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Abstract: Safe and accurate landing is crucial for Unmanned Aerial Vehicles (UAVs). However, it is a
challenging task, especially when the altitude of the landing target is different from the ground and
when the UAV is working in adverse environments, such as coasts where winds are usually strong
and changing rapidly. UAVs controlled by traditional landing algorithms are unable to deal with
sudden large disturbances, such as gusts, during the landing process. In this paper, a reliable vision-
based landing strategy is proposed for UAV autonomous landing on a multi-level platform mounted
on an Unmanned Ground Vehicle (UGV). With the proposed landing strategy, visual detection can
be retrieved even with strong gusts and the UAV is able to achieve robust landing accuracy in a
challenging platform with complex ground effects. The effectiveness of the landing algorithm is
verified through real-world flight tests. Experimental results in farm fields demonstrate the proposed
method’s accuracy and robustness to external disturbances (e.g., wind gusts).

Keywords: UAV; autonomous landing; AprilTags

1. Introduction

Due to the flexibility and generally decreasing cost of the Unmanned Aerial Vehicle
(UAV) systems, UAVs have become more prevalent recently and have been widely used
in a variety of applications, such as agriculture monitoring [1], terrain mapping [2–4],
and assisting human rescue [5,6]. In particular, for precision agriculture, according to the
Association for Unmanned Vehicle Systems International (AUVSI), 80% of UAVs will be
deployed for agriculture purposes shortly, as the investment for the agriculture sector has
increased by 80% in the last five years, aims to achieve productivity growth of 70% by
2050 [7,8].

UAV missions normally consist of five phases: take off, climb, cruise, descent, and
landing [9]. One of the most challenging phases of an intelligent UAV is landing. It was
found that most drone crash accidents occur in the landing stage, as a cushion of air is
generated underneath the drone while it is landing. Any minor operation error could easily
tip the drone over and result in a catastrophic crash [10]. The situation is even worse and
more risky in an environment with large but unpredictable wind disturbances.

Typically, a landing control system requires sensors to provide position information.
A commonly equipped global position system (GPS) is largely used for the autonomous
navigation of UAVs. However, the GPS signal may be unavailable in some remote areas. In
addition, its measurements are inaccurate (with errors of 2–5 m) [9]. Even though some
techniques have been applied to improve the UAVs’ localization performance such as the
sensor fusion method in [11], the estimated positions still cannot meet the requirements
of precise landing. Hence, close-range sensors, such as cameras and Lidars, are used
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to provide accurate position measurements. There is plenty of research focusing on the
vision-based UAV autonomous landing, such as using a Pan-Tilt-Based Visual Servoing
(PTBVS) system in GPS-denied environments for auto-landing [12] and introducing feature-
based image matching strategy to find the natural landmarks which are then be used for
UAV navigation and landing [13]. Visual algorithms based on AprilTag detection via a
monocular camera can also be applied to locate the UAV [14]. A more comprehensive
survey focuses on the vision-based autonomous landing of the UAV is well-studied in [15].

With the support of the onboard processor, the above-mentioned methods can guar-
antee the real-time accuracy of the UAV’s localization. Subsequently, different control
methods, such as PID controllers, are developed based on the measurement of altitude
between the UAV and the ground platform [12,14,16,17]. Another group of widely used
control techniques in autonomous landing is optimal control methods, such as Model
Predictive Control (MPC) [18–20] and Linear Quadratic Regulator (LQR) control [21]. In
addition, with the rapid evolution of machine learning techniques, learning-based landing
algorithms are also implemented to conduct the auto-landing task. In [22], a Neural Net-
work (NN) based controller combined with Reinforcement Learning (RL) and Proximal
Policy Optimization (PPO) is proposed aiming to optimally control the drone approach
to the landing target. A Deep Deterministic Policy Gradient (DDPG) algorithm based on
the idea of Deep Q-Learning is proposed for correcting UAV’s landing maneuver [23]. In
deep learning, a Region-Based Convolutional Neural Network (R-CNN) feature matching
algorithm is used to output the decision of landing based on the calculated area safety
level [24]. Similarly, CNN model in [25] is used to classify the landing environments.

