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a b s t r a c t

Intelligent wearable robotics is a promising approach for the development of devices that can interact
with people and assist them in daily activities. This work presents a novel human-in-the-loop layered
architecture to control a wearable robot while interacting with the human body. The proposed control
architecture is composed of high-, mid- and low-level computational and control layers, together with
wearable sensors, for the control of a wearable ankle–foot robot. The high-level layer uses Bayesian
formulation and a competing accumulator model to estimate the human posture during the gait cycle.
The mid-level layer implements a Finite State Machine (FSM) to prepare the control parameters for the
wearable robot based on the decisions from the high-level layer. The low-level layer is responsible for
the precise control of the wearable robot over time using a cascade proportional–integral–derivative
(PID) control approach. The human-in-the-loop layered architecture is systematically validated with
the control of a 3D printed wearable ankle–foot robot to assist the human foot while walking. The
assistance is applied lifting up the human foot when the toe-off event is detected in the walking cycle,
and the assistance is removed allowing the human foot to move down and contact the ground when
the heel-contact event is detected. Overall, the experiments in offline and real-time modes, undertaken
for the validation process, show the potential of the human-in-the-loop layered architecture to develop
intelligent wearable robots capable of making decisions and responding fast and accurately based on
the interaction with the human body.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Wearable robots have been developed for decades for the
nteraction with humans and assistance in applications such as
anufacturing, telecontrol, telepresence, healthcare and compan-

on robotics [1–3]. In recent years, wearable robotics has shown
apid progress due to the advances in sensor technology and
achine learning, which have allowed the design of lightweight
nd portable robots with multiple sensors and capable of making
ecisions [4–6]. Wearable robots have to be able to interact safely
ith the human body and assist it through accurate decisions
nd precise control of robot actions. These requirements can be
chieved by the development of hierarchical control architectures
hat allow the robot to sense, make decisions, set control param-
ters and observe the results of its actions while interacting with
he human body.
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In this work, a human-in-the-loop layered architecture is pre-
sented to allow a wearable ankle–foot robot to sense, make accu-
rate decisions and reliably control its interaction with the human
foot during walking activities. Layered architectures have shown
their potential for learning and control in areas of robotics such as
mobile and bioinspired robotics [7–10], and offer a promising ap-
proach for robots that need to interact and assist the human body.
The proposed control architecture, composed of high-, mid- and
low-level layers, is capable of processing data at different levels of
abstraction [11,12]. The high-level layer uses a probabilistic for-
mulation for the recognition of the locomotion activity performed
by the human [13,14]. This layer employs angular velocity data
from an inertial measurement unit (IMU) attached on the shank
of the subject. The mid-level layer uses a finite state machine
(FSM) to set the next state and control parameters of the wearable
robot during the walking activity. The low-level layer imple-
ments a cascade proportional–integral–derivative (PID) control
approach for the actual control of the ankle–foot robot attached

to the human leg. These layers are synchronised to ensure the
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reliable control of the wearable ankle–foot robot and safe inter-
action with the human body. The wearable robot, controlled with
the proposed human-in-the-loop layered architecture, has been
designed using 3D printing technology and an arrangement of DC
motors and a capstan wheel to interact with the human foot.

Validation of the human-in-the-loop layered architecture is
ased on the assistance applied by the wearable robot to the
uman foot while the subject is walking. This process requires the
obot to sense and recognise the walking activity and gait events
toe-off and heel contact) along the gait cycle. These processes
mploy angular velocity data from an IMU worn by participants
n their shank while walking. Then, the output is employed by
he wearable ankle–foot robot to assist or lift up the human
oot when the toe-off event is detected, and release or move the
uman foot down when the heel contact event is detected. These
xperiments are systematically performed in offline and real-
ime modes. In offline mode, the recognition of walking activity
nd gait events has shown to be fast and accurate. The real-
ime mode evaluates the capability of the wearable ankle–foot
obot to interact and assist the human foot. This experiment has
hown that the robot can control its actions and use feedback
rom the state of the human body to assist the human foot at
he appropriate time while the human is walking. Overall, all
he experiments show the capability of the human-in-the-loop
ayered architecture for control of wearable robots and safely
nd reliably interact with the human body. Thus, these methods
an be used for the development of intelligent and safe systems
or interaction and assistance to humans in daily activities. This
ork substantially extends, with novel software and hardware
omponents and validation processes, our previous work in [15],
here a simplified ankle–foot device was developed using rigid
etallic materials, one large and heavy DC motor, one PID con-

roller, limited control signals, implemented in an Arduino board,
ulky, heavier and less ergonomic.
The rest of this work is organised as follows: the related

ork on recognition and control methods for wearable robots is
resented in Section 2. The proposed control architecture is pre-
ented in Section 3. The experiments and results are described in
ection 4. The discussion and conclusions are given in Sections 5
nd 6, respectively.

