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Abstract: Multistate modelling is becoming increasingly popular due to the avail-

ability of richer longitudinal health data. When the times at which the events char-

acterising disease progression are known, the modelling of the multistate process is

greatly simplified as it can be broken down in a number of traditional survival models.

We propose to flexibly model them through the existing general link-based additive

framework implemented in the R package GJRM. The associated transition probabili-

ties can then be obtained through a simulation-based approach implemented in the R
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package mstate, which is appealing due to its generality. The integration between the

two is seamless and efficient since we model a transformation of the survival function,

rather than the hazard function, as is commonly found. This is achieved through the

use of shape constrained P-splines which elegantly embed the monotonicity required

for the survival functions within the construction of the survival functions themselves.

The proposed framework allows for the inclusion of virtually any type of covariate ef-

fects, including time-dependent ones, while imposing no restriction on the multistate

process assumed. We exemplify the usage of this framework through a case study on

breast cancer patients.

Key words: additive predictor; multistate process; shape constrained P-splines; sur-

vival analysis; transition probabilities.

1 Introduction

When considering multistate processes for the modelling of life-history data, a partic-

ularly advantageous setting is that in which transition times are known exactly, i.e.

the process is continuously observed. In this case, in fact, the overall model likelihood

can be decomposed into the product of likelihoods referring to each specific transition

only. Estimation then becomes equivalent to fitting one standard survival model for

each transition, considering only the subset of the data relevant to that transition and

including left-truncation times if the transition at hand can only happen once another

has occurred. This is referred to as separate estimation (Putter et al., 2007; Putter,

2011; Crowther and Lambert, 2017). An important practical implication of this is
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that existing tools can be used to fit the transition-specific models. In particular,

we propose to model each transition intensity through the general link-based addi-

tive modelling framework by Eletti et al. (2022), implemented in the R package GJRM

(Marra and Radice, 2022). This modelling framework allows for the inclusion of vir-

tually any type of covariate effects (including time-dependent effects) using any type

of smoother (e.g., thin plate and cubic splines, and tensor products). Importantly, the

use of shape constrained P-splines (SCOPs) to model time effects permits to approach

the multiple univariate survival models directly on the survival scale, rather than on

the hazards scale (which would require expensive numerical integration), while re-

taining a high degree of modelling flexibility. Specifically, SCOPs, developed by Pya

and Wood (2015), extending the penalised B-splines discussed in the seminal work of

Eilers and Marx (1996), elegantly embed the monotonicity required for the survival

functions within the construction of the survival functions themselves, thus enabling

very efficient parameter estimation. The exploration of different forms of dependence

on past history also becomes considerably easier when the exact transition times are

known. Indeed, assuming a semi-Markov process, the most common relaxation con-

sidered in the literature, rather than a Markov process, the most commonly made

assumption, implies no further methodological difficulty.

When dealing with life-history data, one is often interested in assessing the effects

of specific risk-factors on the probability of transitioning between states. When the

process is assumed to be time-dependent and/or not-Markov, the computation of the

transition probabilities is a nontrivial task. Two main approaches can be identified in

the literature to address this problem and are detailed in Supplementary Material A.

We adopt a simulation-based approach which allows one to compute the transition

probabilities by simulating a number of paths through the assumed multistate process
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and counting the number of individuals experiencing each transition (Iacobelli and

Carstensen, 2013; Touraine et al., 2016). This is appealing due its aptness at sup-

porting any type of multistate process and was proposed in Fiocco et al. (2008) and

implemented, amongst others, in the R package mstate (Putter et al., 2020), whose

tools can be seamlessly integrated with the estimation approach implemented in the

R package GJRM.

The remainder of the paper is organised as follows. In Section 2, the mathematical

setting of multistate survival processes is described, while Section 3 introduces the

modelling framework. Sections 4, 5 and 6 discuss model estimation, the extraction

of the transition probabilities and inference respectively. In Section 7, the Rotterdam

Breast Cancer Study is introduced to exemplify the proposed framework. Finally,

Section 8 provides some concluding remarks alongside directions of future work.

2 Mathematical setting of multistate survival processes

A continuous-time discrete-state stochastic process is a family of random variables

{Z(t), t ∈ T } with some indexing set given by T = [0,∞) in the survival setting.

The set of all values that the process takes S := {z : Z(t) = z, t ∈ T } ⊆ {0, 1, 2, ...}

is called the state space, where Z(t) denotes the state occupied at time t. A p × 1

vector of left-continuous, time-dependent covariates is represented by X(t). The

history of the process, including the evolution of the covariates vector, is denoted

by Ft = {Z(u), X(u), 0 ≤ u ≤ t}. The transition intensities and the transition

probabilities are then the two key quantities associated with the process. The former

represent the rates of transition to a state s for an individual who is currently in
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another state r, formally

q(rs)(t | Ft−) = lim
∆t↓0

P (Z(t+∆t−) = s | Z(t−) = r,Ft−)

∆t
, r ̸= s,

with q(rs)(t | Ft−) = 0 if r is an absorbing state and q(rr)(t | Ft−) = −
∑
s ̸=r

q(rs)(t | Ft−).

The matrix with (r, s) element given by q(rs)(t | Ft−) for every r, s ∈ S is called

transition intensity matrix or generator matrix and we will denote it by Q(t | Ft−).

Similarly, we define the transition probability matrix associated with the time interval

[u, t] as the matrix with (r, s) element given by P (Z(t) = s | Z(u) = r,Fu−) and

denote this by P(u, t | Fu−). It is common to simplify the dependence on past history

and time by assuming either a Markov or a semi-Markov process. The former implies

that the probability of being in a given state at a given future time only depends on

the current state occupied (Ross et al., 1996). The latter assumes that the future state

only depends on the history of the process through the current state and through time

since entry to the current state (Pyke, 1961; Yang and Nair, 2011). Exact knowledge

of the transition times, as in our setting, allows for both assumptions to be modelled

in an equally straightforward manner. The time for intermediate transitions will just

need to be re-defined to be the time from entry to the current state.

3 Flexible transition-specific modelling

When a multistate process is continuously observed, each transition time can viewed

as a standalone time-to-event and can thus be modelled through traditional survival

analysis. It is well know that survival analysis can be undertaken on different scales.

