynamic line-scan
inspection method

Unsupervised deep
feature fusion [102]

4.5.2. Fuzzy Sets

Fuzzy logic is another technique that uses ambiguous or imprecise statements to
simulate logical thinking. Fuzzy logic stems from the idea of fuzzy sets [103] and assigns a
degree of membership to the elements of a system, often a real integer in the range of [0, 1]
(where 0 denotes “completely false”, 1 denotes “completely true”, and values in between
the range denote “partial truth”). This indicates a set of many-valued logics in which the
truth values are viewed as levels of truth. The general workflow of a fuzzy logic approach
is as follows [104]:

• Fuzzification: transform the data in the form of an uncertain language into the linguistic
variables (fuzzy set or a membership function) together with the fuzzy components.
In this way, the data can be processed using a classical binary method of ”zero” and ”one”.

• Inference: refer to a rule-based inference that the membership functions are combined
with the fuzzy control rules, such as the mean of the maximum or minimum distance,
to find the control outcome [105].

• Defuzzifcation: the fuzzy control outcome must be converted from linguistic variable
to classical variable format.
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From the point of view of NDT, defect characterisation is the primary implementation
field to use entire methodologies, whether it is data collection or processing that data.
An early study which introduced a fuzzy logic-based pixel fusion for three tomographic
techniques that characterise different shape properties was presented at the end of the
nineties [106]. Cylindrically shaped aluminium specimens that included two different
thicknesses for the drilled side holes and a planar flaw were used. Here, the set was utilised
to define the pixel’s membership level in a generated defect image. To be precise, the
member pixels had a weight of 1, while others were between 0 and 1 according to the
membership function. The weighted pixel amplitudes were summed to form a fused defect
image. The study showed that the holes were clearly visible in the fused images, but the
planar flaw was not evident in terms of size and shape. It was explained that the data
acquisition configurations might change with the orientation of the defect. Lastly, the study
does not contain any mathematical evaluation method, although it had sufficient discussion
on the reasons for data acquisition issues. Table 7 demonstrates that the current studies on
NDT image fusion have investigated aluminium materials and concrete structures so far.
The scarcity of NDT combination attempts applied to composite materials also shows the
potential for a number of different algorithms to be used in this area.

Table 7. A summary of fuzzy set-based fusion approaches for NDT methods.

Sources Material Defect Types Aim Reference

Tomography
(3 techniques) Aluminum Foreign body or holes Shape characterisation [106]

Ultrasonic and
eddy currents

Aluminum
(AA5083-H111) Weld imperfections

To improve detection of
friction stir welding

imperfections
[107]

Laboratory-based
measurements Concrete Foreign body or voids

To determine porosity,
content and mechanical

properties
[108]

Pulsed eddy current and
ultrasonic methods Aluminum alloy (AL-2024) Stress To determine stress

measurement [109]

Ground penetrating radar
and square pulse

thermography
Concrete Foreign body or voids To identify material

content and characteristics [110]

Research on material properties is a different application field of NDT inspection
technologies. Inspecting concrete characteristics and determining physical properties was
proposed by the authors of [108]. Because of difficulties in understanding the porosity,
water saturation rate, elastic modulus, compressive strength, depth of carbonisation and
chloride content of concrete structures, a complementary fusion of non-destructive in-
formation might improve the reliability. For this purpose, a fuzzy set-based possibility
theory was chosen to combine this heterogeneous information for controlled produced
specimens with different compositions. The fusion results were compared with the de-
structive measurement and had several differences. It has been claimed that such a fusion
technique can be helpful in understanding the conflicts of the NDT methods. This can
make it possible to have a critical evaluation of the results and provides for the creation of
a confidence index for inspected structures. The proposed method has been considered
encouraging for the water saturation and porosity rates. However, it is problematic in
estimating the elasticity value. With a similar purpose, the authors of [109] proposed stress
measurement of an aluminium alloy material using fuzzy combinator-based fusion. It has
been claimed that a fused result might have 50 percent less error than individual inspection
outcomes. Even though the combination of NDT methods can give more deterministic
clues regarding the mechanical properties of inspected structures, it is clear that these
contemporary approaches are highly limited.
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4.5.3. Bayesian and Dempster–Shafer Methods

