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Abstract: The electric power quality has become a serious concern for electric utilities and end users
owing to its undesirable effects on system capabilities and performance. Harmonic levels on power
systems have been pronounced to a greater extent with the continuous growth in the application of
solid-state and reactive power compensatory devices. Harmonics are the key constituents that are
mainly responsible for power quality deterioration. Power system harmonics need to be correctly
estimated and filtered to increase power quality. This research work focuses on accurate estimation
of power system harmonics with the proposed hybrid weighted least-square multi-verse optimizer
(WLS–MVO) based framework. Multi-verse optimizer replicates the phenomenon of the formation of
new universes as described by multi-verse theory to solve complex real-world optimization problems.
The proposed WLS–MVO framework is tested and validated by estimating the harmonics present in
multiple test signals with different noise levels. Amplitudes and phases of harmonics present in the
polluted signal were estimated, and the framework computational time was compared with the pre-
viously developed technique’s results which are reported in the literature. There was 80% reduction
in computational time and 82% improvement in terms of accuracy in estimating harmonics using
WLS–MVO as compared to previously developed techniques. The performance of the developed
framework is further validated by estimating the harmonics present in the real-time voltage and
current waveforms obtained from axial flux permanent magnet generator (AFPMSG), uninterruptible
power supply (UPS), and light-emitting diode (LED). The purposed technique technique outperforms
the already-developed techniques, in terms of accuracy and computational time.

Keywords: multi-verse optimizer; weighted least square; harmonics estimation; power quality;
artificial intelligence

1. Introduction

Electric power quality has become a serious concern for electric utilities and end users
owing to its undesirable effects on system capabilities and performance [1]. Harmonic
levels in power systems have been pronounced to a greater extent with the inclusion of
power electronic devices like variable frequency drives (VFDs), reactive power compen-
satory devices on transmission and distribution networks, and incorporation of distributed
generators (DG’s) in the modern smart grid paradigm. Power quality issues involve the
deviation and harmonic distortion in voltage and current waveforms, sag, swell, and tran-
sients [2,3]. These issues result in decreased efficiency of equipment, increased corona loss,
more eddy current losses, and increased skin effect, due to their direct relationship with the
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frequency of the power system [4]. Moreover, the presence of unfiltered harmonics in the
power system may result in the failure of transformers, and motors, overloading of neutral
conductors, transformer overheating, and malfunctioning of protective devices, relays,
and circuit breakers [5]. Harmonics are also responsible for power capacitor explosions in
power networks and industries [6]. Researchers have been developing and introducing
new techniques to mitigate and rectify the adverse effects of these power quality prob-
lems on the power grid [7–9]. To design efficient filters in order to mitigate the adverse
effects of harmonics in the power waveforms, these harmonics are required to be accurately
measured and estimated. Bashian et al. proposed a Taylor Kalman filter (TKF) and tuned
whitening-based TKF (TW-TKF) to filter the harmonics present in power system and also to
mitigate abrupt changes in amplitudes and phases of AC current and voltage of AC signals
expected to occur frequently in power grids [10–12]. Harmonic estimation is the first and
foremost step that forms the basis for harmonic elimination. Harmonic estimation is the
complex, non-linear and multimodal optimization problem that involves determination
and estimation of harmonics, sub harmonics, and inter harmonics present in the voltage
and current signals [4]. Several methods and techniques have been proposed and deployed
to properly estimate the harmonic contents in voltage and current signals.

Mathematical techniques that are traditionally being employed for investigating har-
monics in signals include DFT (discrete Fourier transform) and FFT (fast Fourier trans-
form) [13]. The limitations of these traditional methods have been reported in the literature
which include picket-fence effect and leakage effect, requires the use of more robust tech-
niques which exclude these limitations [14]. Statistical and stochastic methods including
least mean square (LMS), weighted least square (WLS), recursive least square (RLS), ab-
solute least value (ALV), and Kalman filter (KF) [15–18] have also been proposed and
deployed to accurately estimate the harmonics.

