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Abstract
A recurrent neural network is developed for segmenting between anomalous and normal 
diffusion in single-particle trajectories. Accurate segmentation infers a distinct change 
point that is used to approximate an Einstein linear regime in the mean-squared displace-
ment curve via the transition density function, a unique physical descriptor for short-lived 
and delayed transiency. Through several artificial and simulated scenarios, we demonstrate 
the compelling accuracy of our model for dissecting linear and nonlinear behaviour. The 
inherent practicality of our model lies in its ability to substantiate the self-diffusion coeffi-
cient through offline trajectory segmentation, which is opposed to the common ‘best-guess’ 
linear fitting standard. Additionally, we show that the transition density function has fun-
damental implications and correspondence to underlying mechanisms that influence transi-
tion. In particular, we show that the known proportionality between salt concentration and 
diffusion of water also influences delayed anomalous behaviour.

Article Highlights

• Recurrent neural network is developed to identify diffusive change points in single-par-
ticle trajectories

• RNN predictions are accurate in a variety of synthetic and experimentalscenarios simu-
lated by molecular dynamics

• Particle trajectory transitions follow a distribution that can be affected bysalinity in the 
context of  CO2 storage

 * J. Xia 
 jun.xia@brunel.ac.uk

 Q. Martinez 
 quentin.martinez@brunel.ac.uk

 C. Chen 
 cheng.chen@brunel.ac.uk

 H. Bahai 
 hamid.bahai@brunel.ac.uk

1 Department of Mechanical and Aerospace Engineering, Brunel University London, 
Uxbridge UB8 3PH, UK

http://orcid.org/0000-0002-2547-3483
http://crossmark.crossref.org/dialog/?doi=10.1007/s11242-023-01923-7&domain=pdf


680 Q. Martinez et al.

1 3

Keywords Diffusion · Anomalous diffusion · Change-point detection · Recurrent neural 
network · Carbon storage

1 Introduction

In an effort for global carbon neutrality, carbon capture and storage (CCS) has been 
regarded as a promising method for minimising the atmospheric effects of greenhouse 
gases (GHG). In practice though, CCS remains to be a significant challenge due to a myr-
iad of technical, financial and logistic factors. More specifically, the efficacy and safety of 
carbon injection in depleted oil reservoirs and saline aquifers continue to be scrutinised 
as it is difficult to predict the long-term influent status and its associated effect(s) on geo-
logical conditions. This ambiguity poses potential environmental risks like leakage, eco-
toxicity and even catastrophic releases (Bruant et al. 2002; Deng et al. 2017; Vinca et al. 
2018). Consequently, many recent efforts have been directed towards the simulation and 
modelling of molecular GHG, brine and impurities at various aquifer/reservoir conditions 
to inform macroscopic predictions of storage capacity, injectivity and trapping mechanisms 
(Moultos et al. 2016; Omrani et al. 2022; Tung et al. 2011; Kadoura et al. 2016). Critical 
to these predictions is an accurate and reliable assessment of long-term molecular transport 
via the self-diffusion coefficient, ds . Single-particle tracking (SPT) is a powerful tool for 
observing the trajectories of particles in a given environment. ds is frequently assessed via 
an ensemble averaged mean-squared displacement, MSD, of many individual trajectories in 
both experimental and simulated conditions (Ghosh and Krishnamurthy 2018; Trinh et al. 
2013; Bullerjahn et al. 2020):

where x, N and t denote the position vector, number of particles and time, respectively. The 
self-diffusion coefficient is then computed using the familiar Einstein formulation (Einstein 
1905)

where ND is the number of spatial dimensions. In many cases, Eq. 2 is realised by fitting 
the MSD curve for a region where anomalous diffusion, MSD∝ t�≠1 , has passed and lin-
earity is arbitrarily observed (Fogelmark et al. 2018; Riahi et al. 2019). Although easy to 
implement and extensively used, such methodology adheres to no concrete justification and 
is consistently prone to errors. This is particularly true for cases of short trajectories, small 
sample size and multi-behavioural diffusion characteristics (Muñoz-Gil et al. 2020) where 
the change point from nonlinear to linear behaviour may be obfuscated. This can lead to 
data misinterpretations and inconsistencies, as ds is highly sensitive to the chosen fitted 
MSD region (Michalet 2010; Riahi et al. 2019; Kepten et al. 2015). Thus, the need for a 
new systematic approach to quickly and accurately quantifying nonlinear/linear behaviour 
in bulk systems is warranted.

