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Abstract

Recent results in the theory and application of Newton-Puiseux ex-
pansions, i.e. fractional power series solutions of equations, suggest fur-
ther developments within a more abstract algebraic-geometric framework,
involving in particular the theory of toric varieties and ideals. Here, we
present a number of such developments, especially in relation to the equa-
tions of van der Pol, Riccati, and Schrödinger. Some pure mathemati-
cal concepts we are led to are Graver, Gröbner, lattice and circuit bases,
combinatorial geometry and differential algebra, and algebraic-differential
equations. Two techniques are coordinated: classical dimensional anal-
ysis (DA) in applied mathematics and science, and a polynomial and
differential-polynomial formulation of asymptotic expansions, referred to
here as Newton-Puiseux (NP) expansions. The latter leads to power series
with rational exponents, which depend on the choice of the dominant part
of the equations, often referred to as the method of ”dominant balance”.
The paper shows, using a new approach to DA based on toric ideals, how
dimensionally homogeneous equations may best be non-dimensionalised,
and then, with examples involving differential equations, uses recent work
on NP expansions to show how non-dimensional parameters affect the re-
sults. Our approach finds a natural home within computational algebraic
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geometry, i.e. at the interface of abstract and algorithmic mathematics.

1 Introduction

The purpose of this paper is to demonstrate that recent new results [1] in the
theory of fractional power series solutions of algebraic equations may be placed
in a more general setting, and that this makes possible further developments
in the theory of such equations [2] . In particular, it is shown that ideas from
algebraic geometry, especially the theory of toric varieties and ideals [3], pro-
vide a basis for new computational tools which draw on, and extend, currently
available tools within the flourishing research area of computational algebraic
geometry [4]. Moreover, the more general framework which we identify applies
also to differential equations [5], for example to the van der Pol [6, 7], Riccati
[8], and Schrödinger [9] equations.

The paper runs together in a straightforward way two techniques in applied
mathematics, namely those of Dimensional Analysis (DA) and rational power
perturbation expansions [10, 11], referred to variously as singular perturbations,
the method of dominant balance, asymptotic theory and the term we shall use,
Newton-Puiseux expansions (NP). Polynomial models are a natural vehicle for
combining DA and NP and they share several features. Both techniques lend
themselves to modern computational commutative algebra and both start with
polynomials with integer exponents which, deeper inside the construction, lead
to fractional exponents [12, 13].

The close connection arises, we will maintain, from the idea that the equa-
tions of many physical laws are dimensionally invariant, i.e. the equations are
expressed via a sum of terms each of which has the same dimension in mass
(M), length (L) and time (T ) (or other primitives). Each term is the prod-
uct of raw terms based on physical variables and a constant term. DA itself
concerns invariance under scale transformations, which lends itself naturally to
polynomial methods, as we shall see in the next section.

The starting point in the considerable literature on NP is the Newton Poly-
tope, which is the convex hull of the vector of exponents in the model polyno-
mial [14, 15, 16]. NP derives from considering a dominant facet of the poly-
nomial, all other terms being of smaller order in a certain sense. DA and NP
come together in the following consideration. If we carry out what is called
non-dimensionalisation, that is, convert both variables and constants to non-
dimensional terms, we can see how the non-dimensional constants affect the
NP expansions. A fortuitous aspect is that both DA and NP have the same
conventions for handling exponents for differential forms.

This work is based on two papers [1] and [3], the former of which is a recent
work on NP and can be considered as a ”proof of concept”; the latter is an
earlier work on DA. The classical Buckingham method for DA is available at
[17] [18] [19]. There are many classical references on asymptotics, of which two
excellent examples are [9, 20]. These give the rules which apply to asymptotic,
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as opposed to convergent, expansions. Key references on algebra are [4] and
[21]. The methods of the paper apply to problems with any number of inde-
pendent parameters; recent examples in the biomedical context with many such
parameters, all of importance, are [22, 23].