Recent trend towards metaheuristic algorithms is receiving immense attention to
accurately estimate harmonics in the power waveforms at high computational speed [19].
Their superiority over the deterministic and mathematical approaches is evident in the
literature. A hybrid technique by merging firefly algorithm with least square method
(FF-LS) for the proper estimation of phases and amplitudes of harmonics present in the
power system is proposed in [20]. The authors presented modified–artificial bee colony
algorithm (M-ABC) for the correct estimation of distribution side harmonics. Ashraf et al.
proposed [21] a hybrid technique comprises of water cycle algorithm (WCA) and least
square (LS) method [1] to correctly estimate the power harmonics of real-time voltage
waveform obtained from axial flux permanent magnet synchronous generator (AFPMSG).
Waqas et al. utilized the quantum computation-inspired particle swarm optimization
(PSO) algorithm along with the least square hybrid approach for real-time estimation of
harmonics present in time-varying and noisy power signals [22]. In [23], authors proposed
a hybrid technique based on PSO and GA along with the famous statistical technique,
Kalman Filter (KF), for harmonic estimation of dynamic and time varying signals.

In this paper, a hybrid weighted least square multi-verse optimizer (WLS–MVO)
framework was proposed and developed for accurate estimation of harmonics. The said
framework was implemented on standard test signals and real-time voltage and current
waveforms obtained from AFPMSG, UPS, and LED. The results were compared with the
previously developed techniques in literature, to ensure the competency and effectiveness
of the proposed framework.

The key contributions to this paper are mentioned below:

1. The multi-verse optimizer is one of the latest optimization techniques and it has
not been investigated so far for the estimation of harmonics. A hybrid (WLS–MVO)
framework is proposed for the robust estimation of harmonics for standard integer,
inter-, and subharmonics test signals with random noise;

2. The hybrid (WLS–MVO) framework is further tested on real-time voltage and current
waveforms obtained from AFPMSG and different power electronics-based loads for
the extraction and estimation of harmonics;
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3. The performance of the said framework is validated and tested using some statistical
tests performed on SPSS (Statistical Package for the Social Sciences).

The rest of this paper is organized as follows: Section 2 explains the mathematical
formulation of harmonic estimation problem and the proposed research methodology is
discussed in Section 3. Simulation results are discussed in Section 4. Section 5 discusses the
statistical significance of the results. Finally, Section 6 concludes this paper.

2. Mathematical Formulation of Harmonics Estimation Problem

The harmonics present in the power signal model require the estimation of two constituent
components: linear estimation of amplitudes and nonlinear estimation of phases. Harmonic
estimation of the power signal is a complex problem because of the time-varying nature
of power signals. Hence, there is a dire requirement for a capable and effective algorithm
for its solution. Any signal can be written as the aggregation of the sum of sine and cosine
functions with multiple frequencies, it can be written as:

Sig(t) =
N

∑
n=1

Kn sin(ωnt + ϕn) + KDC exp(−γDCt) (1)

where n is the harmonic order, Kn is the amplitude of harmonics present in the signal,
ωn being the angular frequency of harmonics of higher order, ϕn is the phase angle of
harmonics. The term KDC exp(−γDCt) shows the additive DC decaying offset present in
power signals. Moreover, ωn is given by:

ωn = 2π f1 × nt (2)

There is always a possibility of the power signal being corrupted with the addition of
noise nt. Hence, the realistic signal can be modeled with the addition of noise given by:

Sig(t) =
N

∑
n=1

Kn sin(ωnt + ϕn) + KDC exp(−γDCt) + nt (3)

The processing of signal in computer simulations is easily done in discrete form. To
convert continuous signal to discrete form, sampling is performed. Hence, the sampled
version of above signal can be written as:

Sig(mTs) =
N

∑
n=1

[Kn sin(ωnmTs + ϕn)] + KDC exp(−γDCmTs) + nmTs (4)

where Ts being the time for sampling known as sampling time. Using the trigonometric
identity for simplification, above equation can be rewritten as:

Sig[m] =
N

∑
n=1

(Kn sin(ωnmTs) cos ϕn + Kn cos(ωnmTs) sin ϕn) + KDC exp(−γDCmTs) + nm· (5)

With the application of Taylor series on the decaying DC offset term and ignoring the
higher order terms, we found:

Sig[m] =
N

∑
n=1

(Kn sin(ωnmTs) cos ϕn + Kn cos(ωnmTs) sin ϕn) + KDC − KDC(γDCmTs) + nm· (6)

The signal, which is to be estimated written in matrix form is described below:

ˆSig[m] = X·H(m)T (7)
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where, X is the vector of unknown parameters which need to be updated to estimate the
signal correctly. X vector and H(m) vector can be expressed as:

X = [K1 cos(ϕ1) K1 sin(ϕ1) · · · Kn cos(ϕn) Kn sin(ϕn) KDC KDCγDC 1] (8)

H(m) = [sin(ω1mTs) cos(ω1mTs) · · · sin(ωnmTs) cos(ωnmTs) 1 − mTsnm·] (9)

When the vector of unknown parameters X is identified corresponding to minimum fit-
ness using WLS–MVO framework, the angles, and amplitudes of corresponding frequencies
can be calculated using following relations:

Kn =
√

X2
2n + X2

2n−1 (10)

ϕn = tan−1
[

X2n

X2n−1

]
(11)

The parameters of DC decaying offset can be computed using following relations:

KDC = ϕ2n+1 (12)

γDC =

[
ϕ2n+2

ϕ2n+1

]
(13)

The overall fitness function for the estimation of harmonics problem can be formulated as:

WLS = ∑ ω(Sig − ˆSig)2
(14)

where Sig denotes the actual signal, ˆSig denotes the estimated signal. Whereas ω is
the weight that is tuned according to the optimization requirements of the harmonic
estimation problem.

Performance Indices

Multiple performance indices are defined to validate the performance of the proposed
framework [1,3]. In this paper, the performance indices are defined as:

• Mean square error (MSE) is given by the following relation:

MSE =
1
H

H

∑
h=1

(
Sig − ˆSig

)2
(15)

• Residual sum of squares (RSS) accounts for the difference between the actual signal
and estimated signal, which is defined as:

RSS = ∑ (Sig − ˆSig)2
(16)

• Objective function called as weighted least square (WLS) for minimizing RSS is given by:

WLS = ∑ ω(Sig − ˆSig)2
(17)

• Performance index (PER) is also statistical performance evaluator parameter which is
given by:

PER =
∑ (Sig − ˆSig)2

Sig2 (18)
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3. Proposed Research Methodology

The solution to the harmonic estimation problem is significantly reported in the
literature with different hybrid approaches [24–27]. The key objectives of combining both
least square and meta-heuristic algorithms are to improve the convergence and accuracy of
the results. The basic model of the harmonic signal involves non-linearity due to the phases
of the sinusoids and noise present in the given harmonic signal. Meta-heuristic techniques
are deployed for the estimation of these non-linear phases of fundamental and higher-order
harmonic components whereas the least square algorithm caters to the estimation of linear
amplitudes. This parallelism significantly enhances the convergence characteristics and the
time required to reach an optimal solution.

Proposed Hybrid (WLS–MVO) Framework 112

The multi-verse optimizer is an efficient evolutionary algorithm to solve complex real-
world optimization problems and is proposed by Aljarah et al., in 2016 [28]. This algorithm
replicates the phenomenon described by multi-verse theory to form new universes. The
multi-verse theory describes that there are multiple universes, each of which is formed
with a big bang. These universes interact with each other to form new universes. The
three main concepts of multi-verse theory have been utilized to form this optimization
algorithm: blackholes, whiteholes, and wormholes. Blackholes exist in the universe, which
attracts everything including light beams due to their enormously high gravitational force.
Whiteholes generally cannot be seen but physicists believe that big bangs are actually the
whiteholes, which is the cause of the birth of new universes. Wormholes, on the other hand,
act as the time/space travel between several parts of the same universe or between different
universes. Every universe comprises of inflation rate through which it expands in space. A
high inflation rate corresponds to a higher probability of becoming a whitehole, whereas a
lower inflation rate corresponds to higher probability of becoming a blackhole. Wormholes
move objects from one universe to another randomly. The multi-verse theory also describes
that different universes interact with each other through blackholes, whiteholes, and
wormholes to form a stable condition. This multi-verse theory is the main inspiration for
the multi-verse optimizer algorithm. MVO is the population-based optimization algorithm
in which multiple universes represent the actual population for the problem to be optimized.
These multiple universes are considered as main initial guess solution matrix which is
given as follows:

Univ =


u1

1
u1

2
...

u1
d

u2
1

u2
2
...

u2
d

. . .
· · ·
. . .
· · ·

un
1

un
2
...

un
d

 (19)

where n is the total number of decision variables and d is the number of population
of universes:

ub
a =

{
ub

a s1 < ni(Univa)
ub

a s1 ≥ ni(Univa)
(20)

where ub
a denotes the bth decision variable of ath universe. ni(Univa) specifies the ath

universe, whereas ni(Univa) symbolizes the normalized inflation rate (fitness) of the ath

universe. s1 is the number between 0 and 1 which will be chosen randomly. The parameter
ub

t designates the bth decision variable of the tth universe, which is chosen randomly
according to the selection technique of roulette wheel.

The whiteholes selection is accomplished by the selection procedure of roulette wheel
and accordance with the normalized inflation rate. Lesser inflation rate corresponds to
inflated probability of interchanging of objects (parameters) through white/blackhole
tunnels. This mechanism promises the exploration (global search) of search space to avoid



Energies 2023, 16, 609 6 of 15

local convergence of optimal solution. Following equation provides higher probability of
inflation rate improvement through interchanging of objects via white/blackhole tunnels:

ub
a =


ub + tdr × (uBb − LBb)× s4 + LBb s3 < 0.5 s2 < wep
ub − tdr × (uBb − LBb)× s4 + LBb s3 ≥ 0.5 s2 < wep
ub

a s2 ≥ wep

(21)

where the bth parameter of the best universe so far is indicated by ub. Two coefficients
are used in this equation, tdr and wep. s2, s3, s4 are random numbers between [0, 1]. uBb
and LBb designate the upper and lower bounds of the bth variable. ub

a is the bth variable of
ath universe.

The two prominent coefficients tdr (traveling distance rate) and wep (wormhole exis-
tence probability) are used in this algorithm as indicated by the mathematical modeling.
wep defines the probability of the existence of wormholes in the universe. tdr factor defines
the distance rate or variation that an object can be transferred by a wormhole around the
best universe so far. wep and tdr enhances the exploitation (local search) of the algorithm
around global solutions. The adaptable formulas for wep as well as tdr are given as:

wep = mn + iter ×
(

mx − mn
ITER

)
(22)

where mn indicates the minimum (0.2 in this work), mx designates the maximum (1 in
this work), iter specify the present light year (iteration) and ITER describes the maximum
number of light years (iterations).

tdr = 1 − iter1/pr

ITER1/pr (23)

where pr (6 in this work) designates the local search (exploitation) accuracy on the top
of iterations. The proposed WLS–MVO framework for harmonic estimation is shown in
Figure 1.

Energies 2023, 16, 609 7 of 15 
 

 

 

Figure 1. Proposed WLS–MVO framework for harmonic estimation. 

4. Results and Discussion 125 
The simulations for each case study are performed on Laptop: TOSHIBA, Intel core 

i7 CPU 4610 @ 3.00 GHz processor, 6 GB RAM, and 64-bit operation system (Windows 
10). The WLS–MVO is programmed in MATLAB, and simulations are performed on 
MATLAB R2020a®. Algorithm parameters of WLS–MVO are adjusted and tuned based 
on individual case studies. 