Most of the existing research assumes that the landing environment is certain, without
considering strong winds or gusts. However, our UAV landing system is mainly designed
for deploying in farms that are open fields and subject to large wind disturbances. Therefore,
one of the main challenges for our landing system is how to deal with such disturbances,
particularly consistent winds and gust winds. These factors are vital to the reliable and safe
operation of the UAV, hence cannot be ignored when designing the control algorithm. To
deal with external wind disturbances, many motion control algorithms are investigated. For
example, a control law combined with the analyzed wind Computational Fluid Dynamics
(CFD) model is designed to stabilize the drone’s hover position [26]. An ultrasonic wind
sensor was mounted on the drone to measure the real-time wind parameters that can be
further utilized as feedback to the controller [27]. Alternatively, wind disturbances to the
UAV can be estimated via the nonlinear Disturbance Observer (DOB) which can then be
compensated by Disturbance Observer-Based Control (DOBC) designs [28–30]. Whereas,
there are limited studies for vision-based landing systems, focusing on scenarios when the
vision is lost during the landing due to wind disturbances which results in no feedback
signal to the controller. Hence, a high-level landing strategy that can guarantee and retrieve
visual detection is necessary for UAV’s safe landing in adverse environments.

Another challenge in our work is introduced by the unique structure of the landing
platform used for UAV docking shown in Figure 1. As can be seen from Figure 1b, the
docking device consists of four small conical structures and the size of which is highlighted.
Mechanical locking devices are designed and placed towards the bottom of each cone to
lock each leg of the UAV so that the UAV is held firmly by the UGV even if the UGV is
moving. This is to make sure that the UAV can be charged safely on the UGV when it is
not stationary. Different from most other works related to auto-landing, such as the works
presented in [12,31,32], it can be clearly seen that the landing platform adopted in this work
for the UAV does not have a flat surface. If one leg is outside of the docking cone, a fatal
crash may occur. This is also the reason why the task has high requirements on the precision
of the landing task. Additionally, our landing platform contains multi-level heights which
introduces much more complicated ground effects compared with landing a drone on the
ground. More specifically, there are three different altitudes for different surfaces: ground,
UGV’s surface, and the top plates of the cones. Hence the turbulence generated by each
surface is different and is coupled, resulting in an anomalous fountain flow under the UAV
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while it hovers over the UGV at a close range. Therefore, the designed controller must be
robust enough to overcome this nonlinear effect during the final landing stage.

Figure 1. The structure and hardware configuration of the designed platform: (a) Side view of the UAV
docked on the UGVs; (b) Top view of the layout of the docking platform with its critical dimensions.

In this paper, the UAV’s autonomous landing problem on the safety-critical platform
described above was solved by using an effective controller combined with a vision-based
target detection algorithm. In particular, the contributions of this work, compared with the
state of the art, can be summarized as follows:

• The developed safety strategy can adjust the altitude of the UAV and recover visual
detection (if it is lost in open fields) in the presence of strong wind disturbances. Such
a mechanism is integrated into the controller.

• A robust visual-based controller, using the April tags as the landing mark, is designed
to achieve the high-precision landing on a customized multi-altitude landing platform.

• The proposed system’s performance was evaluated and validated through 20 real-
world experimental scenarios and the results show the proposed strategy is effective
and reliable even in adverse landing conditions.

The rest of this paper is organized as follows. Section 2 introduces the details of
the practical configuration of the developed landing system. The proposed safe critical
strategy is explained in Section 3. The results for simulations and real experimental tests
with several case studies are presented in Section 4, demonstrating the effectiveness of the
proposed landing mechanism. Finally, the conclusion is drawn in Section 5.

2. UAV-UGV Auto-Landing System

The developed UAV vision-based target detection and safe landing system are built
with the following components: a Pixhawk flight controller, a Jetson Xavier, a USB webcam,
and a gimbal. Additional devices, such as GPS, WiFi, and Lora, are used to establish
communication among UAV, UGV, and the ground station. Figures 1a and 2 show the
hardware layout of the overall system.