The Dempster–Shafer (D-S) method, known as evidence theory or belief functions, can
be seen as a generalised form of the Bayes theorem, which allows revision of the predicted
probabilities of an occurrence with additional knowledge. While the Bayes theorem uses
probabilities for weighting, the D-S method accomplishes this by assigning masses to all
possible subsets [111]. For instance, the authors of [112] proposed a Bayes-based fusion
method for tomography inspection, calculating wave velocity probability density functions
to improve the impact localisation accuracy. Two sensors that have a 90◦ angle difference
were incorporated, and non-matched regions and measurement noise were minimised by
the multiplication of related probabilities. Dempster–Shafer’s evidence theory can meet
poor conditions better than probability theory can, using the belief functions instead of
probability. It is also possible to capture cognition notions such as uncertainty. It presents
the concept of attributing beliefs and plausibilities to potential measurement hypotheses
and the necessary combination rule to combine them [113].

Basically, in the power set of a universal set X, P(X) shows all possible subsets,
including an empty (φ) set with its mass function equal to zero:

m(φ) = 0 (3)

The D-S theory employs the mass function (m), which reflects the level of support for
the evidence, as well as the belief function and the plausibility function. The value of m(A)
applies just to the set A and does not make extra claims about any subsets of A, each of
which has its mass by definition. For the two different sensors A1 and A2, the combination
rule of the D-S theory is as follows [114]:

m1,2(A) = ( ∑
B∩C=A 6=φ

m(A1)m(A2))/(1− K) (4)

K = ( ∑
B∩C=φ

m(A1)m(A2)) (5)

K indicates the amount of conflict between the two mass functions from the sensors.
The equation means that the D-S combination procedure computes the orthogonal sum of
each possible proposition and then combines these two beliefs to update the joint belief
mass function m1,2. In particular, the work in [115] used an image fusion strategy to
investigate the bonding quality of images from ultrasonic and thermographic inspection.
Three different types of artificial debonding defects formed, and the extracted features were
fed to basic and statistical data fusion as the source. A multi-step preprocessing application
that included noise reduction to eliminate error multiplication coordinate matching to
remove the effects of different data collection environments, registration or interpolation
to match values perfectly and normalisation was performed before the fusion of data.
Here, the maximum amplitudes of the interface reflection and second principal component
were saved as features indicating the defects for ultrasonic and induction thermography,
respectively. In the fusion stage, three hypotheses—defected (positive), non-defected
(negative) and unsure regions (doubt)—were identified, and their belief probabilities were
calculated with global Gaussian curves of the local amplitude distributions. Figure 8 shows
the calculation of the D-S belief percentage for a randomly chosen pixel and its surrounding
area in the induction thermography feature matrix’s no-defect zone and global distribution.
The results emphasised that the D-S combination might be an effective technique, even in
the case of basic mathematical fusion rules that have worse results than those based on
individual sensors.
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Figure 8. Schematic representation of D-S belief probability calculations for a random point using its
local neighbourhood on the defect-free region on the global distribution of feature matrix (Positive
evidence is where there is a defect, negative evidence is where it is non-defective, and doubt is where
theere is a high plausibility.) [115].

Another study using the Bayes and D-S methods was recently introduced for multi-
material image representation [116]. X-ray computed tomography was applied with various
configurations to provide images for different materials of a particular object. This means
that the D-S combination rule was implemented to produce a fusion image using three
different energy images. Five different attenuation-based hypotheses have been chosen
to apply the D-S combination because they give different grey values due to the energy
range difference. It has been stated that the proposed method ensured higher image quality
for the contrast-to-noise ratio, even though it had several artefacts. The results were also
compared with the Bayes combination results, finding that it had a higher risk of conflict.
In conclusion, it can be stated that the D-S theory has rarely been used for combination
attempts of NDT methods and needs to find more space in NDT application due to its
effective usability.