1.1 Dimensional analysis using toric ideals

We begin with a summary of the key ideas of dimensional analysis as used
in this paper [18, 19]. The basic assumption is that all main variables and,
as we shall see, constants, start by having dimensions. The aim, then, is to
convert to an equation in which, by contrast, variables and constants are all
dimensionless. If z1, . . . , zk are the dimensions, such as as mass, length and
time, respectively M , L and T , then z1 = M , z2 = L, z3 = T . For example,
if the variable x, which describes force, has dimensions MLT−2, then in the z-
notation this would give the (Laurent) monomial term z1z2z

−2
3 . Dimensionless

variables are also monomials in the variables x1, . . . , xd which, replaced by all
their z-monomials, reduce to unity: all the dimensions cancel.

In the Buckingham method the exponents of all the variables and constants
are held in a d× k matrix A = {aij}, with each row indexed by a variable and
each column by a dimension [17]. Assuming k < d and that A has full rank
d we compute a full rank integer kernel matrix K. That is, rank(K) = d − k
and ATK = 0. Each column of K yields a dimensional quantity (sometimes
called ”group”) using the following rule. For each column q of K, let q+ be the
positive elements, and let q− be the negative elements. Then

X =
xq

+

xq−
(1)

is the dimensionless quantity associated with column q.
The approach to dimensional analysis based on toric ideals is concisely de-

scribed in [3], and we now summarise the main features of this approach as
needed here; more detail may be found in [4, 21, 24]. First, we preserve the
power product notation and abuse the physics by simply writing down the bank
of equations formed by representing the variables {xi} in terms of the dimen-
sions {zj}:

xi =
k
∏

j=1

z
aij

j , i = 1, . . . , k. (2)

Dimensionless quantities are obtained from the elimination ideal obtained by
formal algebraic elimination of the {zj} from these equations. The ideal is
composed of terms of the form

∏

xv
+ −

∏

xv
−

, (3)

for integer exponents v+ and v−,
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The following is a simple example; more may be found in [3]. Let d = 5,
k = 3 and define

A =













1 1 −2
0 1 0
0 1 1
1 0 3
1 −1 −1













. (4)

The toric ideal can be written

〈−x43x5 + x32x4, −x33x25 + x1x4, −x32x3x5 + x1x
2
3〉 . (5)

This gives three dimensionless quantities

X1 =
x32x4
x43x5

, X2 =
x1x4
x33x

2
5

, X3 =
x1x

2
3

x22x3x5
, (6)

with exponents which are candidates for the Buckingham K matrix. For exam-
ple, the first generator gives a column (0, 3,−4, 1,−1)T . Note that whereas a
matrix K would have 5− 3 = 2 columns, there are three generators of the toric
ideal. A simple explanation is that the toric version has the saturation property
which can be found by adjoining the condition that no variable xi is allowed to
be zero [4].

The terms derivable from the columns of the Buckingham K-matrix method
lie in the ideal, but the non-uniqueness of K (in the sense of providing a basis
for the kernel) implies that there is freedom of choice. In the same way, the
toric ideal is unique, but its representation in terms of generators is in general
not unique. The most familiar basis is the Gröbner basis which depends on
the chosen monomial order, a total order of monomials which is an important
input to computer algebra packages. In [3] we mention the ”Graver” basis,
which is unique but can be quite large. The alternative ”circuit bases” are in
a sense minimal and are used in combinatorial geometry, particularly matroid
theory. The set of columns for the K matrix gives the so-called ”lattice” basis.
In summary, we obtain the toric ideal from the lattice basis by saturation. A
canonical reference for toric ideals is [21], Chapter 4.

2 The variable-constant ideal

We shall use the notation xα = xα1

1 xα2

1 · · ·xαd

d for a monomial in the n variables
(x1, . . . , xd) where α = (α1, . . . , αd) is a vector of non-negative integers. A
polynomial is then written

f(x) =
∑

α∈A

cαx
α, (7)

where the cα are coefficient vectors and A is a list. The set A is the basis for the
construction of the Newton Polytope covered in the next section. An example
is the two-dimensional quadratic polynomial

c00 + c10x1 + c01x2 + c20x
2
1 + c11x1x2 + c02x

2
2 (8)
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(where we have suppressed commas in the indexing), for which

A = {(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2)}. (9)

The basic equation we will consider in this section is that of an algebraic
variety defined by

f(x) = 0, (10)

where the variables x1 . . . , xd are physical variables of interest and the constants
cα may also have physical dimensions. We introduce dimensions z1, . . . , zk in
the sense of dimensional analysis, of which, as mentioned, the most familiar are
z1 = M , z2 = L, z3 = T . We shall also assume that f(x) is dimensionally
homogeneous as defined shortly. For a variable xi or constant cα we use the
notation [xi] and [ca] to capture the exponents in the dimensions. Thus if xi is
a force variable, its dimensions are MLT−2, with exponents