2.1. Flight Controller

PX4 is a high-performance, open-source software designed for autonomous or semi-
autonomous UAVs, acting as a brain of a UAV, running inside the PixHawk controller
(hardware), which can stabilize the UAV’s attitudes and enable its autonomous flying.
It can also be regarded as the inner-Loop controller, adjusting four motors’ speeds, and
maneuvering the UAV to its reference attitudes (roll, pitch, yaw) which are provided by
the outer-loop controller. The Pixhawk controller has a 32-bit ARM Cortex M4 core with
FPU which has a 168 Mhz clock frequency. It is also integrated with Multiple sensors:
MPU6000 as the main accelerometer, and MEAS MS5611 as the barometer. A block diagram
of the working mechanism of the flight controller is shown in Figure 3. To achieve the
requested control accuracy for the further developed control method, the parameters of
Pixhawk (K, P, and I of the PID controller) were calibrated via outdoor tests according to
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the kinetic characteristics (e.g., weight distributions and inertia of the propellers) of the
UAV used in this paper. All the minor gain tuning and calibration work are supported by
the QGroundControl software ruining under a Linux-based operating system: Ubuntu.

Figure 2. The UAV and its hardware layout.

Figure 3. UAV system control structure.

2.2. Jetson Xavier

The Jetson Xavier is a low-power, small-size onboard computer carried with 8 core
CPU (Carmel ARM v8.2) and 512-core Volta GPU with 64 Tensor Cores, running the
Linux operating system. It has the same capability as a desktop computer and supports
any programs written in python and C++. Thanks to its fast executing time, and high
computational ability, in our work, Jetson Xavier is able to run the proposed control
algorithm, and process images captured from the camera in real time. The camera is
connected to Jetson via a USB port which continuously transfers images to it. Further, the
outputs are fed to the Pixhawk flight controller to generate the control commands.

2.3. Camera and Gimbal

The camera selected in our landing system is a USB 3.0 webcam with 90 fps frame rate,
512× 512 resolution, 4.5 W power assumption and it has a FOV of 150◦. it directly connects
to the Jetson Xavier. It is held by the Mio gimbal, an ultra-lightweight 3-axis gimbal that is
specially designed for small-size visual devices, and ability to quickly initialize up to 3 s.
Gtune: a diagnosis and calibration software designed for the gimbal is used to balance the
gimbal position with the mounted camera. The use of the gimbal ensures that the optical
axis is always perpendicular to the ground.

3. Vision-Based UAV Autonomous Safe Landing Control

To ensure the reliability of the UAV autonomous landing on the customized platform,
two algorithms were developed: (1) the target detection algorithm and (2) a precise and
robust vision-based auto-landing algorithm. The architecture of the overall landing system
is illustrated in Figure 4. Those red blocks represent all the packages on the UAV’s onboard
computer, while bright green blocks are those external devices connected to the onboard



Electronics 2023, 12, 967 5 of 14

computer. Communications between those packages are supported by ROS topics. Cap-
tured images by the webcam are the key inputs of the whole system, and the generated
reference velocities are the outputs that are fed to the PX4.

Figure 4. Architecture of the UAV auto-landing system.

3.1. Target Detection Algorithm

The goal of using vision-based target detection is to obtain the relative positions
between the UAV and the center of the landing platform. In our work, we select the AprilTag
visual position algorithm owing to its high detective accuracy and capability of supporting
long-range vision, uneven light conditions, and low camera resolution. Generally, the
detection process of the AprilTag algorithm can be divided into three steps [33]. First, the
lines in the image are detected and the gradient direction and the magnitude of each pixel
are calculated. Next, pixels with similar gradient directions and magnitudes are grouped
based on the clustering method proposed in [34]. Once completed the clustering, the quads
in the image can be searched using a recursive depth-prior approach. The first layer treats
all line segments as actual line segments. From the second layer to the fourth one are used
to find the segment that is the most adjacent to the end of the starting line. The threshold
value for defining adjacent lines affects the robustness of the segmentation errors. After
obtaining those detected lines and quads, they can be further identified by comparing them
in the pre-defined tags library. Eventually, the relative positions between the tags and the
camera can be calculated by the method discussed in [33].