. Related work

In recent years a large variety of wearable robots for interac-
ion and assistance to humans have been developed across the
lobe. These robots have benefited from the advances in sensor
echnology, machine learning methods and soft materials [16,17].
earable robots, which have been mainly applied in healthcare,
anufacturing and telecontrol, need to be capable of controlling

ts actions through accurate and fast sensing and recognition of
uman movements [1,18].
Sensing and recognition of human activities have been inves-

igated with different robotic platforms and sensing modalities.
euristics and six electromyography (EMG) sensors attached on
he muscles of participants were used to recognise level-ground
alking, ramp ascent and descent activities [19]. Information

rom floor reaction force, hip and knee joint angles was analysed
sing a Finite State Machine (FSM) to detect sitting, standing and
evel-ground walking for control of the HAL-3 robot platform [20].
hese methods can recognise activities of daily living (ADLs), but
hey do not account for the uncertainty in sensor measurements,
hich make these methods susceptible to fail for small changes

n the environment [13]. Computational intelligence offers ro-
ust algorithms for perception, decision-making and learning,
hich are essential for the development of accurate recognition
rocesses in robotics.
2

Artificial Neural Networks (ANN) and Fuzzy Logic (FL) have
been used for the recognition of ADLs such as walking, running,
stair ascent and descent with different sensors, e.g., EMG and
IMU, and they have achieved accuracies ranging from 88.8% to
99% [21,22]. Accuracies ranging from 99.67% to 99.87% were ob-
tained for the recognition of four locomotion activities combining
IMU and pressure sensors [23]. Fusion of ANN and FL improved
the identification of multiple ADLs over the use of ANN and FL
alone [24]. Support Vector Machines (SVM) with neuromuscular
and mechanical sensors were able to recognise walking activities
and gait phases with accuracies ranging from 77.3% to 99.0%
[25,26]. Probabilistic methods are capable of handling sensor
noise and uncertainty in decision-making processes [27]. Exam-
ples of these methods include Hidden Markov Models (HMM),
Dynamic Bayesian Networks (DBN), Gaussian Mixture Models
(GMM) and Gaussian Processes (GP), which are becoming popular
for recognition and control in robotics [28,29]. HMMs have been
used for the recognition of gait cycle phases (stance and swing)
and in-shoe foot pressure sensors [30]. DBN and GP methods,
together with wearable sensors, have been able to recognise
multiple human activities performed with upper and lower limbs
with accuracies ranging from 86.0% to 99.87% [14,31]. GMMs have
been used for the recognition of three walking activities with
91.3% to 100% accuracy [32,33].

Wearable robots, together with control methods and multi-
ple sensors, have been used to interact and assist the human
body while performing daily activities. Examples of these robot
include assistance to sit and stand, grasping and walking on
flat surfaces, ramps and stairs. Recognition and assistant to sit,
stand and sit-to-stand transition have been investigated with a
knee exoskeleton using SVM classifiers, a torque controller and
IMUs [34]. Hip assistance has been studied using soft wearable
robots composed of textiles, foot-switches, encoders and torque
control [35]. A wearable robot and control strategies have been
investigated for assistance to posture stability using angle in-
formation from the joints and the Wii platform to monitor the
Centre of Mass of the wearer [16]. Control of ankle–foot robots
has been investigated to assist the human foot based on the
state of the body posture during the gait cycle. For instance,
control of an ankle–foot robot, built with pneumatic actuators
and IMUs, was implemented using the Central Pattern Genera-
tor (CPG) approach [36]. Proportional–integral–derivative (PID)
controllers were used to control an ankle–foot robot built with
soft actuators and encoders [37,38]. A combination of PID meth-
ods with encoders and foot switches have been employed for
the detection and control of lower limb robots built using soft
materials, flat pneumatic actuators and Boden cables [39]. This
approach has also been used in the development of upper limb
robots and wearable hip robots [40–42]. We employed IMU data,
a probabilistic classifier and one PID controller to develop a
preliminary and simplified ankle–foot robot in [15]. This device
was designed with limited control signals, one large and heavy
motor, rigid metallic materials and constrained real-time imple-
mentation making it bulky, less ergonomic and limited compared
to our current design presented in this paper. All these robots
have shown rapid progress using multiple sensors, lightweight
materials and advanced methods for recognition and control.
Interestingly, most wearable robots still rely on the use of foot
switches, potentiometers and heuristic methods for recognition
and control processes. Additionally, these robots lack the control
architecture for reliable execution of the processes performed
at different levels of abstraction (high-, mid- and low-level pro-
cesses), which are essential in robotic systems for safe interaction
with the human body. Thus, the lack of these capabilities makes
these robots susceptible to failure to even slight changes in the
environment.
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Fig. 1. Human-in-the-loop layered architecture for control of a wearable ankle–foot robot.
Fig. 2. Data collection using an IMU from three walking activities. (A)
evel-ground walking, (B) ramp ascent and (C) ramp descent.

In this research work, a human-in-the-loop layered architec-
ure is proposed for the control of a wearable ankle–foot robot
hile interacting with the human body. This layered architec-
ure allows the wearable robot to sense, make decisions, set the
ontrol parameters and control its actions using a set of high-,
id-, and low-level layers precisely synchronised. This approach

s implemented in a wearable ankle–foot robot developed using
D printing technology, soft components and miniature actuators,
o assist the human foot during walking activities. The wearable
obot provides reliable assistance to the human foot (lift the foot
p) when the toe-off event is detected during the gait cycle.
hen the heel contact event is detected, no assistance is required

nd the robot allows the human foot to move freely without
nterfering with the natural foot movement. The sensor modules,
omputational and control methods, and the wearable ankle–foot
obot are described in Section 3.