One such option is to model transformations of the survival function using gener-

alised survival models, a class that was first introduced by Younes and Lachin (1997).
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Subsequent works further developed this approach (e.g., Royston and Parmar, 2002;

Liu et al., 2018), each allowing for more modelling flexibility and ensuring the mono-

tonicity of the survival function in different ways. More recently Marra and Radice

(2020) proposed a generalised survival modelling framework which elegantly embeds

the monotonicity of the survival function within the model design matrix by exploit-

ing the properties of P-splines (see Section 3.2). We adopt this approach and thus

describe it in the following in the context of transition-specific modelling.

Let A = {(r, s) | r ̸= s ∈ S, q(rs)(ti) ̸= 0} be the set of transitions and N represent

the sample size. For individual i = 1, . . . , N and for (r, s) ∈ A, let H(rs)(·) be

the cumulative transition-specific hazard defined in terms of the transition intensity

q(rs)(·) as H(rs)(ti | xi;β
(rs)) =

ti∫
0

q(rs)(u | xi;β
(rs))du. Then we will have a conditional

survival function denoted by S(rs)(ti | xi;β
(rs)) = exp

{
−H(rs)(ti | xi;β

(rs))
}
∈ (0, 1),

where xi represents a generic vector of patient characteristics that has an associated

regression coefficient vector β ∈ Rw, where w is the length of β(rs). A link-based

additive transition-specific survival model can then be written as

g
{
S(rs)(ti | xi;β

(rs))
}
= η

(rs)
i (ti,xi; f(β

(rs))), (3.1)

where g : (0, 1) → R is a monotone and twice continuously differentiable link func-

tion with bounded derivatives, hence invertible, which determines the scale of the

analysis, η
(rs)
i (ti,xi; f(β

(rs))) ∈ R is an additive predictor which includes a base-

line function of time and several types of covariate effects and f(β(rs)) is a vector

function of β(rs) through which the monotonicity required for the survival func-

tions is imposed (see Section 3.2). Rearranging (3.1) yields S(rs)(ti | xi;β
(rs)) =

G
{
η
(rs)
i (ti,xi; f(β

(rs)))
}
, where G is an inverse link function. Note that modelling

directly on the survival scale implies a considerable advantage in this context (see
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Section 5). The cumulative transition-specific hazard is then H(rs)(ti | xi;β
(rs)) =

− log
[
G
{
η
(rs)
i (ti,xi; f(β

(rs)))
}]

and the transition intensity function is defined as

q(rs)(ti | xi;β
(rs)) = −

G′
{
η
(rs)
i (ti,xi; f(β

(rs)))
}

G
{
η
(rs)
i (ti,xi; f(β

(rs)))
} ∂η

(rs)
i (ti,xi; f(β

(rs)))

∂ti
, (3.2)

whereG′
{
η
(rs)
i (ti,xi; f(β

(rs)))
}
= ∂G

{
η
(rs)
i (ti,xi; f(β

(rs)))
}
/∂η

(rs)
i (ti,xi; f(β

(rs))). Ta-

ble 1 displays the functions g, G and G′ available in the R package GJRM.

Model Link g(S) Inverse link g−1(η) = G(η) G′(η)

Prop. hazards or log-log ("PH") log {− log(S)} exp {− exp(η)} −G(η) exp(η)

Prop. odds or logit ("PO") − log
(

S
1−S

)
exp(−η)

1+exp(−η) −G2(η) exp(−η)

Probit ("probit") −Φ−1(S) Φ(−η) −ϕ(−η)

Table 1: Functions implemented in GJRM. Φ and ϕ are the cumulative distribution and

density functions of a univariate standard normal distribution. Note: the desired link-

function can be specified by setting the argument margin of the function gamlss()

in GJRM to the values within brackets; e.g. margin = "PH".

3.1 Additive predictor

Dropping the dependence on covariates and on parameters for the sake of simplicity,

the additive predictor is defined as

η
(rs)
i = β

(rs)
0 +

K(rs)∑
k=1

s
(rs)
k (zki), i = 1, . . . , n, (3.3)

where β
(rs)
0 ∈ R is an overall intercept, zki denotes the k

th sub-vector of the complete

vector zi and the K(rs) functions s
(rs)
k (zki) denote effects which are chosen accord-

ing to the type of covariate(s) considered. These functions can be expressed as a

linear combination of basis functions bk(zki) = (b
(rs)
k1 (zki), . . . , b

(rs)
kJk

(zki))
T and regres-

sion coefficients f
(rs)
k (β

(rs)
k ) = (f

(rs)
k1 (β

(rs)
k1 ), . . . , f

(rs)
kJk

(β
(rs)
kJk

))T ∈ RJk , that is s
(rs)
k (zki) =
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bk(zki)
Tf

(rs)
k (β

(rs)
k ) (e.g., Wood, 2017). We can then write (3.3) compactly as η

(rs)
i =

Z
(rs)T
i f(rs)(β(rs)), where Z

(rs)
i = (1,b1(z1i)

T, . . . ,bK(rs)(zK(rs)i)
T)T and f(rs)(β(rs)) =

(β
(rs)
0 , f

(rs)
1 (β

(rs)
1 )T, . . . , f

(rs)

K(rs)(β
(rs)

K(rs))
T)T. Observe that ∂η

(rs)
i (ti,xi; f

(rs)(β(rs)))/∂ti is

required in (3.2). This can be expressed as Z
(rs)
i (ti,xi)

′Tf(rs)(β(rs)) where, depending

on the type of spline basis employed, Zi(ti,xi)
′ = lim

ε→0

Z
(rs)
i (ti+ε,xi)−Z

(rs)
i (ti−ε,xi)

2ε
can be

calculated either by a finite-difference method or analytically. Each β
(rs)
k has an asso-

ciated quadratic penalty λ
(rs)
k β

(rs)T
k D

(rs)
k β

(rs)
k , used in fitting, whose role is to enforce

specific properties on the kth function, such as smoothness, with matrix D
(rs)
k depend-

ing only on the choice of the basis functions. The smoothing parameter λ
(rs)
k ∈ [0,∞)

controls the trade-off between fit and smoothness, and hence determines the shape of

the estimated smooth function. The overall penalty can be defined as β(rs)TS
(rs)

λ(rs)β
(rs),

where S
(rs)

λ(rs) = diag(0, λ
(rs)
1 D

(rs)
1 , . . . , λ

(rs)

K(rs)D
(rs)

K(rs)) is a block diagonal matrix where

each block is given by the kth penalty, and where λ(rs) = (λ
(rs)
1 , . . . , λ

(rs)

K(rs))
T is the

transition-specific overall smoothing parameter vector. Depending on the types of

covariate effects one wishes to model, several definitions of basis functions are possi-

ble, e.g. thin plate, cubic and P- regression splines, tensor products, Markov random

fields, random effects, Gaussian process smooths. These are handled automatically

within the software proposed. We refer the reader to Section 7 for practical examples

of the effects mentioned above and to Wood (2017) for the other available options.