The landing platform in our work is shown in Figure 5. There are five tags attached
to the UGV and each tag has a label. Due to the resolution limitation of the camera, if the
tag size is too small, UAV may not able to identify the target at a far range. However, a
small-size tag is essential for close-range detection as the tag must stay within the field of
view (FOV) of the camera. Therefore, to ensure the camera can always see the target, four
large side tags (labeled as 0, 1, 2, 3) and one small tag (labeled as 4) are used to calibrate the
UAV’s position relative to the docking cones. When the UAV hovers at a high altitude, the
four large side tags are used, while when the UAV is close to the platform, the small tag
is primarily used for close-range detection. The detailed pose estimation algorithm of the
UAV is described in Algorithm 1.
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Figure 5. Detection and identification of the AprilTags at different altitudes during the UAV’s
auto-landing process: (a) Acquired image at high altitude; (b) Acquired image at medium altitude;
(c) Acquired image at final landing moment.

Algorithm 1: Pose Estimation
Input : Detected Tags id

Calculated tags’ relative positions:
xid, yid, zid, orientation yawid, saved in list Q

Output : Estimated UAV positions from the center of the landing pad:
xo f f , yo f f , zo f f , yawo f f ;

1 while list Q of the detected id numbers is not empty do
2 if length(Q) > 2 then
3 (xo f f , yo f f , zo f f , yawo f f )← FindCenter(Q);
4 end
5 else if only id 4 ∈ Q then
6 (xo f f , yo f f , zo f f , yawo f f )← (x4, y4, z4, yaw4);
7 end
8 else if only one side tag’s id in the Q then
9 (xo f f , yo f f , zo f f , yawo f f )← Correction(id);

10 end
11 end

Remark 1. FindCenter(Q) and Correction(id) are two functions to calculate the relative posi-
tions between the UAV and the center of the landing pad and generate the offsets between one side
tag and the center tag, respectively.

3.2. Safe Landing Control

A classical PID controller integrated with a visual-guaranteed mechanism is developed
in our work to protect the landing algorithm against wind disturbances in the open farm
fields. The outputs of the PID controller are the velocity commands which are sent to the
PX4 flight controller based on the position offsets obtained from the visual positioning
algorithm. There are four channels required for landing control: x, y, z, and yaw angle in
the local inertial frame. Since the camera is stabilized by the gimbal, there are no rotations
in pitch and roll (x − z, y− z planes align with the local frame). Hence, only the x − y
plane of the yaw angle needs to be converted from the body coordinate to the local inertial
coordinate. This can be achieved by

P1 = R1
0 · P0, R1

0 =

1 0 0
0 cos α − sin α
0 sin α cos α

 (1)
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where P1 is the local frame, P0 is the body frame and R1
0 denotes the rotation matrix with

rotation angle α.
As the position offset derived from the camera is proportional to the UAV speed, the

rates of position offsets are directly taken as the speed inputs of the PID controller, yielding
the output of the PID controller as

V = kp · et + ki ·
∫ t

0
et dt + kd · (et − et−1), (2)

where kp, ki, kd, are the proportional, integral, and differential gain, respectively, and et is
the error at the current time step, while et−1 is the error from the last time step. Based on
the tuning results from testing, the gains of the controller for different channels are selected
and shown in Table 1.

Table 1. PID gains for speed control of roll (x), pitch (y), yaw (θ), and thrust (z).

Channel kp ki kd

x 0.55 0.02 0.15
y 0.55 0.02 0.15
z 0.4 0.03 0.1
θ 0.5 0.01 0.1

In general, the autonomous landing in our case is separated into three phases:

• Phase 1: Triggered by the valid tag detection from the camera, the UAV hovers 2.5 m
over the center of the UGV, and exchanges signals with the UGV by LoRa to check if
the cones of the platform are open for landing;

• Phase 2: Triggered by the signal sent from the UGV when attitude errors are within
a pre-defined range, the UAV hovers 0.5 m over the center of the UGV, for final
calibration before landing;

• Phase 3: Triggered by the confidence level at Phase 2, the UAV cuts off the thrust, and
lands on the platform.

