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Prediction of bubble growth rate is very important for the development of accurate models for bubble de-
parture diameter and thus the heat transfer rates in nucleate boiling. This paper presents an evaluation
study to the existing homogeneous and heterogeneous bubble growth models using our experimental
data for bubble growth in saturated pool boiling of deionized water on a plain copper surface. The ex-
periments were conducted at pressures 1, 0.5 and 0.15 bar and superheat in the range 5.1 - 19.5 K. To
start with, the paper presents a critical review on bubble growth models in homogeneous and heteroge-
neous boiling. It was found that homogeneous growth models achieved some partial agreement with the
experimental data at some conditions and thus they should be used carefully in heterogeneous boiling.
There was a good agreement between some of the models that were suggested based on the assumption
that bubble growth occurs due to evaporation from the superheated boundary layer around the bubble.
The models based on microlayer evaporation only could not explain the experimental data, i.e. partial
agreement at some conditions. The model that predicted the data very well at all conditions was the
“relaxation boundary layer” model by Van Stralen [25]. This model was generalized in the current study
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by suggesting two new empirical models for the departure diameter and departure time.
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1. Introduction

Boiling exists in many applications such as refrigeration and air
conditioning, power generation including nuclear plants and cool-
ing of high heat flux electronic devices. The performance of a boil-
ing heat transfer surface is usually inferred from the classical boil-
ing curve - a relation between wall heat flux gy and wall su-
perheat (AT, =Ty — Tsqt). A surface has a superior performance
when gy increases rapidly with small changes in ATy, i.e. when
the curve is nearly vertical. Thus, prediction of the boiling curve
in nucleate boiling (from the onset of boiling to the onset of crit-
ical heat flux) is very crucial for the design of any boiling heat
transfer equipment. Historically, the work conducted by Jakob and
his research group, in the 1930s, may be the first attempt to sug-
gest a phenomenological model for the prediction of heat trans-
fer rates in nucleate boiling based on bubble-agitation mechanism
(heat transfer is enhanced by turbulence in the liquid bulk and the
wall thermal boundary layer). This work is summarized in chapter
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29 in the textbook by Jakob [1]. Based on this mechanism, sev-
eral models have since emerged, such as the models suggested by
Rohsenow [2] and Forster and Zuber [3]. With the advent of 1960s,
different heat transfer mechanisms were suggested based on one
single bubble and thus several models have been emerged. Exam-
ples are the models proposed by Han and Griffith [4] and Mikic
and Rohsenow [5], who assumed that the heat transfer mecha-
nism, in the area of bubble influence, is periodic quenching of the
surface by the cold liquid that rushes down towards the nucleation
site after bubble departure. At locations outside the area of bubble
influence, the heat transfer mechanism was assumed to be natu-
ral convection. In literature, this quenching mechanism was origi-
nally called by [4] “bulk-convection”, while it was also referred to
as transient conduction. This modelling approach was also called
in literature “heat flux partitioning approach”, i.e. the total heat
flux is resulting from the summation of heat fluxes due to each
separate mechanism. Other examples include the models by Yu
and Cheng [6], Kim and Kim [7] and Zupancic¢ et al. [8] who as-
sumed natural convection, transient conduction and evaporation.
Despite the large number of models in literature, there are still
large discrepancies amongst these models. For example, Mahmoud
and Karayiannis [9] plotted the boiling curve predicted using 26
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Nomenclature

Abbreviations

A Asymptotic

I Inertia

MAE Mean Absolute Error

ONB Onset of Nucleate Boiling

WTBL  Wall Thermal Boundary Layer

A factor in Eq. (13) and (42), U/kg]l/2

Ape bubble base contact area, [m?]

Ap projected area, [m?]

Ar Archimedes number, Ar = (g/vLZ)(a/pLg)3/2, [-]

B factor in Eq. (16) and (42), [m/s%°] and constant in
Eq. (21)

Bo Bond number, ApgR2/o, [-]

b curvature factor in Eq. (30) and (46) and coefficient
in Eq. (49), [m/s%]

b* factor in Eq. (36), [-]

c bubble shape factor in Eq. (49) and (73), [-]

Cp empirical constant in Eq. (49), [-]

G bubble growth constant in R = Ct", [m/s"]

G constant in 8y = G,+/vt, [-]

CpL liquid specific heat, [J/kg K]

Cpv vapour specific heat, [J/kg K]

D bubble diameter, [m]

Ds diameter of heat transfer surface, [m]

F factor defined in Eq. (17), [-]

Sd bubble departure frequency, [Hz]

fo density factor, (1 — py/pL), [-]

fo bubble shape factor, [-]

g gravitational acceleration, [m/s?]

h heat transfer coefficient, [W/m?2 K]

hy boiling heat transfer coefficient, [W/m?2 K]

hy vapour heat transfer coefficient, [W/m? K]

hg latent heat, [J/kg]

Ja Jakob number, pjc, AT/ pvhfg, [-]

keu thermal conductivity of copper, [W/m K]

ky thermal conductivity of liquid, [W/m K]

L characteristic length for natural convection, [m]

len length scale in Eq. (17) and (19), [m]

my vapour mass, [kg]

N Stephan number, ¢, AT /hyg, [-] or number of ex-
perimental data points

Np dimensionless factor in Eq. (77), [-]

Ny factor in Eq. (75), [-]

N, factor in Eq. (75), [-]

Ng factor in Eq. (75), [m/s

n time exponent in the growth law, [-]

Nu Nusselt number, Nu = hDs/kj, [-]

P pressure, [Pa]

P critical pressure, [Pa]

P reduced pressure, [-]

Psat saturation pressure, [Pa]

Py vapour pressure, [Pa]

P liquid pressure at infinity, [Pa]

AP pressure difference, [Pa]

Pr Prandtl number, [-]

Qme heat transfer rate across the microlayer, [W]

q heat flux, [W/m?]

drp heat flux towards the liquid bulk, [W/m?]

qmL heat flux across the microlayer, [W/m?2]

qst heat flux from superheat liquid, [W/m?2]

r radial distance, [m]

Tcont bubble contact radius, [m]

twe

Tsar
Ts
Tip
Tw
TLoo
Ty
TmaX
AT
ATy
ATy
ATy
ug
Vb

y
Ay

(273
B
Bi.s

Greek Symbols

bubble radius from Fritz-Ende model, [m]
average bubble radius, [m]

cavity mouth radius, m]

radius of bubble embryo, [m]

bubble radius, [m]

bubble growth velocity, [m/s]

bubble growth acceleration, [m/s2]
radius due to inertial growth, [m]
radius due to asymptotic growth, [m]
departure radius, [m]

measured radius, [m]

Rayleigh number, B;g(Tw — T;)D3 /av, [-]
predicted radius, [m]

dimensionless radius, see Eq. (42)
correlation coefficient, [-]

time, [s]

characteristic time scale in Eq. (19), [s]
departure time, [s]

characteristic time scale in Eq. (17), [s]
waiting time, [s]

boundary layer penetration time, [s]
temperature, [K]

dimensionless time in Eq. (16) and (19), [-]
saturation temperature, [K]
thermocouple no. 5 below the surface
liquid bulk temperature, [K]

boiling surface temperature, [K]

liquid temperature at infinity, [K]
superheated liquid temperature
maximum temperature, [K]
temperature difference, [K]

wall superheat, (Ty- Tsqe), [K]

liquid superheat, (T;- Tgqr), [K]

liquid subcooling, (Tst- Tp), [K]

liquid velocity, [m/s]

bubble volume, [m3]

vertical distance, [m]

distance between Ts and the surface, [m]

liquid thermal diffusivity, [m2/s]
thermal expansion coefficient [1/K]
Empirical constants in Eqs. (59)-(63)
bubble growth factor, [-]

coefficient in Eq. (23) and Eq. (75)
transient boundary layer thickness, [m]
thermal boundary layer thickness, [m]
effective boundary layer thickness, [m]
initial microlayer thickness, [m]
bubble boundary layer thickness, [m]
direction normal to the bubble, [m]
contact angle, [deg]

density ratio py/pr, [-]

liquid viscosity, [Pa. s]

kinematic viscosity [m?/s]

liquid density, [kg/m3]

vapour density, [kg/m3]

surface tension, [N/m]

interface permeability factor, [-]

models for water at atmospheric pressure and reported a wide
scatter, e.g. for a fixed heat flux value of 250 kW/m?, the wall su-
perheat (or surface temperature) predicted by one model was 28 K
while it was about 4 K by another model (about times 7 difference
in the heat transfer coefficient). The large discrepancy amongst
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the models may be attributed to the following: (i) lack of under-
standing of several fundamental aspects and the complex effects
of several factors such as bubble dynamics (growth rate, depar-
ture diameter, departure frequency), fluid properties and surface
microstructure that affect the active nucleation site density. (ii) all
phenomenological heat transfer models depend on sub-models for
the prediction of bubble departure diameter and frequency, which
depend strongly on bubble growth rate. The problem is that there
is a wide scatter amongst the existing bubble growth models as re-
ported by Mahmoud and Karayiannis [10] and as will be presented
and discussed later in the current study. This could be a reason
for the discrepancy amongst nucleate boiling heat transfer mod-
els. Additionally, some researchers estimated bubble growth rate in
nucleate boiling using models suggested for homogeneous boiling,
which may not be valid.

Based on the above, there is a need for more experimental re-
search with careful measurements of bubble growth rate, which
can help evaluate the existing bubble growth models and thus un-
derstand the reasons of discrepancies. In the current study, bub-
ble growth rate was measured in saturated pool boiling of de-
ionized water on a smooth copper surface at three pressures 0.15,
0.5 and 1 bar and superheat 5.1 - 19.5 K. The measurements were
conducted using a high-speed, high-resolution video camera inte-
grated with a microscopic lens. The bubble growth characteristics,
the forces acting on the bubble during its growth period, and the
mechanisms of heat flow to the bubble were discussed in a sep-
arate publication, see Mahmoud and Karayiannis [9]. The current
study focuses on discussing and evaluating the existing homoge-
neous and heterogeneous bubble growth models using our experi-
mental data. This will help understand the differences amongst the
models and the bubble growth mechanism(s). Additionally, a rec-
ommendation will be given at the end of the paper for the accu-
rate prediction of bubble growth rate in saturated boiling of wa-
ter. The paper is organised as follows: Section 2 presents the bub-
ble growth fundamentals to help the reader track the differences
amongst the models, Section 3 gives a description of the exper-
imental system and validation and Section 4 presents the evalua-
tion of the bubble growth models. Section 5 gives recommendation
for predicting bubble growth rate while Section 6 gives the conclu-
sions of the study.

2. Bubble growth fundamentals

It is well-known that bubble growth can be divided into two
main categories: symmetric growth in uniformly superheated lig-
uid (the whole bubble is surrounded by superheated liquid - ho-
mogeneous boiling) and asymmetric growth in non-uniformly su-
perheated liquid (part of the bubble is surrounded by superheated
liquid as is the case in growth on a heated surface - heteroge-
neous boiling). From now on, “homogeneous” will refer to uni-
form superheat while “heterogeneous” will refer to non-uniform
superheat. It is important to start with a brief description to the
bubble growth problem without going into the complex details of
the equations. In homogeneous boiling, the bubble growth prob-
lem was usually formulated by applying the laws of mass, momen-
tum and energy conservation. Applying the mass and momentum
conservation for a spherical bubble results in Eq. (1), which was
given by Scriven [11] and was also called the extended Rayleigh
[12] equation. This equation was obtained based on the follow-
ing simplifying assumptions: (i) spherical symmetry for a bubble
growing in an infinite medium, (ii) Newtonian fluid with constant
properties, (iii) compressibility effects, external and body forces are
ignored, (iv) the pressure and temperature inside the bubble are
uniform, (v) the liquid surrounding the bubble flows with a ve-
locity u; = (1 — py/pr)(dR/dt), due to mass transfer across the in-
terface (vi) the bubble grows without translational and rotational
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motion.

CR—Pa  _pdR 3(dR\' 20

(A —po/p)pr dt2 2\ dt (1 — pv/pr)pLR
4R dR

" (1 - py/pr)pr dt M

The different stages of bubble growth can be understood from
Eq. (1), with the help of the schematic drawing in Fig. 1, for in-
viscid liquids (ignoring the last term in the rh.s. of Eq. (1)) and
ignoring the vapour to liquid density ratio (p,/p; < 1 for most flu-
ids). Bubble growth in stage 1 (left schematic) occurs isothermally
(Ty = Ty, ) at the beginning (time t ~ 0) when the bubble nucleus
fluctuates around its initial equilibrium radius Ry. In this case the
velocity and acceleration are very small and thus the liquid inertia
terms (1st and 2nd terms in the r.h.s. of Eq. (1)) are negligible. Ac-
cordingly, the dynamic growth will be driven by the pressure dif-
ference P, — P, = 20 /R, which is called the “surface tension domi-
nated stage”. In stage 2 (mid schematic), the growth occurs isother-
mally similar to stage 1 but the bubble grew to a radius slightly
larger than the initial radius Rq. Thus, the surface tension term
(3rd term in the r.h.s.) becomes negligibly small and thus bubble
growth will be dominated by the liquid inertia, which is called the
“inertia-controlled growth”. It is worth mentioning that the time
scale in the first and second stages is very small, in the order of
microseconds. For example, Sernas and Hooper [13] and Forster
and Zuber [14] reported that dynamic effects diminish after 50 ps
(based on experimental measurements) and after 100 ps (based
on numerical analysis), respectively. In stage 3 (right schematic),
when time increases further, evaporation occurs at the bubble sur-
face and a thin thermal boundary layer develops around the bub-
ble, which was called by Plesset and Zwick [15] “the cooling ef-
fect”. Thus, the vapour temperature drops from its initial superheat
to the saturation temperature and consequently the vapour pres-
sure P, becomes equal to the liquid pressure P, (System pressure).
This makes the Lh.s. of Eq. (1) vanishes and the dynamic effects
do not drive the bubble growth anymore. Accordingly, another
mechanism must takeover, which is the “heat diffusion mecha-
nism” driven by the temperature difference T;., — T,, which was
commonly called “heat transfer-controlled growth” or “asymptotic
growth”. From now on, we shall use “asymptotic” to refer to the
heat transfer-controlled growth. It is worth mentioning that there
is no analytical solution to Eq. (1) but there are either approxi-
mate solutions for each separate stage of growth or a complete nu-
merical solution. For example, Rayleigh [12] simplified the bubble
growth problem by ignoring the surface tension stage, ignoring the
vapour to liquid density ratio (p,/pr) and assuming that the bub-
ble grows isothermally (no heat transfer), i.e. (P, — P,) remains
constant with time. This led to the well-known Rayleigh solution
for the “inertia-controlled growth” given by Eq. (2), which indicates
that the radius increases linearly with time R « t, i.e. bubble grows
at a constant rate.

ZPU_PLoo
R= |[-——t 2
3 o 2)

To generalize the bubble growth problem and include heat
transfer at the bubble interface, the energy equation (see below)
must be coupled with the dynamic equation (Eq. (1)). The cou-
pling between the two equations was usually conducted through
the pressure difference term (P, — B,) in Eq. (1), which can be re-
lated to the degree of liquid superheat (T, —T,) through some
simplifying assumptions, e.g. Clausius-Clapeyron equation as de-
fined in Eq. (3). The liquid temperature at the bubble interface,
which equals the vapour temperature in thermodynamics equilib-
rium, can be obtained from the solution of the transient energy
equation without heat generation (Eq. (4)) with the commonly
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| 5 L P =P
P, T, P, T,
Att=0,R =R,
Att = ty,and R = 10R,

Stage 1: surface
tension growth
P, — P,o, = 20/R

Stage 2: inertial growth
pu[RR + (3/2)R*] = P, = Pioo

At t > t,, Cooling effect around
the bubble due to evaporation
Stage 3: Heat diffusion growth

pu[RR + (3/2)R?*| =0

Fig. 1. Schematic drawing for the different stages of bubble growth in homogeneous boiling.

used boundary condition at the bubble interface defined in Eq. (5).
Accordingly, the solution of Eq. (1) coupled with Eq. (4) with the
appropriate initial and boundary conditions describe the full bub-
ble growth problem including the whole stages of growth (surface
tension, inertia and heat diffusion), which can be solved numeri-
cally. Because numerical solutions did not give an explicit expres-
sion for the bubble radius and because the dynamic effects are im-
portant only for very short time intervals at the beginning, many
researchers ignored the complex initial growth stages (surface ten-
sion and inertia) and gave approximate analytical solutions for the
asymptotic stage in which the bubble radius was found to be pro-
portional to the square root of time (t!/2). The asymptotic solu-
tion can be obtained simply from the energy balance at the inter-
face (Eq. (5)) provided that the temperature gradient (3T/0r),_p is
known. In the following sub-sections, the bubble growth models
in homogeneous and heterogeneous boiling will be reviewed and
discussed.