In this work, we investigate a data-driven approach for the sequence-to-sequence 
(seq2seq) classification of anomalous and normal diffusion regimes in the MSD curve. 
More specifically, a recurrent neural network (RNN) model is developed for identifying 
the change point in single-particle trajectories. Through several synthetic examples, we 
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demonstrate the predictive capabilities of RNN. We then apply our developed model to 
molecular dynamics (MD) case studies of brine and CO2 with brine. We expect that this 
tool can be particularly useful in future MD investigations for estimating if and when 
normal diffusion has been reached. As well, quantifying a distinct changeover may 
inform fundamental investigations regarding transition mechanics and origin of anoma-
lous behaviour.

1.1  Anomalous Diffusion

As mentioned prior, anomalous diffusion is generalised for instances where MSD ∝ t�≠1 . 
This phenomenon can be further decomposed into sub- and super-diffusive regimes 
where 𝛼 < 1 and 𝛼 > 1 , respectively, as depicted in Fig. 1. This is in direct contrast to 
pure Brownian motion where a particle’s movement is impartial to its environment and 
is allowed to wander freely (Loch-Olszewska and Szwabinski 2020).

In the context of carbon capture, utilisation and storage (CCUS), the tortuous envi-
ronment and heterogeneity of commonly investigated materials like zeolites can delay 
the onset of normal diffusion (Hu et al. 2010). In fact, the MSD curve may undergo sev-
eral major transitions until reaching linearity. Kummali et al. (2021) illustrated such a 
tendency for the diffusion of CO2 in ZSM-22, a high silica zeolite, where the MSD curve 
traverses an initial ballistic ( � ≥ 2 ) and sub-diffusive regime prior to reaching normal 
diffusion. Alternatively, CH4 in supercritical water was shown to exhibit short-term bal-
listic diffusion where particles rapidly advanced to pure Brownian motion (Zhao and Jin 
2020). It is clear that accurately quantifying the change point(s) in a particle’s motion 
is critical for further sequence segmentation, classification and analyses. Particular to 
this work, an automated change-point detection from anomalous to normal diffusion can 
supplant the existing ‘best-guess’ fitting of an MSD curve. As well, it can help grant 
valuable insight into the environmental influence on a particle’s motion.

Fig. 1  Anomalous versus normal 
diffusion
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1.2  Change‑Point Detection

Change-point detection considers the task of identifying an abrupt change in statisti-
cal properties of time series data. This is used to quantify distinct behavioural switches 
in many applications, including but not limited to electrocardiographs (Fotoohinasab et al. 
2020), stock market fluctuations (Takayasu 2015) and electrical grid activity (He et  al. 
2010). Two commonly implemented strategies for segmentation are by mean and variance 
change-point detection, respectively (Lavielle 1999). The mean change-point process aims 
to identify where the local mean between segments is drastically different. Therefore, an 
approximate change-point location can be inferred from such dissimilarity, as represented 
in Fig. 2.

A second approach is by variance change-point detection, where one can quantify dis-
similar segments based on local variances, as shown in Fig. 3. Many case-specific strate-
gies exist for change-point detection, but typically rely on some a priori knowledge, such as 

Fig. 2  Mean change point
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Fig. 3  Variance change point
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the number of change points and stationarity. This obvious limitation has motivated us to 
develop machine learning techniques for more robust and comprehensive methods in both 
offline and online applications. Aminikhanghahi and Cook (2017) provided an excellent 
review of unsupervised and supervised strategies for change point detection in a variety 
of real-world test cases. They indicated superior performance of supervised change-point 
detection methods for cases where ample training data exist and test data are stationary.

1.3  Machine Learning for Anomalous Diffusion

Recently, characterising anomalous diffusion in single-particle trajectories has been 
addressed via machine learning. Gajowczyk (2021) classified protein trajectories between 
sub-diffusive, super-diffusive and normal diffusive behaviour. They demonstrated excep-
tional performance on synthetic test trajectories, albeit predictions on real data ‘confusing’ 
due to classification discrepancies. Granik et  al. (2019) classified cell trajectory data as 
fractional Brownian motion, Brownian motion or continuous time random walk, but indi-
cated the potential issue of transient behaviour in single-particle trajectories. Kirichenko 
et al. (2020) accurately classified synthetic multi-fractional Brownian motion realisations 
at moderate-to-long trajectory lengths. Much work has demonstrated astonishing perfor-
mance of machine learning on synthetic trajectories but complicated predictions on experi-
mental data. One enduring challenge is the ability to predetermine change points for neural 
network models whose outputs produce singular label probabilities. That is, one class is 
assigned to an entire trajectory input. Without such tandem cooperation between these two 
objectives, switching behaviour can be overlooked and further consolidated into an overall 
imprecise classification.