. Methods

The proposed human-in-the-loop layered architecture for con-
rol of a wearable ankle–foot robot is composed of high-, mid-
nd low-level layers. These layers process data from an IMU
odule to detect walking and gait events, set the control signals
nd control the ankle–foot robot to interact with the foot of the
ubject while walking (Fig. 1).

.1. Data collection and processing

Twelve healthy male subjects were recruited from the School
f Mechanical Engineering at the University of Leeds, to collect
ata for training and testing the methods presented in this work.
he subjects were free from gait abnormalities; their ages ranged
etween 24 and 34 years old, heights between 1.74m and 1.79m,
nd weights between 77.6 kg and 85kg.
3

Angular velocity signals were collected from a 9-DoF IMU
attached to the lower leg of participants (Fig. 2). Sensor signals
were sent wirelessly to a central computer. Piezoresistive insole
sensors were used to detect the beginning of the gait cycle as
part of the data collection. Participants walked at their self-
selected speed with ten repetitions of three walking activities;
level-ground walking, ramp ascent and descent. For level-ground
walking, a flat surface was employed, while a metallic ramp with
an 8.5 deg slope was used for ramp ascent/descent as shown in
Fig. 2. Angular velocity signals were collected at a sampling rate
of 100Hz, and stored for training and testing the methods for
recognition of walking activity and gait periods to control the
assistive robot as described in Section 3.3.

The measurements from the three walking activities are shown
in Fig. 3(a). Mean angular velocities and standard deviations are
shown by solid and dashed lines, respectively. Angular velocities
from each gait cycle were used to construct the histograms
required for the recognition method. In this work, the gait cycle
was divided into stance phase (initial contact, loading response,
mid stance, terminal stance, pre-swing) and swing phase (initial
swing, mid swing and terminal swing). Fig. 3(b) shows an exam-
ple of the constructed histograms for the recognition of walking
and gait periods.

3.2. Wearable ankle–foot robot

A wearable ankle–foot robot is built to validate the human-
in-the-loop layered architecture. The Computer-Aided Drawing
(CAD) model and real wearable robot are shown in Fig. 4. The
device has been designed and developed to fit the lower leg using
3D printing technology (Object1000 from Stratasys Inc). The er-
gonomic design and construction makes this device lightweight,
comfortable and durable.

Two Maxon ECX brushless DC (BLDC) motors are mounted on
the wearable device and combined with a gearbox with a ratio of
25:1. The nominal torque output from each gearbox is 76mNm,
applied at speeds up to 800 rpm to lift up the human foot while
walking. The gearbox shafts, connected to an arrangement of
bevel gears, transfer the motion to a horizontal rigid shaft. The
shaft performs as a capstan connected to a strap (tendon), which
is connected to the wearer’s shoe by a buckle. The rotation of the
capstan winds in the strap to pull the user’s foot upwards during
the assistance mode. The capstan unwinds the strap allowing the
robot to move down the wearer’s foot during the release mode.
For synchronised communication and control of the BLDC motors,
two motor drivers ESCON 50/54 and an FPGA-based myRIO board
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Fig. 4. 3D printed wearable ankle–foot robot composed of miniature DC motors,
capstan shaft and bevel gears. (A) CAD model of the assistive device and (B) real
wearable robot attached on the human leg.

are employed. The motor drivers perform proportional–integral
(PI) current control, and provide feedback on the state of the
motor including current (and therefore, torque) and speed. The
myRIO board is employed for synchronised and real-time control
of both motors via a PID speed control algorithm as explained
in Section 3.5. The lightweight and ergonomic structure, ma-
terials and actuation approach, and real-time implementation
and control using an FPGA board for this wearable device are
improvements over the preliminary design of our previous work
in [15].

3.3. High-level recognition of walking and gait periods

A Bayesian approach together with a competing accumulators
approach is developed for the high-level layer to recognise the
walking activity and gait periods. The approach updates the pos-
terior probability from the product of the prior and likelihood.
Sensor measurements and perceptual classes are represented by
z and cn ∈ C , respectively. Each perceptual class cn is defined
by a (uk, vl) pair, where uk with k = 1, 2, . . . , K and vl with

= 1, 2, . . . , L are the walking activities and gait periods. The
ayesian approach is as follows:

(cn|zt ) =
P(zt |cn)P(cn|zt−1) (1)
P(zt |zt−1)
4

where P(cn|zt ) and P(zt |cn) are the posterior probability and like-
lihood at time t . The prior probability at t − 1 is P(cn|zt−1). The
ariable uk with K = 3 are the three walking activities, while vl
ith L = 8 are the eight gait periods used for recognition. The
ait periods can be used to determine when the human is on
he stance and swing phases. The prior probability is uniformly
istributed at time t = 0, P(cn) = P(cn|z0) =

1
N , where z0 are

sensor measurements and N is the number of (uk, vl) pairs. For
time t > 0, the prior probability is updated by the posterior
probability estimated at t − 1.