[xi] = (1, 1,−2). (11)

This bracket notation can be extended to monomials and polynomials by using
the exponent rule that, for α = (α1, . . . , αd),

[cαx
α] = [cα] +

n
∑

i=1

αi[xi]. (12)

Dimensional homogeneity of the equation f(x) is the condition that every term
cαx

α has the same dimension. That is, for some fixed integer vector b, we have

[cαx
α] = β for all α ∈ A, (13)

so that

[cα] = β −
n
∑

i=1

αi[xi]. (14)

A main idea of the paper is that of dimensional reduction, sometimes called
non-dimensionalisation. That is, we want to replace the equation f(x) = 0
with another polynomial equation in which all variables and constants are di-
mensionless. It turns out that the development of DA using toric ideals is rather
natural.

The first step is to write down the full list of power product equations:

xi = z[xi], i = 1, . . . , n, (15)

cα = z[cα], α ∈ L. (16)

Here the equals sign continues to be used in a lazy fashion, but allows us to
define the variable-constant ideal as the toric elimination ideal from this double
set of equations. Finally, if possible, we select dimensionless quantities from the
toric set-up which separate into constant terms and variable terms, as seen in
the following example.
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Example 1. With d = 2 and using variables x, y and letters a, b, c, d for
constants, consider

f(x, y) = ay3 + bxy2 + cx2y + dx4. (17)

We useM,L, T, and in our notation x =ML−3, y =ML−1T−2 (the dimensions
of density and pressure respectively). We have

[x] = (1,−3, 0), [y] = (1,−1,−2). (18)

The common dimension β is defined only up to a common multiplier. Another
way of saying this is that for a dimensionally homogeneous equation, we may,
physical interpretation permitting, and ignoring zeros, divide out by the com-
mon dimensions of the individual terms.

We now have a full set of power products, where we have used (14) to extract
the dimensions of the constants:

x = ML−3,
y = ML−1T−2,
a = M−3L3T 6,
b = M−3L5T 4,
c = M−3L7T 2,
d = M−4L12.

(19)

The toric ideal for x, y, a, b, c, d is the elimination ideal obtained by (al-
gebraically) eliminating M,L, T from these equations. It is useful to count
variables. There are six equations and three dimensional variables so that, af-
ter elimination, we can hope for two dimensionless quantities in x, y, leaving
one dimensionless quantity for the parameters a, b, c, d. As mentioned, the
generators of the ideal are dependent on the choice of monomial ordering for
the Gröbner computation. We settle on one solution which, as required, keeps
a single dimensionless quantity for the parameters and one for each original
variable. They are

X = a2d
b3

x,

Y = a3d
b4

y,

R = ac
b2
.

(20)

Substituting x and y back into in f(x, y) leads to a full dimensional reduction
of the original equation, preserving the monomial stucture:

g(X,Y ) = Y 3 +XY 2 +RX2Y +X4 = 0. (21)

The equality signs are now no longer lazy in that we have fixed the definition
of the dimensionless quantities in terms of the original variables and constants,
which we assume are defined with appropriate units.

6



3 Dimensional Analysis in the differential equa-
tion case

The rules for dimensional analysis in the differential case are not simply a con-
vention but an important tool of science [25, 26]. Using the notation of Section
1 we have for ordinary differentials

[

dsy

dxs

]

= [y]− s[x], (22)

and for combined monomials and differentials:
[

dsy

dxs
xαyβ

]

= (−s+ α)[x] + (1 + β)[y]. (23)

From here on the toric development is the same. If we arrive at, say, two
dimensionless quantities X and Y , corresponding to x and y respectively, which
may be partly or wholly derived from differentials, then we can substitute back
for x and y to obtain, for example, dsY/dXs as a well-defined and dimensionless
quantity.

