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Abstract—This paper studies the risk management of a battery
bidding in both day-ahead and intraday markets arising from
the uncertain nature of electricity prices. To this end, a coherent
risk measure, Second-order Stochastic Dominance (SSD), which
is capable of expressing battery preferences in the form of a
preset fixed benchmark (profit), is incorporated into the bidding
model. The SSD serves the decision-maker as a risk-averse
optimizer exploring for profit distribution members greater than
a preset fixed benchmark. The most challenging facet of SSD-
constrained methodologies is how to effectually define the preset
fixed benchmark. In this regard, first, a generic approach is
offered to find the feasible region for benchmark selection in SSD-
constrained optimization problems. Then, a novel benchmark
selection technique considering both the decision-maker’s regret
and out-of-sample profit, leverages the VIKOR method to get
the ranking of different solutions and find the compromise
benchmark in the risk-aware environment. Consequently, two
decisive criteria from both ex-ante and ex-post tests are involved
in the benchmark selection procedure, making the bidding
problem regret- and consequence-aware. The numerical results of
the developed methodology against risk-neutral and deterministic
approaches show the efficiency of the proposed model.

Index Terms—Battery, bidding strategy, out-of-sample analy-
sis, regret, risk management, second-order stochastic dominance
(SSD).

I. INTRODUCTION

DUE to technological maturity, Battery Storage Systems
(BSSs) have shown excellent potential for providing

grid services such as peak shaving [1], operating reserves
and ancillary services [2], and decreasing renewable energy
curtailment [3] in recent years. Despite their advances and
economies of scale, the vast exploitation of BSSs in current
electricity markets is still hindered mainly by high investment
costs [4]. A major contributing factor to high investment
costs is the degradation of BSSs due to arbitrary charging
and discharging of these devices, which limits their useful
lifetime over time. However, appropriate modeling of the BSS
degradation cost within their operational strategies can effec-
tively restrict their abrupt charging and discharging patterns
[5]. Another viable solution for increasing BSSs deployment
is to enhance their optimized revenues regarding the provided
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services. Energy arbitrage through market bidding is one of
the primary practices with promising economic incomes for
the BSS operators. Energy arbitrage is the practice of BSS
charging and discharging at different times of the day to
take advantage of price variability in the electricity market
[6]. Therefore, BSSs utilization under proper consideration of
degradation costs and optimum strategies for electricity arbi-
trage can affect their market revenues and thus the economic
feasibility of large-scale exploitation.

A considerable part of the recent literature on BSSs energy
arbitrage is dedicated to the optimal bidding strategies of
these devices in the electricity markets [7]–[16]. Authors in
[7] proposed an energy arbitrage model for the BSS in the
wholesale market by addressing its cycle aging cost. For joint
energy and ancillary service markets, Ref. [8] proposed an
optimal bidding model with multi-scenario settings to consider
price uncertainty. As the abrupt charging and discharging
cycles of BSSs significantly degrade their service life, the
authors embedded the BSS cycle life model into the profit
maximization problem to calculate the cycle life under various
operational strategies. Similarly, a bidding structure based on
the BSS cost functions was proposed in [9] for participating
in energy and spinning reserve markets. In [10], an optimal
bidding strategy for the BSS operation was implemented
through a bi-level optimization model. The day-ahead arbi-
trage benefit of the BSS was maximized in the upper-level
problem while the market was cleared in the lower-level.
Furthermore, the cycling degradation was also taken into
account to enhance the accuracy of BSS profit assessment.
Ref. [11] investigated the synergies between energy arbitrage
and fast frequency response in the wholesale electricity market
with BSSs. Considering charging/discharging losses and the
lifetime of the BSS, a reinforcement learning-based approach
was suggested in [12] for learning the optimized bidding
strategy and thus to enhance the profit of the BSS in power and
regulation markets. The authors in [13] developed a bi-level
distribution level bidding for distributed BSSs in day-ahead
energy and reserve markets along with the balancing market
and a new flexibility market. Similarly, in [14], a bi-level
BSS bidding model was provided at the transmission level,
with a decomposition approach employed to expedite the long-
running problem. In [15], a co-optimized sizing and bidding
model was proposed for a BSS in energy and frequency regu-
lation markets under deterministic conditions. Furthermore, to
facilitate the integration of BSSs, a joint bidding and market-
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clearing model was suggested in [16] while the BSS was in 
charge of submitting its cycling mileages.

A particular challenge for BSS operators is the attributed 
risks due to various sources of uncertainty in optimal bid-
ding strategies. Nevertheless, the reviewed papers [8]–[16] 
ignored the risk associated with uncertainties. In addition to 
the reviewed studies, scholars addressed risk management in 
bidding strategies via a variety of concepts and approaches 
[17]–[23]. In [17], optimal offering and bidding models for 
the combined wind farm and energy storage systems were im-
plemented while the risk arising from the stochastic parameters 
was handled by the conditional value-at-risk (CVaR) metric. 
The authors of [18] formulated a risk measure-based robust 
optimization bidding model for dispatching a wind farm in 
combination with the BSS. According to the method, the selec-
tion of the uncertainty set for robust optimization relied on the 
coherent risk measure of CVaR. A new scheme for handling 
the risk of stochastic and interval parameters based on CVaR 
and minimizing the deviation of interval objective function 
was developed in [19]. While the risk of stochastic parameters 
was ignored in [20], a hybrid stochastic-robust uncertainty 
modeling approach was developed for the microgrid bidding 
problem. A Second-order Stochastic Dominance (SSD) model 
was presented in [21] for risk management of a wind farm 
bidding in electricity markets. In [22], a distributionally robust 
optimal bidding model was derived for the wind-BSS aggre-
gator participating in the day-ahead market. Distributionally 
robust optimization, as opposed to the conventional robust 
model, takes into account a group of potential distributions 
of the uncertain variables and seeks to optimize against the 
distribution’s worst-case scenario. Information gap decision 
theory was utilized in [23] to handle the risk-averse and risk-
seeker strategies for the optimal offering strategies of BSS and 
wind farms in the day-ahead energy market. The following 
aspects have been disregarded by current research [7]–[23]:

