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Abstract. Infection by the severe acute respiratory syndrome 
(SARS) coronavirus‑2 (SARS‑CoV‑2) is the cause of the new 
viral infectious disease (coronavirus disease 2019; COVID‑19). 
Emerging evidence indicates that COVID‑19 may be associ-
ated with a wide spectrum of neurological symptoms and 
complications with central nervous system (CNS) involvement. 
It is now well‑established that entry of SARS‑CoV‑2 into host 
cells is facilitated by its spike proteins mainly through binding 
to the angiotensin‑converting enzyme 2 (ACE‑2). Preclinical 
studies have suggested that neuropilin‑1 (NRP1), which is a 
transmembrane receptor that lacks a cytosolic protein kinase 
domain and exhibits high expression in the respiratory and 
olfactory epithelium, may also be implicated in COVID‑19 by 
enhancing the entry of SARS‑CoV‑2 into the brain through the 
olfactory epithelium. In the present study, we expand on these 
findings and demonstrate that the NRP1 is also expressed in the 
CNS, including olfactory‑related regions such as the olfactory 
tubercles and paraolfactory gyri. This furthers supports the 

potential role of NRP1 as an additional SARS‑CoV‑2 infec-
tion mediator implicated in the neurologic manifestations of 
COVID‑19. Accordingly, the neurotropism of SARS‑CoV‑2 via 
NRP1‑expressing cells in the CNS merits further investigation.

Introduction

Infection by the severe acute respiratory syndrome (SARS) 
coronavirus‑2 (SARS‑CoV‑2) is the cause of a new viral 
infectious disease, named as coronavirus disease  2019 
(COVID‑19) (1). Following the initial outbreak of COVID‑19 
cases at the end of 2019, COVID‑19 has reached pandemic 
status within a few months with rapidly increasing rates of 
infection and mortality. Thus, as of August 21st, 2020, over 
21 million confirmed cases and over 760,000 deaths have been 
reported worldwide (2). Although COVID‑19 is asymptomatic 
or mild in most cases and manifests primarily as a lower 
respiratory tract infection which is transmitted mainly via air 
droplets (3), emerging evidence indicates that SARS‑CoV‑2 
can also invade and attack the central nervous system (CNS) 
leading to a wide repertoire of neurological symptoms and 
complications (4‑7). As such, increasing research focus has 
been placed on identifying the mediators that facilitate the 
SARS‑CoV‑2 infection in different human organs/tissues.

It is now well‑established that entry of SARS‑CoV‑2 into 
cells is facilitated by its spike proteins mainly through binding to 
the angiotensin‑converting enzyme 2 (ACE‑2) (8,9). Moreover, 
the SARS‑CoV‑2 spike viral proteins are primed/activated 
by the transmembrane protease serine 2 (TMPRSS2), which 
appears to also play a key role in this viral infection (8,10,11). 
Accordingly, there is now increasing interest in identifying 
additional molecular mediators that may also facilitate the 
SARS‑CoV‑2 infection of host cells and COVID‑19 symp-
toms, such as the receptor for advanced glycation end products 
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(RAGE), angiotensin  II receptor type 2 (AGTR2), CD147 
and olfactory receptors (12‑15). As such, recent data suggest 
that another protein/receptor termed neuropilin‑1 (NRP1) 
may also be implicated in the SARS‑CoV‑2 infection (16‑18). 
NRP1 is a transmembrane receptor which, due to the lack 
of a cytosolic protein kinase domain, acts primarily as a 
co‑receptor for various ligands and, thus, induces a multitude 
of effects, including cell proliferation, angiogenesis and axon 
control (19,20).