AP=P,— P, = p;hfg(nm ~T) 3)
sat
(1 — pv/PL)RZ dR oT ilg r2ﬂ (4)
8t r2 dt ar — o r2 or ar
oT dR
kL(E)r_)r:R = thfga (5)

2.1. Bubble growth in homogeneous boiling

2.1.1. Asymptotic growth models
Historically, Fritz and Ende [16] were the first to suggest a
model for bubble growth in homogeneous boiling, which was
based on energy balance at the bubble interface (see Eq. (5)), i.e.
balance between conduction and evaporation heat fluxes. They as-
sumed that the temperature drops across a thin boundary layer
around the bubble (thin boundary layer approximation) and thus
the effect of bubble curvature can be neglected. This allowed for
the assumption that the temperature gradient at the bubble in-
terface can be obtained from the well-known solution of the 1D
transient heat conduction equation in a semi-infinite plate, i.e.
(0T/0r),_g = kL ATy /7ot In other words, the effect of liquid
radial motion and bubble curvature on the temperature gradient
were ignored. With this energy balance, the bubble radius was ob-
tained as:
2
eyt (6)

RFritz =

Actual vapour pressure curve

Pressure

Clausius-Clapeyron approximation

Linear approximation
—Py(T )——————————————\\—‘ ——————

....... _PV(TV)_._._._._._._._.

Temperature

Fig. 2. Schematic drawing for the vapour pressure curve showing the linear ap-
proximation adopted by Plesset and Zwick [15] and the Clausius-Clapeyron approx-
imation adopted by Forster and Zuber [14].

The Fritz and Ende [16] model may be considered as a bench-
mark because it ignored the effect of bubble curvature and lig-
uid motion (convection) on temperature gradient and consequently
on bubble growth. To consider these effects, Plesset and Zwick
[15] and Forster and Zuber [14] independently solved the dynamic
equation Eq. (1) coupled with the energy equation (Eq. (4)). Firstly,
the two groups of researchers obtained the temperature at the in-
terface by solving Eq. (4) for a spherical geometry with a moving
boundary using two different mathematical approaches. To get a
convergent solution, they simplified the problem by adopting the
“thin boundary layer approximation”, as was done by Fritz and
End [16]. Secondly, the obtained interface temperature was used to
achieve the coupling between the energy and the dynamic equa-
tions. The difference between the coupling method adopted by the
two researchers was the assumption of the relation between the
vapour pressure and temperature. Plesset and Zwick [15] assumed
linear relationship between AP and AT while Forster and Zuber
[14] used the linearized Clausius-Clapeyron equation. It is worth
noting that the linearized Clausius-Clapeyron equation underpre-
dicts the pressure difference especially as the superheat increases
as seen in Fig. 2. Finally, the two groups of researchers ignored the
inertia and surface tension stages of growth and gave an approx-
imate solution to the asymptotic stage defined by Eq. (7) for the
Plesset and Zwick [15] model and Eq. (8) for the Forster and Zuber
[14] model. It is obvious from the two equations that the differ-
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ence between the two models is 10%. Bankoff [17] followed the
same approach and assumptions as [15] except that a temperature
condition was imposed at the bubble interface rather than a heat
flux condition. He adopted this approach to make the solution con-
verge more rapidly. Although the boundary condition was different,
he obtained exactly the same solution as [15]. Prisnyakov [18] con-
sidered the bubble as a thermodynamic system and applied the
first law of thermodynamics, rather than the dynamic momentum
equation, with the assumption that the vapour behaves as an ideal
gas and the effect of bubble curvature was neglected. Thus, the
conduction heat flux at the bubble interface was the same as that
assumed by Fritz and Ende [16] and the difference was the expan-
sion work included in the 1st law of thermodynamics. This energy
balance resulted in Eq. (9), which was reported to be valid for Ja
up to 500. Comparing Eqs. (7), ((8) and (9) with the Fritz and Ende
[16] model in Eq. (6) indicates that the difference is only a con-
stant factor equals 2/3 in the Prisnyakov [18] model, /3 in the
Plesset and Zwick [15] model and /2 in the Forster and Zuber
[14] model.

2
= \@77_[_](1\/ ot = ‘/gRFritz ™)
T 2 T
R= jﬁfa ot = jRFritz (8)

\/a RFn[z (9)

Since the emergence of the above models, some researchers
claimed that the “thin boundary layer approximation” may not be
accurate, especially at small Jackob numbers. Scriven [11] solved
the mass, energy and momentum conservation equations numer-
ically without adopting the assumption of “thin boundary layer”.
Thus, a complete numerical solution was obtained rather than
the above approximate solutions. The bubble interface was consid-
ered permeable, i.e. liquid and vapour can flow across the inter-
face due to the difference in liquid and vapour density. Based on
that he correlated the obtained numerical solution, for the asymp-
totic growth stage, in the form given by Eq. (10). The growth fac-
tor 8 in Eq. (10) was plotted versus ¢, ATy /hg, for different val-
ues of vapour to liquid density ratio (p,/p0) and specific heat ra-
tio (cpr — Cpy)/Cpr- It is worth mentioning that the sensible heat
of liquid and vapour was included in the energy balance, which
was ignored by other researchers. He fitted the general numer-
ical solution for 8 with two separate equations, one for super-
heat ATy < 1K and one for ATy > 1K. Because the wall super-
heat in nucleate boiling is always much larger than 1 K, the equa-
tion for the high superheat was commonly reported in literature as
Eq. (11).

R =B at (10)

2 1
5| 77 | general case
B = [[ ;;]] (11)
vV ZJa when py/p, < 1

Eq. (11) indicates that the general numerical solution by Scriven
[11] is exactly equivalent to the Plesset and Zwick [15] model when
the density ratio is py/p0; < 1, which is the case for all fluids of in-
terest such as water. He also concluded that the error in the Ples-
set and Zwick [15] model becomes very large only when the su-
perheat is less than 1 K and when the density ratio is very large.
Avdeev and Zudin [19] obtained an analytical solution to the gen-
eral bubble growth problem (mass, energy and momentum conser-
vation) assuming that the bubble interface is permeable, i.e. there
is enhancement in heat transfer at the interface due to the liquid
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and vapour motion induced by the density difference. The effect
of interface permeability was captured by a factor ¥ defined be-
low, which was called by them “interface permeability factor”. The
obtained analytical solution for the bubble growth factor 8 was
given by Eq. (12). This equation is general and valid for all val-
ues of Ja and density ratios. For example, when the density ratio is
very small and negligible, the value of N goes to zero and i goes
to 1. As the Ja increases and i = 1 (ignore interface permeability
effects), B reduces to ,/12/m, which is similar to the Plesset and
Zwick model [15]. They reported that their analytical solution de-
viates by 4% from the full numerical solution given by Scriven [11].

B = \/7](11/f—|—,/ Jay)? +2Ja, ¥ =1+ N

CpL ATsL pv a
hfg IOL

N =

2.1.2. Inertia-asymptotic growth models

In the above section, the solution of the bubble growth prob-
lem was only given for the asymptotic growth stage. At low sys-
tem pressure and/or very large superheat, the bubble growth may
be affected by the liquid inertia. Mikic et al. [20] were the first
to suggest a method to combine the inertia and asymptotic stages
into one model. With the help of the schematic shown in Fig. 2,
there are two extremes for bubble growth. The first extreme oc-
curs when T, equals T;., (isothermal growth), which results in the
“inertia-controlled growth”. The second extreme occurs when T,
equals Tsq, which results in the “asymptotic growth”. In the transi-
tion between the two extremes, the vapour temperature and pres-
sure are in the range Ty < Ty < T and P, < P, < Py(T},), respec-
tively. Mikic et al. [20] used the Rayleigh [12] solution (Eq. (2))
for the inertia stage and the Plesset and Zwick [15] solution
(Eq. (7)) for the asymptotic stage. In other words, they connected
the Rayleigh bubble growth velocity (Eq. (13)) with the Plesset
and Zwick [15] bubble growth velocity (Eq. (14)). They related the
pressure difference (P, — PB,) in Eq. (13) with the temperature
difference (T, — Tys;) using the linearized Clausius-Clapeyron. The
two solutions (inertial and asymptotic) were connected through
the vapour temperature T, by substituting the term T TSL‘”) from

g. (13) into Eq. (14). On doing so, a quadratic equation, Eq. (15),
was obtained, which satisfies the two extreme solutions. The solu-
tion of Eq. (15) resulted in the bubble growth radius written in a
dimensionless form in Eq. (16).

dj _ \/2 (Pl/_PLoo) _\/2pvhfg(Tv—Tsat) (T]_OO—Tgat)
dt inertia 3 oL 3 ,OLTsut (TLoo - Tsut)
T, Ta) , / 2 pohg(Tio — Tat)
ATSL ’ pLTsat

(13)

(XL (noo )

dR ~ / -
dt T J t ATy
asymptotic
- (Ty — Toat)
SETE - SeS IRE e

2
1(‘”3) PR - Z—R—l_o (15)
(,/12aL/n)j t

Rt = %[(t+ +1)77 = (er) - 1] (16)
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Theofanou and Patel [21] adopted the same method as Mikic
et al. [20] but with the following modifications: (i) the vapour den-
sity should not be assumed constant as was done by [20] who
estimated the vapour density at the system pressure, which un-
derestimates the value and consequently over-estimates the Jackob
number and the growth rate in the asymptotic regime, see Eq. (14).
Accordingly, they suggested considering the initial to final vapour
density ratio, especially when this ratio is much larger than 1. The
initial vapour density was defined based on P,(T,), (see Fig. 2 for
more clarity) while the final vapour density is the density de-
fined at system pressure P,(Tsq). (ii) a linear relation was used
to relate the vapour pressure with temperature rather than the
Clausius-Clapeyron equation used by [20] which underpredicts the
vapour pressure and thus under-estimates the inertial growth ve-
locity, see Eq. (13). In conclusion, a linear interpolation between
the initial and final states was conducted for the vapour pres-
sure and vapour density. Comparing the original model [20] with
the modified version [21] indicated that the two models give ex-
actly similar results when the initial to final density ratio is be-
low 2. For water, this density ratio value corresponds to an initial
superheat of about 22 K, which is a large range for boiling ap-
plications. In other words, assuming constant vapour density and
using the Clausius-Clapeyron assumption adopted by Mikic et al.
[20] is valid up to superheat degrees below 25 K. Avdeev and
Zudin [19] adopted the same approach as [20] except that in the
asymptotic stage, the heat flux at the bubble interface was cor-
rected by the “interface permeability factor " to account for heat
transfer enhancement at the interface due to liquid/vapour flows:
q =Yk ATy /ot = pyhgedR/dt. Note that the Plesset and Zwick
[15] solution for the asymptotic stage was used by Mikic et al.
[20]. They managed to get an analytical equation for some spe-
cial cases such as when the term N = ¢, ATy /hf, in the permeabil-
ity factor — 1. However, in the general case 0 < N < 1, they failed
to obtain a closed form solution similar to Mikic et al. [20] due
to the complexity of the polynomials and inverse hyperbolic func-
tions encountered in their analysis. Accordingly, they suggested the
following approximate equation that combines inertia and thermal
growth stages, which was based on dimensionless scaling analysis:

R 5]
e B (17)
lch (1 +F3)1/3
1/4
Lo 20

Ja2/2AP/3p; 3y !

op

- ;‘[<1+ t/t0)3/2_3(1+ t/to);+2}’t°:]a2(2AP/3pL)

2.2. Bubble growth in heterogeneous boiling

Bubble growth in heterogenous boiling is more complex com-
pared to homogeneous boiling due to the presence of the wall
thermal boundary layer, which makes the superheat around the
bubble nonuniform. In the above homogeneous models, the ra-
dius R is proportional to t'/2 in the asymptotic growth stage while
in heterogeneous boiling, the exponent of time could be smaller
than . For example, Strenge et al. [22] measured bubble growth
in saturated boiling of n-pentane and diethyl ether at atmospheric
pressure and found that the radius follows the relation R o t",
with n ranged from 0.19 to 0.475. The key differences amongst
bubble growth models in heterogeneous boiling in the asymptotic
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stage arise from the assumption of the heat transfer mechanism to
the bubble. Two main mechanisms were assumed by researchers
namely: (i) growth due to evaporation of the liquid trapped in the
microlayer underneath the bubble and (ii) growth due to evapora-
tion from the superheated boundary layer around the curved sur-
face of the bubble. From now on, to distinguish between the two
mechanisms, the first one will be called “microlayer evaporation”
and the second one will be called “boundary layer evaporation”.
Fig. 3 depicts a schematic drawing for bubble growth mechanisms
adopted by some researchers to help the reader understand the
difference between each model. In Fig. 3a, the bubble grows due
to evaporation from the boundary layer carried by the bubble from
the boiling surface. In Fig. 3b, the bubble protrudes outside the
wall thermal boundary layer (WTBL) and grows as a hemisphere
due to microlayer evaporation. The mechanism in Fig. 3c is similar
to Fig. 3a except that the boundary layer was displaced and thus
covers only part of the bubble. In Fig. 3d, the bubble grows due
to a combined evaporation from the microlayer and from the su-
perheated layer around the bubble. The different models suggested
by researchers for bubble growth in heterogeneous boiling are dis-
cussed in the following sub-sections. They are classified into (i)
empirical models, (ii) boundary layer evaporation models and (iii)
microlayer evaporation models. It is worth mentioning that in all
heterogeneous growth models, the average wall superheat (ATy)
was used in the definition of Ja number rather than the liquid su-
perheat AT (AT = Tio — Tsqr) in homogeneous boiling.

2.2.1. Empirical models

Some researchers suggested bubble growth models in hetero-
geneous boiling based on fitting their experimental data. Cole and
Shulman [28] measured bubble growth at high Jakob numbers (24
- 792) in saturated boiling of toluene, acetone, n-pentane, CCly,
methanol and water on a polished zirconium ribbon. They used
their data to evaluate some of the homogeneous growth models
and concluded that the experimental growth factor 8 = f(Ja) was
small compared to the homogeneous models, which was attributed
to the nonuniform superheat in heterogeneous boiling. They corre-
lated their data in the form given by Eq. (18). The effect of the
nonuniform superheat appears in the empirical constant (2.5) and
the smaller exponent of Ja compared to homogeneous boiling (the
exponent of Ja in homogeneous boiling is 1).

R =2.5Ja"7 /oyt (18)

Lee et al. [29] studied bubble growth in saturated boiling of R11
and R113 on a glass substrate. Compared to homogeneous mod-
els, they found that the time exponent was 0.2, which is smaller
than the 0.5 value in homogeneous boiling. In addition to the
two tested refrigerants, they collected data from literature for n-
butane and water and suggested an empirical model based on
dimensionless analysis. They correlated the dimensionless radius
(Rt = R/ly,) with the dimensionless time (t* =t/t.,) in the form
given by Eq. (19) using characteristic length scale I, and time scale
t, defined below.

Re = = 112(c%)" tanh [0345(t)"*] +0.072 (19)
ch

V27 R 9 R
len = TJGCXL %7 ten = Z]aaL%

Du et al. [30] collected data from literature for saturated boiling
of water on copper, stainless steel, nickel and silver in the pres-
sure range 0.02 - 95.7 bar (Ja = 0.0904 - 2689). They found that
the bubble growth can be fitted in the form given by Eq. (20) with
the growth factor S depends on Ja while the time exponent n de-
pends on system pressure. The variation of the exponent n with
pressure was attributed to the dominant factors that control the
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Fig. 3. Asymptotic bubble growth mechanisms in heterogeneous boiling: (a) and (c) boundary layer evaporation, Zuber [23], Han and Griffith [24], and Van Stralen [25]. (b)
microlayer evaporation, Cooper [26], (d) combined microlayer and superheated liquid evaporation, Cooper [26] and Van Stralen et al. [27]. WTBL: wall thermal boundary layer.

growth rate, e.g. at low pressure, the growth is controlled by in-
ertia while at high pressure it is controlled by heat transfer. Ben-
jamin and Balakrishnan [31] collected data from literature for satu-
rated boiling on upward facing flat metallic surfaces and fluids in-
cluding water, CCly, n-hexane, n-pentane and acetone. They found
that the data can be fitted by Eq. (21).

