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Abstract: This paper proposes a new artificial hummingbird algorithm (AHA)-based framework
to investigate the optimal reactive power dispatch (ORPD) problem which is a critical problem in
the capacity of power systems. This paper aims to improve the performance of power systems by
minimizing two distinct objective functions namely active power loss in the transmission network
and total voltage deviation at the load buses subjected to various constraints within multiobjective
framework. The proposed AHA-based framework maps the inherent flight and foraging capabilities
exhibited by hummingbirds in nature to determine the best settings for the control variables (i.e.,
voltages at generation buses, the tap positions of on-load tap-changing transformers (OLTCs) and
the size of switchable shunt VAR compensators) to minimize the overall objective functions. A
multiobjective optimal reactive power dispatch framework (MO-ORPD) considering renewable
energy sources (RES) and load uncertainties is also proposed to minimize the individual objectives
simultaneously. The competency and robustness of the proposed AHA-based framework is validated
and tested on IEEE 14 bus and IEEE 39 bus test systems to solve the ORPD problem. Eventually,
the results are compared with other well-known optimization techniques in the literature. Box
plots and statistical tests using SPSS are performed and validated to justify the effectiveness of the
proposed framework.

Keywords: artificial hummingbird algorithm; artificial intelligence; optimal reactive power dispatch;
optimal power flow; on-load tap-changing transformer

1. Introduction

With the rapid growth and development of power systems and the push to alleviate
the load demand to a greater extent, there is a dire need of robust and optimal power
system planning and operational studies. The stable and robust steady-state operation of a
power system requires that its real and reactive power demands are met accordingly and
that voltage profiles are kept within limits [1,2]. Power loss and voltage deviations must be
kept to a minimum for a smooth operation and performance of the electric power system
network (EPSN). For this, the main control variables that govern the voltage stability and
power losses must be investigated and controlled in an optimal way to achieve minimum
losses in the transmission network and voltage deviations at various load buses (PQ buses)
in a system. Optimal placement and sizing of switchable shunt VAR compensators, as the
key variables governing the voltage limits, should also be considered [3,4]. Moreover,
generation bus (PV bus) voltages and inline on-load tap-changing transformers (OLTCs)
are also the key variables when considering voltage stability and minimizing power losses
in a network. In the context of a power system, this aspect is called reactive power
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management. From the past few years, the voltage performance of the system has drawn
great attention. This index is normally termed as the voltage profile of the system. A normal
range of 0.95 to 1.05 pu is considered to be within safe limits for PQ buses. Generation
bus voltages are controlled by the system operator. The reactive power at the generating
station is governed by an automatic generation control (AGC) loop by altering its reference
set point. The voltage profile of a system bears a great dependency upon the tap settings
of a tap-changing transformer, altering the voltage set points of PV buses and switching
in or out the reactive power resources, i.e., the capacitors/reactors in the system. At the
same time, system losses also depend on these control variables. These control variables
are mainly considered to form an optimization problem. To properly allocate the taps of
an OLTC, voltages of PV buses and sizes of static VAR compensators, a multiobjective
optimization problem is considered to minimize the voltage deviations and system losses
while considering various equality and inequality constraints. ORPD plays a decisive role
in the economical and reliable operation of a power system.

ORPD is considered as a subproblem of optimal power flow (OPF), which accounts for
the changes in reactive power flow in the system [5]. ORPD is characterized as a complex
nonlinear, multimodal optimization problem of mixed-integer nonlinear programming
(MINLP) involving both continuous (the voltages at PV buses and the size of switchable
VAR compensators) and discrete (OLTC taps) variables. Most of the mathematical and
statistical techniques fail to solve the complex nature of the ORPD problem, which is
why most of the techniques used to solve the problem are metaheuristic. In the literature,
several conventional methods, such as linear programming (LP), quadratic programming
(QP), Newton–Raphson and dynamic programming (DP) methods, were used to solve
the ORPD problem [6–8]. However, they took a relatively large number of iterations
leading to long computational times. Moreover, these techniques do not guarantee a
global optimal solution and often get stuck in local optima. Recent trends to solve power
system network problems using metaheuristic have offered significant advantages over the
conventional ones [9–12]. Different optimization techniques such as sine cosine [13], chaotic
bat algorithm [14], teaching–learning-based algorithm (TLBO) [15], cuckoo search algorithm
(CSA) [16], gravitational-based search algorithm (GSA) [17] and grey wolf optimizer (GWO)
have been used to obtain the solution of the ORPD problem. These techniques have the
advantages of not getting trapped in local optima and they can handle a greater number of
variables and constraints with highly nonconvex, nonlinear objective functions with less
execution time. Hybrid techniques including GWO-PSO [18], fractional PSO-GSA [19] and
hybrid artificial physics-PSO [20] have also proven to be useful in finding optimal solution
for ORPD with relatively less execution time and more optimized results. In a nutshell, a
large number of metaheuristic optimization techniques have been implemented to address
the ORPD problem and their superiority over deterministic and mathematical approaches
is evident from the literature. However, there is still much room to investigate the ORPD
problem to achieve better results with fast convergence towards optimal solutions.

Most of the studies have addressed only the active power loss as the main objec-
tive function [21], whilst some have also considered the total voltage deviation as an
objective [22]. In this research work, two distinct objective functions, namely, the active
power loss (Ploss) and total voltage deviation (Vdev), are considered independently and
in multiobjective environment as well. The key contributions of the proposed work are
stated below:

1. The artificial hummingbird algorithm (AHA) is the latest, efficient and robust ap-
proach, and it has not been investigated for the optimization of the ORPD problem so
far. A new ORPD optimization framework embedded with AHA is proposed for the
minimization of Ploss and Vdev.

2. A multiobjective framework based on Pareto optimality, incorporating Ploss and Vdev
together, is modeled and formulated to solve the MO-ORPD problem.

3. The ORPD problem is investigated for a probabilistic modeling of load, solar PV and
wind energy sources uncertainties.
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4. The statistical tests are performed using SPSS (Statistical Package for the Social Sci-
ences) software to validate the effectiveness of the results obtained using the proposed
framework.

To validate the performance of the algorithm, the ORPD problem is implemented on
two standard IEEE test systems, namely, the IEEE 14 bus test system and the IEEE 39 bus
test system. A comparative analysis in terms of best results and convergence rates is drawn
with some of the famous optimization techniques reported in the literature to justify the
robustness and efficacy of the proposed AHA-based framework considering single and
multiobjective problems.