First, apart from risk-based bidding structures introduced 
above [7]–[20], [22], [23], there is little research that con-
centrates on expressing the decision-maker’s preference in a 
risk-aware setting via SSD. The SSD criterion is a coherent 
risk metric enabling exploiters to hedge against the risk of 
uncertainties by imposing preferences in terms of acceptable 
earnings over a preset fixed benchmark. The existing literature 
on the SSD criterion fails to properly propose a generic 
approach to derive the feasible region for benchmark designa-
tion in SSD-constrained problems. Any benchmark selection 
outside this feasible region yields infeasible or unpractical 
outcomes. In [21], as one of the few works on SSD-constrained 
optimization, the authors did not adequately generalize the 
ground to establish the feasible region with suitable reasoning. 
For future implementation and development, it is necessary to 
articulate the explanation and justification behind the various 
steps to be taken to derive the feasible region.

Second, the final benchmark chosen by the decision-maker 
in SSD-constrained problems has drawn limited attention, 
which needs to be sensibly addressed since a poor selection 
may lead to useless outcomes in terms of risk management. 
There was no effort in the prior literature [21], [24], [25] to 
provide a practical method for selecting benchmarks within

the SSD framework. The existing works relied on examining
the SSD performance without devising a sensible architecture
for picking the compromise benchmark.

Inspired by preceding studies, this paper extends the au-
thors’ previous work [26] on optimal battery bidding in day-
ahead and intraday markets utilizing a detailed risk man-
agement tool, i.e., SSD, with its novel benchmark selection
procedure. Risk is inevitable in almost all power system-
related studies due to the number of uncertain sources that
need to be tackled in advance (e.g., day-ahead). Accordingly,
devising an appropriate risk management tool is one of the
most important sides of decision-making under uncertainty.
This paper thus utilizes the SSD criterion as a coherent risk
measure in a stochastic environment to capture the risk of
bidding and enforce decision-maker’s preferences in terms of
acceptable profits over a preset fixed benchmark. Compared to
the frequently used CVaR criterion, which hunts the supreme
elements of the profit distribution, the SSD explores profit
distribution members greater than a preset fixed benchmark
(profit). Coherent risk measures are those that meet the cri-
teria laid forth by Artzner et al. [27], which fulfill the four
conditions concurrently: monotonicity, sub-additivity, positive
homogeneity, and translation invariance. A risk measure lacks
coherence if any of these conditions are violated. The SSD
meets all of these characteristics, resulting in substantial merits
over incoherent risk measures. The SSD merits over incoherent
risk metrics specifically depend on the missing criteria seen in
incoherent risk measures. For example, the SSD is superior to
value-at-risk, which fails to meet sub-additivity. Sub-additivity
expresses the notion that diversification may lower risk (an
amalgamation or a coalition does not raise the risk). The SSD
appears to be more advantageous than value-at-risk, which
cannot guarantee sub-additivity (diversification).

To effectively set the benchmarks for the SSD-constrained
problem, the authors leverage regret theory and out-of-sample
analysis to enter both ex-ante and ex-post tests into the
benchmark selection procedure. To do so, first, a generic
approach is proposed to find the feasible region for inputting
benchmarks into the SSD-constrained problems. Next, given
the decision-maker’s perspective, a number of equally-spaced
benchmarks are extracted from the feasible region. Each input
benchmark is then assessed based on its performance over
a large number of samples (out-of-sample analysis) and the
decision-maker’s regret. Note that regret is characterized as
the difference between the realized benefit and the gain we
could realize if we were aware of the situation that would
undoubtedly occur in advance [28]. Finally, the benchmarks’
ranking and the compromise solution are obtained via VIKOR1

method in accordance with two conflicting criteria (regret and
out-of-sample performance). Summarizing, the contributions
of the paper are listed as follows:

• Incorporating the regret theory into the SSD-constrained
battery bidding problem to identify robust benchmarks
entering the SSD constraints. This is the first time the
regret theory is leveraged to detect robust benchmarks
in an SSD-constrained problem. The superiority of the

1VIekriterijumsko KOmpromisno Rangiranje (in Serbian language).
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proposed approach is accordingly demonstrated over con-
ventional approaches.

• Developing a generic approach to obtain the feasible
region for benchmark selection in any problem subjected
to SSD constraints.

• Proposing, for the first time, a novel benchmark selec-
tion method in SSD-constrained problems founded on
decision-maker’s regret and the out-of-sample perfor-
mance, assuring the regret- and consequence-aware of the
proposed methodology.

The organization of the paper is as follows. The mathe-
matical model for the risk-neutral battery bidding model is
introduced in Section II. Section III presents the mathematical
model for the SSD-constrained bidding model along with
the procedure to derive the benchmark feasible region. The
proposed benchmark selection method is presented in Section
IV. The numerical results and concluding remarks are given
in Sections V and VI, respectively.