Remark 2. Phase 2 will be conducted if and only if Phase 1 has been completed; while Phase 3 will
be conducted if and only if both Phase 1 and Phase 2 have been finished. However, it is possible that
the phase transmitted from 2 to 1, rather than 3, when the confidence level is not sufficiently large,
as shown in Figure 6.

Figure 6. UAV confident-related phase switch.

The reliability and accuracy of the UAV’s safe landing mainly depend on the control
performance in Phase 2 because it is the final calibration before fully landing. Moreover,
any small deviations could be amplified during this stage as it is close to the surface of the
docking device. To minimize the impacts of any external disturbances that occur in Phase
2, a robust mechanism that guarantees the detection of tags (even if strong gusts appear) is
integrated into the control strategy, the details of which are explained in Algorithm 2. At a
high level, there are two visual recovery methods in two different situations. In the first
situation, if the camera can only see one of those side tags (with the id number belonging
to {0, 1, 2, 3}), then the controller uses the distance offset (saved in each tag) between the
side tag and the center tag to correct the UAV’s position deviation, aiming to retrieve
the visual detection of the center tag (see Lines 21–23). In the second situation, when the
camera completely loses tag detection, the UAV will increase its altitude to expand the
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scale of FOV and recover the tag detection. Once the UAV successfully detects the tags, the
UAV will switch to Landing Phase 1 and attempt to land from the initial position again
(see Lines 24–27). Additionally, the confidence level in Phase 2 is a time-dependent value
derived from the TimeHolding function which outputs the holding time of the position
errors and aims to keep the UAV within the required range for high-precision landing (i.e.,
|xerror| < 0.07 m, |yerror| < 0.07 m, |zerror| < 0.1 m, |yawerror| < 5◦). Whereas, if the elapsed
time in Phase 2 exceeds 10 s, it will back to Landing Phase 1. Accordingly, the confidence
level and the maximum elapsed time in Phase 2 directly determine if UAV’s positions are
sufficiently accurate for moving to Phase 3 (see Lines 13–16). For our design, the UAV must
maintain its position errors within the restricted range for at least 2 s before descending.

Algorithm 2: Safe landing algorithm

Input : Estimated position offsets: xo f f , yo f f , zo f f , yawo f f ;
Output : Published velocity commands;

1 Initialize: Landing Phase = 1;
2 while true do
3 errors← offsets − GetReference(Landing Phase) ;
4 if Landing Phase = 1 then
5 published velocity← controller(errors);
6 if xerror < 0.15, yerror < 0.15, yawerror < 5◦ then
7 Landing Phase = 2;
8 end
9 end

10 else if Landing Phase = 2 then
11 if target id:4 detected then
12 published velocity← controller(errors);
13 con f idence level← TimeHolding(xerror, yerror, zerror, yawerror, 0.07, 0.07,

0.1, 5◦);
14 if con f idence level > 2 s then
15 Landing Phase = 3
16 end
17 else if elapsed time in Landing Phase 2 > 10 s then
18 Landing Phase = 1
19 end
20 end
21 else if only single side tag detected then
22 published velocity← controller(errors);
23 end
24 else
25 Landing Phase = 1;
26 increase altitude: published velocity← trust commands;
27 end
28 end
29 else if Landing Phase = 3 then
30 published velocity← controller(errors);
31 end
32 end

Remark 3. GetReference (Landing Phase) is a function that outputs the reference positions ac-
cording to the corresponding Landing Phase.
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4. Experiments and Results

Before real tests in the agriculture fields, the basic landing performance of the proposed
system in a static environment was first verified in simulations in Gazebo. Then, field tests
were conducted in different locations in the UK with different wind conditions.