R = Ba)?t", B = 2.1077]a®7%%2 (20)
n = 1.0012e-F/03257 _ 0.9624¢-F/06161 | 0 5 P: in MPa

1
R= SBAr*3Ja® oyt (21)

Ar = (g/vf)(o/,oLg)?’/z, B =1.55, [water, CCl4, n-hexane] and B =
1/1.55, [n-pentane and acetone]

Abdollahi et al. [32] proposed a semi-empirical model for bub-
ble growth in nucleate boiling. The functional form of the model
was derived first for homogeneous boiling then used to fit experi-
mental data in heterogeneous boiling. They ignored the bubble cur-
vature and used the temperature gradient from the 1D transient
heat conduction equation in the energy balance at the bubble in-
terface and thus obtained Eq. (22) for the bubble growth veloc-
ity. The vapour temperature in Eq. (22) was assumed to vary with
time according to the relation in Eq. (23), which satisfies the two
extreme cases of growth (inertia) (T, = Ty) at t =0 and asymp-
totic stage (Tsar = Ty) at t = co. The coefficient y in Eq. (23) de-
pends on fluid properties and with small values, the vapour tem-
perature approaches the saturation temperature slowly and with
large values it decreases rapidly to the saturation temperature. Ac-
cordingly, substituting from Eq. (23) into (22) resulted in Eq. (24).
In the inertia-controlled stage (t — 0), Eq. (24) reduces to Eq. (25).
Comparing Eq. (25) with the Rayleigh inertial growth velocity in
Eq. (13), the coefficient y was obtained as Eq. (26).

dR 1 o TLoo — Ty

at =~ vVt T T (22)
TLoo - TIJ

2V —erf(yE 23
T =T~ (V1) (23)

erf(y+t

dt b4 NG

dR _ or 2)/

@| V= UE (25)

y=21 |
N \/é ot Tsae

In other words, this model combines the inertia and asymptotic
stages in a similar manner to Mikic et al. [20] but adopting a differ-
ent assumption for the variation of vapour temperature with pres-
sure rather than the Clausius-Clapeyron equation. The obtained fi-
nal expression for bubble growth in uniformly superheated liquid
was thus given as:

R= \/E]a{ﬁerf(yﬁ) + oej/ﬁ exp (_yzt)} + Ry (27)

They reported that the second term in brackets is small and
thus can be ignored and the above equation was reduced to:

R= \/?]a«/ferf(yﬁ) +Ry (28)

They used the above function form and fitted experimental
data collected from literature for nucleate boiling (water, ethanol,
methanol, benzene and CCly) using the same characteristic time
and length scale defined in Eq. (19) adopted by Lee et al. [29] and
obtained the following equation:

1
77 (Tie = Toa) (26)

6.9577f3,/]aa“frerf(%)+0.02842516,,, Ja > 24
R= 2.5v3/Jac, Virf(%5802) + 0.7, Ja < 15
VEavEerf(y ) + ke 24<Ja < 15

(29)

2.2.2. Boundary layer-based models

Zuber [23] modified the homogenous growth model suggested
by Fritz and Ende [16] to capture the non-uniform superheat in
heterogeneous boiling. The model was based on heat balance at
the interface with the “thin boundary layer” approximation, which
has a uniform thickness /o t. In homogeneous boiling, there is
only one heat flux vector in the direction towards the bubble in-
terface (the bubble is surrounded by a superheated shell insulated
from the liquid side). On the contrary, in heterogeneous boiling,
because the temperature of the liquid bulk is smaller than the
temperature around the bubble, part of the heat can be trans-
ferred towards the bubble surface with the temperature potential
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(Tinax — Tsar) and another part can be towards the liquid bulk with
temperature potential (Tmax — Tjp). In other words, the liquid tem-
perature inside the boundary layer around the bubble has a peak
value Tpgx and it decays towards the bubble interface and towards
the liquid bulk. This peak temperature was assumed equal to the
boiling surface temperature T, and thus the part of heat flux to-
wards the liquid bulk q;;, was assumed equal the wall heat flux.
Based on this, the energy balance at the bubble interface was mod-
ified in heterogeneous boiling as Eq. (30) and resulted in the bub-
ble radius in Eq. (31).

dR Ty — Tsar
pvhfga - b[kL W - qu] (30)

_ 2 quw/Tart
R = bﬁ]a,/oqt[l - 72]<L(Tw — Tsm)}

The factor b was used to correct for the effect of bubble cur-
vature on the temperature gradient arising from the assumption
of flat interface, 1 < b < +/3, with a recommended value b = /2
based on comparison with experimental data. Han and Griffith
[24] assumed that the bubble grows as a truncated sphere and
remains surrounded with the wall thermal boundary layer during
its growth period and thus the bubble grows due to evaporation
from the superheated liquid in this layer. To simplify the problem,
they ignored the bubble curvature and thus solved the 1D tran-
sient heat conduction equation for a semi-infinite plate with the
assumption that the initial temperature distribution in the bound-
ary layer is linear. The thickness of the superheated liquid layer
around the bubble was assumed uniform and equal to the tran-
sient conduction thickness estimated at the end of the waiting
time, § = /waty. To account for the spherical geometry of the
bubble, the 1D solution of the semi-infinite plate assumption was
corrected using shape factors (for volume and surface area) that
depend on the dynamic contact angle 6;. The total heat transfer
rate entering the bubble was assumed consisting of two compo-
nents: heat transfer due to vapour convection at the bubble base
(dry area) and heat transfer due to conduction across the bubble
interface, see Eq. (32) for the energy balance.

(31)

dR oT
ovh fgcpv4nRZE = @cps4m R?k; <8X> + @4 R?hy (T — Tiar)
x=0

(32)

In the above equation, ¢, is volume correction factor
[0.25(2 + cos 6y (2 + sin29d))], @¢ is curvature correction factor 1 <
@c < /3, s is surface area correction factor [0.5(1 + cos8y)], @ is
bubble base correction factor [0.25sin20d] and hyis a vapour con-
vection heat transfer coefficient. They gave a general equation for
the curvature correction factor, Eq. (33) that depends on the wait-
ing time and average radius. The solution of Eq. (32) resulted in
Eq. (34) for the bubble radius a function of time.

64 6y \ (V37 /2)Rw+vTarty 6,
= [ﬁ+n(1_ﬁ)} {( _n> Ray+~/T ity +ni|
(33)
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Van Stralen [25] assumed that when the bubble grows, it did
not carry the wall thermal boundary layer as was suggested by
Han and Griffith [24]. Instead, the superheated liquid at the upper
surface of the bubble is displaced and with the radial expansion of
the bubble, this superheated liquid accumulates around the bubble
up to a certain height y measured from the boiling surface which
may be smaller than or equal to the bubble height. He assumed
that the boundary layer around the bubble up to this height has
a uniform thickness and he called it the “relaxation layer”. Thus,
the bubble was assumed to grow due to evaporation at a spheri-
cal segment with height smaller than the bubble height as if the
bubble is partially heated. Contrary to the above models that as-
sumed constant superheat during the entire growth period. Van
Stralen [25] assumed that the liquid superheat in the “relaxation
layer” decreases exponentially with time from its initial maximum
value (ATy), see Eq. (35). This was inspired from the relaxation
phenomenon in physics, i.e. when a system at equilibrium is per-
turbed it takes a delay time to return back to its initial equilib-
rium state. Thus, the bubble growth was assumed to follow the
relaxation phenomenon by disturbing the wall superheat (thermal
boundary layer) periodically after the waiting period. Van Stralen
[25] considered bubble departure time t; as the characteristic time
in Eq. (35). Conducting the energy balance for a partially heated
bubble including the time dependant superheat resulted in a solu-
tion similar to the Plesset and Zwick [15] model for homogeneous
boiling (Eq. (36)) but multiplied by a factor b* < 1 (b* = y/2R) de-
fined by Eq. (37) which represents the fraction of bubble surface
area covered with the superheated liquid layer.

AT = AT, exp (- /:) (35)
d
R:b*‘/E]aexp (— /t>‘/aLt (36)
b/ tq

2.7183R
b = 83Rapuhsg (37)

\/ 12/7'[’/ /OLCkaLATW\/E

Mikic et al. [20] extended their homogeneous growth model
(Eq. (16)) that combines the inertia and asymptotic stages to be
applicable for heterogeneous boiling. In the inertial growth veloc-
ity, Eq. (13) was assumed valid also in heterogeneous boiling but
the factor 2/3 should be replaced with 7 /7. It is worth mention-
ing that the 2/3 factor is the theoretical value in the 2nd term of
the r.h.s. of Eq. (1) for symmetric bubble growth in an infinite lig-
uid body. In heterogeneous boiling, bubble growth is asymmetric
and thus the inertia term should be smaller than that of homoge-
neous boiling. That is why they recommended a factor 7 /7. For
the asymptotic growth stage, they solved the transient 1D heat
conduction equation in semi-infinite plate assuming that heat is
transferred from the wall into the liquid bulk by conduction dur-
ing the waiting period. At the end of the waiting period, the bub-
ble forms and thus heat is transferred from the superheated lig-
uid into the bubble (the bubble was assumed a sudden heat sink
in the wall thermal boundary layer). On doing so, they obtained
the temperature distribution in the liquid near the wall over the
entire ebullition cycle (from reformation of the boundary layer up
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to departure) as given by Eq. (38) and the temperature gradient
required for energy balance at the bubble interface was given by
Eq. (39) and corrected for bubble sphericity using the factor +/3
obtained by Plesset and Zwick [15]. The energy balance (Eq. (40))
resulted in the asymptotic growth velocity (Eq. (41)) which was
connected with the inertia growth stage through T, in a similar
manner as they did in the homogeneous model. The final model
equation was given as Eq. (42), which is valid for t* > 1.

T - TLoo y y
— =erfc —erfc (38)
Tw =Tl VAot VAo (t + tw)
ﬂ:\/i TW_TU_ Tw_noo (39)
ay vralt o (t+ty)

dR Ty —T, T — Tioo

ovh =3k - (40)

Ve dr L Jrot \/naL(t + twe)
R_ B Tw—Tu_Tw—TLoc( t )”2 )
dt 2t AT Ty —Te \t+1ty

172 1/2
T, — T t* t
St W T Lo w _fw
R JF{1 TW—TS,H[<1+H) <t+> ” (42)
AR 7T Pohge(Tio — Tsar)
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R= ot =g 8=y e A \/ Pl

Forster [33] assumed that the bubble grows as a hemisphere
due to evaporation from the superheated liquid around the bubble.
In his derivation, the liquid superheat in the wall thermal bound-
ary layer was assumed to decrease exponentially with the verti-
cal distance y according to Eq. (43). Ignoring the bubble curvature,
writing the distance y in polar coordinates and assuming that the
1D transient heat conduction in semi-infinite plate is valid, he ob-
tained Eq. (44) for the temperature gradient at the interface. Using
this gradient in the energy balance around the bubble surface in
polar coordinates resulted in Eq. (45), which describes the asymp-
totic bubble growth on a heated surface. The integral in this equa-
tion was solved using power series, as given by Eq. (46). It is in-
teresting to note that the general solution in Eq. (46) can be re-
duced to the homogeneous growth models when the ratio R/§;, is
very small, i.e. the bubble is smaller than the wall thermal bound-
ary layer and thus R « t1/2, When the bubble becomes larger than
the wall boundary layer, the exponent of time decreases to 0.25.
Eq. (46) was corrected by a factor b in the Lh.s to account for the
curvature which was ignored in the semi-infinite body.

AT = AT, exp (—=y/8wm) (43)
T _ ATwexp (=rcos¢/ém) (44)
or Jrot

]a,/aL (45)
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Lesage et al. [34] presented a model for bubble growth in sat-
urated boiling assuming that bubble growth occurs due to evap-
oration from the superheated layer, which is valid for low Bond
number (Bo= ApgR%/c). In their model, the bubble shape was a
truncated sphere with cylindrical neck pinning to the cavity, i.e. no
spreading over the surface. The assumed bubble shape was based
on a numerical model suggested by them, which was validated us-
ing data for saturated boiling of n-pentane on a surface with single
cavity of diameter 90 um at superheat 2 and 6 K. The temperature
profile of the liquid in the wall thermal boundary layer was as-
sumed the same as given by Mikic et al. [20] in Eq. (38). The dif-
ference between the two models is that Mikic et al. corrected the
effect of curvature on temperature gradient by a factor /3 and the
bubble boundary layer thickness was uniform § = /7w at, which is
the same as the wall thermal boundary layer thickness. On the
contrary, Lesage et al. claimed that the boundary layer thickness
around the bubble is smaller than the wall boundary layer thick-
ness §. Thus, they suggested an effective bubble boundary layer
thickness 8,7y measured in the direction ¢ normal to the inter-
face. They considered the factor +/3 used by Mikic et al. [20] to be
equivalent to the ratio §/8,5¢. On doing so, the temperature profile
Eq. (38) was modified as given by Eq. (47). This temperature gra-
dient was used in the energy balance at the interface and the final
equation for bubble growth was given as Eq. (48). In this equa-
tion, R is the cavity mouth radius and is valid for Ja < 237 and
low Bo < 0.07. It is worth mentioning that for this range of Bo, the
bubble shape is spherical.

T— T ¢ £

2 —erfc ——=—— —erfc

Ty — Tin 4out/3 dor(t +62/may) /3
[Rh/mi&] _ 4.](1\/07L<\/E\/t+ 52 +\/ 52 )

Jr/3 moy/3 Y mway/3

82\/7TOlL[W (48)

Cho and Wang [35] assumed that the temperature distribution
in the wall thermal boundary layer is linear and an applied en-
ergy balance at the bubble interface taking into account the bub-
ble shape as a function of contact angle. The bubble shape was
assumed to be a static pendant bubble that protrudes outside the
thermal boundary layer with a fixed static contact angle during
its growth cycle. They also included contribution from microlayer
evaporation through an empirical coefficient c,. Based on the en-
ergy balance at the interface, they obtained the following equation:

&C”’[l—exp< LCSATW )] O0<t<ts

82 (In4—1
ﬂ\/cbbémATwﬁ - % t>ts
_ 0 ¢ SpIn2
c=2c0s5, t5= (cbgé‘MTw
in saturated boiling,
ke, _ k[ (r —2.4) cos6 +2.4sec§ ]
hb ’ ZJZp,,hfg«/aL
The characteristic time ts is the time for the bubble to pro-
trude outside the thermal boundary layer. Their model indicates
that when the bubble is inside the boundary layer the radius is
proportional to the square root of time while when it protrudes

outside the boundary layer the relation follows t %2>, which agrees
with Forster [33].

(47)

(49)

2
) ¢, =0.534 - based on data for water

Sen = 3.22

2.2.3. Microlayer-based models
In all microlayer-based models, the bubble was assumed to
grow as a hemisphere, i.e. the bubble shape did not change during
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the whole growth period. The advantage of these models is that
it did not depend on the waiting time and the temperature field
around the bubble as reported by Cooper [26]. Additionally, the
bubble growth rate can be obtained from a balance between heat
conduction across the microlayer (with an average initial thickness
(80/2)) and the latent heat of evaporation, as given by the follow-
ing equation:

2AT, d

kLAbc (S (t) = a(myhfg) (50)

For a hemisphere and assuming constant vapour density and
latent heat, the above equation can be written as:

2AT, dR

2 — Z 2%

kiR 50 p,,hfg247'rR I (51)
dR kLATW

= w 52
dt = pohydo® 52)

Thus, the key parameter in all microlayer-based models is the
determination of the instantaneous microlayer thickness. Cooper
and Lloyd [36] assumed that when the bubble grows rapidly in the
initial growth stage, a viscous boundary layer develops underneath
the bubble in a manner similar to flow over a flat plate. Thus,
they conducted boundary layer analysis by solving the Navier-
Stokes equation assuming that bubble growth follows a power law
R = C;t". In their model, an analytical solution was only possible
for a case when n =0.5.

So(t) = Vit =G/t

It is worth mentioning that the theoretical constant C, depends
only on the exponent of time n in the power law and thus the
value 0.8 was for n =0.5. Substituting Eq. (53) into Eq. (52) and
after integration, the well-known bubble growth model suggested
by Cooper [26] will be obtained, which is defined by Eq. (54).