5. Evaluation Strategies and Performance Metrics

Evaluation plays an important part in NDT-based proposed methods towards valida-
tion, and it can be classified under quantitative and qualitative approaches. The simplest and
most straightforward method is qualitative evaluation (mainly visual), which depends on
the experience of the operator performing it. The aerospace industry has gradually moved
towards both qualitative and quantitative evaluation, relying less on the operators’ skills
and expertise [117]. Noting that NDT inspection is regarded as a quantitative analysis
method, many papers in the current literature pay close attention to evaluation (and the
use or proposal of relevant evaluation metrics) to support the efficacy of their approaches.
We aim to systematise the presentation of evaluation strategies in this section, providing
critical insights into NDT image fusion-related efficacy.

A useful example of the importance of evaluation in NDT-based inspection is in a
highly noted recent paper [118], which looked into barely visible impact damage (BVID)
in composite materials. The authors used NDT fusion of ultrasonic testing and X-ray
computed tomography. Their particular fusion approach is shown graphically in Figure 9a,
with a particular aim of investigating the true mapping of the defect from UT to the true
defect from X-ray CT. (Figure 9b illustrates the scanning views obtained for the defect.)
Their particular metric was the distance from the defect’s centre to the boundary points



Appl. Sci. 2023, 13, 2732 19 of 30

(see the example in Figure 9c, which illustrates a form of pseudo-segmentation of the defect
area). The authors included statistical analysis to showcase the differences between the
UT C-scans and B-scans relative to the defect mapping (estimation accuracy of the BVID),
with the C-scan providing better overall results, as claimed by the authors of the work.
An interesting outcome from this paper to consider is the transition from a qualitative
aspect of defect analysis (images) to the statistical analysis of the boundary point distance
(quantitative) viewpoint.

(a)

(b) (c)

Figure 9. (a) Katunin-et-al. example fusion approach (block diagram). (b) Detected damage for
fusion of X-ray CT scan (red) and UT C-Scan (blue color). (c) Distance calculation of boundary points
to the centroid for X-ray CT and UT C-scan [118].

Given that defect analysis, detection and classification can be a very challenging task
(depending on the nature and importance of the defect), researchers looked into a variety
of evaluation metrics to support NDT analysis. There is no unique evaluation metric that
can be applied in this domain (as is the case in many other engineering domains), with a
number of evaluation criteria (metrics) introduced to facilitate a more informed outcome
decision in NDT analysis of defects [119]. We present a series of important evaluation
metrics (merely exhaustive) to assist the readers in understanding their nature, use and
potential impact in NDT fusion works.

Common evaluation metrics seen in the literature are the root mean square error
(RMSE), signal-to-noise ratio (SNR), correlation coefficient (CC), (fusion) mutual information
(MFI) and structural similarity index (SSIM). It is possible to mention more metrics, but
many of them are fairly correlated with each other, as can be seen with the 27 different
metrics in [120]. Papers refer to these for evaluating the performance of fusion methods. In
particular, a recent paper [119] closely utilised these criteria for their work on NDT fusion
for defect analysis in Si-PV cells and comparison of the best algorithm outcomes.
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We briefly present the nature of the five metrics mentioned above and their expressions,
given in Table 8, for an image set for completeness. The image example was obtained
from the Northeastern University (NEU) surface defect dataset, which includes six types
of surface defects [121]. From the original image, a second version had semi-blurred
compressed corruption (pixelisation), and the third version was corrupted by Gaussian
distribution noise. Figure 10 shows the three image snapshots, and Figure 11 gives the
absolute differences. Blurring and noise have shaded defects at different levels, causing a
visible loss of quality. The absolute difference images also indicate the corruption effects,
showing how the defects were hidden. After this point, these images will be handled as
corrupted and noisy.

Table 8. Fusion performance evaluation metrics.