The AnDi Challenge (http:// andi- chall enge. org) recently shed light on the advantages 
and disadvantages of various methods for the inference, segmentation and classification 
of anomalous diffusion in both synthetic and experimental data. The objective compari-
son of individual groups’ efforts indicated the potential of machine learning for accurately 
characterising the behaviour of individual particle trajectories (Muñoz-Gil et al. 2021). In 
particular, RNN was ranked amongst top performers in this challenge for all three tasks. 
Once more, the switching behaviour of individual trajectories remains difficult to evaluate 
if discrete change points are not identified beforehand. To address this issue, we investigate 
the potential of a simplified change-point model that generalises non-Brownian motion as 
anomalous. In this case, transient behaviour can then be classified into one bulk category 
as to provide a coherent dissection of anomalous and normal diffusive motion. The novelty 
of our model builds upon considerable prior success of neural networks for identifying and 
classifying anomalous behaviour in single-particle trajectories. Specifically, we target the 
practical application of RNN for substantiating ds via MSD piecewise fitting. Again, this is 
directly opposed to the error prone standard of observing linearity via eyesight.

2  Recurrent Neural Network Model

2.1  Training Data and Pre‑Processing

Here, our training, validation and test sets reflect a unique and simplified labelling scheme 
based on three limiting features: (1) Non-Brownian motion is classified as anomalous. (2) 
The change point from anomalous to normal diffusion follows a piecewise formulation 

http://andi-challenge.org
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(Yin et  al. 2018). 3) The system eventually evolves to pure Brownian motion. Figure  4 
illustrates several training examples where the locations of fabricated change points are 
uniformly distributed as a ratio of trajectory length (L), 0 ≤ CP∕L ≤ 0.82 . This construc-
tion method spans a wide but non-exhaustive range of possible trajectory paths and artifi-
cial scenarios for our model to ‘learn’ from. The location of these change points is simply 
the interface between generated anomalous and Brownian trajectories, as highlighted by 
blue and orange paths.

The success of supervised machine learning methods is inherently dependant on the 
quality, representation and size of training set. Furthermore, machine learning-based mod-
els are inherently data-hungry, requiring a large training set to prevent model overfitting. 
Several previously mentioned authors considering the segmentation, inference or classifi-
cation of anomalous behaviour in single-particle trajectories have reported training sets on 
the order of ∼ 105 as a lower bound for sufficient model convergence (Argun et al. 2021; 
Granik et  al. 2019). Naturally, current practical limitations dissuade the dependency of 
training on real-world experimental data due to the scarcity of available data. More so, 
inducing a behavioural switch can be difficult to impose without understanding the transi-
tional influences in transport phenomena exhibiting multi-scalar or multi-fractional Brown-
ian motion. Instead, it is often suitable to utilise simulated trajectories as both a computa-
tionally cheap and representative alternative to describe the stochastic dynamics of a given 
system/object under consideration.

The anomalous diffusion models we consider in our training data are fractional Brown-
ian motion and scaled Brownian motion, as these are particularly relevant to the parti-
cle migration in porous media (Chang and Sun 2018) and transport in bundles (Bodrova 
et  al. 2015). Fractional Brownian motion (FBM) is an ergodic, Gaussian, random pro-
cesses where correlated incremental steps are either persistent ( 1 < 𝛼 < 2 ) or anti-persis-
tent ( 0 < 𝛼 < 1 ) (Yerlikaya-Özkurt et  al. 2014). Realisations of FBM can be simulated 
for training data via wavelet synthesis as proposed by Abry and Sellan (1996). Scaled 
Brownian motion (SBM) is a weakly non-ergodic Gaussian process that reflects the case 
of increasing ( 1 < 𝛼 < 2 ) or decreasing ( 0 < 𝛼 < 1 ) diffusion coefficient with time (Jeon 
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et al. 2014). Here, we consider a power law time dependency for the synthesised anoma-
lous training data where the anomalous exponent is maintained between 0.2 ≤ � ≤ 0.75 
and 1.25 ≤ � ≤ 1.8 for SBM and FBM. Naturally, � = 1 is only applied for the case of pure 
Brownian motion. Table 1 provides a summary of the constraints we utilise for construct-
ing our training, validation and test sets, where trajectory lengths were determined in coor-
dination with the expected simulation time of our molecular dynamics test samples.