2. Problem Formulation

The main objectives involved in solving the ORPD problem is the active power loss
minimization, namely, Ploss and the minimization of the total voltage deviation, namely,
Vdev at all the PQ buses in the system. These two indices are governed by control param-
eters, which include the voltages at PV buses, the tap settings of an OLTC and the size
of switchable shunt VAR compensators. The ORPD problem can be solved as a single
objective function by considering Ploss or Vdev as the main objective. However, a multiob-
jective function can also be formulated by considering the active power losses and voltage
profile improvement together as objectives. Based on this, a single objective function
considering Ploss and Vdev independently and a multiobjective framework (MO-ORPD)
considering Pareto optimality is formulated, subjected to the satisfaction of various equality
and inequality constraints.

2.1. Minimization of Ploss

One of the main objectives of the ORPD problem is to minimize active power loss in
the power system network. The control variables that govern these losses are the voltages
at PV buses, the tap setting of OLTCs in the transmission lines and VAR, provided by
switchable shunt VAR compensators at PQ buses. These variables are taken as control
variables and are stated below:

u =
[
VG1, . . . , VNG , T1, . . . , TNT , QC1, . . . , QNC

]
, (1)

where u is the independent variable vector, VG is the voltage at the PV bus, T is the tap
settings of OLTCs, QC is the reactive power provided by shunt VAR compensators, NG
is the number of PV buses, NT represents the total number of taps of an OLTC and NC
represents the total number of shunt VAR compensators. The dependent variables involve
the real and reactive powers at PV buses and the voltages at all the PQ buses in the network
given by

v =
[
PG1, QG1, . . . , QNG , VL1, . . . , VNL

]
, (2)

where v is the dependent variable vector, PG is the real power at the PV bus, QG is the
reactive power at the PV bus, VL is the voltage at the PQ bus and NL is the number of
PQ buses. The first objective function to be considered is the minimization of Ploss in the
network. The optimal management of reactive power in the network creates more cushion
for real power flows and decreases the real power losses in the network significantly.
The objective function considering a Ploss minimization is stated in Ref. [23] as:

Minimize F1 = Ploss (v, u),

=
NB

∑
i=1

NB

∑
j=1

Gij

[
V2

i + V2
j − 2ViVj cos δij

]
,

(3)

where Ploss is the total active power loss, NB is the total number of bus bars, Gij indicates
the conductance between bus i and j, Vi represents the voltage magnitude at bus i, Vj
represents the voltage magnitude at bus j and δij is the angle between bus voltages i and j.
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2.2. Minimization of Vdev

The second objective to be considered in the ORPD problem is the minimization of the
total voltage deviation at all the buses in the network. Voltages at all the PQ buses in the
network must remain closer to 1.0 pu for the safe and reliable operation of the system and
for ensuring enhanced service quality. The least voltage deviations at PQ buses correspond
to an improved system voltage profile. The voltage profile is defined based on the index
which is considered as the objective function in the minimization problem given as follows:

Minimize F2 = Vdev(v, u),

=
NL

∑
i=1

∣∣∣Vi −Vre f
i

∣∣∣, (4)

where Vdev is the total voltage deviation at PQ buses and Vre f
i is the reference voltage at

PQ bus i, which is usually set at 1.0 pu.

2.3. Minimization of Ploss and Vdev a Considering Multiobjective Framework

The MO-ORPD problem is formulated to achieve the minimum active power losses in
the network and minimum voltage deviations at the PQ buses in the network simultane-
ously as defined by

Minimize F3 = f (Ploss (v, u), Vdev(v, u)),

= [F1(Ploss), F2(Vdev)].
(5)

The MO-ORPD problem is solved using a multiobjective framework based on Pareto
optimality, incorporating Ploss and Vdev together.

2.4. Constraints

The aforementioned objective functions defined as F1, F2 and F3 are subjected to
equality and inequality constraints. Equality and inequality constraints must be met for the
reliable and secure operation of the power system. These constraints reflect the performance
of the power system and restrain the voltages at all the buses in the network to remain
within the defined limits.

2.4.1. Equality Constraints

Equality constraints are implemented through the power flow equations and are
extensively deployed by power system planners [24,25].

Pi = Vi

NB

∑
k=1

Vj
(
Gk cos

(
δi − δj

)
+ Bk sin

(
δi − δj

))
= 0, (6)

Pi = PGi − PDi, (7)

Qi = Vi

NB

∑
k=1

Vj
(
Gk sin

(
δi − δj

)
− Bk cos

(
δi − δj

))
= 0, (8)

Qi = QGi −QDi, (9)

where Bk is the mutual susceptance of the kth branch (transmission line), PD is the active
power demand at the PQ bus and QD is the reactive power demand at the PQ bus.

2.4.2. Inequality Constraints

The inequality constraints must be restricted within their limits, which are defined in
the following subsections.

Generator Constraints

The reactive power delivered by a generator and the voltage at the PV bus must be
restricted within the limits given by
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Qmin
Gi ≤ QGi ≤ Qmax

Gi , i ∈ NG, (10)

Vmin
Gi ≤ VGi ≤ Vmax

Gi , i ∈ NG, (11)

where Qmin
Gi and Qmax

Gi are the minimum and maximum limits of the reactive power at
PV buses and Vmin

Gi and Vmax
Gi are the minimum and maximum limits of the voltages at

PV buses.

Load Angle Constraint

The load angle constraint is governed by the power transfer capability curve that
indicates the maximum load angle to be equal to 90◦ for maximum power transfer [26].
However, the stability of the system imposes a limit on this increase in angle, which, for
practical purposes, is not considered above 45–60◦ . The load angle between two nodes i
and j as defined by the following constraint is restricted to an angle of 45◦.

− π

4
≤ δi − δj ≤

π

4
. (12)

Switchable Shunt VAR Compensator Constraint

The control variables defined for the reactive power injected by switchable shunt VAR
compensators must be restricted within the limits given by

Qmin
Ci ≤ QCi ≤ Qmax

Ci , i ∈ NC, (13)

where Qmin
Ci and Qmax

Ci represent the minimum and maximum limits of the VAR injected by
the shunt VAR compensator.

OLTC Constraint

The control variable defined for the tap setting of the on-load tap-changing transformer
must be restricted within the limits given by

Tmin
i ≤ Ti ≤ Tmax

i , i ∈ NT , (14)

where Tmin
i and Tmax

i are the minimum and maximum tap setting of ith OLTC.