II. RISK-NEUTRAL BATTERY BIDDING MODEL

This study aims to propose a bidding model for a price-taker
lithium-ion BSS in both day-ahead and intraday electricity
markets, while prices are exogenously characterized through
scenarios. Various applications from grid-scale to residential-
scale are attributed to lithium-ion BSSs due to their substan-
tial merits over other battery technologies. Amongst visible
advantages of lithium-ion BSS are low self-discharge rate and
high energy density, whereas aging difficulties are the major
disadvantages. Therefore, as stated in the introduction, a wide
range of scientific studies have been committed to tackling the
aging problem of lithium-ion BSS. Within all the approaches
provided in the literature, the model presented in [7] is used
in this paper to compensate for the aging cost of the BSS,
which is defined as the function of depth of discharge (DoD).
Regarding the aging cost, the proposed energy arbitrage model
is formulated as a two-stage stochastic problem where the
stochastic parameters are the volatile electricity prices in day-
ahead and intraday markets. While several scenario generation
methods have been suggested in the literature [29], this article
utilizes the method presented in [30]. Accordingly, the ob-
jective function of the proposed optimization problem can be
described as (1a):

Max
Ω∑

ω=1

πω

T∑
t=1

σDA
t,ω

[
ρDA,dis
t − ρDA,ch

t

]
+

σIN
t,ω

[
ρIN,dis
t,ω − ρIN,ch

t,ω

]
−

S∑
s=1

ψs

[
ϱDA,dis
s,t + ϱIN,dis

s,t,ω

]
(1a)

where πω is the probability of scenario ω, ρDA,ch
t and

ρDA,dis
t represent the BSS charge and discharge bids into the

day-ahead market, and ρIN,ch
t and ρIN,dis

t denote the BSS
charge and discharge bids into to the intraday market. σDA

t,ω

and σIN
t,ω reflect day-ahead and intraday prices. ψs accounts

for the slope of block s in the piecewise linear function of the
BSS aging cost [7].

Eq.(1a) consists of three terms. The first and second terms
indicate profits from the BSS energy arbitrage in day-ahead

and intraday markets, respectively. The third term, however,
displays the aging cost of the BSS. Constraints (1b)-(1e) show
the charge and discharge powers of the BSS in the day-ahead
and intraday markets, which are equal to the sum of the
charging and discharging powers in each segment s ∈ [1, S]
of DoD (i.e., ϱDA,dis

s,t , ϱDA,ch
s,t , ϱIN,dis

s,t,ω , ϱIN,ch
s,t,ω ).

ρDA,dis
t =

S∑
s=1

ϱDA,dis
s,t ∀t (1b)

ρDA,ch
t =

S∑
s=1

ϱDA,ch
s,t ∀t (1c)

ρIN,dis
t,ω =

S∑
s=1

ϱIN,dis
s,t,ω ∀t,∀ω (1d)

ρIN,ch
t,ω =

S∑
s=1

ϱIN,ch
s,t,ω ∀t,∀ω (1e)

Furthermore, the BSS’s charging and discharge powers must
be scheduled without exceeding the operational limits in day-
ahead and intraday markets, as described in (1f)-(1i).

0 ≤ ρDA,dis
t ≤ P disϵt ∀t (1f)

0 ≤ ρDA,dis
t + ρIN,dis

t,ω ≤ P disϵt ∀t,∀ω (1g)

0 ≤ ρDA,ch
t ≤ P ch × (1− ϵt) ∀t (1h)

0 ≤ ρDA,ch
t + ρIN,ch

t,ω ≤ P ch × (1− ϵt) ∀t,∀ω (1i)

In the above constraints, P ch and P dis express maximum
charging and discharging powers of the BSS, and ϵt is a binary
decision variable for modeling the BSS discharging mode. It
is of paramount importance that the charging and discharging
powers of the BSS in the intraday market should be limited
to a certain extent [30], as shown in (1j) and (1k).

0 ≤ ρIN,dis
t,ω ≤ α× ρDA,dis

t ∀t,∀ω (1j)

0 ≤ ρIN,ch
t,ω ≤ α× ρDA,ch

t ∀t,∀ω (1k)

where α is the coefficient for limiting intraday charging
and discharging powers of the BSS. According to (1l), each
segment of BSS charging and discharging powers must receive
positive values in day-ahead and intraday markets:

ϱDA,dis
s,t , ϱDA,ch

s,t , ϱIN,dis
s,t,ω , ϱIN,ch

s,t,ω ≥ 0 ∀s,∀t,∀ω (1l)

Moreover, the hourly BSS State of Charge (SoC) in every
block s and the resulting hourly BSS SoC are represented in
(1m) and (1n), respectively.

δSoCs,t,ω =δSoCs,t−1,ω −

(
ϱDA,dis
s,t + ϱIN,dis

s,t,ω

Λdis

)
+(

Λch × [ϱDA,ch
s,t + ϱIN,ch

s,t,ω ]
)

∀s,∀t,∀ω (1m)

∆SoC
t,ω =

S∑
s=1

δSoCs,t,ω ∀t,∀ω (1n)
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In (1m), δSoCs,t,ω denotes the BSS SoC in block s of DoD,
Λch and Λch show charging and discharging efficiencies of
the BSS, and in (1n) ∆SoC

t,ω expresses the hourly BSS SoC.
In addition, the SoC of the BSS needs to be restricted within
appropriate boundaries [31], as formulated in (1o) and (1p).