72

mz =08yt

(53)

R=25JaPr 2 /ot (54)

Cooper [26] gave another equation for a bubble which pro-
truded outside the wall thermal boundary layer (R d;,) and
combined the microlayer evaporation with evaporation from that
curved part of the hemispherical bubble immersed inside the wall
thermal boundary layer. The heat flux from the superheated lig-
uid was modelled in a similar manner as the homogeneous growth
model by Plesset and Zwick [15] while Eq. (54) was used for the
contribution from the microlayer evaporation. On doing so, he ob-
tained Eq. (55) for the combined contribution of microlayer evapo-
ration and evaporation/condensation at the curved part of the bub-
ble. In saturated boiling, the first term in Eq. (55) becomes zero
because Tjj, = Tyqr. When the bubble size is smaller than the ther-
mal boundary layer, the bubble remains surrounded with the su-
perheated liquid with superheat equals nearly the wall superheat.
In this case, he recommended Eq. (56) that considers evaporation
from microlayer and evaporation from the whole curved surface of
the bubble.

/12T, -
R=\| 75—

Tsat

tb g Jagt + 2.5]aPr~ 1% oyt (55)
S
= (1+0.78VPr)2.5]aPr'>\/ayt (56)

Van Ouwerkerk [37] assumed that bubble growth follows the
relation R « t1/2 as was adopted by Cooper and Lloyd [36]. Firstly,
he solved the Navier-Stokes equation and obtained the initial mi-
crolayer thickness given by Eq. (57). Secondly, he solved the con-
jugate heat transfer problem numerically assuming that bubble
growth occurs due to microlayer evaporation and evaporation from
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the hemispherical surface of the bubble. He included the heat ca-
pacity of the liquid in the microlayer, which was ignored in Cooper
[26] model. The approximate solution (R = 8./;t) for the growth
constant 8 that fitted their numerical data was given as Eq. (58).

do(t) =0.9 (57)
3 oL 0.405Pr\""* V6 .,
B = ‘/ZUL{OS'OV (l t ) 3x/>]aPr F
CpLATW
= 58
3/\/7Thfg ( )

Labuntsov and Yagov [38], as cited in Zudin [39], divided the
bubble base area into microlayer (thin layer) and macrolayer (thick
layer) and assumed that the bubble grows as a truncated sphere
due to evaporation from these two regions. The thermal capac-
ity of the liquid in the microlayer was ignored similar to Cooper
[26] and thus heat is transferred from the boiling surface to the
base area by conduction. Because the geometry of the micro and
macro-layers cannot be determined accurately from the experi-
ments, they lumped all unknowns into empirical constants. For ex-
ample, the microlayer thickness was assumed to vary linearly with
the radial distance from the nucleation site, §; = 8;r with 8; an
empirical constant. The heat transfer rate by conduction across the
microlayer was given as:

Qu = j kL—errdr_ j kL—andr_ 2 ——k  ATyRy1
8 Bir B
= EkLATW,BZR = /33I<LATWR (59)
- 27'[,32
Bs = 5,

In the above equation, the microlayer radius R,; was related to
the bubble radius R through another empirical constant 8, (R =
BoR). For the macro-layer (thick curved part near the wall), the
heat flux was calculated from the homogeneous model given by
Plesset and Zwick as follows:

12 AT,
T ot

The empirical factor B4 in the above equation was used to ac-
count for the fraction of bubble surface area surrounded by the su-
perheated liquid in the macro-layer and the fact that the liquid su-
perheat should be a fraction of the wall superheat. Thus, the heat
transfer rate conducted to the bubble through the macrolayer was
given as Eq. (61). Applying the total energy balance at the bubble
base results in Eq. (62).

st = Baky (60)

AT,
ﬂ4kLm (61)
ovh dv = Qmi + Qs = B3k AT,R + Bak Alw p (62)
vitg g = Ut L= P3k Alw 4 Lm
RIR — pajacu, + psRja, /%% (63)

Substituting from R = B./o;t into Eq. (63) and lumping all em-
pirical constants into two constants x and E resulted in the fol-
lowing quadratic equation for the bubble growth factor g:

5B~ x)ap ~EJa=0 (64)
Solving for 8 results in:
B = xJa++/ (xJa)’ +2EJa (65)
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The empirical coefficient x and E that fitted a wide range of
experimental data (0.1 < Ja < 500) was found to be 0.3 and 6,
respectively.

Van Stralen et al. [27] suggested a model that combines con-
tribution from the relaxation layer, microlayer and liquid inertia.
The bubble growth due to relaxation layer was given previously as
Eq. (36). For the contribution from the microlayer, they obtained
the initial microlayer thickness assuming the flow underneath the
bubble is similar to laminar boundary layer in parallel flow over
a uniformly superheated flat plate. This allowed them to use the
Pohlhausen exact solution for heat transfer in the boundary layer
over a flat plate defined by Eq. (66), for the local Nusselt number.
Additionally, to calculate Reynolds number, they assumed that the
radius of the hemisphere R follows the relation R ~ t" and thus the
thermal boundary layer thickness was obtained from Eq. (66) as
given by Eq. (67). For the asymptotic growth case when n=0.5,
the microlayer thickness was given as Eq. (68) which when sub-
stituted in Eq. (52) results in the bubble growth radius R due to
microlayer evaporation defined by Eq. (69).

_ hr _qw(Dr ki ATr o 05 1
Nu(r) = - GAT ~ RATS, 0~ 3a) = 0.332Re%>(r)Pr3
. 1/2
= 0.332(pRR) pris3 (66)
1
1/2n 1/2
S = KLATw _ 3.012(L) (‘LR> pr13
w R R
r 1/2n vt 1/2 ]
_ - L -1/3
= 3.012<R) ( - ) Pr (67)
Sen = 4.26Pr~13/uit, (68)
R=0.47Pr 8ja,/a;t (69)

It is worth mentioning that the difference between the micro-
layer thickness obtained by Van Stralen et al. [27] compared to
Cooper and Llyod [36] and Van Ouwerker [37] is arising from the
fact that [27] obtained the thickness based on heat transfer anal-
ysis while [36,37] obtained the thickness based on hydrodynam-
ics analysis. Van Stralen et al. [27] combined the contribution from
liquid inertia R; defined below, microlayer evaporation and evapo-
ration from the relaxation layer into one model in the form given
by Eq. (70). The contribution of microlayer and relaxation layer
were added together and given as R, defined below. The factor b*

was defined previously in Eq. (37).
1 RiR,

R= 1/RT+1/R2 ~ R +R,

he ATy exp (—/T/T
Ry = 0.8165, | 2E2 p( /d)t
IOLTsat

(70)

AT
T,

Ry = 1.9544{19* exp (—,/t/td) + X }]a\/oﬂ
+0.373Pr /6 exp (—. /t/td)]a,/oqt

Mei at al. [40] solved numerically the conjugate heat transfer
problem assuming that the bubble grows due to microlayer evap-
oration only. The bubble was assumed to be a truncated sphere
with a microlayer of wedge shape with a wedge angle ¢ << 1 rad.
To capture the bubble shape, a shape factor ¢ = r¢one /R, Which was
related to the wedge angle through the initial microlayer thickness
given by Cooper and Lloyd [36] in Eq. (53) except that the theoret-
ical constant 0.8 was left to be determined empirically. The change

1

International Journal of Heat and Mass Transfer 208 (2023) 124065

in bubble volume was captured by a shape function f(c) as defined
in Eq. (71); ¢ = 0 for a sphere and c = 1 for a hemisphere. Apply-
ing the energy balance and considering the bubble shape function,
the bubble growth equation was given by Eq. (72). The shape factor
¢ (depends on Ja) and the front constant in the initial microlayer
thickness of Cooper and Lloyd [36] were determined empirically as
given by Eqs. (73) and (74). This model was validated using data
from literature for Ja = 0.52 - 1974 and fluids including water and
hydrocarbons.

Vb=g7TR2f(C), f(¢:)=1f0.75[1f\/ﬁ]zw.zs[lf\/@]3

(71)

_C JaPr=V2, /oyt (72)
" af(o) '

-6 )78
c= {(044134](104655) + (1 — exp(~0.0005]a) } (73)
-0.113 —0.117
¢; = 0.00525]a%752py—05 (kL) (ﬂ) (74)
kw Uy

Prisnyakov [18] claimed that neglecting the expansion work in
the energy balance equation results in overestimation to the bub-
ble growth. Thus, he applied the first law of thermodynamics in-
cluding the expansion work for a truncated bubble growing at a
heated surface and assumed that the vapour obeys the ideal gas
laws. The heat transfer rate to the bubble was assumed to be from
the liquid side through the curved surface and from the base side
through the microlayer. The heat flux at the bubble interface from
the liquid side was obtained from the semi-infinite plate assump-
tion (similar to Fritz and Ende [16]) while the heat flux at the bub-
ble base was assumed equal the wall heat flux. The interfacial area
and volume of the truncated bubble were corrected by a shape fac-
tor (depends on the shape angle). With this energy balance, they
gave Eq. (75) for bubble growth, which is valid for Jakob number
up to 500 with its simplified version Eq. (76) when p,/p, < 1 or
(fp=1) and 20 /R < Psat.

i _ 23fpy -1 R
<1+V—1pr1>(R Ro)+3 v —1 NzRolrlRO
2
=f9]a|:ﬁ\/(th+qu3t:| (75)
R=R +gf]a i,/at+th (76)
=Ro+3Js Ned L qN3
1
Psat o qw zpsat
N = 71\[ = 71\] = = — y
VT ke T pogm, T pucw AT [ pyhfg}
0.5(1 + cos® 1
fo = ( ) ,fqzi(l—cose),fp

0.5(1+0.5cos6(1+ sin29))
1-pu/p1L

Buyvich and Webbon [41] assumed that the bubble is a spher-
ical segment separated from the wall by a microlayer, which was
assumed to be flat (the wedge shape was ignored). They claimed
that formulating the bubble growth problem through applying the
momentum conservation is not appropriate due to the uncertain
local stresses acting on the bubble and its surrounding liquid. Ac-
cordingly, they suggested formulating the dynamic equation using
thermodynamics principles assuming that the total mechanical en-
ergy (kinetic and potential energy) is constant during the whole



M.M. Mahmoud and T.G. Karayiannis

course of bubble growth. The kinetic energy included the displace-
ment of the bubble centre of mass in the vertical direction and
the bubble expansion that results in motion in the radial direction.
The potential energy included the potential energy in the gravity
field, the surface tension energy and the vapour compression en-
ergy. The surface tension force between the liquid and vapour was
included and it was found that it affects the bubble shape and its
direction is similar to the buoyancy force. This was not included in
the momentum balance adopted by other researchers. After formu-
lating the dynamic equation, they solved the boundary layer prob-
lem to obtain the initial microlayer thickness as, 8o = 1.294./vt.
In formulating the asymptotic bubble growth, the heat flux to the
bubble was divided into two components; one from the microlayer
qmL = k. AT/89 and one from the liquid side, gy = k; AT/8. The
conduction layer thickness in the liquid side d;; was obtained from
the homogeneous bubble growth models as §; = (2/C)./o f where
the growth law is R = CJa./a;t. The constant C equals (1 - 2) but
they left it to be an empirical parameter. They envisioned the bub-
ble growth problem as follows: at early stage of growth the bub-
ble shape is hemisphere due to the strong effect of liquid inertia
that flatten the bubble while at a late stage of growth near depar-
ture the shape becomes spherical due to dominance of buoyancy
and surface tension forces. The time after which the bubble shape
changes from hemispherical to spherical was given as:

6o t1/2 3 (1 +«/5Ca(l + Nm)ae)>
(- ©O[CJa(l+Np) P prgey 4 (1-x)g ’
Kk = py/p;, Nm =1/CHPr'2, H = (77)

For time less than or equal the time predicted from the above
equation, the bubble grows as a hemisphere with radius predicted
using Eq. (78) but for time larger than the above time the bubble is
a sphere and the radius was given as Eq. (79). The dimensionless
parameter N, was introduced to estimate the contribution from
the microlayer; when its value is less than 1, most of the heat en-
ters the bubble from the superheated liquid.

32 4+

1.294

R =CJa(1+ Np)y/ oyt (78)
R =CJa/a;t, when N, < 1 (79)

3. Experimental setup
3.1. Boiling chamber and test section

Fig. 4a depicts the schematic drawing of the experimental fa-
cility. It consists of the following: (i) rectangular boiling chamber
(250 x 250 x 300 mm) made of stainless steel with four trans-
parent visualization windows (158 x 220 mm), (ii) two helical coil
heat exchangers (one on the top side of the chamber to work as a
condenser and one immersed in the liquid to work as a liquid sub-
cooler), (iii) circulation chiller to supply the cooling water-glycol
mixture to the condenser and the sub-cooler, (iv) test section in-
sulation block made of Polyether Ether Ketone (PEEK) that accom-
modate the copper test piece, see Figs. 4b and 4c, (v) immersion
cartridge heater of power 1500 W to control the liquid bulk tem-
perature and conduct liquid degassing before the test, (vi) data log-
ger cDAQ from National Instruments, connected to a PC with Lab-
view software to record the data, (vii) 1.5 kW DC power supply
(Electro-Automatik) for supplying the heat to the test section, (viii)
High-speed video camera (Phantom Miro Lab110) with NAVITAR
12X zoom lens system, (ix) two T-type thermocouples for measur-
ing the liquid and vapour temperature and one pressure transducer
(Omega, PX319, 0 - 3.5 bar) for measuring the system pressure.

The test section was made of oxygen-free copper and was in-
sulated with a PEEK housing as seen in the exploded view in
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Fig. 4b and the assembly drawing in Fig. 4c. The copper test piece
has a diameter of 30 mm and a height of 42.5 mm. It has five holes
of diameter 0.6 mm at 6 mm equal distance along the vertical cen-
treline to insert five thermocouples (T;-Ts with Ts below the sur-
face), and an O-ring shoulder of size 2.5 mm width and 2 mm
depth leaving 25 mm diameter as a boiling surface, see Figs. 5b
and 5c. The test piece was connected to a copper heater block us-
ing M10 thread connector (made of copper) and the thermal con-
tact resistance was reduced by a thermal paste, see Fig. 5a for
the assembly of the test section and the heater block. The heater
block has four vertical holes (see Fig. 5c) with diameter 12 mm
to accommodate four cartridge heaters (400 W each), which are
connected to the DC power supply. The test section was man-
ufactured using High Precision Micro Milling Machine (HERMLE
C20U) and the boiling surface was finished by diamond turning
machine to obtain a smooth surface. The surface was analysed us-
ing Surface Metrology System (NP FLEX-3D) and the S, value of
the tested surface was 49.6 nm. The surface wettability was char-
acterized by measuring the static contact angle for a water droplet
at room temperature using contact angle measurement instrument
First Ten Angstroms (FTA1000 series). The measured contact angle
on the plain copper surface was 85.5.

The temperature reading of the five vertical thermocouples was
plotted versus the vertical distance and the gradient was used to
calculate the applied flux q using Eq. (80). The measured temper-
ature versus distance exhibited linear fitting with a correlation co-
efficient RZ 0.99 except the lowest heat flux with R? 0.95, which
verifies the 1D assumption in calculating q. The temperature dif-
ference between the wall and the saturation temperature (wall su-
perheat) was calculated using Eq. (81). The saturation temperature
was based on the pressure measured using the pressure trans-
ducer, which matched the measured liquid and vapour tempera-
tures. Because the last thermocouple (T5) was located at distance
Ay = 3.5 mm below the surface, the wall temperature was cor-
rected using Eq. (82) to account for this temperature drop. All ther-
mocouples were calibrated and the maximum systematic error in
the temperature measurements was & 0.5 K while the random er-
ror was + 0.003 K, resulting in combined uncertainty of + 0.5 K
(0.7% of the reading). The systematic and random errors were cor-
rected using the calibration equation. The propagated uncertainty
analysis was calculated according to the method given in Coleman
and Steel [42] and the highest uncertainty in the heat flux was 7%.

qw = —kcu@ (80)

ATy = Ty — Tiar (81)

T, =Ty — WA (82)
keu

The experiments were conducted using de-ionized water as
a test fluid at atmospheric and sub-atmospheric pressures. The
thermophysical properties of the fluid required for the calcula-
tions were obtained from the Engineering Equation Solver software
(EES). All experiments were conducted after degassing the liquid
and the boiling surface simultaneously. Liquid degassing was con-
ducted by boiling the liquid vigorously using the 1.5 kW immersion
heater and surface degassing was conducted by heating the test
section until most of the nucleation sites become active (at about
30% of the critical heat flux value). The degassing process was
deemed to be complete when the measured system pressure be-
comes equal to the saturation pressure at the measured liquid tem-
perature (the measured liquid and vapour temperature are equal).
After degassing, the heat supplied to the test section was switched
off until the surface cools down to a temperature below the satu-
ration temperature (all nucleation sites become deactivated). Then,
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Fig. 4. (a) Schematic drawing of the experimental facility, (b) Exploded view of the test section, and (c) The test section assembly, [9].

the heat flux was increased gradually in small steps until boiling
starts. The details of the bubble size measurements are described
in ref. [9].