Angular velocities are obtained at each time step from the
IMU, Ssensors = 1, attached to the lower leg of participants.
Histograms from IMU data, (Fig. 3B), are used for the construction
of the measurement model for the Bayesian method. This model
is used to estimate the likelihood of a perceptual class, cn, given
an observation zt , as follows:

Ps(b|cn) =
hs,n(b)∑Nbins
b=1 h(b)

(2)

where hs,n(b) is the sample count in bin b for sensor s over
all training data in class cn. The model bins angular velocity
signals into Nbins = 100 intervals. The values are normalised
to have probabilities in [0, 1]. Eq. (2) estimates the likelihood of
observation zt over all sensors, as follows:

log P(zt |cn) =

Ssensors∑
s=1

log Ps(ws|cn)
Ssensors

(3)

where ws is the sample from sensor s and P(zt |cn) is the like-
lihood of zt , given a class cn. Normalised values are ensured
with the marginal probabilities conditioned on previous sensor
observations as follows:

P(zt |zt−1) =

N∑
n=1

P(zt |cn)P(cn|zt−1) (4)

The posteriors, (uk, vl), are the joint distributions of the walk-
ng activities, uk, and gait periods, vl. The beliefs over individual
alking activity and gait period classes are given by the marginal
osteriors, as follows:

(uk|zt ) =

L∑
l=1

P(uk, vl|zt ), P(vl|zt ) =

K∑
k=1

P(uk, vl|zt ) (5)

The Bayesian process implements a competing accumulator
approach to make decisions. The Bayesian update process stops
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Fig. 5. Human-in-the-loop layered architecture for control of a wearable ankle–foot robot. The high-level layer uses a Bayesian approach together with a competing
accumulator method for the recognition of walking. The mid-level layer uses an FSM to prepare the control parameters of the wearable robot. The low-level layer
is responsible for delivering the actual control of the wearable robot using a cascade PID control approach.
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once the belief accumulated by one of the classes exceeds the
belief threshold β , which can be set to a value in the range of 0.0
and 0.99. Then, a decision is made with the maximum a posteriori
(MAP), to estimate the walking activity and gait period classes, as
follows:
if any P(uk, vl|zt ) > β then

ûk = argmax
uk

P(uk|zt ), v̂l = argmax
vl

P(vl|zt ) (6)

here v̂k and v̂l are the estimated walking activity and gait period
air. The parameter β is iteratively updated with values from
.0 to 0.99 and increments of 0.01 to analyse their effect on the
djustment of the recognition accuracy and speed at same time.
he Bayesian process is implemented in the high-level layer of
he hierarchical architecture as shown in Fig. 5.

.4. Mid-level layer control for synchronisation

The walking activity and gait period estimated from the high-
evel layer are used by the mid-level layer to determine whether
he wearable robot needs to be in ‘assistive’, ‘hold’ or ‘release’
ode (Fig. 5). The transition between the ‘assistive’, ‘hold’ and

release’ modes of the wearable robot is controlled by the ‘toe-
ff’, ‘hold’ and ‘heel contact’ states in a FSM, respectively. In each
tate, the control parameters are prepared for controlling the
nkle–foot wearable robot.
The output from the mid-level layer, fed into the low-level

ayer, takes one of three values: −1, 0 and 1, which correspond
o ‘heel contact’, ‘hold’ and ‘toe-off’ states, respectively. The de-
ired motors’ speed, which is employed by the low-level layer,
s calculated by multiplying the mid-level output by a fixed value
btained as explained in Section 3.5. The motor speed can be zero,
ositive or negative when the mid-level layer outputs 0, 1 or −1,
espectively. These signals and the low-level layer, described in
ection 3.5, control the motor actions of the wearable robot to
ssist (lift up) the human foot at the appropriate time. The mid-
evel layer also sends the target angular velocity to control the
otors of the wearable device. All these signals are required to
nsure that the wearable ankle–foot robot reliably interacts and
ssists the human foot.
When the toe-off event is recognised by the high-level layer,

he FSM enters the ‘toe-off’ state, and sends a positive speed
ommand to the low-level controller. This causes the human foot
o be lifted up (‘assistive’ mode) by the wearable robot until the
arget position is reached. Then, the FSM enters the ‘hold’ state,

nd the motors’ speed becomes zero, holding the human foot u

5

‘hold’ mode) at the target position. Once the high-level layer
redicts the heel-contact event, the mid-layer enters the ‘heel
ontact’ state, and sends a negative speed signal to the low-level
ayer. This causes a downward movement of the human foot
‘release’ mode) until the target loose position is reached. Then,
he FSM enters the ‘hold’ state and the whole process is repeated
ontinuously during the walking cycle.
The state machine does not simply follow a predefined pro-

edure, but makes decisions based on the recognition from the
igh-level layer and the current state of the wearable robot.
his means that if the current robot state is ‘release’ mode (the
oot is allowed to move downwards), and the high-level layer
etects the toe-off event before the loose position is reached,
hen the mid-level layer immediately enters the ‘toe-off’ state to
ssist the human foot. Similarly, if the mid-level layer is in the
assistive’ state (lifting the foot up) and the heel contact event
s detected before reaching the target position, then mid-level
ayer immediately enters the ‘heel contact’ state to release the
uman foot. This approach allows compliance of the mid-level
ayer according to the signals from both sources, the high-level
ayer and the state of the wearable robot.