3.2 Imposing monotonicity by means of SCOPs

When modelling life-history data through multistate processes, one is often interested

in making statements in terms of the probabilities of transitioning from one state to

another for specific combinations of risk-factors. In Section 5, it will be shown that we
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compute these by first extracting the transition-specific cumulative hazards at various

time points. Direct modelling of the survival functions thus allows us to obtain the

transition probabilities more cheaply, as we drop the intermediate step of having to

first integrate the transition intensities. The only caveat is that one needs to ensure

the survival functions are monotonically decreasing. Liu et al. (2018) propose to do

this by means of a penalty applied to the hazard function such that the associated

coefficient is iteratively doubled until the estimated hazard functions of all individuals

are not negative. We employ a more theoretically founded approach. Indeed, in

the proposed framework the properties of P-splines are exploited to elegantly embed

the monotonicity within the construction of the survival functions themselves, while

allowing for the flexible modelling of the time effect.

Let s(rs)(ti) =
∑J(rs)

j=1 f
(rs)
j (β

(rs)
j )b

(rs)
j (ti), where the b

(rs)
j (·) are B-spline basis functions

of at least second order built over the interval [a, b], based on equally spaced knots,

and the f
(rs)
j (βj)

(rs) are spline coefficients. Given the link functions listed in Table 1,

we need s(rs)
′
(ti) ≥ 0. Eilers and Marx (1996) combined B-spline basis functions with

discrete penalties in the basis coefficients to produce the popular P-spline smoothers.

Then Pya and Wood (2015) proposed shape constrained P-splines through a mildly

nonlinear extension of these P-splines, with corresponding novel discrete penalties,

thus allowing the development of efficient and stable model estimation frameworks,

such as the one proposed. In particular, a sufficient condition for s(rs)
′
(ti) ≥ 0 over

[a, b] is that f
(rs)
j (β

(rs)
j ) ≥ f

(rs)
j−1 (β

(rs)
j−1),∀j. Indeed, given a function η(x) = a0 +∑m

j=1 ajBj(x, q), where Bj(x, q) are the bases for a (q + 1)th order B-spline, m is

the number of basis functions, ∂η(x)/∂x = 1
h

∑m−1
j=1 (aj+1 − aj)Bj(x, q − 1) with h

the distance between equally spaced knots and so aj+1 ≥ aj implies ∂η(x)/∂x ≤ 0

since Bj(x, q− 1) ≥ 0 (Leitenstorfer and Tutz, 2007). Such condition can be imposed
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by defining the vector function f(rs)(β(rs)) = Σ
{
β
(rs)
1 , exp(β

(rs)
2 ), . . . , exp(β

(rs)

J(rs))
}T

,

whereΣ[ι1, ι2] = 0 if ι1 < ι2 andΣ[ι1, ι2] = 1 if ι1 ≥ ι2, with ι1 and ι2 denoting the row

and column entries of Σ, and β(rs)T = (β
(rs)
1 , β

(rs)
2 , . . . , β

(rs)

J(rs)) is the parameter vector

to estimate. Crucially, in practice Σ is absorbed into the design matrix containing the

B-spline basis functions Z, hence allowing the constraint to be elegantly embedded

within the construction of the model design matrix itself. Finally, in a smoothing

context, we are interested in having a penalty on the smooth function to control its

”wiggliness”. Eilers and Marx (1996) introduced the notion of directly penalising the

difference in the basis coefficients of a B-splines basis, which is used with a relatively

large number of basis functions to avoid underfitting. The adaptation to the shape-

constrained case is straightforward as it implies penalising the squared differences

between adjacent β
(rs)
j , starting from β

(rs)
2 , using D(rs) = D(rs)∗TD∗ where D(rs)∗ is a

(J (rs)−2)×J (rs) matrix made up of zeros except thatD(rs)∗[ι, ι+1] = −D(rs)∗[ι, ι+2] =

1 for ι = 1, . . . , J (rs) − 2. The penalty is zeroes when all the β
(rs)
j after β

(rs)
1 are

equal so that the f
(rs)
j (β

(rs)
j ) form a uniformly increasing sequence and s(rs)(ti) is an

increasing straight line. As a result, the proposed penalty shares the basic feature of

smoothing towards a straight line, but in a manner that is computationally convenient

for constrained smoothing.

4 Estimation

Since each likelihood contribution refers to a specific transition only and every tran-

sition is exactly observed if and only if it occurs, it can be shown (see Supplementary

Material B) that the overall model log-likelihood can be broken down into the sum
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of the log-likelihoods associated with each transition, which are functions only of

the parameters relating to that transition, i.e. ℓ(θ) =
∑

(r,s)∈A ℓ(rs)(β(rs)), where

θ = {β(rs) | (r, s) ∈ A} is an overall model parameter vector. Re-writing the

log-likelihood in this way, rather than as a sum of contributions associated with

each observation time, is more convenient as it breaks down the estimation task

into a number of traditional survival problems, one for each transition. It is pre-

cisely to each of these transition-specific models that the framework developed in

Eletti et al. (2022) is applied. Briefly, as the model allows for a high degree of flex-

ibility, to prevent over-fitting, the log-likelihood is augmented with a penalty term

ℓ
(rs)
p (β(rs)) = ℓ(rs)(β(rs)) − 1

2
β(rs)TS

(rs)

λ(rs)β
(rs) where S

(rs)

λ(rs) is an overall penalty term

defined in Section 3. The estimation framework then combines a carefully struc-

tured trust region algorithm which uses the analytical expressions of the gradient and

Hessian of the log-likelihood and properly chosen starting values with a general au-

tomatic multiple smoothing parameter selection algorithm based on an approximate

AIC measure.

5 Prediction on the transition probabilities scale

While estimation can be carried out entirely by-passing the computation of the tran-

sition probabilities, one is often interested in making statements in terms of the

probability of transitioning from one state to another given a specific combination

risk-factors. We choose the simulation-based approach proposed in Fiocco et al.

(2008), which we briefly describe in the following. Let r be the starting state, entered

at time tr = 0, and tmax the maximum follow-up time. Then
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• Let B be the set of states that can be reached from state r. If B is empty, stop.

Otherwise, for s ∈ B, let H(rs)(t) be the cumulative transition-specific hazard

function for transition r → s and H(r·)(t) =
∑
s∈B

H(rs)(t) refer to the event of

leaving state r.