As aforementioned, two preclinical studies have indi-
cated that NRP1 may play a role as a new mediator of the 
SARS‑CoV‑2 infection (17,18). Indeed, in the first of these 
studies, NRP1 was identified as a factor for SARS‑CoV‑2 
infection, since, in addition to ACE‑2, the spike (S1) proteins 
of this coronavirus can also bind to NRP1 in  vitro  (18). 
Similar results were reported by a second study in which 
neuropathological analysis of COVID‑19 autopsies further 
revealed that SARS‑CoV‑2 infected NRP1‑positive cells in the 
olfactory epithelium and bulb (17). Based on these findings, we 
hypothesise that NRP1 may be further implicated in the CNS 
involvement and neurological features noted in patients with 
COVID‑19. To this aim, we explored in detail the expression 
of NRP1 in the human brain.

Materials and methods

To examine the detailed expression of NRP1 in the human 
brain, we employed a database which measured gene expres-
sion through single cell RNA sequencing (RNA‑Seq) and, 
thus, allowed to identify expression in cell types reported 
as fragments per kilobase of transcript per million mapped 
(FPKM) reads  (21). A second RNA‑Seq dataset was also 
used to examine brain region specific gene expression using 
Cap Analysis of Gene expression (CAGE) generated by the 
FANTOM5 project and reported as tags per million (22‑24). 
Human protein expression of NRP1 in the brain was also 
extracted from the protein atlas database (proteinatlas.
org) (23,24). Visualisation of NRP1 expression in the brain was 
performed using the Allen brain atlas with six human donors 
as assessed by microarray and presented as a heat map (25).

Results

Fig. 1A presents the single cell expression of NRP1 RNA in 
specific cell types in the human brain. These data reveal that 
NRP1 expression is highest in mature astrocytes (5.8 FPKM), 
whilst also showing expression in endothelial cells (3.4 FPKM). 
Moreover, FANTOM5 data analysis revealed NRP1 expres-
sion in the olfactory region (20.4 tags per million), which is 
higher than in other regions of the brain such as the cerebellum 
and thalamus (Fig. 1B). Of note, highest expression of NRP1 
was noted at both gene and protein level in the hippocampal 
formation (i.e., the region located in the temporal lobe of 
each cerebral cortex, medial to the inferior horn of the lateral 
ventricle) (Fig. 1C).

To gain better insight, we further expanded our observations 
on single cell analysis of the hypothalamic arcuate and median 
eminence (Arc‑ME) complex, using the Single Cell Portal (26). 
Using T‑distributed Stochastic Neighbor Embedding (tSNE), 
a machine learning algorithm for visualization, distinct cell 

sub‑populations appear to express NRP1 (Fig. 2A and B). 
More specifically, high expression was noted in endothelial 
cells, mural cells (vascular smooth muscle cells and pericytes), 
a specific cluster of neurons, perivascular macrophages (PVM) 
and microglia, as well as in vascular and leptomeningeal cells 
(VLMCs), as presented in Fig. 2C.

Finally, NRP1 expression is also noted in the paraolfac-
tory gyri of the human brain. Indeed, six patient brains with 
global NRP1 expression are demonstrated in Fig. 3, as well as 
the olfactory specific regions of the brain; in humans the 
olfactory bulb inputs to the olfactory tubercle which in turn 
outputs to the limbic system (27,28). These data are displayed 
as heat maps with Log2 expression values presented in Fig. 3 
and Table I, and show that NRP1 is expressed in the olfactory 
tubercles and paraolfactory gyri at reasonable levels in most 
brains.

Discussion

This study presents a detailed in silico analysis of the expres-
sion of NRP1 in the human brain, highlighting the potential 
role of NRP1 as an additional SARS‑CoV‑2 infection mediator 
in the CNS via NRP1‑expressing cells. Our present findings 
further support the data of recent preclinical studies (16‑18), 
suggesting that NRP1 may be implicated in the neurologic 
features and CNS involvement of COVID‑19.