.5. Low-level layer for robot control

The low-level controller, responsible for the control of the
earable ankle–foot robot (see Section 3.2 and Fig. 4), uses a
ascade PID controller (Fig. 5). This approach tracks the motors’
arget speed signal sent by the mid-level layer. The motors’ target
elocity value, θ̇d, required for the ‘assistive’ and ‘release’ modes,
as determined by iterative tuning analysis of the control system
ntil a stable response was achieved. This cascade PID approach,
sed to control both the speed and current of the array of mini
LDC motors, is a novel and improved component over the single
ID position control implemented in our previous preliminary
ork in [15].
The velocity error, eθ̇ , is computed by subtracting the actual

elocity, θ̇ , from the desired velocity θ̇d. The velocity error is
ed into the outer loop (Fig. 5), which is a PID speed controller
hat creates the desired current value, id, for the left and right
otors of the wearable ankle–foot device. The id value is fed

nto the two inner loops, composed of PI current controllers,
ach for one of the motors. Sending the same target current
ommand simultaneously to both motors, ensures that they con-
ribute equally to the actuation effort during assistance to the
uman foot. The equal contribution of both motors avoids the

nbalanced actuation and overheating that can be presented if
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one of the motors applies a larger effort than the other one.
Both motors provide current feedback, il and ir , which together
with the current errors, eil and eir , are fed into the PI current
controllers. The two PI current controllers are independent, while
a single PID speed controller is used for both motors. This cascade
control approach is suitable because the shafts of the motors are
connected to each other, and therefore, they rotate at the same
angular velocity. The equations describing the low-level control
algorithm are as follows:

eθ̇ = θ̇d − θ̇ (7)

id = Kp eθ̇ + Ki

(∫ t

0
eθ̇ dt

)
+ Kd

deθ̇

dt
(8)

The velocity error is defined by eθ̇ , while Kp, Ki and Kd are the
coefficients of the PID controller. The PI and PID coefficients were
tuned prior to using the wearable robot. The PI coefficients were
tuned with an automatic algorithm provided by the motor control
manufacturer. The PID controller was tuned using a system-
atic iterative tuning process instead of classical tuning methods
like Ziegler/Nichols, which require periodic input commands that
could be harmful for the subject while interacting with the wear-
able ankle–foot robot. The integral and derivative coefficients
were initially set to zero, and the proportional coefficient (Eq. (8))
was determined with the device operating without any load.
Next, the proportional coefficient was gradually increased until
signs of instability were observed. The largest stable value was
chosen for the proportional gain. A similar iterative approach
was used for the integral gain with several iterations performed
slightly increasing the derivative gain to find the largest stable
value. Then, Kp and Ki were increased as the existence of the
action from the Kd coefficient allows for larger proportional and
integral gains without causing instability. This process provided
a set of coefficients for fast and stable response.

The high-, mid- and low-level layers have been implemented
into a hierarchical architecture (Figs. 1 and 5) in order to synchro-
nise all the processes and ensure a reliable and accurate control
of the wearable robot. This aspect is important given that the
robot physically interacts and assist the human body. This layered
architecture is described in Section 3.6.

3.6. Hierarchical layered architecture for robot control

All the methods used by the high-, mid- and low-level layers
are implemented in the layered architecture (Figs. 1 and 5). This
hierarchical layered architecture allows the synchronisation and
communication of the processing modules required for the robust
control of the wearable ankle–foot robot. The sensor data from
the IMU module is received and processed by the high-level layer.
This layer estimates the walking activity and gait period with
the Bayesian perception approach. These results are sent to the
mid-level layer, which using the FSM, sets the next robot state
and target motor speed signals to the low-level controller. Then,
the target speed is tracked by the low-level layer, using PID and
PI controllers in a cascade control configuration, for the delivery
of the actual control of the wearable ankle–foot robot while the
human walks.

The wearable ankle–foot robot moves to the ‘assistive’ mode
(lift up the human foot) when the toe-off event is detected by
the high-level layer while the human is walking. The assistance
is deactivated and the robot moves to the ‘release’ mode (the
foot moves downwards) when the recognition method detects
the heel contact event. The low-level controller also uses motor
position feedback while the human walks to avoid pulling the
user’s foot too far upward, and thus, ensuring a safe performance
at all times of the wearable ankle–foot robot.
6

4. Results

This section describes the three experiments performed and
the results obtained with the human-in-the-loop layered archi-
tecture and wearable ankle–foot robot. First, the recognition of
walking, gait periods and gait events was performed using data
from an IMU. Second, the control of the robot was tested with a
subject wearing the ankle–foot robot, using sensor data from an
IMU attached on the leg of another subject performing a walking
activity. Third, the control of the wearable robot was tested with a
subject wearing both the ankle–foot robot and IMU sensor while
performing a walking activity.