2.2  Model Architecture

Recurrent neural networks have proven to be exceedingly effective at interpreting trends 
that exist in time series data (Hüsken and Stagge 2003; Hewamalage et al. 2021). In par-
ticular, long short-term neural networks (LSTM) have even demonstrated success for cases 
where time series exhibit nonlinear or non-stationary tendencies (Preeti 2019). The effec-
tiveness of LSTM is primarily due to its ability to preserve long-term contextual trends in 
sequential data. In part, this is accomplished by looping sequence inputs to imitate natural 
human recollection. Unlike the generalised RNN though, LSTM units address the ‘vanish-
ing error problem’ (Gers et al. 2000) by regulating relevant information via an input gate, 
forget gate and output gate (Graves et al. 2009). Simply put, these gates allow for the addi-
tion or removal of information in the current cell state, a comprehensive encoding of previ-
ously introduced data. This encoding is then used to appropriately weight the prediction at 
time = t, i.e. the hidden state. An unwrapped visual schematic for a single LSTM unit is 
shown in Fig. 5, where x, C and h refer to the input, cell state and hidden state, respectively. 
Gates are identified by regions within the bounding red boxes for clarity.

Here, we implement an LSTM neural network for the sequence-to-sequence segmenta-
tion of individual trajectories. This is opposed to some previously discussed methods that 
classified entire trajectories by a singular label probability. An architecture schematic of 
our model is shown in Fig. 6, where numbers indicate layer units (width). We use a dropout 

Table 1  Training data constraints

TL: Trajectory lengths, DM: diffusion models, TNoS: total number of samples, DSR: data split ratio

TL � Change point
(CP
L

)
Dimension DM TNoS DSR

1700,
2000,
2300

0.2 ≤ � ≤ 0.75

and
1.25 ≤ � ≤ 1.8

0 ≤
CP

L
≤ 0.82 1D FBM,

SBM,
BM

450,000 70% Train
15% Validation
15% Test

Fig. 5  Unwrapped LSTM unit 
schematic
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layer to prevent overfitting by randomly setting neural units and their connections to zero 
(Srivastava et al. 2014). A softmax activation layer is then used to output a likelihood prob-
ability over k = 2 classes prior to computing the cross-entropy loss between predicted and 
ground truth labels.

Our model accepts one-dimensional (1D) trajectory displacement vectors of length, 
L, where data are standardised with mean, � = 0 , and standard deviation, � = 1 . Though 
LSTM networks have shown to be capable of accurately interpreting input data of dis-
similar length to the training set, we adopted an equivalent strategy to Argun et  al. 
(2021) where separate neural networks are developed for different trajectory lengths, 
L = 1700, 2000, 2300 . Their method minimises the burden of padding or slicing data while 
still covering a wide range of multi-length possibilities. For the sake of clarity though, we 
restrict our remaining results and discussion to the case of L = 1700 as shorter trajectories 
pose as an inherent limiting factor in model prediction (Granik et al. 2019).

2.3  Model Training and Validation

The following tasks dictate the proposed trajectory segmentation procedure: (1) The par-
ticle displacement signal, Δx , Δy or Δz , is fed as a univariate time series to our neural 
network model. (2) The output layer assigns a label probability at each displacement, Δx(t) , 
indicating either anomalous or normal diffusion (2 or 1). This labelling mask is applied 
to its corresponding particle trajectory given by the cumulative summation of individual 
displacements. (3) The change point is directly inferred from labelling switch. (4) Steps 1, 
2 and 3 are repeated for all individual particles in the system. A case example highlight-
ing all four tasks is shown in Fig. 7 for a single particle, one degree of freedom, system 
traversing an enforced transition between SBM at � = 1.5 and BM. Implicated by the red 
step change at time step = 900, a familiar orange and blue mask is applied to the particle 
trajectory indicating a distinct behavioural shift. For a larger system where Nparticles ≫ 1 , 
this same procedure can also be utilised to infer a switch in the MSD curve by tracking the 
distribution of individual change points. We will demonstrate this probabilistic approach 
for segmenting the MSD curve in Sect. 3.1.