• Sample t∗ from H(r·)(t) − H(r·)(tr). This refers to the conditional distribution

of leaving state r given that the process is known to be in state r until time tr

thus ensuring that the sampled time t∗ > tr.

• If t∗ > tmax, select the next state s with probability dH(rs)(t∗)/dH(r·)(t∗), which

provides a weight for the specific transition r → s out of state r for each s ∈ B

at the given time t∗, and set the new starting points for the next iteration, r = s

and tr = t∗. Otherwise, stop: a full path through the process was obtained.

This is repeated to obtain M paths through the multistate model and to compute

the transition probabilities by counting the number of paths for which each event

occurred. This approach is implemented in the function mssample() of the R package

mstate and is straightforward to use given the estimated transition-specific cumula-

tive hazards for both Markov and semi-Markov models.

6 Inference

One view of the smoothing process is that the penalty employed during fitting im-

poses the belief that the true function is more likely to be smooth than wiggly. This

belief can be expressed in a Bayesian manner through the form of a prior distribu-

tion on β(rs), i.e. fβ(rs) ∝ exp
{
−β(rs)TS

(rs)

λ(rs)β
(rs)/2

}
. This leads to the Bayesian
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large sample approximation β(rs) ·∼ N (β̂
(rs)

,Vβ(rs)), where Vβ(rs) = −Hp(β̂
(rs)

)−1;

using Vβ(rs) gives close to across-the-function frequentist coverage probabilities be-

cause it accounts for both sampling variability and smoothing bias, a feature that

is particularly relevant at finite sample sizes Wood et al. (2016). Following Pya

and Wood (2015), we then consider the Taylor series expansion of f(rs)(β(rs)) around

f(rs)(β̃
(rs)

). This gives f(rs)(β(rs)) − f(rs)(β̃
(rs)

) ≈ diag(E(rs))
(
β(rs) − β̃

(rs))
, where

E(rs)[kjk ] = 1 if f
(rs)
kjk

(β
(rs)
kjk

) = βkjk
and exp(β

(rs)
kjk

) otherwise, showing that f(rs)(β(rs))−

f(rs)(β̃
(rs)

) is approximately a linear function of β(rs). Combining this with the re-

sult above we have that f(rs)(β(rs))
·∼ N (f(rs)(β̃

(rs)
),Vf(rs)(β(rs))) where Vf(rs)(β(rs)) =

diag(E(rs))Vβ(rs) diag(E(rs)), since linear functions of normally distributed random

variables follow normal distributions. Confidence intervals for linear functions of the

model coefficient can then be obtained using this result. P-values for the smooth com-

ponents in the model are derived by adapting the result discussed in Wood (2017)

and using Vf(rs)(β(rs)) as covariance matrix. For nonlinear functions of the model coef-

ficients, e.g. the transition-specific cumulative hazard functions, instead, the intervals

can be conveniently obtained by posterior simulations, hence avoiding computation-

ally expensive parametric bootstrap or frequentist approximations, for instance.

7 Primary breast cancer modelling case study

To illustrate what the proposed approach adds compared to the existing literature,

we consider the case study described in Crowther and Lambert (2017) which is based

on data from 2892 patients with primary breast cancer for which the time to re-

lapse and/or the time to death is known. See, e.g., Sauerbrei et al. (2007) for

further details on the Rotterdam Breast Cancer Study from which the data origi-
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nated. The code used to produce this analysis can be found in the public repository

https://github.com/AlessiaEletti/ContinObsMultistateProcesses. All patients be-

gin in the initial post-surgery state, 1518 patients experience relapse, 195 die without relapse

and 1075 die after experiencing relapse. A Markov illness-death model (IDM, see Figure

5 in Supplementary Material C) will thus be used to model the data. As an aside, note

that an attempt assuming semi-Markovianity was also made but this was not supported

by the data according to the AIC values found for the fitted models. As there are three

transitions in the assumed IDM, three survival models will be fitted. For transitions which

can occur only given that another transition has already taken place, i.e. the transition

2 → 3 in this case, one must account for the fact that the patient is at risk only after

entering the new starting state, i.e. state 2. As long as this is done, each transition can

be treated as a separate survival problem. The time at which the individual entered state

2 thus becomes the left-truncation time for the new transition 2 → 3. To clarify how the

separate estimations are carried out, recall that longitudinal survival data are characterised

by multiple observations through time of at least one quantity of interest for the same in-

dividual. Typically the data are formatted in the so-called stacked (or long) form, i.e. each

row represents a single time point per subject. In particular, each subject will have at least

v rows, where v is the number of possible transitions exiting the initial state. Here, v = 2

as there are two ways of exiting state 1, i.e. going in state 2 or 3. A start and a stop time

will then indicate, respectively, the first time after which the patient becomes at risk of the

given transition and the time at which the transition itself occurred. The start time for

transitions exiting the first state is 0, as is usually the case here. If the patient transitions

to an intermediate state, u rows will be added, where u is the number of transitions exiting

the intermediate transition state reached. Here, u = 1, as the only possible transition out

of state 2 is 2 → 3, where 3 is an absorbing state. When estimating q(12)(·), all of the

rows relating to this transition are included in the estimation. Since every patient will at

least have one row for each transition exiting the first state, this implies that the entire
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population is included. The same is true for q(13)(·), for which the rows relating to the

1 → 3 transition will be used for estimation. The two resulting separate datasets can then

be treated as traditional survival data with uncensored and right censored observations and

with the event of interest given by the transition to the new state, i.e. state 2 for the former

and state 3 for the latter. When estimating q(23)(·), only individuals who have transitioned

to state 2 at some point are included in the estimation. The data are then treated as

traditional survival data with left-truncated uncensored and left-truncated right censored

observations and where the event of interest is the transition to the absorbing state 3. We

refer the reader to Supplementary Material D for further details on the format of the data

in this setting.

The dataset contains information on the age of the patient at primary surgery (in years),

tumour size (divided into 3 classes: ≤ 20, 20−50 and > 50 mm), number of positive nodes,

progesterone levels (in fmol/L) and whether or not the patient was on hormonal therapy.