Evaluation Metric Expression Characteristics

Root Mean Square Error
RMSE =

√√√√√ 1
M× N

 M

∑
i=1

N

∑
j=1

[X(i, j)−Y(i, j)]2


M× N sizes
of the images

X and Y reference
and source images

Correlation Coefficient CC =
∑M

i=1 ∑N
j=1(Xij − X̄)(Yij − Ȳ)

[∑M
i=1 ∑N

j=1(Xij − X̄)2][∑M
i=1 ∑N

j=1(Yij − Ȳ)2]

M, N image sizes
X reference and

Y source

Fusion Mutual Information FMIX́,F́ = ∑
x́ f́

PX́,F́(x́, f́ )log2(
PX́,F́(x́, f́ )

PX́(x́)PF́( f́ )
)

PX́,F́(x́, f́ ) joint histogram of
x (source) and f (fused image)

X́, F́ feature maps

Signal-to-Noise Ratio SNR = 10 log10(
S1

∑
m=1

S2

∑
n=1

z(m, n)2/
S1

∑
m=1

S2

∑
n=1

[z(m, n)− o(m, n)]2)

S1,2 image sizes
(m, n) location

z and o estimated and
original signals

Stractural Similarity Index SSIM(x, y) =
(2µxµy + C1)(2σxσy + C2)

(µ2
x + µ2

y + C1)(σ
2
x + σ2

y + C2)

σ is standard deviation
µ is mean value

Figure 10. Original and artificial source images to compare and see the effect of fusion and calculate
evaluation metrics over the images from [122].
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Figure 11. Absolute difference imagesfor seeing how the corruption affected the images (with respect
to original image). Images were converted to grayscale first.

Figure 12 shows the different images in a 2× 2 array format. The bottom-right image
is a fused image version of the noisy and corrupted image versions via alpha blending
with the (fused) image intensities together as a single dataset. It can clearly be seen that
the fused image had a purer texture than the sources in terms of noise and corrupting
effects. Here, we will explain the evaluation metrics over these example images using the
calculated values between the reference image and sources, including the fused image.

Figure 12. Montage of images with the fused version of the noisy and corrupted image ver-
sions (grayscale).

Root mean square error (RMSE): The RMSE, given the pixel intensity nature of the image,
is a measure of the proximity of the two images that are compared. From a statistical
viewpoint, the RMSE refers to the standard deviation of the error under investigation.
A smaller value for the RMSE indicates closer similarity of the images (in the case of a
fused image, the similarity to the original one) [123]. It is noted here that the MSE is closely
related to the RMSE. Hence, we do not explain the MSE metric in detail. A useful example,
in this case, can be seen in [90], which calculated the MSE and RMSE values for the radius
and depth estimations of holes and stated that the bigger gaps between the estimated and
expected (real) values might represent an insufficiency of the fusion operation. The authors
attributed these high MSE and RMSE values to the blind zone effect of the ultrasonic
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imaging method for their case. In addition, the authors of [70] agreed that the RMSE is a
measurement of detectability, showing that lower values indicated less contrast between the
estimations and expectations. Table 9 shows the evaluation values for the example images,
including corrupted, noisy and fused examples as a comparison. For our basic example
application, it was not surprising to find less difference in the metrics between just the
corrupted and original image, although the fused image had a considerably lower RMSE
than the noisy image but slightly larger than the corrupted one. Even so, the lower RMSE
value of the fused image indicates that the fusion successfully preserved the scratches’
information. On the other hand, thresholding of these images indicated that preprocessing
might affect the fusion success, as can be seen from the values of the same metrics. After a
basic segmentation by adaptive thresholding, the fused image had the lowest RMSE value,
visibly showing the highest similarity.

Table 9. A comparison of the evaluation metric values for the illustrative example for fusion metrics.

Metrics Corrupted Noisy Fused

RMSE 12.960 30.910 16.607
CC 0.860 0.629 0.814
FMI 1.586 0.378 0.579
SNR 5.284 2.086 5.428

PSNR 15.165 11.940 15.310
SSIM 0.771 0.15 0.32

Thresholded

RMSE 0.164 0.192 0.148
CC 0.459 0.366 0.558
FMI 0.042 0.034 0.056
SNR 0.379 −5.390 0.822

PSNR 16.645 10.876 17.086
SSIM 0.846 0.406 0.745

Correlation coefficient (CC): This is an indicator that gives values in the range from
−1 to 1, revealing the relationship intensity between the sources and the equivalent fused
image. The best match between the fused and original images has the highest correlation
value [124]. In our example of fusion application, the correlations of the fused and pixelised
images were quite close to each other (Table 9). Similar to the RMSE calculation, we can
consider that the corrupting operation does not affect the pixel intensities or the features of
the image remarkably. However, the correlation of the fused image to the original image
was notably higher than the noisy one, indicating that the fusion managed to merge the
valuable components of the sources. Segmentation (thresholding) as a preprocessing step
made the fusion result have the highest correlation with the original images eventually.