0 ≤ δSoCs,t,ω ≤ κSoC
s ∀s,∀t,∀ω (1o)

0 ≤ ∆SoC
t,ω ≤ ESoC ∀t, ∀ω (1p)

where κSoC
s is the maximum allowable BSS SoC in block s

of DoD, and ESoC indicates the maximum BSS SoC.

III. SSD-CONSTRAINED BATTERY BIDDING MODEL

In this section, first, the mathematical formulation is given
for incorporating the SSD criterion into the risk-neutral for-
mulation as presented in the previous section. Then, a generic
approach is presented to derive the feasible region for bench-
mark selection in SSD-constrained problems.

A. Mathematical Formulation
Uncertain nature of electricity prices (day-ahead and intra-

day) modeled by stochastic samples turns the problem into a
stochastic programming model, emphasizing the importance
of risk management for assisting decision-makers in pursuing
actions that are less likely to result in extremely unpleasant
outcomes. The most frequent approach to implement risk
management in stochastic optimization is to incorporate a risk
criterion in the mathematical formulation, and accordingly
take advantage of broadly employed risk criteria, such as
expected shortage, shortfall probability, variance, value-at-
risk, and CVaR [21]. The CVaR is the only criterion among
the aforementioned risk measures that satisfies the coherence
features of risk criteria [32]. In contrast to the commonly
used CVaR criterion which seeks the supreme elements of the
profit distribution, the SSD seeks profit distribution members
that are greater than a preset benchmark (profit) [32]. The
decision-maker is then able to make choices that stochasti-
cally dominate the preset benchmark. First-order stochastic
dominance and SSD are among the well-documented models
covered by stochastic dominance, whereas the first-order gets
lesser attention owing to its inherent non-convexity. In this
work, the SSD is therefore used to handle the risk by choosing
various preset benchmarks from the feasible region. The SSD-
constrained version of the risk-neutral model (1) can be formed
as the following:

Max
Ω∑

ω=1

πw

T∑
t=1

σDA
t,ω

(
ρDA,dis
t − ρDA,ch

t

)
+

σIN
t,ω

(
ρIN,dis
t,ω − ρIN,ch

t,ω

)
−

S∑
s=1

ψs

(
ϱDA,dis
s,t + ϱIn,diss,t,ω

)
(2a)

Subject to:
T∑

t=1

σDA
t,ω

(
ρDA,dis
t − ρDA,ch

t

)
+ σIN

t,ω

(
ρIN,dis
t,ω − ρIN,ch

t,ω

)
−

S∑
s=1

ψs

(
ϱDA,dis
s,t + ϱIn,diss,t,ω

)
≥ kb − ζω,b ∀ω,∀b (2b)

Ω∑
ω=1

πωζω,b ≤
B∑

b′=1

ηb′ ×max (kb − kb′ , 0) ∀b (2c)

ζω,b ≥ 0 ∀ω,∀b (2d)

Constraints (1b) − (1p) (2e)

where kb is the preset fixed benchmark by the decision-
maker in scenario b with a given probability ηb, and ζω,b

is a variable calculating the profit shortfall under a preset
fixed benchmark [32]. Hereafter, a one-scenario benchmark
strategy (i.e., b = 1 and η1 = 1) is considered for the
developed SSD-constrained model. Note that the proposed
model is generic and capable of handling any number of
benchmark scenarios. Fig. 1 displays examples of benchmarks
with three different numbers of scenarios. As seen, we can
move toward a Cumulative Distribution Functions (CDF) as a
benchmark to be dominated by the proposed risk-aware model
if we increase the number of benchmark scenarios. In other
words, by increasing the number of scenarios in the preset
benchmark, the decision-maker can control the shape of the
output CDF as a risk-controlling tool. This way, the range
of output CDF and the CDF shape are controlled as scenario
numbers get bigger. In contrast, the proposed approach gives
higher flexibility to the shape of the output CDF despite
controlling the range as the number of scenarios decreases.
In this work, a single-scenario benchmark is chosen to keep
the functional interpretation of the SSD as straightforward as
possible.

As noticed, the objective function (2a) remains unchanged
in the SSD-constrained formulation. The constraints associated
with the SSD criterion are imposed through (2b)-(2d). To
further exemplify how the SSD criterion works, the CDFs
of the profits achieved by risk-neutral and SSD-constrained
approaches for a typical problem are presented in Fig. 2.
As observed in Fig. 2, the red CDF representing the risk-
neutral case covers a broad range of profits. By applying the
SSD criterion with a designated benchmark, the resulting CDF
stochastically dominates the preset fixed benchmark. This way,
profit members generated by the SSD-constrained formulation
would dominate the preset benchmark. The primary challenge
in SSD-constrained problems is that benchmarks should be
chosen within a feasible region; otherwise, no solution would
be found. The next subsection debates how to obtain this
feasible region.