These are all included as covariates. We then include a time-dependent effect for the

progesterone level, as this has been found to be relevant in the reference paper, and include

age, the progesterone level and the number of positive nodes nonlinearly, as supported by

existing literature. Importantly, our chosen framework allows for the exploration of these

effects in a more general and flexible manner than previously possible in the literature thanks

to the use of splines. In contrast, for instance, Sauerbrei and Royston (1999) modelled

the number of positive nodes nonlinearly by using fractional polynomials with the degrees

set heuristically. Similarly, in Crowther and Lambert (2017) the time-dependant effect is

captured by a single interaction coefficient between time and the progesterone level . In

particular, for (r, s) ∈ {(1, 2), (1, 3), (2, 3)}, we specify the transition-specific models

η
(rs)
i (ti,xi; f(β

(rs))) = β
(rs)
0 + s

(rs)
0 (log(ti)) + β

(rs)
1 Isizei=20−50 + β

(rs)
2 Isizei>50 + β

(rs)
3 hormoni

+ s
(rs)
1 (agei) + s

(rs)
2 (nodesi) + s

(rs)
3 (pri) + s

(rs)
4 (log(ti),pri),

where s
(rs)
0 (log(ti)) is a monotonic P-spline of the logarithm of time which ensures the
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monotonicity of the survival function associated with this transition, as explained in Section

3.2; s
(rs)
1 (agei), s

(rs)
2 (nodesi) and s

(rs)
3 (pri) are thin-plate splines, while s

(rs)
4 (log(ti),pri) is

a pure smooth interaction between time and the progesterone level, i.e. a time-dependent

effect. In regard to the penalty associated with a nonlinear term, e.g., s1(agei), this takes the

form of the quadratic penalty defined above with Dk given by the integrated square second

derivative of the basis functions, i.e.
∫
dk(zk)dk(zk)

Tdzk with the jthk element of dk(zk)

defined as ∂2bkjk(zk)/∂z
2
k. The penalty associated with the time-dependent effect is, instead,

more complex as it entails combining two penalties (see Wood, 2017, Chapter 5). Finally,

note that for parametric effects the spline representation simplifies to s(rs)(hormoni) =

β
(rs)
3 hormoni. No penalty is typically assigned to parametric effects, hence the associated

quadratic penalty is D = 0. Note that in cases such as those in which the categorical

variable has many levels with some with few observations, it may be advisable to set the

penalty as the identity matrix. In this way, a ridge penalty is imposed and it may help avoid

that the parameters associated with the more sparse categories are weakly or nonidentified.

The estimated covariate effects for each transition are reported in Table 2. For the first

transition, for instance, they are all significant and in line with our expectations: the larger

the size of the tumor the higher the risk of experiencing relapse, while hormonal therapy

has a beneficial effect. In Figure 1 we report the estimated transition intensities with their

95% confidence intervals as functions of time for a 54 year old patient with tumour size

≥ 50 mm, 10 positive nodes, progesterone level of 3 and under hormonal therapy. We find,

for instance, that the risk of experiencing relapse for this profile increases for approximately

2.5 years after surgery, then it decreases and plateaus over time. In Figure 2 we report

the plots of the smooths and of the tensor interaction for the transition health → relapse.

These show that the data particularly support nonlinear effects for the age and the number

of positive nodes. For instance, the latter exhibits an increasing trend up to about 12 nodes,

followed by a plateau. The time-dependence of the progesterone level effect is also clear from
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Estimate Std. Error Pr(> |z|)

Transition 1 → 2

(Intercept) -10.630 1.198 < 1e− 4

size20-50 0.284 0.059 < 1e− 4

size>50 0.477 0.089 < 1e− 4

hormon -0.318 0.085 2e− 4

Transition 1 → 3

(Intercept) -12.543 2.585 < 1e− 4

size20-50 0.153 0.162 0.344

size>50 0.390 0.236 0.098

hormon -0.135 0.236 0.567

Transition 2 → 3

(Intercept) -2.915 1.023 0.004

size20-50 0.139 0.072 0.053

size>50 0.259 0.101 0.010

hormon -0.015 0.098 0.881

Table 2: Model estimates, standard errors and p-values for the three transitions.

the surface representing the smooth interaction, with low levels of progesterone associated

with a decreasing risk of experiencing relapse over time and, conversely, high levels of

progesterone associated with an increasing trend for the risk of experiencing relapse over

time. Any additional complexity not supported by the data is then suppressed automatically

through the estimation of the smoothing parameter, rather than requiring the user to make

restrictive and potentially arbitrary choices a priori. This can be seen in the plots of the

smooths of the remaining two transitions, reported in Figures 6 and 7 of Supplementary

Material C. The plot of the smooth of age for the health → death transition, for instance,

shows that the data actually supported a linear effect for this term.

As mentioned above, interest usually lies in making statements in terms of the probabilities
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Figure 1: Fitted transition intensities and 95% confidence intervals (CIs) for a 54

year old patient under hormonal therapy with tumour size ≥ 50 mm, 10 nodes and

progesterone level of 3, over 20 years. The vertical dashed line marks the smallest

observed time: the transition intensities estimated at smaller times are extrapolations,

thus explaining the wide CIs in the first section of the third plot. The width of the CIs

in the final portion of the middle plot can be explained by the scarcity of observations

in the final times, as shown by the rug plot. The width of the confidence intervals

should also be related to the different range of values in each plot.

of transitioning between states thus, in Figure 3, we report stacked transition probability

plots. Representing the probabilities in this stacked manner is a common way of quickly

providing an overview of how risk evolves over time, however the uncertainty of the estimates

cannot be easily portrayed. For this reason, in Figure 4, we report the predicted probabilities

with their 95% confidence intervals for the individual corresponding to the top-left panel,

i.e. a 54 year old patient under hormonal therapy, progesterone level of 3, 20 positive

nodes and tumour size ≤ 20 mm. Note that the computation of the transition probabilities

already entails a simulation, thus the process of obtaining confidence intervals for it will

result in two nested simulations. The computational burden of this is not prohibitively

high, however. Here, they are obtained by using 100 simulated cumulative hazards for each
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Figure 2: Smooth of log-time (top left), smooth of age (top middle), smooth of the

number of positive nodes (top right), smooth of the progesterone level (bottom left)

and smooth interaction between log-time and progesterone level (bottom right) for

the transition health → relapse.

of the three transitions, over 100 distinct time points, and M = 10000 simulated paths

through the process, which is a larger number of paths than typically needed. This required

approximately 37 minutes using a laptop with Windows 10 (2.20 GHz processor, 16 GB

RAM, 64-bit). Details on this, on how the model fitting is carried out and how the plots

reported in this section were obtained can be found in Supplementary Material C.
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Figure 3: Stacked representation of estimated transition probabilities (dark grey:

post-surgery; grey: relapse; light grey: death) for each combination of nodes (0, 10

and 20) and tumour sizes (≤ 20, (20, 50) and ≥ 50) considered in a 54 year old patient

under hormonal therapy with progesterone level of 3.