Fusion mutual information (FMI): This metric, based on the mutual information criterion,
evaluates how much of the original images’ features, such as the edge, detail or contrast, are
inherited in the fused image [125]. The FMI computes the degree of dependency between
the input images and the fused image [126]. Smaller values for the FMI indicate worse
quality for the fused image. In our case, the original image features were firmly maintained
in the corrupted image, with a notably higher FMI value than those of the noisy and fused
ones. That aside, the fused one also had a relatively higher FMI value than the noisy
one. The story was different when the intensity became deterministic (black and white
segmented areas) in the threshold images (Figure 13). In such a case, the corrupted image
had the lowest FMI value, and the fused one had the largest FMI value, confirming the
benefit of even a simplified fusion operation.
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Figure 13. Simple segmentation via the adaptive threshold of the grayscale images from Figure 12.

Signal-to-noise ratio (SNR): The SNR provides a metric of evaluating the quality of a
signal quantitatively when comparing the fused and original signals [127], and it gives the
proportion of signal power to noise power:

SNR = 10 log10(EnergySignal)/(EnergyNoise) (6)

where Energy denotes the sum of the squares of the signal values for the estimated signal
and the difference (error or noise) between the estimated and original signals. With the
SNR measuring the ratio between the information and noise of the fused image, a higher
value reveals a greater similarity between the fused and reference (original) images. In an
example fusion of terahertz and thermal imaging, the larger SNR values contributing to the
achievement of suppressing the background noise showed that the salient features were
extracted successfully [102]. Another interesting quantitative assessment with the SNR
demonstrated that although the fusion provided a higher contrast and resolution, the SNR
value of the fused image was relatively lower [99]. This might be attributed to calculat-
ing the average SNR from the SNR values of different depths. Another closely relevant
metric the peak signal-to-noise ratio (PSNR), indicates the ratio of effective information
to noise using the maximum squared signal intensity. The SNR and PSNR values of our
example evaluation application indicated that the fused image had the greatest values,
demonstrating that a successful fusion can provide more evident marks by reducing the
noise effects. This gave the same results after the thresholding application, demonstrating
that the SNR and PSNR values were not affected by this preprocessing operation, contrary
to other metrics. Moreover, the negative SNR value of the noisy segmented image might be
attributed to the noise density of the image being heavier than the signal density [128].

Structural similarity index (SSIM): The SSIM approach compares the luminance (l),
contrast (c) and structure (s) in an independent manner using the mean and standard
deviation values [129]. This means any change in one does not affect the other parameters:

S(x, y) = f (l(x, y), c(x, y), s(x, y)) (7)
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The application can be performed gradually in a square window which moves pixel
by pixel across the image. The local statistics and the SSIM index are computed at each
step in the range from 0 to 1. The SSIM is another positive indicator expressing that the
higher the values, the greater the correlation. In our example, the corrupted images, as
well as the thresholded (segmented) ones, had the highest similarity with the reference
image, unsurprisingly. The fused image had a relatively higher similarity to the original
image than the noisy one. This means that the fusion managed to compensate for the heavy
disturbance effect of the noise partially. An example from the studies above [102] used
the SSIM method to determine the defect preservation ability in the defective regions of
raw images. The authors emphasised that the higher SSIM values of the proposed training
algorithm indicate that it could extract adequate information from the input images.

6. Insights from the Survey and Future Prospects

This review paper presented, in a rigorous way, image fusion and evaluation strategies
for NDT, taking into account various structures (albeit with a particular focus towards
composites). It is clear that the studies indicate that using image fusion is promising for
improving the reliability of inspections. An important highlight from this study is that
various image fusion methods which are well-studied in other domains, such as remote
sensing and image recognition, have not been extensively applied to NDT yet.