3.2. Experimental validation

Many researchers validated their experimental system by con-
ducting boiling experiments and comparing the experimental boil-
ing curve with the well-known Rohsenow [2] pool boiling correla-
tion. This approach may not be accurate because boiling depends
strongly on the surface microstructure. In the present study, exper-
imental system validation was conducted using natural convection
single-phase experiments rather than boiling experiments. Fig. 6
depicts the heat flux plotted versus the temperature difference be-
tween the surface (T,,) and the liquid (T;). The results were com-
pared with the natural convection correlation reported in Bergman
et al. [43], see Eq. (83). It is obvious that there is a good agree-
ment between the measurements and the prediction with average
deviation of 8.8%, which verifies the accuracy of the experimental
measurement system.

0.54Ra'/4 10* < Ra(10, Prj0.7

Nu = 83
{o.lsRal/3 10" < Ra < 10", all Pr (83)
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4. Models assessment

This section presents and discusses the assessment of the ho-
mogeneous and heterogeneous bubble growth models presented
in Section 2. The models are assessed using experimental data for
three pressures (0.15 - 1 bar) and different values of wall super-
heat. In the current study, the models are assessed based on the
trend comparison and the mean absolute error percentage (MAE%)
defined by Eq. (84). It is worth mentioning that the comparison
based on the MAE% may result in a misleading conclusion espe-
cially when the growth model is used to predict the departure ra-
dius. For example, a model may predict a trend that crosses the ex-
perimental data with reasonable MAE% but the error at departure
may be very large. Because the latent heat transfer rate depends on
the cube of departure radius (Qiy = (4/3)7R3py Spahfg), any small
error in the departure radius will result in large error in the pre-
dicted heat transfer rate. For instance, a 30% error in the departure
radius will result in about 120% error in the latent heat transfer
rate. Accordingly, the MAE%-based comparison will be used as a
rough guide to infer the performance of the assessed models.

R
MAE % = ~ ZMXIOO

84
Rog (84)
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Fig. 6. Experimental validation using single-phase natural convection, [9].

4.1. Assessment of homogeneous models

It is important to assess bubble growth models in homogeneous
boiling because some researchers used these models in the pre-
diction of bubble departure diameter and heat transfer rates in

14

nucleate boiling. Eleven models were included in the comparison
and the equations are summarized in Table Al in the Appendix A.
Figs. 7, 8 and 9 show the experimental data compared with the
models at P = 1, 0.5 and 0.15 bar, respectively. All experimental
data indicates that the bubble grows at a faster rate at the begin-
ning for a short time period then it grows at a much slower rate.
Mahmoud and Karayiannis [9] discussed these results in more de-
tail and concluded that all experimental data are in the asymptotic
growth stage, i.e. heat transfer-controlled growth. In other words,
the initial rapid growth is not due to the inertia-controlled growth
stage which is also obvious from the comparison with the Rayleigh
[12] model included in figures. The MAE (averaged over the whole
growth period) for each model is summarized in Table 1 for the
three tested pressures and superheats while Table 2 summarises
the error at departure. The following points can be concluded:

1. Pressure 1 bar: Fig. 7(a-d) shows the comparison at atmo-
spheric pressure and superheat 5.6, 9.4, 10 and 15 K. It shows
that the models by Fritz and Ende [16] (curve 1), Prisnyakov
[18] (curve 10) and Abdollahi et al. [32] (curve 11) always un-
derpredict the experimental data with MAE in the range 18.5 -
31.6%, 44.8 — 52.6% and 58 - 63.4%, respectively. These models
predicted the data at departure (end point in each curve) with
error 0.1 - 18.7%, 33.4 - 45.8% and 49.8 - 58.7% in the same
order. The small error at departure predicted by the Fritz and
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Fig. 7. Evaluation of homogeneous bubble growth models at P = 1 bar.
Table 1
Summary of the mean absolute error percentage (MAE%) of homogeneous bubble growth models.
MAE %
Model P =1 bar P = 0.5 bar P = 0.15 bar @@Average
MAE % MAE % MAE %
5.6K 9.4K 10K 15K 12.7K 171K 19.5K 15.1K 16.3K 18.4K
Fritz and Ende [16] 25.1 23.1 31.6 18.5 86.2 95.4 63.4 283.6 2435 210 108.04
Forster and Zuber [14] 15.1 225 12 26.8 192.6 205.8 156.7 502.5 439.6 386.9 196.1
Plesset and Zwick [15] 26.4 31.7 18.14 39.5 222.6 237 183.1 564.4 495 436.9 2255
Scriven [11] 271 32.9 19 415 226.5 242.5 188.4 573.9 504.2 446.4 230.2
Mikic et al. [20] 215 28 149 33 184.3 203.9 156.8 304.3 282.3 249.7 148
Avdeev and Zudin [19] 30.8 35.5 21.14 43.4 229.7 245.6 191 576.9 507 448.9 233
Theofanous and Patel [21] 214 27.9 14.7 324 180.5 199.4 152.7 277.9 257.8 225.1 139
Avdeev and Zudin [19] (I + A) 24.9 31 17.4 38.3 196.4 219.2 170.8 3354 312.5 280.1 162.6
Forster [33] 24.5 26.4 14.3 30.6 199 211 160.7 505.9 442.5 389.3 200.4
Prisnyakov [18] 48.6 49.3 52.6 44.8 254 30.9 14.3 155.7 129 106.7 65.7
Abdollahi et al. [32] 59.4 61.7 63.4 58 16 13.5 18.6 92.2 721 55.2 51
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Table 2
Summary of the error percentage of homogeneous bubble growth models at departure.
MAE %
Model P =1 bar P = 0.5 bar P = 0.15 bar @@Average
MAE % MAE % MAE %
5.6K 9.4K 10K 15K 12.7K 171K 19.5K 15.1K 16.3K 18.4K

Fritz and Ende [16] 18.7 0.1 18 0.12 1325 163.4 108 407.8 319.7 291.2 145.9
Forster and Zuber [14] 27.7 56.9 28.8 56.9 265.3 313.8 226.8 697.8 599.2 514.6 278.8
Plesset and Zwick [15] 40.8 73 42 73 302.8 356.1 260.4 779.6 626.9 577.7 313.2
Scriven [11] 41.5 74.6 43.4 75.5 307.6 363.9 267 792.3 638.2 589.6 3194
Mikic et al. [20] (I + A) 374 68.3 38.1 67.7 2741 329.5 240.3 537.7 451.1 419.6 246.4
Avdeev and Zudin [19] 45.9 78.1 46.1 77.9 311.6 368 270.6 796.3 641.6 592.8 322.9
Theofanous and Patel [21] (I + A) 37.2 67.9 37.8 67 271 325.8 237 506.1 425.2 392.7 236.8
Avdeev and Zudin [19] (I + A) 413 74 43 74.8 289.3 350 257.6 580.4 488.6 458.1 265.7
Forster [33] 38.5 65.2 353 61.8 273.3 320.8 231.8 702.3 562.8 517.5 280.9
Prisnyakov [18] 45.8 334 453 334 55 75.6 38.7 238.5 179.8 160.9 90.6
Abdollahi et al. [32] 58.7 49.8 58.8 50 16.5 135 4.1 154.2 110.1 95.8 61.2

Ende model is because the values predicted by the model ap- 2. Pressure 0.5 bar: Fig. 8(a-c) show the comparison at 0.5 bar

proach the experimental data as time increases while the trend
of the other two models is nearly parallel to the experimental
trend. As mentioned in Section 2, the Fritz and Ende [16] model
can be considered as a benchmark because it ignored the ef-
fect of bubble curvature and radial motion on the tempera-
ture gradient around the bubble. Prisnyakov [18] also ignored
the effect of bubble curvature but included the expansion work
in the first law of thermodynamics. This model predicted val-
ues which are lower than that predicted by the Fritz and Ende
[16] model but with a trend nearly similar to the experimen-
tal trend, which means that including the bubble expansion
work in the energy balance results in a lower growth rate. The
model by Abdollahi et al. [32] assumed a certain function for
the instantaneous vapour temperature in the bubble bound-
ary layer rather than the Clausius-Clapeyron equation used in
other models. In other words, they assumed that the superheat
varies with time rather than a fixed superheat as adopted in
the other models. Additionally, they ignored the effect of bub-
ble curvature, which is similar to the Fritz and Ende [16] and
the Prisnyakov [18] models. The model predicted values which
are lower than the values predicted by [16] and [18]. It is worth
mentioning that the curvature and radial motion have the ef-
fect of increasing the temperature gradient and thus evapora-
tion heat flux. Accordingly, as expected, these three models pre-
dicted values which are significantly lower than the values pre-
dicted by the other models (curves 2 - 9) in Fig.7 which con-
sidered the effect of curvature and radial motion. These models
(curves 2 - 9) exhibited excellent predictions up to about 4 -
6 ms then they overpredicted the data with the deviation in-
creasing with time. The small differences amongst these models
is due to the fact that they were based on nearly similar analy-
sis (solution of momentum and energy equations). Additionally,
it is obvious that there is no significant difference between the
complex models that combined the inertial growth stage with
the asymptotic growth (curves 5, 7, 8) and the simple asymp-
totic models (curves 2, 3, 4, 6, 9). Based on Fig. 7, the best per-
forming model in terms of MAE is the Forster and Zuber model
[14] which predicted the data of the four superheats with MAE
in the range 12 - 26.8% and error at departure in the range 27.7
- 56.9%. Additionally, it is obvious from Table 1, at P = 1 bar,
that some models exhibited low MAE% only for some super-
heat. Additionally, Table 2 indicates that although some models
predicted the data with low MAE values, they gave large devia-
tion at departure. In other words, if these models were used to
predict the departure radius provided that the departure time
is known, and were used in the heat transfer models, signifi-
cant discrepancies will result.

3.
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and superheat 15.1, 17.2 and 19.5 K. The following observations
can be drawn from these figures: (i) the slope of the curve
that represents Rayleigh [12] solution for the inertia-controlled
growth decreased slightly and agreed with all models only in
the first 0.5 ms after which a clear deviation was observed.
None of the experimental data points agreed with the inertia-
controlled growth as was the case at atmospheric pressure. (ii)
the models by Prisnyakov [18] and Abdollahi et al. [32], which
underpredicted all the data at atmospheric pressure with high
MAE, exhibited better performance at 0.5 bar. These models
predicted the data with MAE in the range 14.3 - 30.9% and 13.5
- 18.6% with error at departure 38.7 - 75.6% and 4.1 - 16.5%,
respectively. Thus, in terms of the MAE and the error at depar-
ture, the model by Abdollahi et al. [32] is the best performing
model at 0.5 bar. Although the Fritz and Ende [16] model ex-
hibited reasonable performance at atmospheric pressure (MAE
18.5 - 31.6% and error at departure 0.1 - 18.7%), it significantly
overpredicted the data with MAE 63.4 - 95.4% and error at de-
parture 108 - 163.4%. (iii) the models described by curves 2
- 9, which predicted part of the growth curve at 1 bar very
well (up to 4 - 6 ms), significantly overpredicted the data at
0.5 bar in the whole growth period. The MAE of these mod-
els ranged from 152.7 to 245.6% and error at departure 226.8 -
368%. The poor performance of these models at 0.5 bar com-
pared to data at 1 bar may be attributed to the change in
bubble shape. At atmospheric pressure, the bubble shape is
nearly spherical during most of the growth period which agrees
with the assumptions adopted in these models, e.g. symmetric
growth of spherical bubbles. At sub-atmospheric pressure, the
bubble shape changes from hemisphere in the early stages to a
flattened spheroidal shape in most of the growth period. Addi-
tionally, the smaller bubble size and the nearly spherical shape
at atmospheric pressure may help keep most of the wall ther-
mal boundary layer around the bubble, which makes the bub-
ble share part of the uniform superheat assumption in homoge-
neous models. At sub-atmospheric pressure, the flattened shape
and large bubble size makes evaporation restricted to small part
of the bubble surface area near the wall. Another reason could
be due to the error arising from the Clausius-Clapeyron as-
sumption in the models (2 - 9), which seems to be valid at
high pressures.

Pressure 0.15 bar: Figs. 9(a-c) show the comparison at 0.15 bar
and superheat 15.1, 16.3 and 18.4 K. The following differences
can be observed compared to the comparison at 1 and 0.5 bar:
(i) the slope of the inertia-controlled growth curve by Rayleigh
decreased significantly and the curve crossed the data predicted
by some of the other asymptotic growth models up to about
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Fig. 8. Evaluation of homogeneous bubble growth models at P = 0.5 bar.
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Fig. 9. Evaluation of homogeneous bubble growth models at 0.15 bar.
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Table 3
MAE% and error at departure predicted using empirical growth models.
MAE %
Model P =1 bar P = 0.5 bar P = 0.15 bar @@Average
MAE % MAE % MAE %
5.6K 9.4K 10K 15K 12.7K 171K 19.5K 15.1K 16.3K 18.4K
Cole and Shulman [28] 18.7 26.9 349 343 40.7 444 20.6 109 84.2 61.3 47.5
Du et al. [30] 18 12.7 9.2 8.6 66.3 69.6 41.6 100.6 834 61.9 472
Lee et al. [29] 54.4 171 7 16 85.1 733 47 52.2 35.4 31.6 41.9
Benjamin and Balakrishnan [31] 14 315 39.9 45.2 15.5 14.7 219 14.6 16.4 294 243
Abdollahi et al. [32] 61.1 53 343 204 135.9 124.7 81.6 145.1 118.2 85.5 85.9
Error at departure
Cole and Shulman [28] 113 3.9 21.9 20.2 75.7 94.4 534 175.1 125 103.6 68.5
Du et al. [30] 22.1 33 7.8 7.8 101.6 121.7 75.2 168.3 128 107.9 77.3
Lee et al. [29] 57.6 29 11.6 15.7 132.8 144.4 96.3 140 88.1 53 76.9
Benjamin and Balakrishnan [31] 5.9 9.9 27.9 338 26.6 30.1 0.7 25.6 3.8 8.9 17.3
Abdollahi et al. [32] 59.1 100.9 60.9 47.7 194.3 202.3 130.9 221.8 165.9 1334 131.7
10 ms. (ii) The Prisnyakov [18] and Abdollahi et al. [32] mod- 1. Pressure 1 bar: Fig. 10a indicates, for 5.6 K superheat, that the

els, which predicted the data very well at 0.5 bar, overpre-
dicted the data with MAE 106.7 - 155.7% and 55.2 - 92.2% and
error at departure 160.9 - 238.5% and 95.8 - 154.2%, respec-
tively. (iii) the models described by curves 2 - 9 that exhibited
nearly similar performance at 1 and 0.5 bar (some models were
nearly coincident) showed clear differences and separate curves
at 0.15 bar. For example, models 5, 7 and 9 exhibited nearly
similar performance at 1 and 0.5 bar while they behaved dif-
ferently at 0.15 bar. These three models combined the inertia
and asymptotic growth stages using different assumptions for
the relation between pressure difference and temperature dif-
ference. The performance of the models described by curves 1
- 9 was getting poor with MAE in the range 210 - 573.9% and
error at departure as 291.2 - 796.3%.

In conclusion, the evaluation of homogeneous growth models
demonstrated that some models predict part of the growth curves
at atmospheric pressure in the early stage of growth up to 4 -
6 ms followed by large deviation when the experimental data en-
ters the slow growth stage. At 0.5 bar, the models by Prisnyakov
[18] and Abdollahi et al. [32] gave reasonable predictions while
other models exhibited poor prediction. At 0.15 bar, none of the
models could predict the experimental data. Thus, the homoge-
neous growth models should be used in heterogeneous boiling
with some precautions.

4.2. Assessment of heterogenous models

Because heterogeneous bubble growth models were suggested
based on different assumptions regarding the mechanism of heat
transfer to the bubble, it is better to segregate the models into the
following three categories: (i) empirical models which are based
on fitting a range of experimental data as a function of dimension-
less groups. (ii) models based on evaporation from the superheated
boundary layer around the curved surface of the bubble. (iii) mod-
els that include evaporation from the superheated liquid trapped
in the microlayer underneath the bubble. All heterogeneous bub-
ble growth models included in the comparison are summarized in
Table A2 of the Appendix A.