8 Discussion

In this work we show how one can use existing tools to flexibly model multistate survival

processes relating to continuously observed life-history data. In particular, we consider

the survival estimation framework described in Eletti et al. (2022) and implemented in

the R package GJRM which allows us to model virtually any type of covariate effect, in-

cluding time-dependent ones. Direct modelling of the survival functions implies a consid-

erable gain in efficiency when it comes to computing the transition probabilities of inter-

est, which in turn are obtained through a simulation-based approach able to support any
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Figure 4: Estimated transition probabilities (left: post-surgery; middle: relapse; right:

death) for the top-left pane in Figure 3.

type of multistate process. Efficient modelling on the survival scale is achieved through

shape constrained P-splines, developed by Pya and Wood (2015), building upon the work

done in Eilers and Marx (1996). We exemplify our approach on data from the Rotterdam

Breast Cancer Study and provide the code used for the analysis in the public repository

https://github.com/AlessiaEletti/ContinObsMultistateProcesses.

With regard to directions of future work, we are interested in integrating the computation

of the transition probabilities and the extraction of its confidence intervals directly within

the GJRM package, so as to minimise the amount of user-written code needed and thus

further simplify the use of these models by the practitioner. Similarly, for the visualisation

tools available for the estimated transition probabilities. As the Markov assumption is

quite common, we are also interested in implementing the method based on the numerical

solution of the differential equations tying the transition probabilities to the intensities as

well as to implement our own simulation-based approach within the GJRM package, so that

the user has all necessary instruments in the same place and the need for user-written code

is reduced to the minimum.
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Supplementary Material: ”A Spline-Based

Framework for the Flexible Modelling of

Continuously Observed Multistate Survival

Processes”

Alessia Eletti 1 Giampiero Marra 2 Rosalba Radice 3

A Computing the transition probabilities in the con-

tinuously observed setting: an overview

When the process is assumed to be time-inhomogeneous, computing the transition proba-

bilities from the estimated transition intensities is a nontrivial problem since closed form

expressions of the former as functions of the latter are not available. Two main approaches

can be identified in the literature of continuously observed processes to address this problem.

The first approach is to solve, by means of packages such as deSolve in R (Titman, 2011),

the ordinary differential equations that tie the transition probability matrix to the transi-

tion intensity matrix, when the process is assumed to be Markov. This method is appealing

in that it provides the entire transition probability matrix in one step and is the tech-
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nique implemented in the R packages rstpm2 (Clements et al., 2021), through the function

markov msm(), and flexsurv (Jackson, 2021), through the function pmatrix.fs(). In

both cases, the main required inputs are the fitted transition intensities. In the former case

the transition intensities can be specified in a number of ways using a handful of existing

survival modelling R packages, with the most flexible options provided by the stpm2() func-

tion present within the rstpm2 package and the survPen() function from the R package

survPen (Fauvernier et al., 2020). With regard to flexsurv, the most common parametric

forms found in survival analysis, e.g. Weibull, can be assumed for the transition intensities

through the function flexsurvreg() as well as the Royston-Parmar model through the

function flexsurvspline(). Overall, the drawback of this approach is that it is difficult

to generalise to the case in which the process is not assumed to be Markov, e.g. when it

is semi-Markov, another common type of dependence on past history. Confidence inter-

vals can then be obtained by using the covariance matrix computed from the knowledge of

the first derivative of the transition probability matrix, obtained by simultaneously solving

these ODEs mentioned above and an augmented version of them obtained by taking the

derivative of the left and right hand-side with respect to time.

The second approach, and indeed the one that we adopt, is a simulation-based approach

which allows one to estimate the transition probabilities by simulating a number M of paths

through the assumed multistate process and counting the number of individuals experienc-

ing each transition (Iacobelli and Carstensen, 2013; Touraine et al., 2016). This method

benefits of the generality lacking in the previous one, i.e. both Markov and semi-Markov

processes are supported, thus tying nicely with the flexibility available for the transition-

specific modelling. Indeed, is the only such approach which is general in this respect. It

was proposed in Fiocco et al. (2008) and implemented in the Stata package multistate

(Crowther and Lambert, 2016) and in the R packages flexsurv and mstate (Putter et al.,

2020). In the following we will focus only on R packages. In particular, we will use the
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latter as it can be seamlessly integrated with our estimation approach, implemented in the

R package GJRM. Indeed, this package allows the user to obtained simulation-based esti-

mates of the transition probability matrix at any vector of time points through function

mssample() by providing the estimated transition-specific cumulative hazards computed

at the time points of interest. Whether the process is Markov or semi-Markov is then

simply accounted for by specifying the argument clock = ’forward’ in the former case

and clock = ’reset’ in the latter. Note that the estimated cumulative hazards can in

turn be straightforwardly obtained through function hazsurv.plot() from the GJRM pack-

age. Confidence intervals can then be obtained by simulation from the asymptotic dis-

tribution of the maximum likelihood estimates of the model parameters. This is what is

done in flexsurv and mstate. We too adopt this approach as well by exploiting the fact

that hazsurv.plot() already has a built-in way of simulating cumulative hazard func-

tions given the asymptotic distribution of the model parameters. These can then be used

as one would with a single cumulative hazard curve to obtain many corresponding tran-

sition probability matrices and thus compute the quantiles on these, as explained in Sec-

tion 5. For more details on how to fit the transition intensities and then obtain tran-

sition probabilities and the related confidence intervals for a profile of interest, we refer

the reader to Supplementary Material C and to the code accessible in the public repository

https://github.com/AlessiaEletti/ContinObsMultistateProcesses, through which the

results reported in the case study from Section 7 can be reproduced.

As an aside, in a nonparametric setting, one may also obtain the estimated transition proba-

bilities through the Aalen-Johansen estimator which provides a way to compute the product

integral tying the transition probability matrix to the matrix containing the transition-

specific cumulative hazard functions, when the process is assumed to Markov (De Wreede

et al., 2010). This is one of the approaches implemented in the R package mstate. In-

deed, the transition specific cumulative hazard functions are computed through the msfit()
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function either via the Aalen estimator (by specifying vartype = ’Aalen’) or the Green-

wood estimator (by specifying vartype = ’Greenwood’). These estimates are then used in

the probtrans() function to compute the transition probability matrix via the mentioned

Aalen-Johansen estimator.