B. Deriving Benchmark feasible Region Under SSD Criterion
As discussed, the preset fixed benchmarks of the SSD-

constrained model should be chosen accurately to prevent
infeasible or unpractical outcomes. By focusing on the CDF
of a given variable (e.g., profit), the benchmark feasible
region is a rectangular area, as shown in Fig. 2 with green
slime. The upper and lower bounds of this rectangle can
be easily determined by solving two different optimization
models before executing the main SSD-constrained problem,
as detailed in the following:

• Benchmark Lower Bound: The benchmark lower bound
is the lowest profit member (scenario ω) of the risk-
neutral (1) CDF. According to Fig. 2, any benchmark
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Fig. 1: Examples of benchmarks with different numbers of
scenarios in an SSD-constrained problem.
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Fig. 2: Illustrative example of CDFs and benchmark feasible
region in an SSD-constrained problem.

smaller than this lower bound would turn the SSD-
constrained problem into a risk-neutral model, implying
that the given model already dominates the selected
benchmark.

• Benchmark Upper Bound: The benchmark upper bound
is the lowest profit member (scenario ω) of the follow-
ing CVaR maximization problem where confidence level
approaches 1 (β → 1):

Max ξ − 1

1− β

Ω∑
ω=1

πωφω (3a)

subject to:
T∑

t=1

σDA
t,ω

(
ρDA,dis
t ρDA,ch

t

)
+ σIN

t,ω

(
ρIN,dis
t,ω − ρIN,ch

t,ω

)
−

S∑
s=1

ψs

(
ϱDA,dis
s,t + ϱIN,dis

s,t,ω

)
≥ ξ − φω ∀ω (3b)

φω ≥ 0 ∀ω (3c)

Constraints (1b) − (1p) (3d)

where ξ and β are value-at-risk and confidence level,
respectively, and φω is a non-negative auxiliary variable
required for CVaR evaluation. By setting β → 1 (here
β = 0.99), optimization problem (3) reflects the most
conservative action that a risk-averse decision-maker
could take [33]. In doing so, the decision-maker puts the
most focus on extreme cases. The lowest profit member
of this CVaR-maximization problem is the benchmark
upper bound for the SSD-constrained model. According

to Fig. 2, any benchmark greater than this upper bound
would make the SSD-constrained problem infeasible,
meaning that the SSD-constrained model can no way
dominate the selected benchmark (which was obtained
based on the most conservative action).

IV. PROPOSED BENCHMARK SELECTION METHOD IN
SSD-CONSTRAINED PROBLEMS

The predominant difficulty in SSD-Constrained problems is
how decision-makers appropriately decide on a preset fixed
benchmark. Despite the high level of attention paid to the
features and performance of the SSD criterion in the relevant
context, benchmark selection has received less engagement.
While the vast majority of the prior art relied on empirical
evidence for benchmark selection, in this work, a new archi-
tecture based on ex-ante and ex-post analyses is proposed for
the same end. In this regard, the regret concept and the out-of-
sample test are used as two metrics to assess the performance
of benchmarks in the feasible region:

1) Regret: The regret theory is leveraged to judge the
robustness of input benchmarks [28]. Regret might be
characterized as the difference between the realized
benefit and the gain we could realize if we were aware
of the situation that would undoubtedly occur in advance
[28]. In terms of stochastic programming problems,
regret (Rω) could be mathematically defined as the
difference between the optimal (ideal) solution in each
scenario (F ideal

ω ) in case of having full knowledge over
uncertainties and the solution of problem (2):

Rω = F ideal
ω −

(
T∑

t=1

σDA
t,ω

(
ρDA,dis
t − ρDA,ch

t

)
+

σIN
t,ω

(
ρIN,dis
t,ω − ρIN,ch

t,ω

)
−

S∑
s=1

ψs

(
ϱDA,dis
s,t + ϱIn,diss,t,ω

))
∀ω (4)

where F ideal
ω is a parameter calculated prior to handling

the main problem. F ideal
ω is calculated using ex-ante

scenarios while reformulating the two-stage stochastic
problem in a manner that all decision variables are de-
pendent on the realization of stochastic parameters (elec-
tricity prices). The resulting formulation is not a two-
stage decision-making problem but rather a single-stage
one with perfect insight into uncertainties. The problem
formulation for calculating this parameter is reported
in Appendix A. Decision-makers tend to minimize the
regret, as a result, the regret-aware mathematical model
for the intended problem is as minimizing the average
regret:

Min
Ω∑

ω=1

πw ×Rω (5a)

Subject to:
Constraints (2a) − (2e), (4) (5b)

In the above model, the average regret is minimized for
each given benchmark from the feasible region in the
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SSD-constrained model. Each benchmark thus results in
a distinct average profit and average regret. From the
view point of this concept, the smaller the regret, the
better the benchmark.

2) Out-of-sample test: Out-of-sample analysis is the sec-
ond metric utilized to evaluate the quality of the results
delivered by a stochastic programming setting [32].
Hence, an out-of-sample evaluation, similar to the one
proposed in [34], is used to assess the efficacy of in-
put benchmarks after solving a stochastic programming
problem using information from a large-scale external
model [32]. Each benchmark from the benchmark fea-
sible region yields an average out-of-sample profit. The
greater this value, the better the benchmark.

By having these two metrics as the judging criteria, the
feasible region is divided into a number of equally spaced
benchmarks (n), and each benchmark is assessed in terms of
these metrics. Ultimately, the benchmarks’ ranking and the
compromise solution are obtained via the VIKOR method in
accordance with these two metrics. The VIKOR method has
been extensively utilized to address numerous multi-criteria-
based decision-making problems [35]. The VIKOR technique
comes up with a ranking list based on how close a solution is
to the ideal one [35], [36]. Algorithm 1 depicts the summarized
procedure for implementing the VIKOR technique.