4.2.1. Empirical models

The experimental data were compared with five empirical mod-
els as seen in Figs. 10, 11 and 12 for the three tested pressure; 1,
0.5 and 0.15 bar, respectively. The comparison includes the models
suggested by Cole and Shulman [28], Du et al. [30], the Lee et al.
[29], Benjamin and Balakrishnan [31] and Abdollahi et al. [32]. The
statistical assessment of these models is summarized in Table 3.
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models suggested by Benjamin and Balakrishnan [31] (curve 4),
Du et al. [30] (curve 2), and Cole and Shulman [28] (curve 1)
predict the experimental data and trend very well with MAE
14, 18 and 18.7% and error at departure 5.9, 22.1 and 11.3%,
respectively. As presented in Section 2, the Cole and Shulman
[28] and the Benjamin and Balakrishnan [31] models predict
that R  t1/2 and the exponent of Ja was 0.6 and 0.5, respec-
tively. This may explain the small difference between the two
models. The model by Du et al. [30] predicts that the time
exponent depends on system pressure (the exponent is 0.271
at 1 bar), which is smaller than the 0.5 value in [28] and
[31] and the exponent of Ja was 0.79, which is larger compared
to [28] and [31]. This explains why this model predicts val-
ues larger than those predicted by [28] and [31]. The model by
Abdollahi et al. [32] (curve 5) underpredicted the data signifi-
cantly with MAE 61.1% and error at departure 59.1% while the
Lee et al. [29] model (curve 3) overpredicted the data signifi-
cantly with MAE 54.4% and error at departure 57.6%. Fig. 10b in-
dicates, for 9.4 K, that the Cole and Shulman [28] and the
Benjamin and Balakrishnan [31] models exhibited nearly sim-
ilar performance and underpredicted the data with MAE 26.9
and 31.5% and error at departure 3.9 and 9.9%, respectively. The
small error at departure is because the values predicted using
these models approach the experimental data towards the end
of the curve. The Du et al. [30] model exhibited excellent pre-
dictions up to about 7 ms after which the model deviated from
the experimental data with overprediction by MAE 12.7% and
error at departure 33%. The small MAE is due to the partial
agreement with the data over part of the growth period. The
Lee et al. [29] model behaved nearly similar to the Du et al.
[30] model except that the model predicts a slower growth rate.
The MAE of this model was MAE 17.1% and the error at depar-
ture was 29%. The Abdollahi et al. [32] model exhibited small
deviation at the beginning then the deviation increased signifi-
cantly with time with MAE 53% and error at departure 100.9%.
At 10 K superheat, Fig. 10c shows that the performance of the
Cole and Shulman [28] and the Benjamin and Balakrishnan
[31] models was nearly similar to Fig. 10b where they under-
predicted the data with MAE 34.9 and 39.9%, respectively and
error at departure 21.9 and 27.9%. The Lee et al. [29] model ex-
hibited excellent agreement in terms of values and trend with
the lowest MAE of 7% and error at departure 11.6%. Also, the Du
et al. [30] model gave excellent prediction with MAE of 9.2%
although the trend was slightly different compared to the ex-
perimental data. The Abdollahi et al. [32] model showed the
same performance as Fig. 10b but with a lower MAE value of
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Fig. 10. Assessment of empirical heterogeneous bubble growth models at P = 1 bar.

34.3% and error at departure 60.9%. Fig. 10d indicates, for the
highest superheat, that the difference between the Cole and
Shulman [28] and the Benjamin and Balakrishnan [31] mod-
els is getting large compared to Figs. 10(a-c) for lower super-
heat. They underpredict the data with MAE 34.3 and 45.2% and
error at departure 20.2 and 33.8%, respectively. The Lee et al.
[29] model underpredicted the data for time below 10 ms then
overpredicted the data up to departure (the model crosses the
data) with MAE of 16% and error at departure 15.7%. The Du
et al. [30] model exhibited excellent prediction up to 2 ms
then slightly underpredicted the data with excellent predic-
tion towards the end of the growth period. The MAE of this
model was 8.6% and the error at departure was 7.8%. Contrary
to the large MAE predicted by the Abdollahi et al. [32] model
at low superheats, it showed excellent prediction up to 6 ms
then overpredicted the data with deviation that increases with
time. Due to the partial agreement, the MAE decreased to 20.4%
while the error at departure was 47.7%. Based on Table 3, it may
be concluded that the best performing model at atmospheric
pressure is the Du et al. [30] model in terms of the MAE while
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based in the error at departure the Cole and Shulman [28] has
the lowest deviation.

2. Pressure 0.5 and 0.15 bar: Figs. 11 and 12 depict the com-

parison at 0.5 and 0.15 bar, respectively. The behaviour of all
models was similar to that occurred at 1 bar except that the
trend predicted by the Lee et al. [29] model has changed. Af-
ter the early stage of growth, it predicted slow growth rate at
atmospheric pressure, which was nearly similar to the exper-
imental data. By contrast, at 0.5 and 0.15 bar, the model pre-
dicted a faster growth rate compared to the atmospheric pres-
sure case, i.e. it was nearly linear at 0.15 bar. The Benjamin and
Balakrishnan [31] exhibited the lowest MAE for the three su-
perheats at 0.5 bar with values in the range 14.7 - 22% and
error at departure 0.7 - 30%. The performance of this model
did not change significantly at 0.15 bar where the MAE ranged
from 16.4 to 29.4% and the error at departure was 3.8 - 25.6%.
The Cole and Shulman [28] model gave a MAE value below 30%
only for the 19.5 K superheat at 0.5 bar. All other models gave
MAE in the range 40.7 - 135.9% at 0.5 bar and 31.6 - 145.1% at
0.15 bar. Based on Table 3, the model by Benjamin and Balakr-
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Fig. 11. Assessment of empirical heterogeneous bubble growth models at Fig. 12. Assessment of empirical heterogeneous bubble growth models at
P = 0.5 bar. P = 0.15 bar.
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ishnan [31] exhibited the best overall performance for the three
examined pressures at different superheat. It predicted all data
with MAE 24.3% and error at departure 17.3%. The better per-
formance of this model may be attributed to the inclusion of
the Archimedes number, which considers the effect of gravity,
which was ignored by all other models.

4.2.2. Boundary layer-based models

Seven models [20,23-25,33-35] for bubble growth due to evap-
oration from the superheated liquid in the boundary layer around
the bubble are evaluated in this section. Because bubble growth
rate in uniform superheat represents the upper limit of growth,
it is expected that the effect of nonuniform superheat is to re-
duce the growth rate in heterogeneous boiling. Zuber [23] as-
sumed spherical bubble which is initially fully surrounded with
the wall thermal boundary layer of uniform thickness and super-
heat (T, ~ T,y). When evaporation starts, the bubble surface cools
down to the saturation temperature Ty and thus part of the heat
will be conducted towards the bubble surface with temperature
difference (T — Tsqr) While the other part will be conducted to-
wards the liquid bulk with temperature difference (T, — Tj,) due
to the nonuniform liquid superheat. If the liquid bulk tempera-
ture T, equals the superheated wall temperature (uniform super-
heat), the model is reduced to bubble growth in homogeneous
boiling. This model predicts that the R o t'/2. Forster [33] con-
sidered the effect of nonuniform superheat by assuming that the
bubble grows in a wall thermal boundary layer in which the lig-
uid superheat decreases exponentially in the direction normal to
the boiling surface. This model predicts that the R o t1/2 when the
bubble is inside the wall thermal boundary layer and the relation
changes to R « t1/4 when it protrudes outside the boundary layer.
Han and Griffith [24] assumed that the bubble grows as a trun-
cated sphere and is fully surrounded with the wall thermal bound-
ary layer, which is formed periodically during the waiting period.
The superheat was assumed to vary linearly in the bubble thermal
boundary layer. It is difficult to infer the time exponent from their
model but in the case of uniform superheat and spherical bubble,
the model was reduced to homogenous growth models with time
exponent 0.5. Van Stralen [25] assumed that the bubble is a trun-
cated sphere similar to [24] but is partially surrounded with the
superheated boundary layer. Contrary to the above models which
assumed that the superheat does not vary with time during the
whole bubble growth period, Van Stralen [25] assumed that bub-
ble growth is a relaxation phenomenon, i.e. the superheat around
that part of the bubble decreases exponentially during a relaxation
time (delay time), which was taken as the departure time. He as-
sumed that the bubble grows with a fixed shape with a fixed con-
tact shape angle of 60°. In conclusion, he modified the homoge-
neous growth model to account for partial heating and the time
dependant superheat. The bubble height which is surrounded with
the superheated layer “relaxation layer” was related to the shape
angle. Because this angle was assumed fixed, the part of the bubble
surrounded with the boundary layer can be obtained at any time,
recommended at departure. This model predicts that in the early
stage, the radius follows the relation R « t1/2 and the exponent de-
creases rapidly with time. The model was also based on satisfying
that the growth velocity tends to zero towards departure. Mikic
et al. [20] gave a model assuming that a spherical bubble forms at
the end of the waiting period due to evaporation from superheated
liquid in the boundary layer after subtracting the conduction heat
flux towards the liquid bulk. This principle is nearly similar to Zu-
ber [23] but it considers the effect of waiting time. When the wait-
ing time is zero or when the liquid bulk temperature equals the
superheated wall temperature (uniform superheat), the model re-
duces to the Plesset and Zwick [15] model. Finally, they combined
this asymptotic solution with the Rayleigh solution to consider the
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inertia-growth stage. Lesage et al. [34] assumed spherical bubble
connected with the surface with a cylindrical neck and corrected
the temperature profile in the wall thermal boundary layer used
by Mikic et al. [20] to account for the premise that the bubble
boundary layer thickness should be smaller than the wall ther-
mal boundary layer thickness adopted by all researchers. Cho and
Wang [35] assumed that the bubble grows as a truncated sphere
protruding outside the wall thermal boundary layer in which the
liquid temperature was assumed to decrease linearly. The bubble
was assumed to grow due to evaporation from that curved part of
the bubble surface immersed in the wall thermal boundary layer.
They also included a factor determined empirically to account for
contribution from the microlayer. In their model, they identified a
critical time after which the bubble penetrates the boundary layer.
The overall performance of these models is summarized in Table 4.

Fig. 13a indicates, for the lowest superheat, that six models pre-
dicted the data very well with MAE below 30%. These models are
arranged as follows: (1) the Mikic et al. [20] model (MAE 3.2% and
Ery 4.1%). It is worth mentioning that the waiting time required
for this model was predicted from the Han and Griffith [24] model.
(2) the Lesage et al. [34] model (MAE 5.7% and Ery 8.9%). As men-
tioned above, this model was based on the temperature distribu-
tion used in the Mikic et al. [20] corrected by the effective bubble
boundary layer thickness. (3) the Zuber [23] model (MAE 7.3% and
Ery 14.7%). (4) the Han and Griffith [24] model (MAE 12.2% and Ery
5.5%). (5) the Forster [33] model (MAE 19.7% and Er; 12.5%). (6) the
Van Stralen [25] model (MAE 23.9% and Er; 3.6%). This model pre-
dicted rapid growth with large deviation at the beginning then a
significant decrease in bubble growth rate with small deviation,
e.g. the growth rate approaches zero near departure. The model
by Cho and Wang [35] underpredicted the data significantly at this
superheat with MAE 46% and error at departure 43.7%. The under-
prediction may be attributed to the fact that the model assumes
bubble growth due to evaporation at the curved part of the bubble
surface immersed in the wall thermal boundary layer. This is con-
trary to the other models that considered the bubble is surrounded
with the wall thermal boundary layer. The same conclusion can be
reached in Figs. 13D, ¢, d for superheat 9.4, 10 and 15 K where the
same six models predicted the data very well with better perfor-
mance for the Van Stralen [25] model, see Table 4 for the error val-
ues. The only exception was the model by Forster [33] which un-
derpredicted the data with MAE 37.7%. It is obvious that this model
shows a clear jump after certain time (see curve 2). This time cor-
responds to the moment when the bubble protrudes outside the
wall thermal boundary layer (according to the model the exponent
of time changes from 0.5, when the bubble grows inside the wall
boundary layer, to 0.25, when it grows outside the wall boundary
layer). Additionally, this model described the bubble growth using
one continuous function, i.e. smooth transition between the two
stages (inside and outside the wall boundary layer). It is worth
mentioning that the fraction of the bubble surface which is sur-
rounded with the relaxation layer was supposed to be less than
or equal to 1 according to the Van Stralen [25] model. However,
the predicted value at departure as recommended by the model
was in the range 1.6 - 2. In other words, the bubble is fully sur-
rounded by the wall thermal boundary layer at atmospheric pres-
sure. This is justified by the perfect prediction in terms of values
and trend by this model. Generally, it is obvious that most of the
boundary-layer based models predicted the data at atmospheric
pressure very well.

Fig. 14 shows the comparison at 0.5 bar and superheat 12.7,
17.1 and 19.5 K. Contrary to the atmospheric pressure case that
exhibited good performance for all models except the Cho and
Wang [3] model, only three models exhibited excellent agreement
at 0.5 bar. These models are the Van Stralen [25], the Forster
[33] and the Cho and Wang [35] models which predicted the data
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Table 4
MAE% and error at departure predicted using boundary layer-based models.
MAE %
Model P =1 bar P = 0.5 bar P = 0.15 bar @@Average
MAE % MAE % MAE %
5.6K 9.4K 10K 15K 12.7K 171K 19.5K 15.1K 16.3K 18.4K
Zuber [23] 7.3 15.2 8.8 12.9 177 201.6 144.5 462 388.6 339.8 1713
Forster [33] 19.7 8.9 21.1 37.7 29 17.6 181 40.7 20 30.2 243
Han and Griffith [24] 12.2 154 20.1 14.2 111 132.2 100.1 341.2 292.7 2543 129.3
Van Stralen [25] 215 3.2 5.2 10.5 22.1 21.7 209 18.8 229 15.6 16.2
Mikic et al. [20] 3.2 7.7 14.7 9.7 107 147.4 68.2 333.7 281.3 228.8 118.5
Lesage et al. [34] 5.7 7.7 18.2 141 89.7 1339 95.2 304.2 253.5 203.7 164.8
Cho and Wang [35] 46 48.6 53.9 53 13 194 9.1 53.8 28.3 20.7 34.6
Error at departure (Ery)
Zuber [23] 14.7 39.5 9.2 12.5 237.2 258 192 620.2 467.4 4271 2254
Forster [33] 12.5 14 21.1 384 67.2 24 10 40 4.5 143 233
Han and Griffith [24] 5.5 15.7 4.6 6.6 162.3 212 154.4 480.5 379.8 374.4 179.6
Van Stralen [25] 3.6 0.2 23 5.2 22.8 25.1 18.8 29.9 24 21.4 15.3
Mikic et al. [20] 41 131 8 54 113 177 67.2 369 2714 2248 1229
Lesage et al. [34] 8.9 6.6 13.6 12 141.2 153.8 100.8 326.5 235.5 192 195.1
Cho and Wang [35] 43.7 34.8 46.9 48.1 24.8 36.5 2.6 67.6 19 3.4 32.7
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Fig. 13. Assessment of superheated layer-based models at P = 1 bar.
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Fig. 14. Assessment of superheated layer-based models at P = 0.5 bar. Fig. 15. Assessment of superheated layer-based models at P = 0.15 bar.
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Table 5
MAE?% and error at departure predicted using microlayer-based models.
MAE %
Model P =1 bar P = 0.5 bar P = 0.15 bar @@Average
MAE % MAE % MAE %
5.6K 9.4K 10K 15K 12.7K 171K 19.5K 15.1K 16.3K 18.4K
Cooper [26] 21.6 27.9 16.5 25.8 177.6 206.7 164.6 359.5 324.8 2834 160.8
Van Ouwerker [37] 25.8 241 314 24.7 81.9 99.2 70.5 2723 239.5 206.5 107.6
Labuntsov and Yagov [38] 21.5 314 39.1 39.2 32 37.7 17.6 1233 105.1 83.3 53
Van Stralen et al. [27] 39.1 38.6 44.4 39.2 50.2 66 43.2 163.2 143.4 119.6 74.7
Van Stralen et al. [27] (BL+ML+I) 21.5 3.2 52 10.5 22.1 27.7 17.6 18.8 22.9 15.6 16.5
Mei et al. [39] 42 222 11.5 12.6 86.8 77.5 43 81.7 60.7 35.2 473
Prisnyakov [18] 411 413 46.7 39.8 40.4 55.8 354 286.2 171.3 144.8 90.3
Buyvich and Webbon [41] 6.9 17 16.9 32.6 235 29.2 24.7 209.1 185.8 171.9 71.8
Error at departure (Er,)
Cooper [26] 253 67.7 38.5 55.7 246.5 313 236.7 504.6 419 383.9 229.1
Van Ouwerker [37] 19.5 0.3 17.7 8.1 1271 168.1 1171 390 318.7 286.8 145.3
Labuntsov and Yagov [38] 14.6 9.9 27 26.3 64.8 85.4 47.8 194 150.6 131.1 75.2
Van Stralen et al. [27] 349 193 334 25.1 57.8 123.5 823 246.4 197.4 177.3 99.7
Van Stralen et al. [27] (BL+ML+I) 3.6 0.2 2.3 5.2 22.8 25.1 47.8 29.9 24 214 18.2
Mei et al. [39] 58.9 56.3 25.5 16.8 133.2 139 82 139.1 96.4 70.6 81.8
Prisnyakov [18] 374 22.8 35.8 26.1 75.7 110.9 73.8 1924 233 210.9 101.9
Buyvich and Webbon [41] 121 39 2.4 16.1 17.5 20.7 1.6 306.6 249.1 243.1 90.8

with MAE 9 - 13.9%, 17.6 - 19% and 9.1 - 19% with error at de-
parture 18.8 - 25.1%, 10 - 67.2% and 2.6 - 36.5%, respectively. The
Zuber [23], the Han and Griffith [24], the Mikic et al. [20] and the
Leseage et al. [34] overpredicted the data significantly. The same
conclusion can be reached in Fig. 15 at 0.15 bar. It may be con-
cluded that the model by Van Stralen [2] predicted the data very
well at all pressures. It worth noting that the growth curve pre-
dicted by the Cho and Wang [35]| model exhibited a sudden drop
at a certain time for some conditions (see Fig.14b, c). This drop is
due to the fact that this model gave two equations for the bubble
growth problem, see Eq. (49). The first equation describes bubble
growth when the bubble size is smaller than the thickness of the
wall thermal boundary layer, while the second equation describes
bubble growth when the bubble protrudes outside the wall ther-
mal boundary layer. They gave an expression for t5 (see Eq. (49)),
the critical time at which the bubble protrudes outside the wall
thermal boundary layer. The appearance of the sudden drop in the
growth curve at some conditions and the absence at some other
conditions is due to the fact that the critical time depends on fluid
properties and wall superheat. Thus, when the critical time is very
small (less than about 1 or 2 ms), we only see one equation and
cannot detect the sudden drop observed at some conditions.