It is known that human coronaviruses can lead to neuro-
logical sequelae, including vision alterations, seizures, motor 
coordination disturbances and a plethora of other neuro-
logical symptoms which may be evidenced with various 
imaging findings, including encephalopathy, oedema, 
haemorrhage and ischaemia  (29‑32). In accord with this, 
an increasing body of evidence now consistently indicates 
that SARS‑CoV‑2 infection may also be associated to a 
wide spectrum of neurological symptoms and complica-
tions from the CNS (3‑5,7). Indeed, prominent neurologic 
features, including encephalopathy, agitation and confusion, 
as well as corticospinal tract signs, were present in a cohort 
of 58 consecutive patients (median age: 63 years) admitted to 
Strasbourg University Hospital with COVID‑19 related acute 
respiratory distress syndrome (ARDS) (33). In addition, in 
this study single acute ischemic strokes were noted in two of 
the 13 patients who underwent magnetic resonance imaging 
(MRI) of the brain. Furthermore, in a retrospective case 
series study including 214 consecutive hospitalized patients 
(women/men: 127/87; mean age: 52.7 years) with labora-
tory‑confirmed COVID‑19 from Wuhan, China (the first 
epicentre of COVID‑19), almost half (45.5%) of the patients 
with severe COVID‑19 experienced impaired consciousness 
and other neurologic manifestations (e.g., acute cerebrovas-
cular disease) (5). Overall, in this study neurologic symptoms 
were noted in more than one third (36.4%) of these 214 hospi-
talized patients with severe and non‑severe COVID‑19. This 
observation is further supported by the findings of a more 
recent UK study which reported that patients with COVID‑19 
may exhibit a wide spectrum of neurological syndromes, 
including encephalopathies with delirium/psychosis, CNS 
inflammatory syndromes (e.g., encephalitis and encepha-
lomyelitis) and stroke  (34). Furthermore, a study from 
Germany that reported the autopsy findings in six patients 
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who died from COVID‑19 with SARS‑CoV‑2 pneumonia 
(women/men: 2/4, age range: 58‑82 years) noted pronounced 
CNS involvement with meningitis, panencephalitis and 
brainstem neuronal cell damage in all these cases (35). Of 
note, disruption to micro‑structural and functional brain 
integrity in the recovery stages of COVID‑19 further 
suggests longer‑term CNS consequences/complications of 
SARS‑CoV‑2 infection (36).

So far, it has been hypothesised that SARS‑CoV‑2 can enter 
into the CNS through neural or haematogenous propagation, 
including through the olfactory epithelium of the nasal cavity 
and the olfactory bulb via retrograde transport along axons 
of olfactory sensory neurons, as well as via interaction with 
ACE‑2 of the capillary endothelium causing impairment of the 
blood‑brain‑barrier (BBB), or due to BBB disruption induced in 
the context of an underlying cytokine storm (5,37). In addition 

Figure 1. NRP1 expression in the human brain. (A) Regarding cell types, based on RNA‑Seq data, NRP1 is highly expressed in mature astrocytes (mature 
astrocytes have multiple functions, including controlling the permeability of the blood brain barrier and maintaining extracellular homeostasis), microglia/mac-
rophages, and endothelial cells. Insert on panel A; FPKM reads. (B) Regarding brain regions, NRP1 exhibits widespread expression in the human brain 
(including the olfactory regions) based on data from both RNA‑Seq expression using CAGE on FANTOM5 and (C) RNA expression (NX) of normalised 
NRP1 expression levels from 10 brain regions. The insert panel of brain anatomy in panels B and C indicates in colour the different anatomical structures. 
NRP1, neuropilin‑1; RNA‑Seq, RNA sequencing; FPKM, fragments per kilobase of transcript per million mapped; CAGE, Cap Analysis of Gene expression; 
FANTOM5, functional annotation of mammalian genome 5.
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Figure 2. Single cell analysis of the hypothalamic Arc‑ME complex, using the Single Cell Portal, revealed distinct expression of NRP1. (A) Arc‑ME single‑cell 
transcriptomics data are displayed as a spectral tSNE plot of 20,921 cells, coloured per density clustering and annotated according to known cell types. 
(B) Sub‑populations of cell types which are enriched for NRP1 expression, with expression intensity demonstrated by a heat map. (C) Single cell analysis of 
the hypothalamic Arc‑ME complex, using the Single Cell Portal, enriched for population subtypes, represented as violin plots. Arc‑ME, arcuate and median 
eminence; tSNE, T‑distributed Stochastic Neighbor Embedding.