4.1. Estimation of Integral Harmonics in VFD 131 
The test signal is the distorted voltage signal with a DC decaying component offset 

of 0.5 × exp(−5t) and two SNR (signal to noise ratio) levels in decibels, 0 and 10 [29]. The 
complete test system stating the harmonics present in the test signal are given in Ref. 
[30]. The given continuous time test signal is subjected to sampling and discretization as 
per Nyquist criterion considering, 64 samples per cycle with the sampling frequency of 
3.4 kHz. The developed framework is then simulated for near-optimal estimation of 
harmonics for the given signal. The proposed algorithm is applied to the test system 
considering 250 population size and maximum iterations of 500. 

The performance of the WLS–MVO is defined using four different indices as indi-
cated by (15–18). The waveforms of actual and superimposed estimated signals together 
with their respective convergence characteristics are shown in Figures 2 and 3. The con-
vergence characteristics are shown for three different performance indices defined by 
PER, RSS, and MSE and the algorithm reaches the optimal solution well before 100 and 

Figure 1. Proposed WLS–MVO framework for harmonic estimation.



Energies 2023, 16, 609 7 of 15

4. Results and Discussion 125

The simulations for each case study are performed on Laptop: TOSHIBA, Intel core i7
CPU 4610 @ 3.00 GHz processor, 6 GB RAM, and 64-bit operation system (Windows 10).
The WLS–MVO is programmed in MATLAB, and simulations are performed on MATLAB
R2020a®. Algorithm parameters of WLS–MVO are adjusted and tuned based on individual
case studies.

4.1. Estimation of Integral Harmonics in VFD 131

The test signal is the distorted voltage signal with a DC decaying component offset
of 0.5 × exp(−5t) and two SNR (signal to noise ratio) levels in decibels, 0 and 10 [29]. The
complete test system stating the harmonics present in the test signal are given in Ref. [30].
The given continuous time test signal is subjected to sampling and discretization as per
Nyquist criterion considering, 64 samples per cycle with the sampling frequency of 3.4 kHz.
The developed framework is then simulated for near-optimal estimation of harmonics
for the given signal. The proposed algorithm is applied to the test system considering
250 population size and maximum iterations of 500.

The performance of the WLS–MVO is defined using four different indices as indi-
cated by (15–18). The waveforms of actual and superimposed estimated signals together
with their respective convergence characteristics are shown in Figures 2 and 3. The con-
vergence characteristics are shown for three different performance indices defined by
PER, RSS, and MSE and the algorithm reaches the optimal solution well before 100 and
200 iterations for 0 and 20 dB noise, respectively. The proposed WLS–MVO converges
within 60 and 200 iterations for 0 and 20 dB noise respectively and shows smooth fitness
over the remaining iterations.
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Table 1 enlists the comparison in terms of the estimation of amplitudes, phases,
percentage error, and computation time for all the integral harmonics. The proposed WLS–
MVO reveals its superior performance in contrast to the other optimization techniques
proposed in the literature in terms of correctly estimating the harmonics present in the
signal and the least computational time of 1.16 s.

Table 1. Comparative performance of different algorithms considering integral harmonics estimation.

Algorithm Parameters Fund 3rd 5th 7th 11th Run Time (s)

BFO [31]

Amplitude (V) 1.4878 0.5108 0.1945 0.1556 0.1034

10.9310
Error (%) 0.8147 2.1631 2.7267 3.7389 3.4202

Phase (deg) 80.4732 57.9005 45.8235 34.5606 29.1270

Error (%) 0.4732 2.0995 0.8235 1.4394 0.8730

BFO-RLS [31]

Amplitude (V) 1.4942 0.4986 0.2018 0.1526 0.0986

9.3450
Error (%) 0.3840 0.2857 0.9021 1.7609 1.7460

Phase (deg) 80.3468 58.5461 45.6977 34.8079 29.9361

Error (%) 0.3468 1.4539 0.6977 1.1921 0.0639

BBO-RLS [32]