V. NUMERICAL RESULTS

The performance of the proposed risk-averse SSD-
constrained model for market bidding with a typical BSS
is demonstrated in this section. The considered BSS is a
35 MW battery with a five-hour capacity. It is thus capable
of storing a maximum of 175 MWh of received electricity.
Both BSS charging and discharging efficiencies are considered
Λdis = Λch = 0.95 [37]. Ref. [7] contains all data pertaining
to the BSS aging cost, whereas this function is linearized
with twenty blocks (S = 20). The price scenarios (for both
ex-ante and ex-post tests) are derived following a scenario
generation process [30] for the 16th of May, 2022, Spanish
market [38]. For the ex-ante analysis, first, one thousand
scenarios for day-ahead and intraday prices are generated and
then reduced to twenty for each [39]. These scenarios are
depicted in Fig. 3. One thousand additional scenarios are
generated for the ex-post (out-of-sample) analysis, and the
resulting scenarios are displayed in Fig. 4. The coefficient for
limiting intraday charging and discharging powers is set to
α = 0.3 [34], meaning that the BSS can only bid 30% of
its day-ahead bid in the intraday market. It is worth noting
that the 3rd intraday auction is the target trading floor in this
study. All mathematical models developed in this work are
mixed integer linear programming and solved with GAMS
and solved using CPLEX. To clarify the effectiveness of
the SSD-constrained bidding model, the results are broken
down into two parts. First, a step-by-step explanation of
how the suggested benchmark selection approach works in
the SSD-constrained problem is provided. The constructed
model is then evaluated in terms of regret and out-of-sample
performance compared to other commonly used approaches.

Algorithm 1 VIKOR Method Implementation.

1: Introduce rating function (fi,j) and calculate the worst and
best values expressed by f−i and f∗i for j = 1, 2, ..., n
according to (6) and (7). Note that n is the number of
selected benchmarks, i is the index of metrics (regret and
out-of-sample profit), and hereafter, (.)− and (.)∗ stand
for the worst and best values of a given parameter within
its set.

f−i = Min fi,j (6)

f∗i = Max fi,j (7)

2: Calculate the values of the group utility measure (Υi) and
individual regret measure (Γi) designated for each solution
with vj as the weights of rating in (8) and (9). Note that
Υi differentiates from the previously defined regret.

Υi =
N∑
j=1

vj ×
f∗j − fi,j

f∗j − f−i,j
(8)

Γi = Max
j

vj ×
f∗j − fi,j

f∗j − f−i,j
(9)

3: Calculate the values of Qi using (10).

Qi = z ×
[
Υi −Υ∗

Υ− −Υ∗

]
+ (1− z)×

[
Γi − Γ∗

Γ− − Γ∗

]
(10)

where
Υ∗ = Min

i
Υi , Υ− = Max

i
Υi

Γ∗ = Min
i

Γi , Γ− = Max
i

Γi

(11)

In which z is defined as the weight of the strategy of
maximum group utility that is typically considered 0.5
[36].

4: Sort solutions in a ranking list following a decreasing
order based on the values of Qi.

5: The most desirable solution is the one with the lowest
value of Q [36].
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Fig. 3: Reduced day-ahead and intraday scenarios for the ex-
ante analysis.

A. Step-By-Step Implementation of the Proposed Benchmark
Selection Method in the SSD-Constrained Problem

The first step in SSD-constrained problems is to derive
the feasible region for benchmark designation. Following
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the approach described in section III-B, the feasible region
(rectangular area) in the CDF of BSS profit can be efficiently
shaped by obtaining its upper and lower bounds:

• Benchmark Lower Bound: The benchmark lower bound
is the lowest profit member of the risk-neutral (1) CDF.
By solving model (1), the lowest profit member of the
risk-neutral model is C10,480. Both benchmark lower
bound and the CDF of risk-neutral model are depicted
in Fig. 5. The SSD-constrained problem would become a
risk-neutral model for any benchmark less than C10,480,
indicating that the provided model already dominates the
chosen benchmark.

• Benchmark Upper Bound: The lowest profit member
of the CVaR-maximization problem (3) is the benchmark
upper bound for the SSD-constrained model. By solving
model (3), C11,301 is obtained as the lowest profit
member of model (3). Benchmark upper bound and the
CDF of CVaR-maximization problem (labeled as “Risk-
Averse”) are shown in Fig. 5.

The benchmark feasible region is now specified, and the
decision-maker can divide the feasible region into certain
evenly-spaced benchmarks (n), and each benchmark is then
assessed in terms of regret and out-of-sample performance.
Here, the feasible region is divided into ten evenly-spaced
areas; as a result, eleven benchmarks (n = 11) with equally-
spaced distances ( 11,301−10,480

10 = C82.1) feed the proposed
SSD-constrained model. It is worth to note that all these eleven
benchmarks are listed in the first column of Table I.