Computed as the labelling difference between ground truth and predicted segmen-
tation, our final training results indicated an expected performance on both training 
and validation sets, 97.41% and 97.25%, respectively. This capacity is the result of 

Fig. 6  Architecture schematic
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iteratively refining our model to a final, best-fit scenario. We utilised a learning rate 
of 0.005 to reduce training time while still maintaining high validation accuracy. Dif-
ferent learning rates, LR = 0.01, 0.001 , were shown to give comparable end results at 
the expense of significantly higher training times. This is illustrated in Fig.  8 where 
the adaptive moment estimation (ADAM) optimiser is used for all cases due to its fast 
convergence (Kingma and Ba 2014). Random shuffling was imposed at the beginning 
of training to prevent any kind of learning bias like memorising change-point location, 
� , or anomalous diffusion model. This strategy helps to generalise supervised learn-
ing methods by eliminating any kind of routine order to the training data. In many 
cases, it can be advantageous to reshuffle every epoch (Nguyen et al. 2022) for further 
network refinement. However, our model tends to converge within 1 epoch, indicating 
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no obvious training order dependence. Finally, a batch size of 128 samples was used 
based upon validation accuracy and training time. A comparison of various batch sizes 
of form 2n is shown in Fig. 9 with LR = 0.005. 

From Figs. 8 and 9, we can see that a learning rate, LR = 0.005 , and batch size of 
128 is appropriate for training our model as it converges quickly and maintains the 
highest overall validation accuracy. We present a summary of neural network train-
ing parameters, hyperparameters and hardware used for our final model deployment in 
Table 2.

3  Results and Discussion

In this section, we analyse the predictive capabilities of our model for synthetic test 
scenarios and two molecular dynamics case studies: brine and CO2 + brine. These sce-
narios reflect distinct behaviours to demonstrate our model’s performance on highly 
contrasting particle motion, namely rapid, delayed and long-term anomalous diffusion. 
For all MD set-up parameters and background, see Appendix A. We demonstrate how 
to effectively implement RNN for labelling individual trajectories, segmenting the 
MSD curve and quantifying the transition density from anomalous to normal motion. 
Note that, amongst prior investigations, it is difficult to assess the reliability of our 
model on unlabelled experimental or simulated cases. Thus, the expectation of our 
model is largely based on the accuracy of our synthetic test set.

Fig. 9  Batch size
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Learning rate Batch size Max Epochs Dropout rate Training algorithm Shuffling Hardware

0.005 128 2 0.05 ADAM Once NVIDIA GeForce
RTX 3060



689Sequence‑to‑Sequence Change‑Point Detection in…

1 3

3.1  Test Set and Model Performance

RNN performed very well on our test set with an overall classification accuracy of 95.2%. 
As the test and validation sets exhibit analogous statistical characteristics, this was an 
expected result. A second, equivalently distributed test set was generated to assess the false 
positive/negative segmentation concerning respective models. This is to measure our mod-
el’s labelling preference and associated error that is common for classification tasks. Fig-
ure 10 shows the confusion matrices for individual models, SBM, FBM and BM, for 5,000 
test samples.

Our model tends to slightly underperform when classifying fractional Brownian motion 
trajectories. This would indicate a potential over-prediction of normal diffusive behaviour 
when classifying real-world data that exhibits fractal dynamics. Figure 11 demonstrates the 
performance of our model for a randomly selected test example where ground truth is jux-
taposed against our raw and filtered label prediction. Our segmentation procedure follows 
an equivalent application of our aforementioned strategy in Figs. 4 and 7.

It is clear that RNN is capable of segmenting between anomalous and normal diffusion 
behaviour in synthetically derived trajectories. However, a change-point over-prediction 
can be observed in our labelling subplot. This is a non-physical artefact of filtering our raw 
model prediction (yellow) by a 30-time step moving window average so that segmented 
regions can appear more distinguishable. The cost of this aesthetic procedure is a modest 
over-prediction of change point while allowing for an easier interpretation of real-world 

Fig. 10  Confusion matrices for RNN
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data. This post-processing technique can be appreciated for cases where the transition from 
anomalous to normal diffusion is non-instantaneous or highly obscured such that RNN 
erroneously oscillates between labelling.