4.1. Recognition of walking activity

First, the accuracy for recognition of walking with the proba-
bilistic approach is evaluated. For the training and testing phases
of the recognition method, IMU data was collected from partici-
pants while walking (see Figs. 2 and 3).

The decision threshold β , with iterative increment steps of
0.01, was employed to control the Bayesian updating process and
adjust at the same time both the recognition accuracy and speed
of walking activities, as shown in Fig. 6. The plots show the mean
results obtained by performing 10,000 iterations or decisions for
each increment value in the decision threshold. The recognition
of walking activity shows mean errors of 21% (79% accuracy) and
0.13% (99.87% accuracy) for decision thresholds β = 0.0 and
β = 0.99, respectively (Fig. 6A). These recognition accuracies
were achieved with a mean of 1 and 24 sensor samples for β =

.0 and β = 0.99 (Fig. 6B). Thus, the high-level layer needed a
mean of 24 data samples to estimate the walking activity with
99.87% accuracy. This analysis is important given that robots need
to make accurate decisions but also to respond in the appropriate
time.

Recognition of stance and swing phases was analysed to esti-
mate the state of the human body while walking. This analysis
used data from the eight gait periods of the gait cycle, where
stance phase is composed of gait periods 1 to 5 (initial contact,
loading response, mid stance, terminal stance, pre-swing) and
swing phase of gait periods 6 to 8 (initial swing, mid swing,
terminal swing), respectively (Fig. 3(a)). The recognition achieved
mean errors of 7% (93% accuracy) and 0.8% (99.20% accuracy) for
β = 0.0 and β = 0.99, respectively (Fig. 6A). A mean of 13
data samples were needed for recognition of gait periods with
accuracy of 99.20% (Fig. 6B).

The confusion matrices in Fig. 6C,D show the recognition of
each walking activity, gait period and gait phase. Level ground-
walking, ramp ascent and descent were recognised with 100%,
100% and 99.60% accuracy, respectively. Gait periods 1 to 8
achieved 99.1%, 100%, 99.4%, 100%, 99.9%, 98.3%, 98.9% and 98.3%
accuracy, respectively. Stance and swing phases were recognised
with 99.68% (mean of periods 1 to 5) and 98.5% (mean of periods
6 to 8) accuracy. Gait phase recognition was also evaluated in
real-time with subjects walking on a treadmill and a motion
capture system. The subjects walked at their comfortable speeds
for approximately 1 min, while wearing an IMU on their shanks.
The estimation of stance and swing phases was validated with
a 12 camera VICON motion capture system (Vicon MX Giganet,
Oxford Metrics Ltd., UK) using reflective markers on the lower
limb segments [49]. The mean recognition accuracies from both,
the high-level recognition and the motion capture system, were
95.78% and 95.71% for the stance and swing phase, respectively.
Other works have also shown accurate recognition of locomotion
activities using a variety of wearable sensors including EMGs,
IMUs, goniometers and foot switches, and computational meth-
ods such as DBN, LSTM, SVM, LDA with recognition accuracy
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Fig. 6. Recognition of walking activities and gait periods. (A) Mean recognition error of 0.13% and 0.8% for walking activity and gait period, respectively. (B) Mean
ecision time of 24 and 13 data samples for the highest recognition accuracy of walking activity and gait period, respectively, with β = 0.99. (C) Recognition accuracy
f individual walking activities: (1) level-ground walking, (2) ramp ascent, (3) ramp descent. (D) Recognition accuracy of gait periods with (1) initial contact, (2)
oading response, (3) mid stance, (4) terminal stance, (5) pre-swing, (6) initial swing, (7) mid swing and (8) terminal swing, and stance and swing phases.
Table 1
Comparison of state-of-the-art computational methods for recognition of walking activities and recognition of gait periods.
Method Activity # Sensors Sensor type Activity recognition Gait period recognition

Accuracy (%) Decision time
(ms)

Accuracy (%) Decision time
(ms)

SVM [25] LGW, RA RD,
Stairs

9 EMG, load cell 99 150 97 –

DBN [31] LGW, RA LD,
Stairs

13 IMU, load cell 98 300 95.25 –

LDA + DBN [43] LGW, RA RD,
Stairs

13 IMU, load cell
goniometer

99.5 300 – –

GMM [32] LGW Standing
Sitting

4 IMU, load cells
goniometers

100 100 – –

Ensemble [5] LGW, RA RD,
Stairs

9 IMU 97.60 – – –

Bayesian LDA [44] LGW, RA RD, SD,
SA

4 sEMG, position
force

96.10 – 99.20 –

ANN [45] LGW 5 IMU, pressure
foot insoles

– – 95.24 –

kNN [46] LGW 5 pressure foot
insoles

– – 81.43 –

LSTM [47] LGW, RA, RD SA,
SD, Stop

5 IMU 96.10 – – –

CNN + LSTM [48] LGW, RA, RD SA,
Sitting

3 IMU 96.37 – – –

Our approach LGW, RA RD 1 IMU 99.87 240 99.20 130
ranging from 93% to 100% and decision time from 150 ms to
300 ms, as shown in Table 1. However, only a few works, includ-
ing our proposed method, have investigated approaches for the
recognition of both walking activity and gait periods achieving
walking accuracies between 96.10% and 99.87% and gait period
accuracies between 81.43% and 99.20%.