Example 2: A Riccati equation [8, 9]. The following example is a special
case of the more general Riccati equation. We take

dy

dx
− ay2 + bxy2 − cxy = 0, (24)

with y as length (L) and x as time (T). Then by forcing the equation to be
dimensionally homogeneous with dimension ML−1, as for the first term, we
obtain

x = T, (25)

y = L, (26)

a = L−1T−1, (27)

b = L−1T−2, (28)

c = T−2. (29)

This gives the variable-constant ideal

〈a2c− b2, by − c, ay − b, −ay + cx, bx− a, axy − 1〉, (30)

from which we select the invariants

X =
bx

a
, (31)

Y =
a2y

b
, (32)

R =
a2c

b2
. (33)
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Substituting for x and y into the original equation gives

b2

a3
dY

dX
− b2

a3
Y 2 +

b2

a3
XY 2 +

c

a
XY = 0. (34)

Multiplying by a3/b2 we obtain the dimensionally invariant and homogeneous
form with the single dimensionless parameter R:

dY

dX
− (1 −X)Y 2 −RXY = 0. (35)

We shall continue this example in Section 7.

Example 3. The Schrödinger equation [9]. The one-dimensional Schrödinger
equation is

− h̄

2m

d2ψ(x)

dx2
+

1

2
mω2x2ψ(x) = Eψ(x), (36)

with the usual definitions of variables and constants. We use the informal equals
sign to give the dimensions of each term as

m = M, (37)

x = L, (38)

h̄ = ML2T−1, (39)

ω = T−1, (40)

E = ML2T−2. (41)

The rule discussed for the differentials leads to the claim that every term has di-
mensions of ψ(x) times energy (which has dimensions: ML2T−2). The conven-
tionally accepted dimensions of ψ(x) for a one-dimensional problem are L−1/2,
but we do not yet include this in the analysis.

The raw equations, set out in ideal form, are

〈m−M, x− L, Tw − 1, ET 2 − L2M, −L2m+ T h̄〉, (42)

giving the Gröbner basis

〈mωx2 − h̄, −h̄ω + E, −x+ L, −mx2 + T h̄, Tω − 1, −m+M〉. (43)

The first two terms can be considered as the variable-constant elimination toric
ideal and give two dimensionless quantities. A little experimentation was re-
quired to represent the wave function ψ and the energy E via different toric
terms.

This gives the so-called nonpolarisation version, as follows. Construct the
two dimensionless quantities

X = x

√

mω

h
, Ẽ =

E

h̄ω
. (44)

Then, defining Ψ(X) = ψ(x), we arrive at the familiar non-dimensionalised
Schrödinger equation:

− d2Ψ(X)

dX2
+X2Ψ(X) = 2ẼΨ(X). (45)
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4 Newton-Puiseux (NP) expansions in the poly-
nomial case

The second part of this paper gives an explanation of Newton-Puiseux expan-
sions with a view to applying them to dimensionless equations derived via the
method of the previous sections. The development follows [1], which presents
explicit formulae for such expansions, extending the classical theory [2, 5, 14]. A
Newton-Puiseux expansion is a fractional power-series solution of an algebraic
equation or a system of such equations [14, 15]. A key feature of such an expan-
sion is that its leading fractional power is determined by a geometrical object
called the Newton polytope, as will be explained below. The polytope exists in
exponent space, and its vertices must be determined as an essential first step
for the expansion to ‘get started’.

Thus our starting point is the generic polynomial variety f(x) =
∑

a∈A
cαx

α,
where x is d-dimensional but we first ignore the dependence of the coefficients
cα on parameters. The Newton polytope of f(x) is the convex hull of the set A:

C(A) = conv{α : α ∈ A}. (46)

In general, an α in A may lie in the interior of A, or in some lower dimensional
facet, or its relative interior.

In [1] the authors select two x-variables which may be labelled input and
output variables respectively: x1 and xd. The object is to expand xd in special,
and possible fractional, powers of x1, which we then apply in conditions in which
x1 becomes small. The intermediate variables x2, . . . , xd−1 play an ancillary role
in determining the trajectory of x1 as it becomes small in relation to xd. We
only give here the case in which A has a distinguished d−1 dimensional facet F
with just a single point β not lying in F (so that this point is a vertex of C(A)).
Thus we define F = A \ β and

F = conv(F). (47)

In this case we can express the function f(x) as the sum of two parts, for which
one part corresponds to the facet F and the other to the isolated vertex. That
is,

f(x) =
∑

α∈F

cαx
α + cβx

β (48)

for some constant cβ . We define the algebraic variety corresponding to the facet
as

f∗(x) =
∑

α∈F

cαx
α. (49)

The normal to the facet F plays a special role which is transferred to certain
identities between the xi (i = 2, . . . , d), and x1.