Amplitude (V) 1.4953 0.5004 0.2008 0.1490 0.0999

5.8520
Error (%) 0.3104 0.0850 0.4203 0.1961 0.0830

Phase (deg) 79.7888 59.5410 45.5153 36.1165 30.0124

Error (%) 0.2640 0.5661 1.1452 0.3238 0.0415

WLS–MVO

Amplitude (V) 1.5002 0.5000 0.2000 0.1500 0.1000

1.1674
Error (%) 0.0150 0.0045 0.0032 0.0018 0.0010

Phase (deg) 80.0017 60.0015 45.0019 36.0016 30.0011

Error (%) 0.0021 0.0025 0.0043 0.0044 0.0036

4.2. Estimation of Inter- and Subharmonics in VFD 153

The strength of the proposed WLS–MVO is further exploited for the estimation of
harmonics in different noisy environments. The integral harmonic estimation signal is
deteriorated with sub and inter-harmonics considering additive random noise as well,
yielding a highly complex and non-linear search space. The three subharmonic signals are
subjected to different amplitudes, frequencies, and phases. The signal firstly deteriorated
with subharmonic of 0.505 < 75◦ (20 Hz) and inter harmonics of 0.25 < 65◦ (180 Hz) and
0.35 < 20◦ (230 Hz) [1]. The very signal is then subjected to a noisy environment by consid-
ering noise of 10 dB SNR. Figures 4 and 5 show the actual and superimposed estimated
signals along with their corresponding convergence characteristics at different noise levels
of 0 dB and 20 dB. The strength of the WLS–MVO algorithm becomes conspicuous also in
noisy conditions. The convergence characteristics are shown for three different performance
indices defined by PER, RSS, and MSE and the algorithm reaches the optimal solution well
before 100 and 200 iterations for 0 and 20 dB noise, respectively. The given test signal which
is utilized for the estimation of harmonics is the characteristic signal generated by variable
frequency drives (VFDs), power electronic equipment, and arc furnaces.

The estimated signal obtained using WLS–MVO gives the best estimation performance
in terms of amplitudes and phases for fundamental, integer, inter-, and subharmonics with
the least percentage of error as shown in Table 2. The actual amplitude and phase of
the signal for fundamental frequency are 1.5 V and 80 degrees and an estimated signal
of 1.5002 V and 80.001 indicating a percentage error of 3.38 × 10−5 and 5.38 × 10−5,
respectively. The amplitudes and phases for all the harmonics are compared with the
well-known optimization techniques in the literature and robust and promising results are
obtained using WLS–MVO. Also, the computational time found using WLS–MVO is 1.22 s
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which is the least among other optimization techniques. WLS–MVO reaches the optimal
solution with a fast convergence rate. Numerical results given in Table 3 advocate the better
performance of the proposed WLS–MVO algorithm under highly noisy environments.
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Table 2. Comparative assessment of different algorithms considering inter− and subharmonics at
various SNRs.

Algorithm Parameters Sub Fund 3rd Inter-1 Inter-2 5th 7th 11th Run Time (s)

BFO
[31]

Amplitude
(V) 0.5250 1.4788 0.4877 0.2664 0.3729 0.2052 0.1464 0.1016

13.8330
Error (%) 3.9950 1.4103 2.4575 6.5574 6.5295 2.5764 2.4170 1.5531

Phase
(deg) 74.4800 79.8361 61.2316 63.9910 19.6887 47.6980 36.7362 29.3928

Error (%) 0.5140 0.1639 1.2316 1.0090 0.3113 2.6983 0.7462 0.6072

BFO-RLS
[31]

Amplitude
(V) 0.5110 1.5029 0.4921 0.2581 0.3639 0.2009 0.1479 0.1015

12.8370
Error (%) 1.1900 0.1952 1.5887 3.2372 3.9651 0.4541 1.4149 1.4800

Phase
(deg) 74.8100 79.9148 59.0760 65.3445 19.8677 46.2780 36.4473 30.0643

Error (%) 0.1830 0.0852 0.9240 0.3445 0.1323 1.2783 0.4473 0.0643
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Table 2. Cont.