4.2. Response of the wearable robot with human-in-the-loop

The control and response of the wearable robot was validated
ith a Human-in-the-Loop approach implemented in two scenar-

os. In the first scenario, a subject was wearing an IMU module
n his lower limb while walking at his self-selected speed to
ead sensor data and perform the walking recognition process.
second subject was wearing the ankle–foot robot while sitting
n a stool, with his foot relaxed, to get his foot lifted up or
ssisted by the wearable robot (Fig. 7A). This experiment allowed
he analysis of the capability of the human-in-the-loop layered
rchitecture to control the wearable robot in a static mode (no
alking). The layered architecture recognises the walking activity
high-level layer) performed by the subject wearing the IMU
odule. In this experiment, the decision threshold of β = 0.99
7

was selected to achieve high recognition accuracy according to
the results obtained from the analysis in Section 4.1. The output
signal is used to set the control parameters and next state (mid-
level layer) of the robot. The information is used by the low-level
layer to send the control signals in order to lift up (assist) or
move downwards (release) the foot of the subject wearing the
ankle–foot robot. The system response in Fig. 7B shows the signal
sent by the mid-level layer, normalised motor angle feedback
and output assistive power, represented by blue, orange and
green colours, respectively. These signals were obtained while the
subject wearing the IMU module was walking. The signals from
the mid-level layer are −1, 0 and 1, which represent the ‘release’,
‘hold’ and ‘assistive’ states of the wearable robot, respectively.
These signals prepare the robot to lift up (assist) and move
downwards (release) the human foot when the toe-off and heel
contact events are recognised, respectively. The robot keeps the
foot up at certain position (‘hold’) before the heel contact event
is detected and move to the release state.

The command signal shows the recognition of heel contact
and toe-off from the subject wearing the IMU module. The output
power was calculated by multiplying the motors’ current by their
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Fig. 7. Validation of the human-in-the-loop layered architecture for control of a wearable ankle–foot robot. Scenario 1, a subject wears the ankle–foot robot and
another subject wears the IMU module while walking. (A) The subject on the left wears the IMU while walking. The subject on the right wears the ankle–foot
robot, while sitting on a chair for real-time assistance. (B) Output signals from the experiment with the wearable robot. (top) Command sent to control the wearable
robot. The dotted- and dashed-lines show the release and assistance applied to the human foot when the heel contact and toe-off events are detected. (middle)
Normalised motor angle feedback from the wearable robot. (bottom) Output power from the wearable robot for assistance to the human foot. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 8. Validation of the human-in-the-loop layered architecture for control of a wearable ankle–foot robot. Scenario 2, a subject wears both the ankle–foot robot and
he IMU module while walking. (A) The participants walked at their self-selected speed while wearing the robot and sensor. (B) Output signals from the experiment
ith the wearable robot. (top) Command sent to control the wearable robot. The dotted- and dashed-lines show the release and assistance applied to the human

oot when the heel contact and toe-off events are detected, respectively, by the high-level layer. (middle) Normalised motor angle feedback from the wearable robot.
bottom) Output power from the wearable robot for assistance to the human foot.
orque constant, and multiplying the result by their angular ve-
ocity. An efficiency factor of 85% for the gearing mechanism was
sed in the calculation (based on the manufacturer’s datasheet).
he output power increases when the foot is lifted up or as-
isted by wearable ankle–foot robot (Fig. 7B). The assistance is
epresented by the large output power peak that follows the
assist’ low-level command and normalised motor angle value of
corresponding to the user’s foot in the target upper position. A

ow output power peak follows the ‘release’ low-level command
epresenting the wearable robot moving the user’s foot to the
arget loose position. This low output power is required to break
he inertia and friction of the motors.

In the second scenario for the evaluation of the human-in-
he-loop layered architecture, a subject was asked to attach the
earable sensor on his lower limb and put on the wearable
nkle–foot robot (Fig. 8A). This experiment allowed the analysis
f the capability of the complete system to lift up (assist) and
ove downwards (release) the human foot when the toe-off and
eel contact events are detected while walking.
8

The subject wore the ankle–foot robot on one leg and the
IMU on the contralateral leg. The subject was asked to walk at
his self-selected speed, relax his muscles and avoid lifting up
his foot during the toe-off or swing phase of the gait cycle. This
experiment permitted the observation of the robot response in
terms of the output power and position feedback while lifting up
(assist) and moving downwards (release) the human foot. Fig. 8B
shows the command signal, normalised motor angle feedback and
output power of the wearable robot.

When the tow-off event was detected, the wearable robot
entered the ‘assistive’ mode lifting up the human foot to a target
upper position. The assistance power used by the robot and the
normalised motor angle feedback increased while lifting up the
foot. Once the foot is at the target upper position, there was a
short period of time where the foot was steady (‘hold’ mode)
before moving the foot downwards to the target loose position.
When the heel contact was detected, the robot entered to the
‘release’ mode, allowing the user’s foot to move downwards to a
loose position. Similar to the previous experiment, in the ‘release’
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mode a low output power was required to overcome the inertia
and friction of the motors and gears. This power was lower than
the one needed for lifting up the foot. The normalised motor angle
also decreased while moving downwards the human foot to allow
it to contact the floor.