Here is a simple example. Let d = 2 and consider the triangle with vertices
A : (2, 0), B : (0, 2), C : (3, 3). We choose the facet F to be the line between A
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and B on which x1 + x2 = 1. Specifically,

F = {(c1, c2) = c(2, 0) + (1− c)(0, 2) for all 0 ≤ c ≤ 1}. (50)

The corresponding set of monomials is

{x2c1 x
2(1−c)
2 , 0 ≤ c ≤ 1}. (51)

Next, we ask for conditions on x1, x2 such that the above set does not depend on
c, or in other words what functions of x1, x2 are invariant on F . The condition
is clearly x1 = x2; that is, x1x

−1
2 is constant on L, the value being unity.

Important for us is that the exponent vector (1,−1) is the vector orthogonal to
F . The general case will appear in the next subsection.

4.1 Computation of exponents

Following [1], we first identify d vertices of F : α(1), . . . , α(d). The vectors

V = {α(1) − α(j)}, j = 2, . . . , d (52)

form a basis of the affine subspace containing the facet F . The normal m to
this space (unique up to scale) is the solution m to the equations

(a(1) − a(j))Tm = 0, j = 2, . . . , d. (53)

We can now, under suitable general position assumptions, reconstruct a special
basis for span(V ) of the form

(1,−q2, 0, . . . , 0), (1, 0,−q3, 0, . . . , 0), . . . , (1, 0, . . . ,−qd), (54)

where
qj =

m1

mj
, j = 1, . . . , d. (55)

Once we have decided that the basis members should have only two non-zero
terms we have uniqueness (up to scale).

We then substitute xj = sjx
mj/m1

1 (j = 2, . . . , d) for some choice of the
{sj : j = 2, . . . , d − 1}, leaving sd free for the moment. From a physical point
of view, this substitution preserves dominant balance on the facet F and gives
a two-dimensional problem in x1 and xd.

For clarity we look at a case with d = 3. Take

f(x1, x2, x3) = x1x2 + x1x
2
2x3 + x21x2x

2
3 + x21x

2
2x

2
3. (56)

The Newton polytope is

conv{(1, 1, 0), (1, 2, 1), (2, 1, 2), (2, 2, 2)}. (57)

Select the convex hull of the first three points as the facet spanned (affinely) by

(1, 2, 1)− (1, 1, 0) = (0, 1, 1), (2, 1, 2)− (1, 1, 0) = (1, 0, 2). (58)

The normal vector is m = (1,−2, 0), which leads to the subsitution x2 = s2x
1/2
1 ,

and the vector (0, 1, 1) (lying in the facet) yields x3 = s3x
−1
1 .
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4.2 The facet equation

We have shown that, by a suitable choice of basis, for every j = 2, . . . , d there are
a constant sj and rational exponent mj/m1 such that on the variety f∗(x) = 0
we have

xj = sjx
mj/m1

1 . (59)

In the case j = d the term sdx
md/m1

1 will appear in the first of our NP expansions
for xd in terms of x1.

Substituting each xj in f(x) we obtain

f(x) =
∑

α∈F

cα

d
∏

i=1

xαi

i + cβ

d
∏

i=1

xbii (60)

=
∑

α∈F

cax
α1

1

d
∏

i=2

(

six
mj/m1

1

)αi

+ cβ

d
∏

i=1

(

sjx
mj/m1

1

)bi
. (61)

Now using (53) we can extract x1 from the first term above to give

f(x) = xc11
∑

α∈F

ca

d
∏

i=2

sai

d + cβx
c2
1

d
∏

i=2

sbi , (62)

for certain constants c1 and c2. Again, extraction of x1 is essentially by a
dominant balance argument.

Now assume that {s1, . . . , sd−1} have been chosen and that all the exponents
{α ∈ F} and β are integers. Then the term

F (sd) =
∑

α∈F

cα

i
∏

i=2

sαi

i (63)

is a polynomial in sd. Similarly, for the last term we define

G(sd) = −cβxc21
d
∏

i=2

sβd . (64)

Note that G(sd) becomes more complex if we have more than one off-facet
exponent (covered in [1]).