Individual fusion techniques’ performances with regard to a number of evaluation
metrics were presented, including insights on how they have been perceived in studies in
the literature. These metrics provide a quantitative means of identifying the best fusion
approach for the specific or given inspection case. Each method is capable of revealing dif-
ferent aspects. For example, adding small noise to simulate a more realistic environment can
significantly impact each technique with defect variability. Current studies have shown that
the results depend on the acquisition system (i.e., being multi-sensor or multi-excitation).
Different configurations impact the results. Another critical point is the applicability of the
fusion method. This can differ depending on the level of fusion or whether it is pixel-wise
or region-based. As one moves towards the use of machine learning tools, the importance
of having sufficient datasets (of realistic defects) for training and validation is paramount.

The widespread use of high-performance AI (ML)-based fusion approaches in aviation
has the potential to improve the reliability and profitability of aviation operations. This
review paper sheds further light on utilising the fusion of NDT techniques appropriately in
this field. This was shown by the highlights of applying fusion in other domains, which
can inform the fusion-based inspection of aeronautical structures (particularly composites).
The following points are noted from this rigorous survey study:

• There is no comprehensive review of NDT image fusion (this review paper fills this
research gap).

• Fusion applications for composite structures are very limited.
• Low-level (signal or pixel) fusion applications require a precise registration that might

be possible to reduce its effect on the higher-level fusion structures.
• General algebraic fusion rules have often been utilised as a main rule in low-level

fusion or auxiliary for higher levels.
• PCA and wavelets are the most preferred methods among the current applications,

but few relate to AI applications.
• Preprocessing operations before applying fusion are a vital part of the process.
• There is a plethora of evaluation metrics, and a series of these tends to be used in

validation studies. This seems to be application-dependent.
• Even though ultrasonics and acoustic emission seem to outshine the other meth-

ods in terms of capability for various defect types, each technique has individual
characteristics for their sensing ranges.



Appl. Sci. 2023, 13, 2732 25 of 30

7. Conclusions

Airworthiness in aviation is vital for the safe operation of and guaranteeing the safety
of both passengers and aircrew. In this context, MROs—typically complex processes—in the
aerospace industry has strict and precise requirements defined by airworthiness authorities.
Enabling more sustainable aviation utilisation of novel materials such as composites,
given their potential for weight reduction of structures and attractive material properties,
necessitates efficient MROs in order to avoid catastrophic failures. Structural inspection-
wise (NDT) approaches are preferable, given their non-destructive testing nature, to ensure
structural component integrity and reassure proper function expectations. Characterisation
and localisation of possible defects at an early stage is one of the most crucial steps,
given that even micro-cracks going unnoticed (and not addressed or treated) can result in
catastrophic incidents.

Individual inspection techniques may be limited by their sensing technologies, and fu-
sion provides a potential solution in improved inspection performance and timely infor-
mation to the inspection expert for efficient MROs. This review paper provided com-
prehensive insights into the recent progress in image fusion and its potential impact on
composite structure inspection, together with a rigorous analysis of the challenges in this
new and challenging research field. It was noted in this research that PCA and wavelet
decomposition-based fusion approaches seem to be preferred more often compared with
learning-based methods. With the advent of AI and ML tools and the accumulation of
extended datasets, more learning-based schemes will appear. There are limited examples
of fusion-based inspection of composite materials, and the potential of fusion-based inspec-
tion in this area to positively impact aerospace MROs is vast, as presented in the discussion
of this review paper.
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The following abbreviations are used in this manuscript:

AI Artificial intelligence
ANN/CNN Artificial/convolutional neural network
BVID Barely visible impact damage
CC Correlation coefficient
CFRP Carbon fiber-reinforced polymer
CT Computed tomography
D-S Dempster–Shafer method
DWT Discrete wavelet transform
EC Eddy current
FMI Fusion mutual information
GFRP Glass fiber-reinforced polymer
GPR Ground-penetrating radar
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IATA International Air Transport Association
MAE Mean absolute error
MRO Maintenance repair operation
NDT/NDI Non-destructive testing/inspection
PCA Principal component analysis
RMSE Root mean square error
SD Standard deviation
SHM Structural health monitoring
SNR Signal-to-noise ratio
SSIM Structural similarity index
TLU Threshold logic unit
UT Ultrasonic testing
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