B Rewriting the model log-likelihood when only exact

transitions are observed

For a multistate survival process assumed to be observed continuously and for individual

i = 1, . . . , N , where N represents the sample size, let T
(rs)
i be the transition-specific true

event time. This can be either uncensored, i.e. exactly observed, or right-censored if the

transition r → s did not occur prior to the maximum follow-up time Tmax, in which case the

transition is only known to have occurred after this time. In either case, the time may also

be left-truncated if the event it relates to is an intermediate one, i.e one which requires the

individual to have transition to the starting state considered prior to the current observation

time. Indeed, left-truncation of survival data occurs when only individuals whose event time

lies within a window (T td
i ,∞) are observed, otherwise no information on the individuals is

available and thus the subjects are not considered for inclusion into the study. This is

precisely the case here. Indeed, given an intermediate state r, an individual is at risk of

experiencing the transition r → s at a given time only if they are in state r at that time.

In particular, if they are known to have transitioned to state r at time T td
i , then they are

at risk of the transition r → s only after this time, i.e. in the window (T td
i ,∞), which is

thus the left-truncation time associated with the transition.

We will now sketch the steps which show how one can pass from the general overall log-

likelihood associated with a Markov multistate process to the re-formulation of it in terms of
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ID tstarti tstopi Transition Status

i 0 t12 1 → 2 1

i 0 t12 1 → 3 0

i t12 t∗ 2 → 3 0

Table 3: ith individual in the dataset.

a sum of log-likelihoods, each associated with a specific transition, when the exact transition

times are known. Showing this for the semi-Markov case is outside of the scope of this paper.

Let us assume that a random i.i.d. sample of size N and let 0 = ti0 < ti1 < · · · < tini

be the observed transition times for individual i. At these times the process is observed

to be in states zi0, zi1, . . . , zini . If ℓi(θ) is the likelihood contribution of individual i, A =

{(r, s) ∈ S × S | r ̸= s ∧ q(rs)(·) ̸= 0} is the set of the pairs of states corresponding to

allowed transitions and θ = {β(rs) | (r, s) ∈ A} is an overall model parameter vector, the

full log-likelihood is given by

ℓ(θ) =

N∑
i=1

ℓi(θ) =

N∑
i=1

ni∑
j=1

ℓij(θ) =

N∑
i=1

ni∑
j=1

log(Lij), (B.1)

where

Lij = exp

[ ∫ tij

tij−1

qzij−1,zij−1(u;x)du

]
qzij−1,zij (tij ;x).

We will now clarify this by specialising it to a simple example which will allow us to write

out each term explicitly. In particular, we will do this for a time-homogeneous IDM for

simplicity but the same reasoning can be extended to more general contexts as settings.

Let us assume we have a dataset with the ith individual characterised by the observed

transitions described in Table 3. The ith likelihood contribution associated with the process
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at hand will have the following form

Li =

1st term︷ ︸︸ ︷
q12 exp[t12q11] ·

2nd term︷ ︸︸ ︷
p22(t

∗ − t12)

= q12 exp[t12q11] · exp[−(t∗ − t12)q23],

(B.2)

i.e. is the product of the contributions associated with the two observation times t12 and

t∗. In particular, the first term refers to the the exactly observed transition at time t12.

Recall that we assume the process stays in state 1 throughout time interval (0, t12), hence

the term q11 in the exponential, and then jumps to state 2 at time t12. The second term,

instead, refers to the fact that the process is observed to be in state 2 at time t12 and to

still be in state 2 at time t∗, the maximum follow-up time. This can be re-written in the

following way

Li = q12 exp[t12q11] · exp[−(t∗ − t12)q23]

= q12 exp[−t12(q12 + q13)] · exp[−(t∗ − t12)q23]

= q12 exp[−t12q12] · exp[−t12q13] · exp[−(t∗ − t12)q23]

= f12(t12) · S13(t12) ·
S23(t

∗)

S23(t12)
.

(B.3)

In other terms, we broke up the likelihood in the product of terms each corresponding to

specific transitions and hence which are functions of nonoverlapping sets of parameters.

The usefulness of writing the likelihood contribution as a product of densities and survival

functions associated to each transition, rather than as the product of transition probabilities,

comes from the fact that one can then group all of the terms relating to the transition r → s

and obtain a transition specific likelihood contribution L
(rs)
i . In this way we thus have

Li = f12(t12) · S13(t12) ·
S23(t

∗)

S23(t12)
= L

(12)
i · L(13)

i · L(23)
i ,

where each transition specific likelihood can be optimised as a standalone likelihood associ-

ated to what then becomes a univariate survival analysis problem. Note, further, that the

left-truncation for the 2 → 3 transition is apparent in that we have a conditional survival

function.



32 Alessia Eletti et al.

C Further details on the case study and code

Figure 5: Graphical representation of the IDM assumed to model the data.

The results presented in the case study have been obtained by combining the R packages

GJRM and mstate, as mentioned above. Note, however, that a small bug was found in the

sampling function mssample() of the latter package, which thus had to be modified. To

allow for the full reproducibility of the analysis carried out this paper, we therefore not

only provide the code used for the case study, but also the modified function. In this

way the code provided is entirely self contained. This can be found in the public reposi-

tory https://github.com/AlessiaEletti/ContinObsMultistateProcesses. In the fol-

lowing, instead, we report only a few code snippets to exemplify the usage of the main

functions needed for the fitting of the model through our framework, implemented in the

GJRM package, and the computation of the estimated transition probabilities via the simu-

lation based procedure implemented in the mstate package. In particular, the transition-

specific models are fitted using the gamlss() function from the GJRM package, as shown in

the following code snippet for the 2 → 3 transition, so as to also show how we account for

left-truncation.

out.rd = gamlss(list(Tstop ~ s(log(Tstop), bs = 'mpi') + size2 + size3 + hormon

+ s(age) + s(nodes) + s(pr_1) + ti(log(Tstop), pr_1)),

surv = TRUE, margin = 'PH',
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data = mex[mex$trans == 3, ],

truncation.time = 'Tstart',

type = 'mixed',

cens = status.factor[mex$trans == 3])

The plots of the smooths included in the three models, and reported in Figure 2 of Section

7 and in Figures 6 and 7 below, can be obtained by using the plot() command on the

fitted model output.