Figure 3. Six human donors and heat map expression of NRP1 as assessed by microarray (Allen brain atlas). (A) Indicates global brain expression of NRP1 as 
detected by microarray probes, with expression of cerebral areas indicated on the hemispheres and expression in brain nuclei indicated as dots. Heat maps of 
expression are displayed below individual brains and organised by anterior to posterior regions with the FL, HiF, OL, PL, TL, Str, DT, CbCx and MY marked 
on the heat map. (B) Shows expression in olfactory accessory tissues with yellow arrows indicating the paraolfactory gyri and orange arrows indicating the 
olfactory tubercle. NRP1, neuropilin‑1; FL, frontal lobe; HiF, hippocampal formation; OL, occipital lobe; PL, parietal lobe; TL, temporal lobe; Str, striatum; 
DT, dorsal thalamus; CbCx, cerebral cortex, MY, myelencephalon.
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to these potential mechanisms, Cantuti‑Castelvetri et al (17) 
recently showed that NRP1, which is highly expressed in the 
respiratory and olfactory epithelium, enhances SARS‑CoV‑2 
entry into the brain, and that this can be inhibited by blocking 
NRP1 with a monoclonal antibody. Interestingly, NRP1 has 
been shown to also play a role in mediating cell entry of other 
viruses, such as the Epstein‑Barr virus (EBV) (38). Indeed, 
NRP1 interacts directly with the EBV glycoprotein B, whilst 
EBV infection is suppressed upon NRP1 knockdown (38).

Given this newly identified role of NRP1 in enhancing 
SARS‑CoV‑2 entry into the CNS, characterizing the precise 
expression of NRP1 in the human brain becomes important in 
the context of the neurologic involvement of COVID‑19. Our 
present findings collectively show that NRP1 expression is 
present in the human brain, including olfactory regions, which 
corroborates the previously described data showing that NRP1 
may mediate entry of SARS‑CoV‑2 into the brain through the 
olfactory epithelium/bulb  (17). This further highlights the 
potential importance of the olfactory tubercle for SARS‑CoV‑2 
entry into the brain since in humans the olfactory bulb inputs 
to the olfactory tubercle which in turn outputs to the limbic 
system (27,28). Finally, the parolfactory gyri which receive inputs 
from the olfactory bulb and provide input to the limbic system, 
also exhibit NRP1 expression, and so their potential involvement 
in the SARS‑CoV‑2 infection of the CNS merits further research.

In conclusion, in the present study we demonstrate that 
the NRP1, which is highly expressed in the respiratory 
and olfactory epithelium, is also expressed in the CNS, 
including olfactory related regions such as the olfactory 
tubercles and paraolfactory gyri. Given the data by 
Cantuti‑Castelvetri et al (17) showing that NRP1 may mediate 
the entry of SARS‑CoV‑2 into the brain through the olfactory 
epithelium (17), our findings warrant further investigation in 
order to elucidate the potential role of NRP1 as an additional 
SARS‑CoV‑2 infection mediator implicated in the neurologic 
manifestations of COVID‑19. Indeed, the neurotropism of 

SARS‑CoV‑2 via NRP1‑expressing cells in the CNS should 
be investigated in preclinical and clinical studies, since 
clarifying how SARS‑CoV‑2 enters and spreads in the CNS is 
vital for developing effective approaches to prevent this viral 
dissemination and its consequent complications.
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