Algorithm Parameters Sub Fund 3rd Inter-1 Inter-2 5th 7th 11th Run Time (s)

BBO-RLS
[32]

Amplitude
(V) 0.4943 1.4984 0.5003 0.2458 0.3497 0.2008 0.1485 0.0999

6.7525
Error (%) 1.1255 0.1046 0.0785 1.6506 0.0788 0.4452 0.9557 0.1000

Phase
(deg) 74.9321 79.9500 59.5228 65.1706 19.9775 45.5200 36.1179 30.0123

Error (%) 0.0905 0.0625 0.7452 0.2625 0.1125 1.1565 0.3275 0.0410

WLS–MVO

Amplitude
(V) 0.5050 1.5000 0.5000 0.2500 0.3500 0.2000 0.1500 0.1000

1.2204
Error (%) 3.38 × 10−5 2.06 × 10−6 1.87 × 10−5 7.88 × 10−5 4.27 × 10−5 1.22 × 10−4 4.80 × 10−5 1.89 × 10−4

Phase
(deg) 7.50 × 101 8.00 × 101 6.00 × 101 6.50 × 101 2.00 × 101 4.50 × 101 3.60 × 101 3.00 × 101

Error (%) 5.38 × 10−6 1.35 × 10−6 6.52 × 10−5 1.48 × 10−4 9.14 × 10−5 4.32 × 10−5 3.70 × 10−7 1.32 × 10−4

Table 3. Comparative assessment of different algorithms considering PER index.

Algorithm BFO [31] BFO-RLS [31] BBO-RLS [32] WLS–MVO

No noise 0.1178 0.087 0.0658 5.50 × 10−5

40 dB 0.138 0.092 0.075 0.007794238

20 dB 0.8073 0.787 0.5735 0.050778

10 dB 5.2549 4.5482 3.8555 0.46455

The performance index of WLS–MVO defined by (18) using PER which is measured at
different noise levels of 10, 20, and 40 dB is shown in Table 3. The PER values of WLS–MVO
are compared with other optimization techniques in the literature and promising results
are obtained. The least values of PER obtained with WLS–MVO indicate the accuracy with
which it can effectively estimate the signal and harmonics and the superiority of WLS–MVO
over the other optimization techniques.

4.3. Real-Time Voltage Signal Harmonics Estimation of AFPMSG 186

Conventional thermal power plants are being replaced with renewable energy sources
(RES) due to high fuel prices and associated pollution with conventional thermal energy
sources [33–37]. Solar and wind are the most common RESs being used today for electrical
energy production [38–40]. Modern wind turbines technologies include the usage of axial
flux permanent magnet generators (AFPMSGs) instead of radial flux permanent magnet
generators (RFPMGs) due to their optimum flux density, higher torque-weight ratio, higher
efficiency, lightweight, and more importantly it has zero cogging torque losses [41]. In
this study [42], a three-phase and multi-stage AFPMSG design is developed. The voltage
(per unit) waveform obtained from AFPMSG is considered for estimating the harmonics.
The voltage waveform is recorded using oscilloscope taking the sampling frequency of
10 kHz. The voltage waveform of AFPMSG is shown in Figure 6 with the superimposed
estimated voltage signal. The harmonics estimation using proposed WLS–MVO algorithm
was carried out for the first 30 integer harmonics. The execution of harmonics estimation is
carried out by taking 300 iterations and 50 number of populations. Figure 6b shows the
amplitudes of 30 integer harmonics present in the voltage signal of AFPMSG. The ratings
of the AFPMSG can be verified from this study [42].

4.4. Real-Time Voltage Signal Harmonics Estimation of UPS 203

UPS are extensively deployed for powering the load in emergency or in load shedding
conditions. However, the quality of UPS is characterized by the output voltage waveform
being fed to the load [43]. The output waveform relies solely on the power electronic
circuitry and the control algorithms that directly translates into cost. The voltage waveform
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for the experimental setup is recorded from a Homage Tron (Duo) UPS available in our
facility for a 250 no. of samples per cycle. As per the ratings of UPS, it is of 1 KVA, having
output 170–280 (AC) and input of 12 V (DC). The output waveform is as shown in Figure 7
with a superimposed estimated signal. The harmonics in the voltage waveform estimated
using WLS–MVO are shown in Figure 7 for 30 integer harmonics with the corresponding
percentages of amplitudes.
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4.5. Real-Time Current Signal Harmonics Estimation of LEDs 214