5. Discussion

In this research, a human-in-the-loop layered architecture for
wearable ankle–foot robot control was presented as a proof-of-
oncept for interaction and assistance to the human body. The
ontrol architecture was composed of high-, mid- and low-level
ayers. Layered architectures allow the development of devices
apable of learning and safely interacting with the human body
nd the environment [7,50].
The high-level layer implemented a Bayesian formulation, to-

ether with a competing accumulator approach, to make deci-
ions and estimate the walking activity, gait period and gait phase
erformed by the human. This processing layer employed data
rom an IMU sensor attached on the shank of the subject. This
ecognition process showed to be capable of making accurate
nd fast decisions by adjusting a decision threshold manually.
igh accurate decisions required a large number of samples com-
ared to low accurate decisions, which is expected given that
he systems needs more sensor data or evidence to reduce the
ncertainty of its decision. This trade-off between speed and
ccuracy, commonly observed in decision making systems, can
e set according to the application requirements by selecting
he decision threshold value to be employed by the competing
ccumulative approach. In this work, the decision threshold was
et manually, however, we plan to investigate approaches to
ake this parameter capable of adapting autonomously over time

o achieve specific requirements, as part of our future work. The
roposed recognition method is capable of recognising walking
ctivity, gait periods and phases, which is an enhanced feature
ompared to other state-of-the-art methods that recognise only
alking activity [31,48]. Our method was able to achieve high
ecognition accuracy using 1 wearable sensor compared to other
dvanced methods that required between 5 and 13 sensors to
chieve similar accuracy [5,44,47].
The mid-level layer implemented an FSM to set the next

obot control mode (‘hold’, ‘assistive’, ‘release’) triggered by the
etection signal from the high-level layer. This process prepared
he parameters to control the wearable robot. These control pa-
ameters were employed by the lower-level layer, which was
mplemented with a cascade PID control approach for the precise
ontrol of the wearable ankle–foot robot.
The human-in-the-loop layered architecture was tested using

wearable ankle–foot, which was developed to lift up and move
ownwards the human foot when the toe-off and heel con-
act events are detected during the walking cycle. The wearable
nkle–foot robot was designed and fabricated using lightweight
nd soft materials with 3D printing technology. The robot actu-
tion system used an arrangement of miniature motors, bevel
ears and capstan shaft, which contrasts with previous systems
uilt with large and heavy motors, and pneumatic actuators [51,
2]. A strap, attachable to any foot size allowed the robot to lift
p (assist) and move downwards (release) the human foot. The
earable ankle–foot robot do not include heavy components and
all screws as part of the actuation process, which are usually in-
luded in wearable robots that make them uncomfortable for the
ser [53]. The real-time experiments, systematically performed to
est the proposed layered architecture, showed that the wearable
nkle–foot robot is capable of making accurate decisions, set the
ontrol signals for the next robot state and control the robot
ctions for the interaction and assistance to the human foot while
9

walking. This proof-of-concept wearable ankle–foot robot has
the potential to be used in different applications, for instance,
to assist people during walking to reduce energy consumption,
assist patients with foot-drop impairments, rehabilitation and
telerobotics. The size of the wearable device might require to be
updated for the specific person and application but the overall
design and control approach remain the same. We are particularly
interested in recruiting patients to evaluate the wearable ankle–
foot system for assistance to foot-drop impairment, which is part
of our future work plan.

Overall, this work offers an alternative methods for the reliable
control of wearable robots that interact with the human body.
This approach offers robust computational methods for accurate
and fast recognition of walking and gait events. The wearable
robot requires one IMU only, which optimises energy and weight.
The control and recognition methods are implemented in an
FPGA for fast data processing. The following limitations have been
identified in the current version of the proposed human-in-the-
loop layered architecture: adaptive decision-making to response
to changing walking speeds, autonomous selection of decision
threshold for the decision-making process, adaptive robot com-
pliance through admittance control methods. These are the iden-
tified challenges and limitations that we plan to investigate and
address in the future work.

6. Conclusion

This work presented a human-in-the-loop layered architec-
ture for control of a wearable ankle–foot robot. This architecture
composed of high-, mid- and low-level layers, interconnected
and precisely synchronised, allowed the wearable robot to read
data from sensors attached on the human body, make accurate
decisions, set control parameters and control the robot actions to
reliably interact with and assist the human foot while walking.
The wearable robot employed to validate the layered architecture
was developed using a 3D printing technology and a novel actu-
ation system. The accuracy and precise control of the wearable
robot, performed by the layered architecture, ensure a safe and
reliable robot performance while interaction with the human
body. For validation, experiments in simulation and real-time
environments were systematically performed through the anal-
ysis of recognition accuracy for walking events and the control
and response of the wearable robot while assisting the human
foot. Overall, the experiments demonstrated that the proposed
human-in-the-loop layered architecture is suitable for the devel-
opment of smart wearable robots capable of safely interacting and
assisting the human body.
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