System Constraints

The voltages at all the PQ buses in the network must be kept within the limits given by

Vmin
i ≤ Vi ≤ Vmax

i , i ∈ NB. (15)

The real power at the slack bus must be kept within the limit defined by

Pmin
s ≤ Ps ≤ Pmax

s , (16)

where Ps is the real power at the slack bus, Pmin
s is the minimum limit of the real power at

the slack bus and Pmax
s is the maximum limit of the real power at the slack bus. The apparent

power flow on the transmission line network must be restrained to a limit given by

Sk ≤ Smax
k , k ∈ Nl , (17)

where Sk is the apparent power flow in kth branch, Smax
k is the maximum permissible

limit of the apparent power flow in kth branch and Nl is the total number of branches
(transmission lines).

2.5. Integration of Renewable Energy Sources in ORPD Problem
2.5.1. Scenario-Based Probabilistic Modeling

The integration of renewable energy sources (RES) into the power grid brings new
challenges for power system planners [27–29]. The uncertainty and intermittency associated
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with the PV and wind plants make the ORPD problem more complex and stochastic in
nature. Several probabilistic and analytical methods have been developed to evaluate
the reliability and output power of the PV and wind generators. The output power from
the PV and wind plants in this work were computed through a probabilistic modeling
approach [30].

2.5.2. Solar PV Uncertainty Modeling

At a certain location and ambient temperature, the solar irradiance as well as the
specifications of the PV module are important factors for determining the expected output
power. The uncertainty in the irradiance patterns for solar PV is generated through a
probability distribution function given by [31,32]

fs(Gs) =
1

Gsσs
√

2π
exp

[
− (ln Gs − µs)

2

2σ2
s

]
, Gs > 0, (18)

where fs is probability density function of solar irradiance, µs and σs are the mean of
the random variables and standard deviation and are considered to be equal to 5.5 and
0.5, respectively.

The power output of the solar PV as a function of irradiance can be computed using
the following piecewise function

ps(Gs) =

{
psrG2

s /(Gstd × Gc) for 0 < Gs < Gc,
psrGs/Gstd for Gs ≥ Gc,

(19)

where ps, psr are the output and rated power of the solar plant (MW); Gs, Gc and Gstd are the
solar irradiance, specific irradiance point and standard solar irradiance of the environment
(W/m2). Gstd and Gs are the standard solar irradiation at 1000 W/m2 and the specific solar
irradiance point set at 120 W/m2, respectively. psr is the PV array output power considered
to be equal to 40 MW. The solar PV irradiance probability written as τPV is found using the
irradiance uncertainty probability distribution function

τPV,i =
∫ Gsi,max

Gsi,min

fs(Gs) dGs, (20)

2.5.3. Wind Speed Uncertainty Modeling

The uncertainty in the wind speed is modeled using the Weibull distribution as given
by [31,32]

fw(v) =
(

β

α

)( v
α

)β−1
exp

[
−
( v

α

)β
]

, 0 < v < ∞, (21)

where α is the scale parameter, fw is the probability density function of the wind speed and
β is the shape parameter. α and β are considered to be equal to 7.5 and 1.5, respectively, for
the wind generator connected at bus 5.

The power output of the wind turbine as a function of wind speed (v) can be computed
using the following piecewise function

pw(v) =


0 for 0 ≤ v < vi

pwr

(
v−vi
vr−vi

)
for vi ≤ v < vr

pwr for vr ≤ v < vo
0 for v ≥ vo

, (22)

where pw is the output power of the wind plant (MW), v is the wind speed (m/s), pwr is
the rated power of the wind plant (MW) and vi, vr and vo are the cut-in, measured and
cut-out wind speeds (m/s), respectively. pw is the rated output power of the wind turbine
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considered to be equal to 4 MW for each of the 10 turbines, collectively making 40 MW for
the wind generator. The wind speed probability for different wind scenarios is found using

τwind,j =
∫ vj,max

vj,min

fw(v) dv, (23)

where vj,min and vj,max represent the start and end point of the wind speed’s interval at the
jth scenario while τwind,j is the probability of the wind speed expected in the jth scenario.

2.5.4. Load Demand Uncertainty Modeling

The uncertainty in load demand is a challenging task in power systems and needs
to be addressed and modeled using some probabilistic techniques. There are a number
of techniques proposed in the literature to cater to a varying load demand. However,
modeling the uncertainty in load using the normal distribution function is extensively used
in research [33].

fload(Pd) =
1

σd
√

2π
exp

[
− (Pd − µd)

σd
√

2π

]2
, (24)

where σd and µd are the standard deviation and mean values considered to be equal to
75 and 12 for the simulations. Pd represents the probability density of the load normal
distribution. The probability of the load demand written as τload with the expected load
scenarios can be modeled as

τload,k =
∫ Pdk,max

Pdk,min

fload(Pd) dPd, (25)

Pd,k =
∫ Pdk,max

Pdk,min

Pd
fload(Pd)

dPd, (26)

where Pdk,min
and Pdk,max

represent the minimum and maximum limits for the interval k.

2.5.5. Combined Load Generation Model

The combined irradiation, wind speed and load scenario probabilities can be written
using (20), (23) and (25) as

τT = τPV,i × τwind,j × τload,k, (27)

In this paper, the three considered scenarios for solar irradiance, wind speed and load
uncertainty generated with corresponding probabilities are given in Table 1 [33,34].

Table 1. Load, PV and wind scenarios and corresponding probabilities.

Load Scenario Load (%) τload,k

P1 20 (off-peak) 0.25
P2 40 (mid-peak) 0.7
P3 100 (on-peak) 0.05

PV Scenario PPV (MW) τPV,i

S1 0 0.481
S2 0.485psr 0.374
S3 psr 0.145

Wind Scenario Pwind (MW) τwind,j

W1 0 0.073
W2 0.485pwr 0.76
W3 psr 0.167
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3. Artificial-Hummingbird-Algorithm-Based Framework for Optimal Reactive Power
Dispatch Problem
3.1. Mapping Procedure for Control Variables

The control variables that govern Ploss and Vdev are VG, QC and TT . These control
variables are mapped as a swarm of hummingbirds into the AHA framework to obtain the
optimal control settings of the AGC, switchable VAR compensator and OLTC.

Figure 1 shows the control variables defined as u(1), u(2), . . ., u(10) for the IEEE 14 bus
test system, mapped into the columns of a population matrix of search agents wherein the
rows indicate the population size. For instance, u(3, 4) in the population matrix indicates
the value of VG3 for the fourth search agent. The control variables are designated as
floating-point values and integer values for continuous and discrete optimization problems,
respectively. The minimum and maximum bounds for control variables are defined in
terms of pu values. The mapping procedure for the IEEE 39 bus test system involves a
similar approach for control variables spanning u(1), u(2), . . ., u(21).

Figure 1. Mapping procedure for control variable of ORPD problem.