As mentioned, we will see expansions which start with the term sdx
md/m1

1 .

The approach in [1] is the following. We consider xd = sdx
md/m1

1 to be a first
approximation, where sd is a solution to the facet equation

F (sd) = 0. (65)

Then we seek a solution via a perturbation of the form sdx
md/m1

1 (1 + z) to the
full perturbation equation

F (sd(1 + z)) = G(sd(1 + z))xc1, (66)

where c = c2 − c1.
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5 Implicit expansion based on z

In [1] the authors give detailed formulae for computing z using a version of the
Sylvester method based on the Faà di Bruno formula. Here we briefly show how
to set up the solution using computer algebra.

The first step is to determine the value of sd as a chosen root of the facet
equation F (sd) = 0. We will assume for simplicity that this is not a multiple
root. The expansion for z is a Taylor expansion in the variable δ = xc1 and takes
the form

z = z0δ(1 + z1δ + z2δ
2 + . . .). (67)

The steps of the procedure are as follows.

1. Start with the initial solution x
(0)
d = sdx

md/m1

1 based only on a solution
of the facet equation F (sd) = 0.

2. Substitute the test solution x
(0)
d (1 + z) into the main equation (66).

3. Truncate the result of the substitution to order O(z) and solve for z.

4. Set z1δ equal to the lowest order terms in the solution of the last step.

5. Continue the process with a new test solution x
(1)
d = x

(0)
d (1 + z1δ + z).

The method can be considered as an implicit Taylor series expansion in δ, based
on F and G. We now give an example to explain the steps (2) and (3).

Example 4 (Catalan numbers [27, 28]). Consider the simple case with d = 2
and x = x1, y = x2:

f(x, y) = y − x+ x2y2 = 0. (68)

The Newton polytope is the triangle with vertices {(1, 0), (0, 1), (2, 2)}. The first
approximation is y = x. Next substitute the test solution y = x(1 + z) into the
full equation to obtain

− x4 + (−2x4 + x)z +O(z2). (69)

Keep the first two terms and solve for z to obtain

z∗1 =
x3

1− 2x3
. (70)

The lowest order terms give the solution z1 = x3. Repeating the process, with
the next trial solution y = x(1 + x3 + z), gives the series

y = x(1 + x3 + 2x6 + 5x9) = x+ x4 + 2x7 + 5x10 + . . . . (71)

One of the solutions of f(x, y) = 0 for y is

1−
√
1− 4x3

2x2
, (72)

whose Taylor expansion is the same as above. Replacing the x3 term by x
and multiplying by x leads to the generating function for the Catalan numbers
1, 2, 5, . . . (see [27, 28]).
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6 The differential equation case

The usual approach for linear differential equations is to allow the individual
terms to contribute to an adapted Newton polytope, often referred to as the
Kruskal-Newton polytope [15] [16]. This representation is the same as used in
DA so that the term

dsy

dxs
xαyβ (73)

contributes the point (α − s, β + 1) to the Newton polytope.
The analysis then follows the same lines as for polynomials. We select a

facet F of the ”differential” Newton polytope and seek the analogue of the facet
polynomial F (sd), having in mind that this will be a polynomial-differential
equation in xd. In our approach we use the following rules.

1. All differentials are of the form dsxd/dx
s
1.

2. The equation is linear in the differential sense (terms such as (dsxd/dx
s
d)

2

do not appear).

3. Assign, for 1 ≤ j ≤ d,

xj = sjx
mj/m1

1 , (74)

with mj chosen as in the polynomial case, but using the differential poly-
tope.

Under these rules we have the first perturbation equation

F̃ (sd(1 + z)) = G̃(sd(1 + z))xc1, (75)

where F̃ and G̃ are polynomial linear differential forms in x1 and xd, and sd is
the solution of the polynomial differential facet equation

F̃ (sd) = 0. (76)

The main difficulty in the differential case is that every iteration to update z in
the perturbation may itself require the solution of a new differential equation.