The second step is to feed the regret-aware optimization

TABLE I: Results of the Developed Algorithm for Eleven
Different Benchmarks.

kb (C)
Average Average Maximum Average Out-of-Sample

Profit (C) Regret (C) Regret (C) Profit (C)

10,480 15,594.69 2,401.64 5,365.82 15,463.46

10,562.1 15,591.96 2,404.37 5,453.79 15,524.28

10,644.2 15,588.53 2,407.79 5,457.35 15,537.21

10,726.3 15,585.01 2,411.31 5,460.94 15,500.14

10,808.4 15,580.14 2,416.18 5,458.81 15,547.38

10,890.5 15,560.87 2,435.45 5,588.63 15,502.29

10,972.6 15,533.90 2,462.42 5,805.69 15,465.32

11,054.7 15,499.56 2,496.76 6,101.99 15,486.25

11,136.8 15,450.54 2,545.78 6,296.46 15,429.22

11,218.9 15,220.55 2,775.77 6,472.73 15,177.73

11,301 14,901.59 3,094.74 6,695.22 14,699.97

problem (5) with the extracted benchmarks and then perform
an out-of-sample test to check the quality of results in the
presence of one thousand ex-post scenarios (Fig. 4). In this
way, each input benchmark results in unique “average profit,”
“average regret,” “maximum regret,” and “average out-of-
sample profit.” Table I reports the performance of each input
benchmark in terms of the aforementioned items. In the
context of regret theory, some decision-makers rely on average
regret, which is the weighted regret over all scenarios, while
some may lean on ”maximum regret,” which represents the
worst regret in all scenarios. This paper analyzes the effects of
both strategies. Once [average regret + average out-of-sample
profit] and another time [maximum regret + average out-of-
sample profit] are the criteria to evaluate each benchmark and
choose a compromise solution.

Table I concludes that:

1) The greater the benchmark, the smaller the average
profit. Moreover, the closer the benchmarks to the upper
bound, the greater the profit drop, meaning that the
decision-maker needs to sacrifice more profit to dom-
inate greater benchmarks.

2) Larger benchmarks yield higher average and maximum
regrets. This implies that the regret indices increase as
the algorithm attempts to dominate larger benchmarks.
Similar to the previous point, the influence increases as
the input benchmarks get closer to the benchmark upper
bound.

3) The influence of input benchmarks on average out-of-
sample profit does not follow a typical pattern, empha-
sizing the need of using a multi-criteria decision-making
method such as VIKOR. However, when the decision-
maker approaches the benchmark upper bound (becomes
more and more risk-averse), the average out-of-sample
profit decreases significantly. Therefore, as expected, the
BSS’s profitability will be negatively impacted by a
highly risk-averse attitude.

The next step is to pick a benchmark that has least regret
and highest out-of-sample profit. Here, the VIKOR method
outlined in Algorithm 1 is implemented for such an end. The
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TABLE II: Ranking of Input Benchmarks under Two Distinct 
Decision-Making Strategies with z = 0.5 (Equal Weighting).

kb (C)

Strategy 1 Strategy 2
[Average Regret + [Maximum Regret +

Out-of-Sample Profit] Out-of-Sample Profit]
Qi Ranking Qi Ranking

10,480 0.063785491 6 0.025124936 5

10,562.1 0.010322632 3 0.006080420 3

10,644.2 0 1 0.004257288 2

10,726.3 0.034473287 4 0.017734863 4

10,808.4 0.004578009 2 0.002023471 1
10,890.5 0.041348686 5 0.093387681 6

10,972.6 0.084279533 7 0.234411984 7

11,054.7 0.111004155 8 0.405093215 8

11,136.8 0.181665151 9 0.538744749 9

11,218.9 0.508405027 10 0.720974034 10

11,301 1 11 1 11

TABLE III: Comparison Between the Obtained Results under
Decision-Making Strategies 1 and 2.

Stragey
Average Average Maximum Average Out-of-Sample

Profit (C) Regret (C) Regret (C) Profit (C)

Strategy 1 15,588.53 2,407.79 5,457.35 15,537.21

Strategy 2 15,580.14 2,416.18 5,458.81 15,547.38

main focus of this study is on two distinct decision-making
strategies with equal weighting (z = 0.5) as noted above:

1) Strategy 1: Decision-making criteria are [average re-
gret] and [average out-of-sample profit].

2) Strategy 2: Decision-making criteria are [maximum
regret] and [average out-of-sample profit].

The parameter Qi acquired in the third step of Algorithm 1
is used by the decision-maker to rank the benchmarks in
ascending order from lowest to highest value. Table II displays
the rankings of benchmarks adopting the two decision-making
strategies. For the first strategy, the compromise solution is the
benchmark with kb =C10,644.2, while for the second strategy
is the benchmark with kb =C10,808.4. These compromise
solutions along with their corresponding values of Qi are
discerned by shaded cells in Table II. Furthermore, Table III
compares compromise solutions under decision-making strate-
gies 1 and 2 in terms of principal variables. The first strategy
triumphs over the second regarding average profit, average
regret, and maximum regret, but the latter performs better in
the out-of-sample test. Fig. 6 also shows the profit CDFs of
these compromise solutions for the first and second strategies.
As seen, the smaller benchmark of strategy 1 leads to a slightly
broader range of profit distribution, resulting in a greater value
of average profit. Clearly, the second strategy is more risk-
averse than the first.