We then obtain the estimated transition probabilities by combining the predicted cumu-

lative hazards obtained using function hazsurv.plot() from the GJRM package with the

(modified) function mssample() from the mstate package. Indeed, the latter takes the es-

timated transition-specific cumulative hazards as an input and samples paths through the

multistate model outputting either the sampled paths or the estimated transition proba-

bilities depending on the user choice; this is controlled by argument output. In particular,

for this application, we used M = 10000 sampled paths through the multistate model. We

show this in the following code snippet for one of the three transitions, as the others are

then identical.

# 1-3 transition

pred.rd.test = hazsurv.plot(out.rd, eq = 1, t.vec = times,

newdata = newdata, type = 'cumhaz', plot.out = F)

CH13 = pred.rd.test$ch # 1-3 cumulative hazard

# ... (similarly for the others)

Hazprep = data.frame(time = rep(times, 3),

Haz = c(CH12, CH13, CH23),
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Figure 6: Smooth of log-time (top left), smooth of age (top middle), smooth of the

number of positive nodes (top right), smooth of the progesterone level (bottom left)

and smooth interaction between log-time and progesterone level (bottom right) for

the transition health → death.
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Figure 7: Smooth of log-time (top left), smooth of age (top middle), smooth of the

number of positive nodes (top right), smooth of the progesterone level (bottom left)

and smooth interaction between log-time and progesterone level (bottom right) for

the transition relapse → death.
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trans = c(rep(1, length(times)),

rep(2, length(times)),

rep(3, length(times))))

probs = mssample(Haz = Hazprep, trans = transmat, tvec = times, M = 10000)

As mentioned above, this approach allows us to model both Markov and semi-Markov pro-

cesses in the exact same way, with the only exception that a different time scale needs to

be defined for the latter. In particular, when fitting the model using function gamlss()

we would reset the time at the moment of entry to each state. When calling function

mssample() to obtain the transition probabilities one needs to set argument clock =

’reset’ to specify that the time-scale of the cumulative hazards is the duration in the

present state. In this way we are able to fully harness the flexibility allowed when the

multistate process is observed continuously through time by combining existing tools. Note

that, when the process is observed only intermittently, it becomes considerably more diffi-

cult to allow for this degree of flexibility in the assumptions made on the dependence on

time and past history. An attempt assuming semi-Markovianity was also made but resulted

in inferior AIC values, we thus omit the results here.

We can now obtain confidence intervals for the estimated transition probabilities by sim-

ulation. In particular, we already have simulated transition-specific cumulative hazard

functions from the previous calls to the hazsurv.plot() function. Each of these can

thus be used as inputs to obtain the corresponding transition probabilities through the

simulation-based procedure, i.e. by iteratively repeating the computation shown in the

code snippet above for each simulated transition specific cumulative hazard. Note that

the simulated transition-specific cumulative hazard can be extracted through the command

pred.rd.test$s.sim. The quantiles of the resulting set of transition probabilities extracted
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in this way can thus be computed to find the 95% confidence intervals.

Finally, the plots in Figure 1 can be obtained using the hazsurv.plot() function, specifying

that the curve of interest is the hazard through argument type = ’hazard’, as shown below

for the 2 → 3 transition intensity.

# Transition n. 3 (2-3)

q23 = hazsurv.plot(out.rd, eq = 1,

t.vec = seq(min(mex$Tstop), max(mex$Tstop), length.out = 1000),

newdata = data.frame(age = 54, size2 = 0, size3 = 1,

nodes = 10, pr_1 = 3, hormon = 1),

type = 'hazard',

ylab = 'Relapse to Death transition intensity',

xlab = 'Time since surgery (years)')

In conclusion, note that when fitting the time-only model with our splines-based approach,

i.e. when the transition intensities are specified with no covariates, we indeed recover the

estimated transition-specific cumulative hazard functions reported in Crowther and Lambert

(2017). We report these in Figure 8. These plots can be straightforwardly obtained using

function hazsurv.plot() from the R package GJRM by specifying the argument type =

’cumhaz’. It can, for instance, be seen that when no covariates are considered, the risk of

transitioning to the death state is considerably higher given that relapse occurred compared

to the relapse-free setting.
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Figure 8: Estimated baseline cumulative hazard functions associated with the health

to relapse (left), health to death (middle) and relapse to death (right) transitions

with their 95% confidence intervals.

D Further details on the continuously observed setting

Longitudinal data are characterised by multiple observations through time of at least one

quantity of interest, for the same individual and generally come in one of two forms, referred

to as stacked (or long) and unstacked (or wide), respectively. In the unstacked (or wide)

data format, a subject’s repeated responses will be displayed in a single row, i.e. each

response is in a separate column. In the stacked (or long) data format, each row represents

a single time point per subject. So each subject will have data in multiple consecutive rows.

In the continuously observed setting, the data will typically be formatted in the latter form.

In particular, assuming an IDM like the one considered in the case study of Section 7, each

of the rows corresponding to a given patient will look like either of the four combinations in

Tables 4-7. Note that the only type of censoring possible in this setting is right censoring,

i.e. the transition has not taken place by the maximum follow-up time. Note also that the

start time for transitions exiting the first state will usually be 0. An exception to this is

had when the first transition is itself left-truncated, e.g., as a consequence of the nature of

the phenomenon of interest. We refer the reader to the tutorial by Putter (2011) as well for

further examples on the setup for continuously observed multistate survival processes.
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trans start stop event

1 → 3 0 tmax 0

1 → 2 0 tmax 0

Table 4: The patient does not expe-

rience any transition between 0 and

tmax, the maximum observed follow-up

time. The patient is right censored at

tmax for both transitions.

trans start stop event

1 → 3 0 t13 1

1 → 2 0 t13 0

Table 5: The patient experiences a

transition to the absorbing state at

time t13. Transition 1 → 3 is thus un-

censored. For transition 1 → 2 this

represents a right censoring time.

trans start stop event

1 → 3 0 t12 0

1 → 2 0 t12 1

2 → 3 t12 tmax 0

Table 6: The patient experiences a

transition to the intermediate state at

time t12 but does not transition to the

following state between t12 and tmax,

i.e. 1 → 2 is uncensored. For 2 → 3

t12 is a left truncation time while tmax

is a right censoring time. For 1 → 3,

t12 represents a right censoring time.

trans start stop event

1 → 3 0 t12 0

1 → 2 0 t12 1

2 → 3 t12 t23 1

Table 7: The patient experiences a

transition to the intermediate state at

time t12 and then transitions to the ab-

sorbing state at time t23. Transitions

1 → 2 and 2 → 3 are thus uncensored.

For transition 2 → 3, t12 represents

a left truncation time. For transition

1 → 3, t12 represents a right censoring

time.
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