3.2. Artificial Hummingbird Algorithm

AHA is the newest bioinspired evolutionary optimization technique and algorithm
which was recently developed by Weiguo Zhao in 2021 [35]. It illustrates the action of small
hummingbirds to wisely search for food in their territory to gather the maximum amount
of nectar. The food sources with enough amount of nectar become prominent among the
swarm of hummingbirds. The hummingbirds fly to the sources, feed themselves on the
flowers, pass to each other the information about the nectar level, keeping the information
of the amount of nectar left in the mind, the number of rounds on the flowers, and the time
since the most recent visit. The entire phenomenon has been exercised by hummingbirds
for the foraging of food sources with the highest level of nectar, resulting in a close-optimal
solution. Hummingbirds make moves in the search space with the help of three flight
patterns: the axial movement of flight, diagonal movement flight, and omnidirectional
movement of flight.

AHA is the population-based optimization algorithm in which the food sources for
hummingbirds illustrate the key population for optimizing the problem. The food sources
are represented as the solution to the ORPD problem given by

P =
[
HK

1 HK
2 · · · Hk

m · · · HK
M
]
,

k = {1, 2, 3, · · ·K}, (28)

where Hk
m is mth variable of the kth search agent, P is the matrix of the population, K is the

maximum number of variables and M is the vector-width of variables. The fitness value
is calculated using the nectar availability index for the flowers (food sources). The best
nectar availability index (NAI) is represented by the best fitness evaluation of the objective
function regarding the evaluation of Ploss and Vdev. The fitness in terms of NAI is given by
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Ck = f
(

Hk
1 , Hk

2 , Hk
3 , · · ·Hk

M

)
,

k = {1, 2, 3, · · ·K},
(29)

where Ck is the cost of the kth search agent. The entire process of searching for food is
classified into three phases: guided searching, regional searching and migration searching.
In guided searching, hummingbirds try to fly to the food sources with a higher value
of NAI. Within the population of food sources, the sources with the best NAI value are
nominated as the targeted food source. Analyzing the targeted source, the sources under
consideration by a hummingbird is upgraded depending on the value of NAI and the
unvisited time span. The guided searching can be characterized by

Hnew
k
m = Hk,tar

m + α× D×
(

Hk
m − Hk,tar

m

)
, ∀ k, ∀ m, (30)

Hnew
k
m =

{
Hk

m if f (Hk
m) ≤ f (Hnew

k
m),

Hnew
k
m if f (Hk

m) > f (Hnew
k
m),

(31)

where α is the guidance factor, Hnew is a freshly generated search agent, Hk,tar
m is the target

search agent and D is the flight style. In regional searching, hummingbirds travel to another
zone of the region for targeting the next food sources with a better NAI compared to the
last ones. This behavior is clearly illustrated in the local search of the algorithm and is
given by the following equation

Hnew
k
m = Hk

m + β× D× Hk
m, ∀k, ∀m, (32)

where β is the regional factor. The exercise of migration searching results from a lack of food
sources in a region and hummingbirds travel to another distinct region. The exploration
feature for the search for further sources is a random generation within specified limits.
The flowchart of the AHA is exhibited in Figure 2.

Figure 2. Schematic flowchart of AHA.
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3.3. Multiobjective Artificial Hummingbird Algorithm (MO-AHA)

In the conventional AHA algorithm, the fitness value of a solution is evaluated by
performing the guided foraging and territorial foraging, the current solution is iteratively
replaced by better candidate solutions to achieve a global optimum solution. On the other
hand, the MO-AHA [36] optimizes the multiple objective functions simultaneously using a
dominance relation subject to some constraints, towards an optimized Pareto front solution.
In the MO-AHA, a solution update strategy based on the NDS (nondominated solution) is
utilized to achieve the true Pareto Front. The solution update strategy can be defined in the
form of the equation given by

Hnew
k
m =


vk

new p < q
Hk

m p > q
vk

new p = q and rand < 0.5
Hk

m p = q and rand ≥ 0.5

(33)

where vi ∈ Fp, xi ∈ Fq and Fp is the pth front, Fq is the qth front in the NDS and vk
new is the

updated velocity of the Hnew
k
m search agent.

3.4. Constraints Handling Using Penalty Factor Approach

The resulting optimization problem defined by F1, F2 and F3 subjected to equality
constraints (load flow equations) and inequality constraints (PV bus voltage control, OLTC
tap setting, switchable shunt VAR compensator and other system constraints) were solved
using the proposed optimization technique. A penalty factor approach was used for
evaluating the objective function. Penalty factors for various constraints handling with
penalized fitness function could be written as defined by

F(x) = F1(x) + F2(x) + βP + βQ + βC + βT , (34)

where

βP = α1

NB

∑
i=1

{
PGi − PDi −

(
NB

∑
j=1

ViVjYij × cos
(
θij − δi + δj

))}
, (35)

βQ = α2

NB

∑
i=1

{
QGi −QDi −

(
NB

∑
j=1

ViVjYij × sin
(
θij − δi + δj

))}
, (36)

βC = α3

NG

∑
i=1

max{0, QC −Qmax
C }+ α3

NG

∑
i=1

max
{

0, Qmin
C −QC

}
, (37)

βT = α4

NT

∑
i=1

max{0, Ti − Tmax
i }+ α4

NT

∑
i=1

max
{

0, Nmin
T − Ni

}
, (38)

βV = α5

NG

∑
i=1

max{0, Vi −Vmax
i }+ α5

NG

∑
i=1

max
{

0, Vmin
i −Vi

}
, (39)

where α1, α2, α3, α4 and α5 are the penalty factors, Yij indicates the admittance between bus
i and j and F(x) is the penalized fitness function. A flow chart illustrating the steps to solve
the ORPD problem is shown in Figure 3.
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Figure 3. Schematic flowchart of the proposed AHA-based framework to optimize the ORPD problem.

4. Simulation Results and Discussion

The efficacy and capability of the proposed AHA based framework were validated
through various numerical and statistical studies. In this paper, the ORPD problem was
implemented on two standard IEEE test systems namely the 14 bus test system and 39 bus
test system, and the results were then compared with various other studies. The results
obtained in this paper confirmed the efficacy of the proposed framework over other studies.
Two objective functions were considered in this study: Ploss and Vdev.

The maximum number of iterations for both test systems was set to 500 and the
population size of hummingbirds was set to 100. The parameters were tuned to optimize
the results and ensure that convergence was achieved. It is to be noted that all the tests
were performed in MATLAB 2020b on an Intel(R) Core (TM) i7-5600U CPU with 8 Gb RAM
and a 2.60 GHz processor.