4.1. Simulations

In the simulation, UAV landing is controlled by a python script built in ROS2. A
full-scale mockup of the UGV landing platform is created and placed on the ground in
the virtual environment as shown in Figure 7a. In the simulation, the drone automatically
takes off near the landing pad using QGroundControl software. After the tags are detected
when it reaches a certain height (maximum altitude for valid detection: 4 m), it is then
switched to the auto-landing mode. Due to the complexity of the wind model, there is
no wind introduced in the simulation. However, the overall performance of the designed
landing system in no wind conditions can be still verified. In Figure 8, it can be seen that
the overall landing trajectories consist of three phases, and the landing error in the steady
state along x and y axes are controlled around 0.01 m, and 0.07 m, respectively, which stays
within the safe margin of the designed docking device (i.e., 0.15 m × 0.15 m).

Figure 7. UAV auto-landing in the simulation environment: (a) Environment setting with full-scale
platform mockup; (b) Detected tags from the camera.

Figure 8. (a) Autonomous landing trajectories of the UAV in the simulation; (b) Time histories of x, y
positions of the UAV with reference point coordinates (−1,−1).

4.2. Field Testing

To further verify the effectiveness of the proposed UAV landing system in the agricul-
ture fields, the UAV landing on the UGV was evaluated in both windy and calm conditions.
For the experimental results presented here, a laptop is used as a ground station remotely
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connect to the onboard computer of the UAV via WiFi, and save the flight data as the
ROS bags. All the field testing setups follow the same procedure: A pilot manually takes
off the UAV and flies it close to the UGV, hovering over 4∼5 m. If the tags are detected,
then switch the UAV to the off-board mode using QGround control, where the proposed
landing system starts taking control of the drone. There are two types of data recording
the flight trajectories in our experiments: raw GPS data and relative positions from the
camera. The benefit of using the data recorded by the camera is the high accuracy as it
is directly taken as the control feedback. However, the recording will be terminated if
tag detection is lost. For the raw GPS data, due to the bad precision, it was only used as
a rough flight trajectory to check the UAV’s performance when the visual positions are
unavailable. It is also worth noticing that for the safety concern, before the landing test
on the real UGV, multiple real experiments were also conducted in an open area on the
campus of Loughborough University using a full-scale mock-up as the landing pad which
was similar to the one used in the simulation to refine the landing method. During the
filed tests in different farms, a total of three cases were observed and they can be described
and defined as follows:

• Case 1 is an instance of “no disturbance”, where the UAV lands in a relatively calm
environment (the effect of the breeze can be ignored). The results indicate that the
proposed method works for a “no disturbance” scenario.

• Case 2 is an instance of “consistent disturbance”, where the UAV lands against the
consistent wind. The results indicate that the proposed method works for a “consistent
disturbance” scenario.

• Case 3 is an instance of “pulse disturbance”, while the strong wind gust unexpectedly
emerges during the UAV landing. The results indicate that the proposed method
works for the “pulse disturbance” scenario.

4.2.1. Case 1: UAV Landing without Disturbances

As emphasized earlier in this paper, due to the multi-level docking platform, the
autonomous landing algorithm of the UAV needs to be accurate and robust. To slip the
UAV’s four legs into the docking device during the final landing, UAV attitude deviations
must stay within the edge of the cones, i.e., 15 cm × 15 cm shown in Figure 1b. When
the UAV moves to Landing Phase 3, it will cut off the thrust and descends due to gravity.
Nevertheless, even during the final few inches descending before reaches to the safe docking
margin, UAV’s legs may still accidentally drop outside the margin leading to a body flip
potentially caused by any minor disturbances and the asymmetric weight distribution of
the body. Hence, as it is shown in Algorithm 2, the UAV can be guaranteed successfully
land if and only if the UAV stays in the safe zone (0.07 m for both x and y axes).

A total of 20 landing tests in different fields in the UK were conducted, among all field
tests in different farms without wind disturbances (15 landings), the landing success rate
of the designed system reaches 100%. Figure 9 intuitively demonstrates the flight data
of the basic auto-landing without strong wind disturbances (Please be aware that we did
not measure the wind speed, but felt calm during all these 15 tests) recorded in different
data types. Note that there are significant differences (around 0.5 m–1.5 m) between GPS
recordings and estimated positions from the camera due to the poor accuracy of raw
GPS measurements.