To demonstrate our procedure for segmenting the MSD curve, we consider a hypo-
thetical scenario where particles are initially restricted by some semi-rigid boundary. At 
a prescribed time, these particles break free and are allowed to diffuse freely with ds . The 
change-point times from confined to normal diffusion obey the following preparations a) 
Gaussian distribution with � = 1,100 ps, � = 150 ps. b) Continuous uniform distribution 
on interval 700 ≤ t ≤ 1, 500 ps. RNN is then used to track all N = 2,000 change points 
for estimating a best-fit linear region in both respective cases. Different percentiles for our 
transition density function (TDF), 25th, 50th, 75th, etc., can provide a discretionary indica-
tor for where to piecewise fit the MSD curve as shown by the segmented orange regions 
in Figs. 12 and 13, respectively. Naturally, as t approaches 100th, linearity becomes more 
apparent, indicating where ds should be measured. However, as we recall RNN has a slight 
tendency to over-predict these change points, a conservative bound for practical applica-
tions falls between 75th and 85th. This over-prediction can also be observed via the juxta-
position between ground truth (blue) and predicted (purple) TDFs.

Our model is capable of estimating the TDF, granting useful insight into transitional 
influences and an expected linear MSD region. As we will demonstrate in coming sections, 
surrounding environmental factors can greatly affect the stretching, shifting and scaling of 
the TDF. Indeed, this corresponds to varying degrees of transiency and delays that further 
warrants the usefulness of our model and segmentation procedure. While we acknowledge 
the uncertain physicality of a Gaussian or uniform TDF, it is anticipated that different sce-
narios, environments and conditions can give rise to equally diverse distributions.
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3.2  Brine Case Study—Fleeting and Delayed Anomalous Behaviour

In this section, we evaluate the relationship between salt ion concentration and transition 
time to highlight the disparity between arbitrary and endorsed piecewise fitting. RNN was 
used to identify the change points of H2 O for 9 different salt concentrations using discussed 
methods. Interestingly, Fig. 14 illustrates an exponential transition from anomalous to nor-
mal diffusion. Figure 15 indicates the exponential decay rate, � , increases as a function of 
salt concentration, while the initial transition density, � , decreases. More plainly, salt ions 
significantly affect the delayed transiency of molecular H2 O, i.e. stretching of the TDF. 
This consequence can dictate the computational minimum for cases that transition beyond 
the simulation lifetime (dashed). That is, if a complete transition is not identifiable, the 
molecular dynamics simulation should be computed for longer times to observe linearity.

These results share a comparable tendency to previous works that have identified an 
inverse relationship between ds,H2O

 and salt concentration (Yao et al. 2015; Ben Ishai et al. 

Fig. 14  Exponential TDF com-
parison of H 

2
 O for varying salt 

concentrations

0 500 1000 1500 2000 2500 3000 3500

Time (ps)

0

0.11

0.22

0.33

0.44

0.56

0.67

0.78

T
ra

ns
iti

on
 D

en
si

ty

0.17 wt% Na+ Cl-

8.33 wt% Na+ Cl-

3.33 wt% Na+ Cl-

5.00 wt% Na+ Cl-

16.67 wt% Na+ Cl-

25.00 wt% Na+ Cl-

33.33 wt% Na+ Cl-

41.67 wt% Na+ Cl-

50.00 wt% Na+ Cl-

Simulation Lifetime

Fig. 15  Exponential decay rate 
( � ) and initial transition density 
versus salt concentration

0 10 20 30 40 50

wt% Na+ Cl-

1

2

3

4

5

6

7

-7

-6

-5

-4

-3

-2

-1



693Sequence‑to‑Sequence Change‑Point Detection in…

1 3

2013). This suggests that Na+ and Cl− ions in bulk water not only affect the diffusion coef-
ficient, ds,H2O

 , but also the expected transition time from anomalous to normal diffusion. 
More precisely, the decrease in � indicates a persistent transient behaviour likely ascribed 
to a ‘many-body’ polarisation effect (Yao et  al. 2015; Ding et  al. 2014) that hinders the 
movement of water molecules. This delayed transiency can be exaggerated by salt ions well 
beyond the saturation limit, approximately 26.3 wt.% NaCl at 330 K (Farnam et al. 2014), 
as shown in Fig. 16. Again, these metrics can provide valuable insight as to an approximate 
linear MSD regime. We segregate diffusive and non-diffusive behaviour based on com-
puted 85th percentiles as per the methodology illustrated in Figs. 12 and 13. For all MSD 
curves, the segmented anomalous and normal diffusion regions are identified by the areas 
below and above our computed curve fitting boundary, respectively.