4.1. IEEE 14 Bus Test System Considering Minimization of Ploss

The efficacy of the proposed AHA-based framework was tested and validated using
the IEEE 14 bus test system [37]. The test system contained 10 control variables, i.e., the
decision variables including five PV buses, three OLTCs and two switchable shunt VAR
compensators, which were to be optimized in a way to achieve a minimum Ploss in the
network and a minimum Vdev at all the PQ buses in the network. The system contained
five PV buses, three OLTCs and two switchable shunt VAR compensators, which were to be
optimized as given in Table 2. The six PV buses were located at buses 1, 2, 3, 6 and 8, three
inline OLTCs at branches 4–7, 4–9 and 5–6 and two switchable shunt VAR compensators at
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buses 9 and 14 in the network. Buses 4, 5, 7, 9, 10, 11, 12, 13 and 14 were PQ buses and were
considered to be the candidate buses for the reactive power compensation. The voltages at
all the PQ buses were constrained to remain within the limits of 0.9–1.1 pu at a 100 MVA
base. Moreover, the transformer tap positions were restricted between 0.95 and 1.05 pu,
and the permissible values for the shunt VAR compensators were constrained in the range
of 0.9–1.1 pu.

Table 2. Technical parameters of IEEE 14 bus test system.

Sr. No. Parameter Value

1 Generators 5
2 Branches 20
3 OLTC 3
4 Shunt VAR compensators 2
5 Control variables 10

In the first case, the proposed framework was implemented on IEEE 14 bus test system
with the objective to achieve minimum active power losses as defined by (3). The results
for the control variables and Ploss with reference to the base case, AHA and several other
well-known optimization techniques implemented in other research studies are listed and
compared in Table 3 along with the corresponding values of Vdev when Ploss was considered
as an objective function.

Table 3. Optimal values of control variables with Ploss as an objective function for the IEEE 14 bus
test system.

Control Variable Base Case SFO [18] GWO-PSO [18] CBA-4 [14] SCA [10] AHA

VG1 1.0600 1.0171 1.0534 1.0921 1.09 1.0999
VG2 1.0450 0.9909 1.0600 1.0884 1.08 1.0863
VG3 1.0100 0.9520 0.9400 1.0588 1.05 1.0899
VG6 1.0700 1.0099 0.9525 1.0325 1.09 1.0999
VG8 1.0900 1.0279 0.9561 1.0951 1.09 1.0872
QC9 0.1800 - - 0.2208 0.15 0.2917
QC14 0.1800 - - 0.0786 0.06 0.0712
T4−7 0.9780 0.9980 0.9972 0.9746 0.95 1.0034
T4−9 0.9690 0.9867 0.9623 1.0676 0.94 0.9498
T5−6 0.9320 0.9788 0.9882 1.0599 1.03 0.9874
Ploss(MW) 13.43 13.2786 13.2716 12.2923 12.27 12.2349
Vdev (pu) 0.0278 - - 0.05308 - 0.0821

The proposed AHA-based framework showed a significant reduction in Ploss com-
pared to the base case and other optimization techniques including SFO, GW-PSO and
hybrid CBA-4. The efficacy and superiority of the AHA is evident from Figure 4, where a
visual representation of Ploss is provided and compared with other optimization techniques.
With Ploss as an objective function, the voltages at all the generation buses and load buses
remained well within their limits where Vdev was found to be equal to 0.0821 pu.
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Figure 4. Comparison of Ploss and Vdev for IEEE 14 bus test system optimized using the proposed
framework.

4.2. IEEE 14 Bus Test System Considering Minimization of Vdev

The proposed framework was implemented to achieve the minimum Vdev at all the
PQ buses in the network as defined by (4). The results for the control variables, Vdev and
the corresponding Ploss were compared with other optimization techniques as presented
in Table 4. As in the first case, 25 simulation tests were performed, and the best results
were tabulated.

Table 4. Optimal values of control variables with Vdev as an objective function for the IEEE 14 bus
test system.

Control Variable Base Case SFO GWO-PSO CBA-4 AHA

VG1 1.06 0.94 1.06 0.9958 1.0776
VG2 1.045 0.94 0.982 1.0189 1.0396
VG3 1.01 1.06 1.0331 1.0008 0.9982
VG6 1.07 0.94 1.06167 1.0102 1.0161
VG8 1.09 1.06 1.0225 1.0501 0.9533
QC9 0.18 0.2 0.2 0.0903 0.2485
QC14 0.18 0.05 0.005 0.0637 0.1604
T4−7 0.978 1.1 1.1 1.0121 1.0973
T4−9 0.969 1.1 1.1 1.0975 0.9
T5−6 0.932 0.9 0.9 1.037 0.9366
Ploss (MW) 13.43 - - 15.9506 14.934
Vdev (pu) 0.0278 0.2133 0.2133 0.033 0.00152

The proposed AHA-based framework showed a significant reduction in voltage
deviations compared to the base case and other optimization approaches including SFO,
GW-PSO and hybrid CBA-4. The proposed AHA-based framework reflected the superiority
and effectiveness of the algorithm compared to other approaches as shown in Figure 4. The
voltage profile improvement is evident from the Figure 5, where the voltages at the PV
buses and all the PQ buses in the network were found to be closer to unity represented by
the dotted line.
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Figure 5. Bus voltages of the IEEE 14 bus test system.

The convergence curves for the IEEE 14 bus test system considering Ploss and Vdev as
an objective function is shown in Figure 6, where the algorithm reached the optimal solution
in 130 iterations and 180 iterations, respectively. The maximum number of iterations for
the algorithm was set to 250. The fast convergence rate of the AHA compared to other
optimization algorithms showed its better performance and effectiveness.

Figure 6. Convergence curves of Ploss and Vdev for the IEEE 14 bus test system optimized using the
proposed framework.

The complexity of the algorithm depended on the number of functional evaluations
that directly affected the execution time. The execution time of the AHA for the IEEE
14 bus test system was 71 s, which was far better than some other techniques proposed
in the literature [5]: differential evolution (145 s), whale optimization algorithm (140 s),
PSO (103 s) and sine cosine algorithm (90 s). The minimum execution time of the AHA
revealed that the said algorithm was effective at solving the optimization problems with
less computational burden to reach optimal results.

4.3. IEEE 14 Bus Test System Considering Multiobjective Framework

Single objective functions considering Ploss and Vdev were considered independently
in previous cases where the objective was to optimally allocate the control variable values to
minimize a particular objective individually. In this case, a multiobjective framework [38] to
obtain the Pareto optimal solutions, incorporating Ploss and Vdev together, was formulated
to solve the multiobjective optimal reactive power dispatch (MO-ORPD) problem. The
ORPD problem was addressed using the proposed AHA-based framework that investigated
the best settings for the control parameters to obtain the minimum Ploss in the network
and the minimum Vdev at the PQ buses simultaneously. The obtained Pareto front is
shown in Figure 7, where a compromised optimal solution between the two objectives can
be visualized.
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Figure 7. IEEE 14 bus test system: a multiobjective approach based on Pareto optimal solutions.