4.2.3. Models including microlayer evaporation

This section compares 8 models that attributed bubble growth
either to microlayer evaporation only such as Cooper [26], Van
Stralen et al. [27], and Mei et al. [39] or considering the microlayer
as one of the contributing mechanisms such as Labuntsov and
Yagov [38], Van Stralen et al. [27], van Ouwerkerk [37], Prisnyakov
[18] and Buyvich and Webbon [41]. Figs. 16, 17 and 18 shows the
comparison at pressure 1, 0.5 and 0.15 bar, respectively. The sta-
tistical performance of each model is summarized in Table 5. The
following points can be concluded from this comparison for each
model:

1. The Cooper [26] (curve 1) exhibited excellent agreement with
the experimental data up to 4 - 6 ms at atmospheric pressure,
see Fig. 16. After this time, the model overpredicted the data
with deviation increasing with time. The partial agreement of
this model at atmospheric pressure resulted in low MAE (16.5
- 27.9%) while the error at departure was large (25.3 - 67.7%).
This model has been discussed extensively in Mahmoud and
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Karayiannis [9] and the excellent agreement up to 4 - 6 ms
was coincident with the end of the expansion stage (maximum
contact radius), i.e. end of microlayer evaporation. Additionally,
this good agreement was due to the fact that the initial mi-
crolayer thickness was predicted based on 0.5 time exponent,
which is similar to the experimental exponent in this stage. In
other words, the microlayer model should be compared with
the data up to the end of microlayer evaporation (expansion
stage) and the overprediction is expected because the model
did not consider the growth during the departure stage. It is
worth mentioning that, as discussed in the introduction sec-
tion, Cooper [26] gave another two models that include con-
tribution from microlayer evaporation and the boundary layer.
In his formulation, the contribution was conducted in an addi-
tive manner. Because the comparison indicated that the micro-
layer only agrees partially at low time and overpredict the val-
ues at large times, it is expected that the other additive models
will overpredict the data significantly. Thus, they were not in-
cluded in the current comparison. Figs. 17 and 18 demonstrates
that the Cooper [26] model exhibited poor performance at sub-
atmospheric pressure with significant overprediction. This can
be attributed to the fact that the initial microlayer thickness
given in Cooper model represents a special case when the time
exponent is 0.5. In fact, the initial microlayer thickness depends
on the time exponent during the early stage of growth, which is
expected to be larger than 0.5 in the first few milliseconds, see
ref. [9] for more details. Accordingly, to generalize the Cooper
microlayer evaporation model, a general expression for the ini-
tial microlayer thickness is required.

2. Van Ouwerker [37] solved the conjugate heat transfer problem
including contribution from the microlayer and boundary layer
without neglecting the heat capacity of the liquid in the mi-
crolayer as was done by Cooper [26]. This model (curve 2) al-
ways underpredict the experimental data with a trend that ap-
proaches the data towards the end of the growth period. It did
not show excellent agreement in the first 4 - 6 ms as was the
case by Cooper [26] model and gave reasonable prediction at
atmospheric pressure as seen in Fig. 16. It predicted the data
with MAE in the range 24.1 - 31.4% and low error at departure
0.3 - 19.5%. It is worth mentioning that this model was based
on assuming that the bubble growth follows the law, R = Bt1/2,
Similar to the Cooper [26] model, the performance of the Van
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Fig. 16. Assessment of microlayer-based models at P = 1 bar.

Ouwerker [37] was poor at sub-atmospheric pressure with large

overprediction.

. Labuntsov and Yagov [38] presented a semi-empirical model
that combines evaporation from the thin microlayer in the con-
tact area and the thick layer below the bubble in the wedge
region. They lumped all physical unknowns into empirical con-
stants that were determined from experimental data. The com-
parison of this model (curve 3) indicates that the model al-
ways underpredicts the data at atmospheric pressure as seen in
Fig. 16 with MAE 21.5 - 39.2% and error at departure 9.9 - 27%.
At 0.5 bar, the model achieved some good agreement with the
data in the early stage of growth then overpredicted the data
as time increases, as seen in Fig. 17. The MAE of this model at
0.5 bar was 17.6 - 37.7% and error at departure 47.8 - 85.4%.
The model overpredicted the data significantly at 0.15 bar dur-
ing the whole growth period as seen in Fig. 18. In conclusion,
the empirical constants should be optimized for the model to
be more general.

. Van Stralen et al. [27] suggested a model for bubble growth due
to microlayer evaporation only. The microlayer thickness was
obtained based on heat transfer over flat plate rather than solv-
ing the Navier-Stokes equations as adopted by Cooper [26] and
Van Ouwerker [37]. The solution was obtained for a case when
the time exponent is 0.5. The model (curve 4) underpredicted
all the data at atmospheric pressure as seen in Fig. 16 with
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MAE in the range 38.6 - 44.4% and error at departure 19.3 -
34.9%. Contrary to the underprediction at atmospheric pressure,
the model overpredicted the data at 0.5 and 0.15 bar as seen
in Figs. 17 and 18. Again, the reasonable performance at atmo-
spheric pressure and the poor performance at sub-atmospheric
pressure may be due to the assumption of 0.5 exponent in
the growth law, which was used to estimate Reynolds num-
ber to obtain the microlayer thickness. Again, for the model to
be more general, the time exponent should be formulated as a
function of operating conditions. The same authors [27] com-
bined their microlayer evaporation model with the relaxation
boundary layer model suggested by them as discussed in the
previous section and incorporated the inertia-controlled growth
in one model. This model is described here as curve 4*. In this
model, the contribution of each mechanism was combined sim-
ilar to the total electric resistance connected in parallel, rather
than the additive approach adopted by other researchers. In
other words, the model prediction approaches the most dom-
inant mechanism. This model exhibited excellent prediction at
all pressures where it gave MAE 3.2 - 21.5% at 1 bar, 17.6 -
27.7% at 0.5 bar and 15.6 - 22.9% at 0.15 bar. The over MAE
of this model is 16.5%. It is worth noting that the performance
of this model that combines all mechanisms in a complex way
was not better than the simple “relaxation boundary layer”
model suggested by them and discussed in the above section.
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Fig. 17. Assessment of microlayer-based models at P = 0.5 bar.

5. Mei et al. [39] solved the conjugate heat transfer problem in-
cluding microlayer evaporation only as a contributing mech-
anism for bubble growth. The model was sharing the func-
tional form of the initial microlayer thickness given by Cooper
[26] except that they left the front constant to be determined
empirically. The difference between the Cooper [26] and the
Mei et al. [39] model was small at low superheat then the dif-
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Fig. 18. Assessment of microlayer-based models at P = 0.15 bar.
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ference is getting larger as superheat increases (the values by
the Mei et al. model are always smaller than those predicted by
the Cooper model). Fig. 16 indicates that the model gave rea-
sonable prediction at atmospheric pressure except the lowest
superheat with MAE in the range 11.5 - 42% and error at de-
parture 16.8 - 58.9%. Similar to Cooper model, the model over-
predicted the data significantly at 0.5 and 0.15 bar as seen in
Figs. 17 and 18.

6. Prisnyakov [18] included the microlayer contribution in a dif-
ferent way. He did not model the initial microlayer thickness
as was done in the above models. Instead, he applied the first
law of thermodynamics and assumed that the total heat trans-
fer rate entering the bubble is the sum of the heat flux at the
contact region and the heat flux at the curved part of the bub-
ble. The heat flux in the contact region was assumed equal to
the wall heat flux. Thus, his model depends on the average
wall heat flux. At atmospheric pressure as seen in Fig. 16, the
model performance was nearly similar to the microlayer model
given by Van Stralen et al. [27], i.e. it always predicts slightly
lower values at all superheats. It underpredicted the experi-
mental data by MAE 39.8 — 46.7% and error at departure 22.8 -
37.4%. The model overpredicted the data at 0.5 and 0.15 bar as
seen in Figs. 17 and 18.

7. Buyvich and Webbon [41] applied the mechanical energy equa-
tion rather than the momentum equation and assumed bub-
ble growth due to microlayer and boundary layer evaporation.
The microlayer thickness was obtained from the Navier-Stokes
equation and the boundary layer evaporation was modelled us-
ing the homogeneous growth model. It was assumed that the
bubble has different shapes during its growth period, i.e. the
shape changes from hemispherical to sphere. Thus, they could
give an equation to predict the time at which the transition
from shape to shape occurs. Fig. 16a indicates for the low-
est superheat case that the model (curve 7) is one continu-
ous curve indicating that the bubble grows with hemispheri-
cal shape. Increasing the superheat, as seen in Figs. 16b-c, the
model is a two-part curve, where the bubble grows as a hemi-
sphere for few milliseconds then the shape changes to a sphere.
The two-part curve became very clear in Fig. 17. In other words,
the sudden drop observed at some conditions is due to the
two different equations used in the description of the bubble
growth in this model. The model exhibited reasonable predic-
tion at 1 and 0.5 bar as seen in Figs. 16 and 17 with MAE in
the range 6.9 - 32.6% and 23.5 - 29.2% respectively and er-
ror at departure 2.4 - 39% and 1.6 - 20.7%, in the same order.
On the contrary, at the lowest pressure, Fig. 18 demonstrates
that the model overpredict the data significantly. This can be
attributed to the fact that the predicted time at which transi-
tion from hemispherical to spherical growth occurs is extremely
larger than the bubble growth period at the lowest pressure.
This is obvious from observing one continuous curve that repre-
sent the hemispherical growth stage. At 0.5 bar, this transitional
time occurred after nearly 50% of the growth period while
the hemispherical growth period was much shorter at atmo-
spheric pressure. It is worth mentioning that this model left the
growth constant to be determined empirically without any rec-
ommendation. For the sake of comparison, a value 7 /2, which
is in the mid-range was used (it should be between 1 and

V3).

It may be concluded from the above comparison that the
microlayer evaporation only or combined with boundary layer
evaporation could not explain the bubble growth at the three
examined pressures. There is only some partial agreement at
some experimental conditions. This is contrary to the boundary
layer models discussed above, which seems to explain the bubble
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growth in nucleate boiling much better than the microlayer-based
models.

5. Recommendation

Based on the results of evaluating 11 models for bubble growth
in homogeneous boiling and 20 models in heterogeneous boil-
ing, only the “relaxation boundary layer” model suggested by Van
Stralen [25] predicted all the data very well in terms of trend and
values. It predicted all data with MAE 16.2% and error at departure
of 15.3%. The limitation of this model is that the time and radius
at departure must be known in advance. In the above comparison,
the departure time and radius were taken directly from the exper-
imental data. Accordingly, for the Van Stralen model to be gener-
alized, accurate models for bubble departure radius and time are
needed. To get an idea about the effect of superheat and pressure
on departure radius and time, the experimental data are plotted
in Fig. 19. The figure indicates that for a fixed pressure, the de-
parture radius and departure time increase as superheat increases.
Additionally, at the lowest pressure (0.15 bar), the departure radius
and time increase at a higher rate compared to the 1 and 0.5 bar.
The increase of departure radius with superheat is due to the in-
crease in the excess enthalpy in the boundary layer around the
bubble which increases the bubble growth rate and size. The in-
crease in departure time with superheat can be attributed to the
fact that as the superheat increases the initial bubble growth rate
becomes larger and thus the bubble grows with a hemispherical
shape with larger inertia force for a longer period, which means
that the size of the bubble contact area becomes larger, see Mah-
moud and Karayiannis [9] for more details. Accordingly, the surface
tension force which keep the bubble attached to the surface dom-
inates for a longer period and thus the bubble takes time for the
buoyancy force to overcome the attaching forces (surface tension
and inertia).

As mentioned above, to generalize the Van Stralen [25] model,
models for departure radius and time are required. Accordingly,
it is important to evaluate existing bubble departure models in
the present section using the experimental data. Mohanty and Das
[44] and Mahmoud and Karayiannis [10] conducted a review study
which included a section on bubble dynamics and summarized the
bubble departure models. Due to space limitation, the interested
reader is referred to these references for more details about the
equations. In this section, 19 models were selected for comparison
with the experimental bubble departure radius and the results of
comparison are summarized in Table 6. It demonstrated that five
models [46,49,51,53,56] predicted the departure radius very well
at atmospheric pressure while none of the models could predict
the departure radius at 0.5 and 0.15 bar.