B. Performance Analysis: A comparative study

The suggested SSD-constrained model is evaluated here in
contrast to other frequently used approaches such as deter-
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Fig. 6: CDF of BSS Profit for Decision-Making Strategies 1
and 2.

ministic, pure stochastic, and robust programming. Details of
robust programming formulation [40] are reported in Appendix
B. The comparison is made in light of regret and out-of-sample
performance metrics, and the results are given in Table IV. It is
worth noting that for the deterministic analysis, the stochastic
scenarios are substituted with the real market values of the
Spanish Market on the 16th of May, 2022. Pure stochastic
programming accounts for optimization model (5) without
SSD constraints. For robust programming, various robustness
parameters are explored and assessed in light of the afore-
mentioned metrics, and eventually, Algorithm 1 is deployed to
extract the compromise solution. Based on the outcomes of Ta-
ble IV, it can be observed that the robust programming has the
worst performance in all metrics, especially in terms of regret.
This lies in the fact that robust technique optimizes problems
on the grounds of the worst-case scenario (extreme situation).
The captured results thus lead to high levels of regret for
decision-makers since they undergo worst-case scenarios that
infrequently occur. We can draw the conclusion that robust
programming may not be advisable when regret is a decision-
making measure as dethe cision-maker would incur high losses
by considering worst-cases over uncertainties. As deterministic
analysis considers the point forecast of electricity prices, the
regret metrics outdo robust programming (which deals with
the worst-case scenario). On the other hand, pure stochastic
programming outperforms the proposed model in light of
regret metrics since it merely minimizes regret in the absence
of SSD constraints. The preceding results show that imposing
benchmarks negatively influences the regret. Nevertheless, the
proposed models under both decision-making strategies offer
more promising performance in terms of out-of-sample profit,
indicating that the BSS could expect higher profits when
relying on the given methodology.

VI. CONCLUSION

The focus of this study was to propose a new benchmark
selection method for the SSD-constrained market bidding
problem with a BSS. Risk-averse decision makers can exploit
the SSD to create profit distributions that dominate a preset
fixed benchmark. Two main challenges in SSD-constrained
problems, namely, benchmark feasible region extraction and
final benchmark selection, were sensibly addressed. The fol-
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TABLE IV: Comparative Analysis of Different Approaches.

Approach
Average Maximum Average Out-of-sample

Regret (C) Regret (C) Profit (C)

Deterministic 2,664.66 6,881.12 15,457.66

Pure Stochastic
2,401.64 5,365.82 15,458.49

Programming
Robust Programming 3,525.39 7,741.84 15,449.27

Proposed Model
2,407.79 5,457.35 15,537.21

(Strategy 1)
Proposed Model

2,416.18 5,458.81 15,547.38
(Strategy 2)

lowing are some of the most important takeaways from the
research that were carried out:

1) Benchmark feasible region allows decision-makers to
more effectively seek desirable benchmarks and prevent
infeasible or unpractical results.

2) The final benchmark in the SSD-constrained model is
selected based on how close a benchmark is to the ideal
values of judging metrics (i.e., regret and out-of-sample
profit).

3) The regret deepens as the benchmarks become greater.
As a result, imposing higher benchmarks leads to more
regrets.

4) The BSS could expect larger revenues while relying on
the suggested methodology as opposed to conventional
procedures.

5) Robust optimization is not advocated when regret is a
deciding factor, as there is a fundamental incompatibility
between the regret measure and optimization under the
worst-case scenario, which might result in severe losses.
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APPENDIX A
The ideal solution in each scenario F ideal

ω is found while
assume having perfect insight into uncertainties by solving the
following optimization problem:

Max
Ω∑

ω=1

πω×F ideal
ω (12a)

F ideal
ω =

T∑
t=1

σDA
t,ω

[
ρDA,dis
t,ω − ρDA,ch

t,ω

]
+ σIN

t,ω

[
ρIN,dis
t,ω − ρIN,ch

t,ω

]
−

S∑
s=1

ψs

[
ϱDA,dis
s,t,ω + ϱIN,dis

s,t,ω

]
(12b)

Subject to:
Constraints (1b) − (1p) while substituting :

ρDA,dis
t → ρDA,dis

t,ω ; ρDA,ch
t → ρDA,ch

t,ω

ϱDA,dis
s,t → ϱDA,dis

s,t,ω ; ϱDA,ch
s,t → ϱDA,ch

s,t,ω (12c)

APPENDIX B

The robust counterpart of the studied problem under
bounded day-ahead and intraday prices holds a Max-Min
structure that can be straightforwardly transformed to the
following optimization problem using the duality theorem:

Min −
[
detOF

]
+
(
χ1ϖDA

)
+
(
χ2ϖIN

)
+

T∑
t=1

q1t + q2t

(13a)

detOF =
T∑

t=1

σDA
t

[
ρDA,dis
t − ρDA,ch

t

]
+ σIN

t

[
ρIN,dis
t − ρIN,ch

t

]
−

S∑
s=1

ψs

[
ϱDA,dis
s,t + ϱIN,dis

s,t

]
(13b)

where detOF is the deterministic objective function, the set of
constraints χ1, χ2, q1t , q2t represent dual variables, and robust-
ness parameters for day-ahead and intraday prices are ϖDA

and ϖIN taking values in [0, T ]. The constraints associated
with (13a) are presented in the following.

q1t + χ1 ≥ σ̂DAy1t ∀t (13c)

q2t + χ2 ≥ σ̂INy2t ∀t (13d)

q1t , q
2
t ≥ 0 ∀t (13e)

y1t , y
2
t ≥ 0 ∀t (13f)

χ1, χ2 ≥ 0 (13g)

ρDA,dis
t − ρDA,ch

t ≤ y1t ∀t (13h)

ρIN,dis
t − ρIN,ch

t ≤ y2t ∀t (13i)

Deterministic form of constraints (1b) − (1p) (13j)

where y1t and y2t are auxiliary variables for transforming
the Max-Min problem into a single-level optimization [40],
and σ̂DA and σ̂IN reflect the deviation bounds day-ahead and
intraday prices from their anticipated value (here, ±10%).
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