Intuitively, our extrapolated boundary provides a good estimate as to where nonlinear 
behaviour ends and linear begins. This dissection indicates that, for salt concentrations 
greater than or equal to the solubility limit, the molecular dynamics simulations may need 
to run for much longer times to adequately observe linearity. This infers that the reliability 
of arbitrarily piecewise fitting MSD is, at best, speculative. Conversely, RNN can accu-
rately estimate when normal diffusion has been reached for a quantitative corroboration of 
ds.

3.3  CO
2
 with Brine Case Study—Lingering Anomalous Behaviour

In this section, we examine the case where a particle’s movement is continuously 
obstructed. Such a tendency is apparent for the molecular dynamics simulation of 
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multiphase flow ( CO2-aqueous brine) where strong interfacial tension (IFT) is known 
to exist at low pressure and high salinity conditions over a wide range of temperatures 
298– 375 K (Amooie et al. 2019; Pereira et al. 2017). This is demonstrated in Fig. 17, 
where randomly selected salt ions, Na+ and Cl− , remain bundled due to hydration 
(Mountain 2007) and high CO2-brine IFT (Mutailipu et al. 2019). Compared to the wan-
dering CO2 molecule highlighted by an orange trajectory path, it can be observed that 
salt ions remain corralled throughout the simulation lifetime.

Fig. 17  Trajectories of CO
2
 , Na+ and Cl−

0 200 400 600 800 1000 1200
-6

-4

-2

0

2

4

6

8

D
is

pl
ac

em
en

t

X
Y
Z

0 200 400 600 800 1000 1200

Time (ps)

1

2

P
re

di
ct

io
n 

La
be

l

Model Prediction

Fig. 18  RNN prediction for Na+ ion



695Sequence‑to‑Sequence Change‑Point Detection in…

1 3

The expected crowding and confinement of hydrated ions leads to highly sub-diffusive 
behaviour akin to ‘soft’ reflections in a bounding sphere (Bickel 2007). This is affirmed by 
our model prediction in Figs. 18 and 19, where we compare the diffusion behaviour of Na+ 
and Cl− , respectively. Again, the inputs to our model are individual displacements Δx , Δy 
and Δz , shown by blue, yellow and purple signals, respectively.

The anomalous labelling of selected salt ions is likely due to a power law scaling of Δx , 
Δy and Δz , similar to scaled Brownian motion under confinement (Jeon et al. 2014). As 
there are no intervening physical or chemical mechanisms that allow for the salt ions to 
escape, our model recognises this confinement as non-freely diffusive behaviour in 94% of 
tracked particles. We confirm that this attribute remains consistent over different concen-
trations to demonstrate the statistical reliability of RNN. This is demonstrated in Fig. 20 
where brine nano-droplets are shown to persist for varying salt concentrations.

In line with an expected nonlinear behaviour, our model validates the presence of sub-
diffusion motion within the brine nano-droplets. Furthermore, the varying concentration 
of salt ions does not dissuade this prediction as confinement and bundling are evident 
throughout all simulated cases.

4  Conclusions

In this work, we demonstrated a data-driven method for segmenting anomalous and normal 
diffusive behaviour in single-particle trajectories that exhibit fractional and scaled Brownian 
dynamics. In particular, an LSTM-based recurrent neural network was shown to be exceed-
ingly capable of detecting change points over an assortment of synthetic and experimental 
scenarios. Through simple, effective formulation, our labelling and segmentation scheme 
provides powerful implications regarding both practical and fundamental investigations. (1) 
The self-diffusion coefficient ds can be quantitatively corroborated by dissecting linearity in 
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the MSD curve. (2) Predicting the transition density function provides a novel description of 
transient behaviour that can inform how physical and chemical influences affect transition. 
We provided a thorough investigation of various artificial and molecular dynamics simulated 
scenarios to assess the practicality and accuracy of the RNN. Despite the origin or type of 
anomalous diffusion represented in our simulated test cases, our model is always able to gen-
erate coherent and meaningful change-point predictions. These predictions were substanti-
ated by insight regarding known and observed physical mechanics associated with anomalous 
behaviour. Specifically, we focused on delayed transiency (brine case study) as an increase 
in salt ion concentration highlighted an intuitively recognisable disparity between anomalous 
and normal diffusion. Our model was used to predict the TDF at different salt concentrations 
to show how transiency can persist due to hydration. By following a consistent segmentation 
strategy, we were able to derive an empirical boundary that can be used for estimating when/
if normal diffusion has been reached. For the case of CO2 in brine, our model implicated an 
obvious confinement and bundling of salt ions throughout the simulation lifetime. This phe-
nomenon was shown to remain independent of salt concentration. One limiting factor of this 
model is its tendency to oscillate between anomalous and normal labelling near change points. 
This was addressed via window average filtering that better emphasised a terminal change-
point time.