In literature, there is no correlations/models to predict the bub-
ble departure time directly. Instead, the departure time was corre-
lated with the departure diameter in the form fDj. It is expected
that the predicted departure time will not be accurate as well,
since the comparison in Table 6 indicated that there is no general
model for the prediction of bubble departure diameter. It may be
concluded from this discussion that there is no general model for
the prediction of bubble departure diameter and departure time. It
is well known that bubble departure depends on the instantaneous
local forces acting on the bubble during its growth, which are dif-
ficult to determine precisely. These forces depend significantly on
the operating conditions and it is difficult to have a phenomeno-
logical model that capture the departure phenomenon at all pres-
sures. Accordingly, the bubble departure data in this study were
correlated for the sake of recommending a closed form model to
predict the bubble growth rate, departure diameter and departure
time (frequency). The best fit equation for the prediction of bubble
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Table 6
Evaluation of bubble departure models.
MAE %
Model P =1 bar P = 0.5 bar P = 0.15 bar @@Average
MAE % MAE % MAE %
5.6K 9.4K 10K 15K 12.7K 171K 19.5K 15.1K 16.3K 18.4K
Saini et al. [46] 15.6 28 2 54 188.5 159.2 98.2 321 213.9 163.9 119.57
Fritz [47] 21.8 19.6 39.8 62.8 26.3 50.8 67 69.3 78.8 84.1 52.03
Ruckenstein [48] 98.6 98.2 98.5 98.5 94.8 94.9 95.9 89.7 92.1 93.1 95.43
Cole [49] 11.6 21 22 27.7 129.1 105.9 57.5 256.4 165.7 1234 90.14
Cole and Rohenow [50] 27.9 15.6 36.8 60.9 60.9 7.4 28 152.7 74.5 30 49.47
Kipper [51] 12.6 15 6.4 0.7 2543 251.5 180.9 701.8 513.3 436.8 237.33
Van Stralen [52] 86.1 87.3 90.1 92 79.4 83.3 87.8 81 86.2 88.8 86.2
Stephan [53] 4.6 121 10.9 18.1 172.2 144.2 86.8 376.1 255 198.5 127.85
Kutateladze and Gogonin [54] 59.5 70.2 77.4 84.4 62.6 721.3 80.3 69.9 78.5 83.1 138.72
Jensen and Memel [55] 1093 523 157 203 9238 45.7 3.7 75.2 26.5 1.2 4427
Zeng et al. [56] 9.4 19.2 3.1 2.9 266.9 264 190.9 730.6 5354 456.2 247.86
Lee et al. [29] 41.3 8.9 7.6 28.5 481.1 603 513.2 2684.3 21411 2026.5 853.55
Kim and Kim [57] 55.9 47.7 15.5 5.1 160.9 114.5 57.6 173.4 99.3 61.5 79.14
Phan et al. [58] 48.7 66.1 74.6 84.3 68.9 79.3 86.1 87.1 91.1 93.3 77.95
Phan et al. [59] 52.2 68.5 76.4 85.4 74.1 82.72 88.4 91.1 93.9 95.4 80.812
Nam et al. [60] 295.9 161.1 95.6 20.9 139.4 59.7 7.1 0.2 311 48.6 85.96
Cho and Wang [35] 76.6 37 4.6 26.6 38 1.1 29.4 39.2 57 66.7 37.62
Cole and Shulman [61] 73.5 14.5 143 47 109.8 40 6.1 201.7 108.4 55.1 67.04
Golorin et al. [62] 59.6 62.3 70.6 76.2 379 49.5 63 41.6 57.5 65.7 58.39
Error in Departure time
Saddy and Jameson [45] 14 7 9.8 198 54 6.5 2.1 88.9 50 32 322
departure radius was found to be: radius of all data with MAE 8.2% and departure time with MAE
G 9.75%.
o . .
Ry = C1]ac2[ /gA,oi| . [in mm] (86)  ty=C4ATS, [in sec] (87)

C; = —143, 527P? + 750.63P; + 0.286
G, =-1.21InP —5.352
G =-1.287InP; - 6.420

The empirical constants C;, C,, C3 were found to correlate well
with the reduced pressure P. = P/F, i.e. the effect of pressure on
departure size is captured through the reduced pressure. The same
was conducted to correlate the bubble departure time with the
average wall superheat and the empirical constants as a function
of the reduced pressure, as given by Eq. (87). The new empirical
models Egs. (86) and ((87)) predicted the experimental departure

Cs = 24 x 10~% exp (906.48P,)

Cs =2.82exp (—233.5F,)

Because only three pressures and three superheats were tested
in the current study, it is important to examine whether the new
suggested empirical model predicts the correct trend or not. Saddy
and Jameson [45] applied the potential flow theory to a growing
bubble on a nucleation site including the radial expansion and
translational motion of the centre of mass of the bubble. Their
model resulted in a balance between liquid inertia, buoyancy, sur-
face tension and vapour inertia forces. The bubble growth was di-
vided into two stages, expansion (growth) and transition (neck for-
mation), and the Scriven [11] bubble growth model was used to

28
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empirical model in Eq. (87): (a)

Table 7
Comparison of Eqs. (86) and (87) with experimental data from literature.
Conditions Measured Predicted % Error
Author
P, [bar] ATy, [K] Ry, [mm] ty, [ms] R4, [mm] tg, [ms] E,@@% E,@@%

Yabuki and Nakapebbu [63] 1 9 1.57 16.48 1.56 12.54 0.2 239
Van Stralen et al. [64] 0.13 19.7 13.62 77.32 14.68 62.14 7.8 19.6
Jung and Kim [65] 1 9 1.935 14.14 1.567 12.54 19 113

estimate the velocity and acceleration. Based on that they gave the
following theoretical expression for the time at which the bubble
forms the neck and enters the departure stage:

g2 _ 2B (|, 16Ro
erit 256g 91p B o2

The above theoretical model was evaluated using our experi-
mental data and the result of comparison is summarized in the
last row in Table 6. It is obvious that Eq. (88) exhibited good pre-
diction at P = 1 and 0.5 bar except the lowest superheat at 0.5 bar
but could not predict the data at 0.15 bar. This theoretical model
was used to test the trend predicted by our new empirical model
given by Eq. (87) and the comparison is depicted in Fig. 20 for
the three tested pressures. It is obvious that the new empirical
model agrees with the theoretical model at all pressures in pre-
dicting the correct trend, i.e. departure time increases as super-

(88)

29

heat increases. Additionally, the theoretical model and empirical
model gave nearly similar performance at atmospheric pressure.
At sub-atmospheric pressure, the theoretical model exhibited large
deviations at the lowest superheat for the 0.5 bar and significant
overprediction as the pressure decreased to 0.15 bar. To verify the
new empirical model for bubble departure radius Eq. (86)), com-
parison was conducted with the experimental data of Yabuki and
Nakapeppu [63], Van Stralen et al. [64], and Jung and Kim [65] and
the performance of Eqgs. (86) and ((87) is summarized in Table 7.
The new empirical models predicted the data of these researchers
very well with error 0.2 - 19% for departure radius and 11.3 -
23.4% for departure time. Due to the fact that the new empirical
models Eqgs. (86) and ((87)) predict the correct trend and values
very well, it may be recommended to be used with the Van Stralen
[25] bubble growth model. To test the performance of the new rec-
ommendation, Eqs. (86) and (87) were used with the Van Stralen
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[25] model and the results of comparison are shown in Fig. 21 for
the three pressures. It is obvious that the model predicted all data

in terms of trend and low MAE very well.

6. Conclusions

Bubble growth was measured in saturated boiling of deionized
water on a smooth copper surface at three pressures (1, 0.5 and
0.15 bar) and different superheat. The experimental data were used

to evaluate 11 models for bubble growth in homogeneous boiling

and 20 models for bubble growth in heterogeneous boiling. The

following points can be concluded:

1. There is nearly general agreement amongst researchers on bub-

ble growth in homogeneous boiling, which appears from the
work by [11,14,15,17,19] who nearly reached the same solu-
tion with small differences. On the contrary, several models
were suggested for heterogeneous boiling with significant dif-
ferences. The differences arise from the assumed bubble growth
mechanism and the complex temperature distribution around
the bubble, which is difficult to verify experimentally.

. The evaluation of homogeneous growth models demonstrated
that some models [11,14,15,19-21,33] predict part of the growth
curve at atmospheric pressure in the early rapid growth stage
(up to 4 - 6 ms) followed by significant overprediction in the

slow growth stage (large deviation at departure). Also, there
is no significant difference between the complex models that
combine inertia and asymptotic stages [19-21] compared to the
simple asymptotic models. At 0.5 bar, the models by Prisnyakov
[18] and Abdollahi et al. [32] gave reasonable predictions while
other models [11,14,15,19-21,33] exhibited poor prediction. At
0.15 bar, none of the models could predict the experimental
data. Thus, the homogeneous growth models should be used in
heterogeneous boiling with precautions.

. In heterogeneous boiling, the evaluation of the empirical mod-

els indicated that the Du et al. [30] model gave the best per-
formance at atmospheric pressure with MAE 8.6 - 18% while
the Benjamin and Balakrishnan [31] model gave the best per-
formance at sub-atmospheric pressures. It predicted the data
with MAE 14.6 - 29.4%. The better performance of this model
at sub-atmospheric pressure may be due to the inclusion of
Archimedes number that considers the effect of gravity, which
was ignored by all other empirical models. All examined empir-
ical models could not predict the exact experimental trend.

4. The evaluation of boundary layer-based bubble growth mod-

30

els indicated that at atmospheric pressure, six models [20,23-
25,33,34] exhibited excellent agreement with the experimental
data. The Cho and Wang [35] exhibited the poor performance at
atmospheric pressure. On the contrary, this model [35] and the
Van Stralen [25] model exhibited excellent prediction at sub-
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atmospheric pressure. In terms of trend and MAE, the best per-
forming boundary layer-based model at the three tested pres-
sures is the Van Stralen [25] model.

. The models that were based on microlayer evaporation only
could not explain the bubble growth at the three examined
pressures. There is only some partial agreement at some exper-
imental conditions. This, combined with the above point, may
lead to the conclusion that bubble growth in saturated boil-
ing of water occurs mostly due to evaporation from the super-
heated boundary layer around the bubble. The microlayer could
be only a contributing mechanism.

. All examined models failed to predict the correct experimen-
tal trend (rapid and slow growth stages) except the model by
Van Stralen [25], which assumed that bubble growth is a “re-
laxation phenomenon”, i.e. the superheat decreases exponen-
tially during the whole growth period (from the beginning to
departure). The relaxation time was considered equals the bub-
ble departure time and the fraction of the bubble surface (b*)
which is surrounded by the relaxation layer was a function of
the bubble departure radius as defined in Eq. (37). The com-
parison with this model indicated that at atmospheric pressure,
this fraction is always larger than 1 (the bubble is fully sur-
rounded with the relaxation layer) while it was smaller than 1
at sub-atmospheric pressure (part of the bubble is surrounded
by the relaxation layer). This agrees with the fact that bubble
size at sub-atmospheric pressure is much larger than the wall
thermal boundary layer. This model was not widely used in lit-
erature because it requires the knowledge of departure time
and radius in advance.

. To generalize the Van Stralen [25] relaxation model, 19 mod-
els for bubble departure radius were evaluated in the present
study. It demonstrated that five models [46,49,51,53,56] pre-
dicted the departure radius very well at atmospheric pressure
while none of the models could predict the departure radius at
0.5 and 0.15 bar. Thus, there is no general model for departure
radius can be recommended to be used with the Van Stralen
[25] at all pressures. This encouraged the present authors to
suggest empirical models for departure radius (Eq. (86)) and
time (Eq. (87)) as a function of superheat and reduced pres-
sure. The two empirical models were compared with some data
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from literature and exhibited excellent performance. Addition-
ally, the empirical model for departure time agreed with the
trend predicted by the theoretical model given by Saddy and
Jameson [45], which verify that the functional form of our em-
pirical model is correct.

. The new suggested empirical models are recommended to be

used with the Van Stralen [25] model for the prediction of
bubble growth rate. This recommendation is valid for saturated
boiling of water on metallic surfaces and may need further val-
idation using other fluids and substrate materials.
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Appendix A

Tables A1 and A2

Table A1l
Bubble growth models in homogeneous boiling.
Author Model
Fritz and Ende [16] = (2/Jm)jaat
Plesset and Zwick [15] R=/12/m]a /ot
Forster and Zuber [14] R = JmjaJa.t
Scriven [11] R=/12/m[hge/{hsg — (cpr — o) AT}a ot
Forster [33] R=0.5[1+/1+ 27 /Ja]lyT]a /ot

Prisnyakov [18]
Avdeev and Zudin [19]

= (4/3Vm)Jayat

R={/3/mjay ++/ 3/m)(Jay)* + 2a} ot

Y =[1+./7/2{1/VT—N-1}], N=c, AT/hsy = gJa = p,/piJa

Abdollahi et al. [32] R = Jar/mjater f(B/t) + Ry

B=7Z/ af‘}Lm 777 (Too = Tsar) Ro = 5
Mikic et al. [20] RE = 2t + 12— (eH)? 1]

1/2
RY = 88+ = At A (22087 g 2\/TxLJa

Theofanous and Patel [19] i 2 (B2 + 1) - (/52“)2

_i2 pm,gAT]”Z B — (1zal){plcm(u Tar)
! hygpu(Po)

3 pulsa

Avdeev and Zudin [19] r= =k, =9t y=

(1+F3)17’

n=40+vD" -30+vD)! +2) v =

11, R* =

Vg =

2ARy JF =

t
=g

7P (o) (Too—Tear)
Tt (B (To)—Pic)

82 /A"

[1+/FlAy - DL N=%5 =2
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Table A2
Bubble growth models in heterogeneous boiling.
Author Model
Zuber [23] R= b(%)[l - qg,jL’Z‘? VaJat
b: curvature correction factor (between 1 and +/3) with recommended value of 7 /2
3
_ 2 Ja? 7_ (ata)?
Forster [33] R=3[ZJavay —%%ﬁ‘ﬂtgn—%“g’fi—.m]
First three terms of a series solution
. 1 J4
Han and Griffith [24] R=Rc+ & p;f;‘;L {2ep3 — Dul j;[“"tferfm + 2 S exp(— ) - 2erf

Cole and Shulman [28]
Cooper [26]

Prisnyakov [18]

Mikic et al. [20]

Van Ouwerkerk [37]

Labuntsov-Yagov [38]
Van Stralen et al. [27]

Mei et al. [40]

Buyevich and Webbon [41]

Benjamin and
Balakrishnan [31]

Lee et al. [29]

Lesage et al. [34]

Abdullahi et al. [32]

Du et al. [30]

Cho and Wang [35]

@ : curvature factor 1 < ¢ < f, 3, ¢s:surface factor (1 +co0s6)/2, ¢, is base factor sm20/4, @y: volume factor
(2 + cos(2 + sin®#)) /4 hy: vapour heat transfer coefficient. 9, : degree of superheat, R is cavity mouth radius,

8 = T
R =2.5]a®7 /oyt
R =255 Jait (Microlayer only)

Pz
=[0.8/3/7Pr' 2] & %ﬁ]ﬁﬁ— [ &% % v/VIVE (microlayer and curved part)
‘// = p',:ﬁ,')rv Dpuk = Thute — Tsat, Ow =T — Tsar
R=Ry + 5 folal2/V7 Vot + fyNst]
_ q _ 1 (14cosf) _ 20T _1 _
Ny = P AT fo= %(1+gcose(1+sin26))' Ro = Polig AT fo=3(1~cos0)

Rt = (t*)% [1-9{Q1 +t;/t+)% - (t;/t*)% }] (dimensionless form)
R+ =AR/B%, t+ —Azt/BZ t; = A%ty /B?,
W AT 1/

A=[7 pm/im =V D[L-la U= ;:: %;

=[1-9 (/1 +tw/t — VE/D)]2\/3/m]a/at (dimensional form)

~1/2
27rhZ (v /ay)(0.9)° 7
={0.9y/2y 21+ 4(CLLALT) 1 +E/Zja)vi

[0 3]a +/(0.3Ja)* + 12Jal Vot

R| +Rz

1/2
Ry = 0.8165¢t M , [Inertia term|

Ry = 1.9544[{b* exp — (t/tg 1/2}+ 2l |Ja /@t +0.373Pr=1/5 exp — (t/t;) *Ja /ot

b =1 3908]'22}2 —0.1908Pr%, Rz. [mlcrolayer + relaxation layer]

R=./c/pf(0)a"?Vart
o =19, f(C)—1—z[1—m] i -vT=ar

¢ = [(0.4134Ja%16%5)™® 1 (1 — 0.1¢-00005%)®] "/°
= 0.00525Ja%752Pr=05 (k, /k) 1 (et fots) 17

Hemispherical growth: R = CJa[1 + Np ]/t

Spherical growth: R = CJa/a t when N, < 1

R*

. S B 1

C is the constant in R = CJa/o t, Ny = T354cTF

372 6 a/p 12 _ 3 (4pu/5p)CJal+Nm) /oL
1 (1-pu/p)CJa(1+Ny) 8 1 (-pv/pL)g

t;: the end of the hemispherical growth, C was left to be empirical
R = 0.5BAr*135]a'2 /o t
Ar = (g/vlz) (tf/pLg)3/2 = 1.55 [water, CCly, n-hexane]
=1/1.55 [n-pentane, acetone]
RJr = 11.2t*1/> tanh 0.345¢+4/> 4+ R}

R* = R/R¢, t+ =t/te, R§ = 0.072, tc = $Jact; 2%, R, = /T Jaa; [ ik

[R+/R2+R2 —Rel = (4/ /7 /3)aar(VE — \Jt + 82/(war/3) + /82 / (war/3))

80 = /T twr, R:: cavity mouth radius

R = 6.9577,/3Jaaterf(3.8323t/t;) + 0.028425R., Ja > 24

R =2.5,/3Javaterf(0.19660.1966/t.) + 0.7R., Ja < 15

R = Ja/mwjavterf(y/Bt) + Ry, 15 < Ja < 24

te= §oualft, Re = Flayja [ 28, B = %[5 s (Too = Tear), Ro = 27087

R= f(Ja)a]t"

n = 1.0012e7/03257 _ 0.9624e-F/06161 1 0.5, P: in MPa f(Ja) = 2.1077Ja%790
28m/c[1 —exp(—Cybc? ATVE/8i) 10 <t <ty

V2,/ b8 ATVE — 82 (In4 —1)/2¢2 t > t

8 In2 ) b= ki[(r—2.4) cos+2.4sec §]
cpbcZ AT - 27 pohyggJar

= 0.534 (based on data for water at 1 atm), §,, = 35.7(vozl/g,3,AT)”3

c=2cos 7, ts = ( , B: static contact angle.
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