4.2.2. Case 2: UAV Landing Subject to Consistent Disturbance

The second case shown in Figure 10 records the results derived from the vision
algorithm when the proposed auto-landing system is performed in Deepdale Farm which
is located on the east coast of the UK. As the testing field is near the seaside, there are sea
breezes intermittently occurring during the landing process. In this case, the first time
when the UAV moves from Landing Phase 1 (i.e., stage 1) to Landing Phase 2 (i.e., stage 2),
it struggles against the consistent disturbance and stabilizes its attitude. However, it still
fails to calibrate the attitudes within the safe range caused by wind disturbances within
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the pre-set time threshold. Then it switches back to Landing Phase 1 and climbs to 2.5 m
over the UGV when the restricted time is out (i.e., stage 3). In stage 4, the UAV moves to
Landing Phase 2 again and this time control errors are staying in the required range (0.06
m and 0.07 m for x and y axis, respectively) until the UAV feels “confident” for the final
landing. Note that the camera data is unable to be recorded for Landing Phase 3 as the
power is off.

Figure 9. (a) Screenshots of a typical landing test conducted in Crippings Farm; (b) Raw GPS data of
the landing. (c) Estimated positions from the visual positioning algorithm.

Figure 10. Estimated positions from the camera, UAV auto-landing in the field with mild winds.

4.2.3. Case 3: UAV Landing Subject to Pulse Disturbance

In the final case, ignoring the drifting errors from the raw GPS data, an extreme
scenario was observed, shown in Figure 11b,c, when a test is performed on a farm in
Chelmsford located in the south of the UK. A strong wind gust emerged when the UAV
did the final calibration, forcing the UAV to move aggressively away from the center of the
landing pad resulting in no tag detection. At that moment, the UAV reacted quickly and
increased its altitude to recover the visual detection and eventually safely landed in the
second attempt.

On the contrary, a similar scenario was observed and the controller without the
proposed safety strategy was tested, the result of which is shown in Figure 11a. When the
UAV suffered an unexpected “pulse disturbance” at the final landing, it failed to maintain
its position and was blown away from the landing pad since it lost tag detection and could
not generate any control feedback. In the end, the pilot manually took over the control of
the UAV before any potential crash happened.
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Figure 11. Comparison of the UAV landing in extreme scenarios with and without the integrated
safety strategy (a) Raw GPS flight data of UAV landing without safety strategy subject to a wind
gust; (b) Raw GPS flight data of UAV landing encounters strong wind gusts with integrated safety
strategy; (c) UAV vision retrieve action: wind gust emerges at t = 1 s, UAV is blown away and loses
tag detection at t = 3 s, then t = 4 s∼5 s, the drone increases thrust to retrieve the tag detection and
perform the landing again.

5. Conclusions and Discussion

In this paper, a solution is presented to UAV auto-landing problem on a customized
multi-level platform in windy scenarios for agriculture-related applications. The control
algorithm combined with the visual positioning algorithm achieves a high landing accuracy
on narrow-size docking devices with complex ground effects. Moreover, the designed
control strategy can adjust and retrieve the visual detection at the final landing step even in
the presence of strong and unknown wind disturbances.

To verify the performance of our system, tests in the simulation were carried out in
Gazebo to prove the validity and feasibility of the proposed landing system in a basic
landing scenario neglecting weather conditions. Moreover, the UAV and UGV have been
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taken to different farms in the UK to conduct real experiments. According to the exper-
imental results, the landing was smooth and accurate with a 100% landing success rate
within our 20 field tests in three different fields (since the weather condition is beyond
control, system performance is unknown for some other extreme scenarios). Few scenarios
of landing encountering wind disturbances were spotted in our tests. As expected, in
all special cases with (consistent or pulse) disturbances, the UAV could always adjust
or recover from those detrimental situations benefiting from the visual retrieve function
and the restricted landing confidence, which has proved the reliability of our accurate
and robust landing strategy in adverse environments. Future work can be focused on the
accurate modeling of wind disturbances and improving the control performance based on
quantified wind information.
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