Example 5. Riccati equation [8, 9, 29]. We take the non-dimensionalised
Riccati equation of Example 2 and revert to lower case, except for R, the dimen-
sionless constant. This is a two-dimensional equation, but we add a third vari-
able ǫ, taken to be small, in order to carry out a perturbation analysis [10, 20].
Thus the notation (x1, x2, x3) is more recognisable as (ǫ, x, y), and we require an
NP expansion of y in terms of ǫ. The perturbed and now non-dimensionalised
Riccati equation is

ǫ
dy

dx
− (1− x)y2 −Rxy = 0. (77)

First separate the equation to the form

ǫ
dy

dx
− y2 −Rxy + xy2 = 0. (78)

13



Select a facet in the (differential) Newton polytope whose vertices in the space
with points (ǫ, x, y) are obtained from the first three terms:

(1,−1, 1), (0, 0, 2), (0, 1, 1). (79)

The facet is spanned by the vectors

(1,−1, 1)− (0, 1, 1) = (1,−2, 0), (80)

(0, 0, 2)− (0, 1, 1) = (0,−1, 1). (81)

The first equation (see subsection 3.1) gives the substitution x = sǫ1/2, for a
fixed constant s. This substitution affects the differentiated term and we obtain
a differential equation in y and ǫ in which s is taken as constant:

2
ǫ3/2

s

dY

dǫ
− Y 2 − sRǫ1/2y = −sǫ1/2y2. (82)

The left-hand side gives a differential equation

2
ǫ3/2

s

dy

dǫ
− y2 − sRǫ1/2y = 0, (83)

defined by the face, and has solution

y =
(1− s2C)

√
ǫ

C(1 − s2R)ǫs2A/2
√
ǫ+ s

, (84)

where C is a constant of integration which we will set to zero, for simplicity.
This gives our initial solution:

y0 =
(1− s2R)

√
ǫ

s
. (85)

The next trial solution is y1 = y0(1 + z), which we substitute into the full
equation (82) to give a first order solution for z:

z1 = −1− s2R

sR
. (86)

The trial solution after that is z2 = y0(1 + z1 + z), and so on, giving

1− s2R

s

√
z − (1− s2R)2

s2R
z + . . . . (87)

In this case the development can be verified to be the Taylor series expansion
in

√
z of the full solution

R
√
z(1− s2R)

sR+ (1− s2R)
√
z
. (88)

Hence the series converges when

|z| <
(

sR

1− s2R

)2

. (89)
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This demonstrates that convergence of the NP expansion depends on the value
of the dimensionless quantity R (as expected), and also on the chosen value of
the constant s..

Example 6. van der Pol equation [6, 7, 10, 11]. There is an extensive litera-
ture on the van der Pol equation, the perturbation theory for which was closely
studied as one of the founding models of dynamical systems and chaos (see in
particular Section 11.4 in [10]; Chapter 7 of [11]; and the work of Dorodnitsyn
[6]). For an alternative approach involving modern ideas, see [7].

The classical van der Pol differential equation is

d2y

dx2
+ µ(y2 − 1)

dy

dx
+ ω2y = 0, (90)

where y and x are distance and time, respectively.
Model (90) is already in non-dimensional form, but we wish to present it as

an example of a more general version. Our starting point, then, is the equation

d2y

dx2
+ a(y2 − y0)

dy

dx
+ b2y = 0, (91)

where y0 is the value of y chosen at a special time such as x = 0. We first
write down the dimensions with, as before, the constants determined so that
the equation is dimensionally homogeneous. This gives

y = L, y0 = L, x = T, a = LT−1, b2 = T−2. (92)

The ideal summarising these equations is

〈y − L, y0 − L, x− T, L2Ta− 1, T 2b2 − 1〉, (93)

and a representation of the toric elimination ideal is

〈b− 1, y40a
2 − 1, −y0 + y, −y20a+ x〉. (94)

We can then write down the dimensional variables and constants:

X =
x

ay20
, Y =

Y

y0
, A = y20a, B = b. (95)

Substituting back into (91), and cancelling a common factor, give a differential
equation where all terms are dimensionless:

d2Y

dX2
+A2(Y 2 − 1)

dY

dX
+A2B2Y = 0. (96)

We may now assume that the non-dimensionalisation has already been car-
ried out and applies to the constants µ and ω. Not to complicate the notation,
we revert to lower case x and y . The points in the Newton polytope for (x, y)
are