4.4. IEEE 14 Bus Test System Considering Integration of Renewable Energy Sources

The IEEE 14 bus test system considered in the previous section for the deterministic
study was further utilized for a stochastic-based study by incorporating RES. The resulting
test system was regarded as a modified IEEE 14 bus test system wherein 40 MW of maxi-
mum capacity for both a PV generator and a wind generator was connected at buses 5 and
8, respectively. The uncertainty in RES and load were considered for the modified IEEE
14 bus test system using the proposed AHA-based framework for the optimization of all
scenarios generated in Table 5. Twenty-seven scenarios were generated by considering the
probabilities of PV, wind and load and a combined RES–load generation probabilities were
found as defined by (27), to find the corresponding loss for each scenario. The power loss
considering the uncertainties, termed as expected power loss, found for each scenario was
given by

EPLTOT =
27

∑
n=1

EPLn =
27

∑
n=1

τT,n × Ploss,n (40)

The total expected power loss (TEPL) as obtained from (40) was found to be 4.5807
MW for all scenarios as shown in Table 5.

Table 5. Results of RES-based studied scenarios optimized using the proposed framework.

Scenario Load Wind
Output

PV
Output τload τwind τPV τT

Power Loss
(MW)

Expected Power
Loss (MW)

1 Off-peak 0 0 0.25 0.073 0.481 0.0088 4.4670 0.0393
2 Off-peak 0 0.485psr 0.25 0.073 0.374 0.0068 3.8289 0.0260
3 Off-peak 0 psr 0.25 0.073 0.145 0.0026 3.3015 0.0086
4 Off-peak 0.47pwr 0 0.25 0.76 0.481 0.0914 3.8815 0.3548
5 Off-peak 0.47pwr 0.485psr 0.25 0.76 0.374 0.0711 3.4041 0.2420
6 Off-peak 0.47pwr psr 0.25 0.76 0.145 0.0276 3.0444 0.0840
7 Off-peak pwr 0 0.25 0.167 0.481 0.0201 3.7914 0.0762
8 Off-peak pwr 0.485psr 0.25 0.167 0.374 0.0156 3.4671 0.0541
9 Off-peak pwr psr 0.25 0.167 0.145 0.0061 3.2845 0.0200

10 Mid-peak 0 0 0.7 0.073 0.481 0.0246 5.8392 0.1436
11 Mid-peak 0 0.485psr 0.7 0.073 0.374 0.0191 4.9905 0.0953
12 Mid-peak 0 psr 0.7 0.073 0.145 0.0074 4.2293 0.0313
13 Mid-peak 0.47pwr 0 0.7 0.76 0.481 0.2559 4.9863 1.2760
14 Mid-peak 0.47pwr 0.485psr 0.7 0.76 0.374 0.199 4.3008 0.8559
15 Mid-peak 0.47pwr psr 0.7 0.76 0.145 0.0771 3.7202 0.2868
16 Mid-peak pwr 0 0.7 0.167 0.481 0.0562 4.6419 0.2609
17 Mid-peak pwr 0.485psr 0.7 0.167 0.374 0.0437 4.1188 0.1800
18 Mid-peak pwr psr 0.7 0.167 0.145 0.017 3.7169 0.0632
19 On-peak 0 0 0.05 0.073 0.481 0.0018 12.2471 0.0220
20 On-peak 0 0.485psr 0.05 0.073 0.374 0.0014 10.7231 0.0150
21 On-peak 0 psr 0.05 0.073 0.145 0.0005 9.2336 0.0046
22 On-peak 0.47pwr 0 0.05 0.76 0.481 0.0183 10.5980 0.1939
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Table 5. Cont.

Scenario Load Wind
Output

PV
Output τload τwind τPV τT

Power Loss
(MW)

Expected Power
Loss (MW)

23 On-peak 0.47pwr 0.485psr 0.05 0.76 0.374 0.0142 9.2524 0.1314
24 On-peak 0.47pwr psr 0.05 0.76 0.145 0.0055 7.9573 0.0438
25 On-peak pwr 0 0.05 0.167 0.481 0.004 9.4285 0.0377
26 On-peak pwr 0.485psr 0.05 0.167 0.374 0.0031 8.2666 0.0256
27 On-peak pwr psr 0.05 0.167 0.145 0.0012 7.1599 0.0086

Total Expected Power Loss 4.5807

4.5. IEEE 39 Bus Test System Considering Minimization of Ploss

To validate and test the effectiveness of the proposed AHA-based framework, ORPD
was further implemented on a medium scale network of the IEEE 39 bus test system.
The test system contained five PV buses, three OLTCs and two switchable shunt VAR
compensators which were optimized as given in Table 6. The six PV buses were located at
buses 1, 2, 3, 6 and 8, three inline OLTCs at branches 4–7, 4–9, and 5–6 and two switchable
shunt VAR compensators at buses 9 and 14 in the network. The buses 4, 5, 7, 9, 10, 11, 12,
13 and 14 were PQ buses and were considered to be the candidate buses for the reactive
power compensation. The required data including lines interconnection, network data
and the system parameters regarding the IEEE 39 bus test system are available in Ref. [39].
The voltages at all the load buses were constrained to remain within the limits of 0.9–1.1 pu
at a 100 MVA base. Moreover, the transformer tap positions were restricted between 0.95
and 1.05 pu and the permissible values for the shunt VAR compensators were constrained
in the range of 0.9–1.1 pu.

Table 6. Technical parameters of the IEEE 39 bus test system.

Sr. No. Parameter Value

1 Generators 10
2 Branches 46
3 OLTC 5
4 Compensators 6
5 Control variables 21

The proposed framework was also validated on the IEEE 39 bus test system to achieve
the minimum Ploss as defined by (3). The results for the control variables and power
losses with reference to the base case, the AHA and several other well-known optimization
techniques implemented in other research studies are compared in Table 7 along with
the corresponding values of Vdev when Ploss was considered as an objective function.
The proposed framework showed a proven ability to attain the minimum losses in the
network compared to the base case and other optimization approaches including SFO,
GW-PSO and hybrid CBA-4. The losses in the base case were reduced significantly from
the value of 43.6 MW to a value of 35.7699 MW found using the proposed framework as is
evident from the results. The reduction of 17.7% in losses compared to the base case and a
considerable reduction in the percentage from the other optimization approaches proved
the effectiveness and robustness of the AHA. This is further represented in Figure 8, where
the AHA showed the best results in terms of Ploss.
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Table 7. Optimal values of control variables with Ploss as an objective function for the IEEE 39 bus
test system.