Light Emitting Diodes (LED) lamps are non-linear load and are being extensively used
in today’s world due to their low energy consumption. LEDs consist of power electronic
based circuitry which take non-linear current from the source which results in deterioration
of supply voltage waveform due to inclusion of harmonics present in the current taken by
LED [43]. The LED is 20 Watt with operating conditions of 90–260 V (AC), and compatible
with both 50 and 60 Hz. Digital Oscilloscope is used to obtain the non-linear LED current
waveform by considering 250 samples per cycle. WLS–MVO is tested for the said case
study by taking 10 odd harmonics and 200 iterations. The output waveform is as shown in
Figure 8 with a superimposed estimated signal.
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5. Statistical Significance 224

The harmonics estimation problem involves the estimation of desired frequency com-
ponents from a given distorted signal embedded with random noise to correctly estimate
the amplitude and phase of the corresponding frequency component. The accuracy with
which an optimization algorithm estimates the harmonics in the signal can be evaluated
using some benchmark functions. Four performance indices are defined as (15–18), for
which WLS–MVO has been evaluated and simulated as previously considered in the case
studies. Statistical significance has been evaluated using statistical analysis software, SPSS
(Statistical Package of Social Sciences). The harmonic estimation of current waveform of test
case 1 is run 100 times using proposed WLS–MVO framework. The results are statistically
evaluated through SPSS software. The lower and upper bounds of the results as shown in
Table 4 are evaluated according to confidence internal. In this case, the confidence interval
is 95%, which advocates the effectiveness of the proposed framework.

Table 4. Statistical significance of multiple test runs optimized by the proposed framework.

Parameter Beta Significance
95% Confidence Interval

Lower Bound Upper Bound

Constant 0.9998 0 0.9998 0.9999

No of Test Runs −2.39 × 10−6 4.34 × 10−9 −3.13 × 10−6 −1.66 × 10−6

To further validate the effectiveness of the proposed WLS–MVO for correct estimation
of harmonics, boxplots considering the performance index RSS are plotted for the inter-
and subharmonics for 100 simulation runs, as shown in Figure 9. In statistics, a boxplot
gives the summary for a set of data (results), in terms of several parameters, which include
minima, lower quartile, medium quartile (50th percentile), upper quartile, maxima, and
outliers [44]. It is evident from the boxplots that the optimized solution lies between
the minimum and maximum values having minimal outliers. Statistical tests using SPSS
are also performed using linear regression to investigate the validity of results shown in
Table 4. Hence, the statistical analysis justifies the effectiveness of the proposed WLS–MVO
algorithm for correctly estimating the harmonic content in current and voltage waveforms
with minimum computational time and with high accuracy compared to other optimization
techniques reported in the literature.
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6. Conclusions

In this paper, the concept of hybridization is utilized to properly estimate real time
harmonics present in noisy power signals. Thus, statistical approach is cascaded with
meta-heuristic technique to suggest hybrid weighted least square multi-verse optimizer
(WLS–MVO) for the proper estimation of harmonics. To validate the authenticity of the
suggested technique, results are compared with previously developed techniques in terms
of accuracy (PER, RSS, MSE) and computational time. Several theoretical and practical
case studies are explored to validate the performance of the proposed approach. For the
case study, integer harmonics are extracted from power signals at different uniform as well
as Gaussian noise levels (40, 20, 10 dB). The results and discussion section clearly depict
the effectiveness of WLS–MVO in harmonics estimation when compared to previously
developed techniques. The application of WLS–MVO has been further extended to real-
time current waveform of LEDs and voltage waveform of UPS and AFPMG. This variegated
usage of the proposed WLS–MVO depicts the applicability of the algorithm for the solution
of nonlinear and complex harmonic estimation problems.
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