(−2, 1), (−1, 3), (−1, 1), (0, 1), (97)
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which lie in two, not three, dimensions. We choose as the facet F the line
between the points (0, 1) and (−2, 1), which also contains the point (−1, 1), and
then the point (0, 1) is off-facet. Thus the differential equation is

d2y

dx2
− µ

dy

dx
+ ω2y = −µy2 dy

dx
, (98)

and we set the left-hand side to zero to obtain the facet equation. The latter
has the solution

c1 exp

{(

µ

2
+

√

µ2 − 4ω2

2

)

x

}

+ c2 exp

{(

µ

2
−
√

µ2 − 4ω2

2

)

x

}

. (99)

For simplicity we take the solution with integration constants c1 = 1, c2 = 0
and set

y0 = exp(Qx), (100)

where

Q =
µ

2
+

√

µ2 − 4ω2

2
. (101)

The procedure tells us to substitute the trial solution

y = y0(1 + z) (102)

into the full equation (98). From this we obtain a differential equation for z.
Instead of seeking a full solution by analytic methods we use inspection to test
the solution z = C1x. This leads to a polynomial in C1 whose constant term is

Q2 + 2C1Q+ ω2. (103)

Setting this to zero gives C1 = −µ/2. The next term for z is cubic in x. Using
the trial solution

y = y0

(

1− µ

2
x+ C2x

3
)

(104)

and setting the O(x) terms to zero, we find

C2 =
µ

24
(−µ2 + 8ω2 +

√

µ− ω2). (105)

Collecting gives

y = 1 +

√

µ2 − 4w2

2
x− w2

2
x2 +

(

−µ
3

12
+
µw2

3
− w2

√
mu2 − 4w2

12

)

x3 + . . .(106)

= 1 +
V

2
x− ω2

2
x2 − V (µV + V 2)

12
x3 + . . . , (107)

where V =
√

µ2 − 4ω2.

16



7 Conclusion and further work

The results in this paper are of two main types. First, we have demonstrated
that recently obtained new results giving the detailed properties of Newton-
Puiseux expansions [1] may be embedded in an abstract framework involving
ideas from algebraic geometry [4, 21, 24]. The key reason why this is a worth-
while enterprise is that algebraic geometry, although now a highly abstract
subject, is at heart about the solutions of systems of polynomial equations, and
therefore has much to offer of relevance to researchers in applied disciplines,
where such systems of equations occur repeatedly (if not everywhere) in the
modelling of complex systems [30, 31, 32]. We have demonstrated such rele-
vance in §2, and shown in particular, by example, how the concept of a toric
ideal [24] emerges naturally in describing the way the solution of an equation
scales with the coefficients.

The second type of result in the paper concerns the way in which the the-
ory of Newton-Puiseux expansions may be combined with that of dimensional
analysis to produce (i) a highly compact dominant-balance representation of
the leading-order behaviour of a system; and (ii) as many correction terms as
required, up to arbitrarily high order. For both (i) and (ii) we draw extensively
on the new theory developed in [1], and by a sequence of examples involving
the equations of Riccati [8, 29], Schrödinger [9], and van der Pol [6, 7], we carry
out explicitly the construction of the non-dimensional dominant balance equa-
tion. These examples may be found in §3 and §6 of the paper, while §4 gives in
detail the mathematical method by which the dominant balance equation in (i)
is constructed ab initio, and §5 indicates the key algorithmic steps (explicated
in more detail in [1]) which would be required to carry out the programme (ii),
if it were needed.

We believe that the above results provide a fertile basis for future devel-
opments in both the underlying theory and its use in applied science and en-
gineering. The modern Newton-Puiseux literature is currently in a period of
explosive growth, following the fundamental papers of MacDonald [12, 13], and
developments in differential algebra [2, 5]. Another strand is the arithmetical
theory of Newton-Puiseux expansions, as expounded in [33, 34]. Two promising
directions are to high-dimensional problems and partial differential equations in
physics and engineering [7, 22, 23, 26, 29, 30], for which modern computer alge-
bra platforms provide suitable tools; for example, special-purpose software for
algebraic differential equations is increasingly included in general-purpose pack-
ages such as Maple. Alongside this, dimensional analysis may itself be extended
through the use of modern differential-algebraic methods [35].
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