Appendix A: Molecular Models and Case Set‑up

The potential energy in this study includes the non-bonded energy of Coulombic and van der 
Waals (vdW) forces and the intramolecular energy of bond stretch and angle bend:

(A1)E =
qiqj

4��0rij
+ 4�ij

[

(
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−

(
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Fig. 20  Salt concentration dependency on anomalous behaviour
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where q is the charge of an atom, �0 is the vacuum permittivity, � is the depth of the Len-
nard–Jones (LJ) potential well, � is the inter-particle distance where the potential energy is 
zero, kr and k� are the energy constants, r is the distance between atoms, r0 is the equilib-
rium bond distance, � is the angle of two bonds, and �0 is the equilibrium angle.

The interactions between different species are described by the Lorentz–Berthelot (LB) 
combining rules for both size and energy parameters: �ij = (�ii + �jj)∕2 and �ij = (�ii�jj)

1∕2.
For H2 O, the SPC/E (extended simple point charge) rigid model is used. The CO2 

molecular model is adopted from the work of Cygan et al. (2012). It is an accurate and fully 
flexible set of interatomic potentials for CO2 , which is developed and combined with clay 
potentials to help evaluate the intercalation mechanism and examine the effect of molecular 
flexibility on the diffusion rate of CO2 in water. The latest Madrid-2019 force field (Zeron 
et  al. 2019) for ion simulation is used, which is developed for seawater simulation. The 
force field parameters of H2 O, CO2 and ions are listed in Tables 3 and 4.

All the MD simulations are performed with LAMMPS (Large-scale Atomic Massively 
Parallel Simulator) package (Thompson et al. 2022). The cut-off distances for LJ interac-
tions and Coulombic interactions are set to be 1.2 nm. The long-range Coulombic interac-
tions are calculated using the particle–particle–particle mesh (PPPM) solver with a desired 
relative error in forces of 10−4 . Periodic boundary conditions are applied in three directions 
for all simulations. The SHAKE algorithm (Ryckaert et al. 1977) was used to keep water 
molecules rigid. The initial velocities are assigned following a Maxwell–Boltzmann distri-
bution at each temperature.

The molecules are randomly distributed in the box with a larger edge length to avoid 
overlap. The isobaric–isothermal ensemble (to control the number of atoms, pressure 
and temperature, i.e. NPT) is used with time step of 1 fs to compress the box towards 
the desired density (see Fig. 21). Another 1 ns simulation is followed in NVT ensemble 
(constant number, volume and temperature) for the production run with time step of 1 fs. 
The temperature and pressure damping factors equal 100 and 1000 times of the time step, 
respectively. The atom trajectories and properties are output every 1 ps.

Table 3  Atomic force field 
parameters for H 

2
 O, CO

2
 and 

ions

� (kJ⋅mol−1) � (Å) q (e)

H–H
2
O 0 0 0.4238

O–H
2
O 0.65 3.166 −0.8476

C–CO
2

0.234 2.8 0.6512
O–CO

2
0.6683 3.028 −0.3256

Na+ 1.472356 2.21737 0.85
Cl

− 0.076923 4.69906 −0.85

Table 4  Geometry and potential 
parameters for H 

2
 O and CO

2

k
r
 (kJ⋅mol−1⋅Å−2) r

0
 (Å) k� (kJ⋅mol−1⋅rad−2) �

0
 (deg)

H
2
O – 1.0 – 109.47

CO
2

8443 1.162 451.9 180.0
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