Control Variable Base Case BA [14] CBA-3 [14] CBA-4 [14] AHA

VG30 1.0499 1.0906 1.0668 1.0810 1.0920
VG31 0.9820 1.0999 1.0968 1.0999 1.0993
VG32 0.9841 1.0998 1.0989 1.1000 1.0898
VG33 0.9972 1.0943 1.0857 1.0952 1.0997
VG34 1.0123 1.0956 1.0941 1.0999 1.0972
VG35 1.0494 1.1000 1.0976 1.1000 1.0949
VG36 1.0636 1.0989 1.1000 1.0992 1.0999
VG37 1.0275 1.1000 1.1000 1.1000 1.0996
VG38 1.0265 1.0992 1.0988 1.0996 1.0998
VG39 1.0300 1.1000 1.1000 1.1000 1.0844
QC1 0 0.1985 0.2392 0.2092 0.01299
QC5 0 0.1266 0.0729 0.1188 0.2353
QC11 0 0.1985 0.2392 0.2092 0.1172
QC14 0 0.1266 0.0729 0.1188 0.2388
QC22 0 0.1985 0.2392 0.2092 0.2883
QC27 0 0.1985 0.2392 0.2092 0.0444
T2−30 1.0250 1.0478 1.0591 1.0485 1.0809
T10−32 1.0700 1.0700 1.0656 1.0703 1.0868
T12−11 1.0060 1.0250 1.0461 1.0337 1.0086
T19−20 1.0600 1.0700 1.0645 1.0701 1.0572
T22−35 1.0250 1.0034 0.9792 1.0072 1.0867
Ploss (MW) 43.60 36.7317 36.3125 35.9971 35.7699
Vdev (pu) 0.033 0.275 0.271 0.269 0.638

Figure 8. Comparison of Ploss and Vdev for the IEEE 39 bus test system optimized using the proposed
framework.

4.6. IEEE 39 Bus Test System Considering Minimization of Vdev

Considering Vdev as a second case, the AHA was further utilized for the IEEE 39
bus test system with the objective to achieve minimum voltage deviations as defined
by (4). The results for the control variables, voltage deviations and the corresponding
power losses were compared with other optimization techniques and are presented in
Table 8. The AHA-based framework showed a proven ability to attain the minimum Vdev
at all the PQ buses in the network compared to the base case and other optimization
approaches including SFO, GW-PSO and hybrid CBA-4. The Vdev in the base case was
reduced significantly from the value of 0.0330 pu to a value of 0.0011 pu found using
the proposed framework. A considerable reduction in Vdev from the base case and the
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other optimization approaches proved the effectiveness and robustness of the proposed
framework. This is further represented in Figure 8, where AHA outperformed the other
techniques in terms of Vdev. With Vdev as an objective function, the voltages at all the buses
in the network approached unity as represented in Figure 9, which was direct evidence for
the voltage profile improvement at all the buses in the network.

Convergence curves for the IEEE 39 bus test system considering Ploss and Vdev as an
objective function are shown in Figure 10, where the algorithm reached the optimal solution
in 130 iterations and 230 iterations, respectively. The maximum number of iterations for
the algorithm was set to 250. The fast convergence rate of the AHA compared to other
optimization algorithms showed its better performance and effectiveness. The execution
time of the AHA for the IEEE 39 bus test system was found to be equal to 139 s.

Table 8. Optimal values of control variables with Vdev as an objective function for the IEEE 39 bus
test system.

Control Variable Base Case BA CBA-3 CBA-4 AHA

VG30 1.0499 0.9395 1.0286 0.9423 1.022
VG31 0.982 1.0999 1.0723 0.9124 1.0438
VG32 0.9841 0.9995 0.9782 1.0483 1.018
VG33 0.9972 1.069 1.0084 0.9723 1.0016
VG34 1.0123 0.9474 0.9797 0.9983 0.9884
VG35 1.0494 0.9151 1.0668 0.9011 1.0118
VG36 1.0636 0.974 0.9279 0.9866 1.0156
VG37 1.0275 0.9001 0.9512 0.9588 0.9006
VG38 1.0265 0.9468 0.9362 1.0161 0.9791
VG39 1.03 1.0995 1.0077 0.9772 0.981
QC1 0 0.0533 0.2198 0.1234 0.2714
QC5 0 0.1485 0.0554 0.2607 0.2862
QC11 0 0.0533 0.2198 0.1234 0.0365
QC14 0 0.1485 0.0554 0.2607 0.2817
QC22 0 0.0533 0.2198 0.1234 0.143
QC27 0 0.0533 0.2198 0.1234 0.2829
T2−30 1.025 0.9563 1.0325 1.0105 1.0201
T10−32 1.07 1.0559 0.9972 0.9017 0.9684
T12−11 1.006 0.9983 0.9731 0.9318 1.0244
T19−20 1.06 0.9124 0.9636 0.9193 0.9893
T22−35 1.025 0.9989 0.9457 0.9061 1.0253
Ploss (MW) 43.6 53.74922 53.4682 51.6495 46.96
Vdev (pu) 0.033 0.0825 0.0796 0.0739 0.001

Figure 9. Bus voltages of the IEEE 39 bus power system.
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Figure 10. Convergence curves of Ploss and Vdev for the IEEE 39 bus test system optimized using the
proposed framework.

4.7. IEEE 39 Bus Test System Considering Multiobjective Framework

A multiobjective framework [38] to obtain the Pareto optimal solutions, incorporating
Ploss and Vdev together, was formulated to solve the multiobjective optimal reactive power
dispatch (MO-ORPD) problem. The ORPD problem was addressed using the proposed
AHA-based framework that investigated the best settings for the control parameters to
obtain the minimum Ploss in the network and minimum Vdev at the PQ buses simultaneously.
The obtained Pareto front is shown in Figure 11, where a compromise optimal solution
between the two objectives can be visualized. The optimal Ploss was found to be 39.73 MW
with the corresponding optimal Vdev equal to 0.08056 pu.

Figure 11. IEEE 39 bus test system: a multiobjective approach based on Pareto optimal solutions.

4.8. Statistical Significance of ORPD Results

The validity and verification of the best ORPD solution situated in the vicinity of the
optimal solution were considered through the boxplots [38] shown in Figure 12. The mini-
mum Ploss was ensured by taking 30 independent test runs of the proposed framework for
the IEEE 14 bus test system and IEEE 39 bus test system cases. The data of the 30 test runs
were taken for the boxplots presented in Figure 12 for the two test systems. It is apparent
from the boxplots that there were no outliers in the IEEE 14 and 39 bus test system results.
The best solutions were found to be in close proximity to the global optima.

A further validation of the ORPD results optimized by the proposed AHA-based
framework for the IEEE 14 bus test system and the IEEE 39 bus test system was carried out
and the significance of the results were found in terms of p-values. In the ORPD problem,
Ploss for 30 iterations was designated as a dependent variable whereas the voltages at PV
buses, VAR compensators and OLTCs were regarded as decision variables. The decision
variables directly influenced the dependent variable, and the model was implemented
in SPSS (Statistical Package for the Social Sciences) software. A linear regression was
performed using SPSS and a p-value test was also run on the estimated coefficients of
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the model. The statistical results were obtained for the IEEE 14 bus test system and the
IEEE 39 bus test system and are listed in Tables 9 and 10, respectively. From the results,
the p-values for the IEEE 14 bus test system, variables VG3, T4−7, T4−9 and T5−6 showed a
significant effect on the solution and their p-values for the estimated coefficients were less
than 0.1, i.e., the results were statistically significant at the 90% level and met the confidence
interval of 5%. The p-value test for the IEEE 39 bus test system showed that the variables
VG30, VG33, VG37, QC−5, T2−30, T10−32 and T22−35 had a significant effect on the solution and
their p-values for the estimated coefficients were also less than 0.1, i.e., the results were
statistically significant at the 90% level and met the confidence interval of 10%.

Figure 12. Validity of best ORPD results using proposed AHA-based framework: (a) IEEE 14 bus test
system, (b) IEEE 39 bus test system.

Table 9. Statistical significance of multiple tests runs for the IEEE 14 bus test system optimized by the
proposed framework.

Decision Variables Beta Sig. Decision Variables Beta Sig.

VG1 −0.022 0.422 QC9 −0.1 0.173
VG2 0.036 0.182 QC14 0.02 0.474
VG3 −0.064 0.017 T4−7 0.31 0.024
VG6 −0.048 0.624 T4−9 0.457 0.052
VG8 −0.155 0.195 T5−6 −0.1 0.173

Table 10. Statistical significance of multiple tests runs for the IEEE 39 bus test system optimized by
the proposed framework.

Decision Variables Beta Sig. Decision Variables Beta Sig.

VG30 −0.342 0.005 QC5 −0.185 0.115
VG31 0.005 0.963 QC11 0.199 0.163
VG32 −0.156 0.206 QC14 −0.008 0.941
VG33 −0.345 0.007 QC22 0.05 0.649
VG34 −0.295 0.155 QC27 −0.02 0.877
VG35 −0.067 0.516 T2−30 −0.195 0.117
VG36 −0.199 0.135 T10−32 −0.225 0.035
VG37 −0.257 0.061 T12−11 −0.113 0.262
VG38 −0.074 0.458 T19−20 −0.245 0.274
VG39 −0.127 0.233 T22−35 −0.248 0.033
QC1 −0.139 0.16
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The boxplots and the p-values confirmed the performance of the ORPD problem with
the proposed framework. The proposed framework converged to the optimal solution in
terms of Ploss and Vdev.

The best (minimum), worst (maximum) and average (mean) values of the control
variables for the IEEE 14 and IEEE 39 bus test systems were compared with other techniques
in Table 11. Moreover, the standard deviation (SD) of 20 independent runs was calculated.
These statistical results clearly manifested the performance and supremacy of the AHA
compared to other previously proposed techniques.

Table 11. Statistical tests on the IEEE 14 and 39 bus test systems for cases 1 and 2 optimized by the
proposed AHA-based framework.

IEEE 14 Bus Test System

Algorithm Best (MW) Worst (MW) Average (MW) SD

DEEP [40] 12.4489 12.4507 12.4494 0.0005
CSSP4 [41] 12.4087 12.4974 12.4393 0.228

DE [42] 12.4486 12.4496 12.4486 0.0018
CBA-4 12.2923 12.3098 12.3042 0.0046
AHA 12.2349 12.2667 12.2443 0.0079

Algorithm Best (Vdev) Worst (Vdev) Average (Vdev) SD

IGSA-CSS [17] 0.0339 0.0906 0.0458 0.017
GWO-PSO 0.2133 - - -

BA 0.0336 0.0515 0.041 0.0058
CBA-4 0.033 0.0489 0.0368 0.0029
AHA 0.0015 0.0039 0.0037 0.0004

IEEE 39 Bus Test System

Algorithm Best (MW) Worst (MW) Average (MW) SD

GWO-PSO 41.8892 - - -
CBA-3 36.3125 37.7435 36.4527 0.3272
CBA-4 35.9971 36.6986 36.1028 0.2122
AHA 35.7699 36.1857 35.9044 0.1098

Algorithm Best (Vdev) Worst (Vdev) Average (Vdev) SD

BA 0.0825 - - -
CBA-3 0.0796 0.0921 0.0846 0.0034
CBA-4 0.0739 0.0864 0.0763 0.0027
AHA 0.001 0.0013 0.0011 5.0083

5. Conclusions

This research work presented a holistic analysis on a multiobjective framework con-
sidering one of the latest optimization algorithms, the AHA, that was investigated and
implemented to solve the ORPD problem with and without the inclusion of RES. A scenario-
based modeling of PV, wind and load was presented to cater to the intermittency and un-
certainty in RES and loads. Three objective functions including a multiobjective framework
(MO-ORPD) considering the set of equality and nonequality constraints were considered
to minimize the active power losses and to ameliorate the voltage profile at all the load
buses in the network. The proposed AHA-based framework was tested and validated
on standard IEEE 14 and 39 bus test systems, and the acquired results were compared
with various optimization techniques, namely, SFO, GWO-PSO, SCA and CBA-4. The pro-
posed AHA-based framework outperformed its competitors in terms of active power loss
minimization and total voltage deviation minimization, with a fast convergence rate and
less computational time. Further, the proposed framework was also found effective in
providing desirable solutions in terms of the average, best, worst and SD indices. Boxplots
were created and statistical tests were performed using SPSS to justify the effectiveness
of the proposed framework. As a result of the statistical analysis, the said algorithm can



Energies 2022, 15, 9250 22 of 23

be considered as an effective optimization tool for power system control centers to make
optimal dispatch decisions, while confronting the ORPD problem. The optimal location of
the reactive VAR sources and FACTS devices is also planned for the future work.
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