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Abstract 

In this study, a new double horizon peridynamics formulation was introduced by utilising two horizons instead 

of one as in traditional peridynamics. The new approach allows utilisation of large horizon sizes by controlling 

the size of the inner horizon size. To demonstrate the capability of the current approach, four different 

numerical cases were examined by considering static and dynamic conditions, different boundary and initial 

conditions, and different outer and inner horizon size values. For both static and dynamic cases, it was 

observed that as the inner horizon decreases, peridynamic solutions converge to classical continuum 

mechanics solutions even by using a larger horizon size value. Therefore, the proposed approach can serve as 

an alternative approach to improve computational efficiency of peridynamic simulations by obtaining accurate 

results with larger horizon sizes.  
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1 Introduction 

Although classical continuum mechanics has been widely used for the analysis of materials and structures 

under external loading conditions, equations of classical continuum mechanics are not suitable to represent 

situations including discontinuities such as cracks since spatial derivatives in classical continuum mechanics 

equations are not defined along the crack boundaries. Silling [1] introduced peridynamics with the intention 

to overcome limitations of classical continuum mechanics formulation. By using integro-differential equations 

without spatial derivatives, peridynamics has become a powerful approach for predicting of crack evolution 

in materials and structures [2]. Rather than using mesh-based or semi-analytical approaches [3], peridynamics 

formulation is usually numerically implemented by utilising meshless approach. There has been significant 

progress on peridynamics especially during recent years. Amongst numerous studies in the field, Vazic et. al. 

[4] demonstrated the superior capability of peridynamics in fracture analysis by investigating the interacting

of macro and micro cracks. De Meo et. al. [5] predicted pit-to-crack transition process within peridynamic

framework. Imachi et. al. [6] performed dynamic crack arrest analysis by using peridynamics. Ozdemir et. al.

[7] used peridynamics to investigate functionally graded materials and their dynamic fracture behaviour. Liu

et. al. [8] analysed fracture of zigzag graphene sheets by creating an ordinary state-based peridynamic model.

Huang et. al. [9] extended the capability of peridynamics for visco-hyperelastic materials.  Diehl et. al. [10]

presented a review of benchmark experiments for peridynamic models. Zhou and Yao [11] proposed a new

concept of smoothed bond-based peridynamics. Prakash and Stewart [12] demonstrated how to use a multi-

threaded method to assemble a sparse stiffness matrix for quasi-static problems of peridynamics. Naumenko

et. al. [13] compared experimental and peridynamic results for damage patterns in float glass plates. Yan et.

al. [14] used peridynamics to model soil desiccation. Hidayat et. al. [15] provided a review about relationship

between meshfree methods and peridynamics. Guski et. al. [16] utilised peridynamics to investigate plasma

sprayed coatings for SOFC sealing applications. Kefal  et. al. [17] demonstrated how to use peridynamics for

topology optimisation of cracked structures. There have been also many studies presenting peridynamic

formulations for beams and plates to model isotropic materials [18-22], functionally graded materials [23-28]

and composite materials [29,30]. Peridynamics has also been extended to model other physical fields. Mikata

[31] presented peridynamic formulations for fluid mechanics and acoustics. Diyaroglu et. al. [32] introduced

peridynamic wetness approach to be utilised for the analysis of moisture concentration in electronic packages.
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Martowicz et. al. [33] created a thermomechanical model to investigate phase transformation in shape memory 

alloys.  

An important aspect of peridynamics is its length scale parameter, horizon, which doesn’t exist in classical 

continuum mechanics formulation. Dorduncu and Madenci [34] presented finite element implementation of 

ordinary state-based peridynamics having variable horizon. Madenci et. al. [35] developed weak form of bond-

associated non-ordinary state-based peridynamics formulation for uniform or non-uniform discretization 

without experiencing zero-energy mode problem. A comprehensive investigation on how to choose horizon 

size in bond-based peridynamics and state-based peridynamics is given in Bobaru and Hu [36] and Wang et. 

al. [37], respectively. In this study, a new peridynamic formulation, double horizon peridynamics, is proposed 

which utilises two horizons for each material point instead of one horizon as in traditional peridynamics 

formulation. Since simulations based traditional peridynamics can take significant computational time for 

some cases if a large horizon size and/or refined discretization are utilized, this new formulation can allow 

improvement of numerical accuracy in peridynamic simulations with less computational time. This 

formulation is different than “dual horizon peridynamics” formulation which uses two different horizons for 

two interacting material points [38-41]. The details of the “double horizon peridynamics” formulation is given 

in Section 2. How to treat boundary conditions is explained in Section 3. Analytical solutions for various 

different boundary conditions under static or dynamic conditions are given in Sections 4 and 5. Some 

numerical results are presented in Section 6 and conclusions of the study are given Section 7.  

2 Double horizon peridynamic formulation 

2.1 Traditional Peridynamics 

The equation of motion (EoM) for a 1-Dimensional (1D) rod in Classical Continuum Mechanics (CCM) can 

be written as 

( ) ( )
2 2

2 2
, ,

u u
x t E b x t

t x

 

= +
 

(1) 

PD EoM for 1D bar can be obtained by converting the local term in Eq. (1) into nonlocal form by utilizing 

Taylor expansion. Performing Taylor expansion with respect to displacement function 𝑢 about a particular 

material point 𝑥 and absorbing higher order terms within 𝑂(∗) function yields 

( ) ( ) ( )
2 3

2 3 4

2 3

1 1

2 3!

u u u
u x u x O

x x x
    

  
+ − = + + +
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(2) 

Considering 𝑥 as fixed, multiplying each term of Eq. (2) by the influence function 1/|𝜉| and integrating over 

the PD horizon results in 
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which gives 

( ) ( )
( )

2
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2 u x u xu
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
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
 

 −

+ −
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Substituting Eq. (4) into Eq. (1) yields 

( )
( ) ( )

( ) ( )
2

4

2 2

2
, ,

u x u xu E
x t d b x t O

t






  
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+ −
= + +
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It reduces to the classic PD EoM if we eliminate the residual term in the above equation such that 
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2.2 Double Horizon Peridynamics 

One can observe that the classical PD EoM, Eq. (6) identically converges to that of CCM, Eq. (1) if and only 

if when the horizon size, 𝛿, tends to zero. However, horizon as an important parameter which gives PD a 

nonlocal character and should take up a value of finite length in general. A numerical approach is usually 

utilised to solve PD EoM. In order to consistently match PD with CCM, a very small horizon size can be 

chosen, but this brings the price of losing nonlocality and significant computational time. On the other hand, 

choosing large horizon may avoid these issues but causes less accurate results. In order to overcome this 

contradiction, double horizon peridynamics formulation can be introduced in the PD EoM. 

Consider a small inner horizon inside the original horizon as shown in Figure 1. 

 

Figure 1. The inner horizon ΩI and the outer horizon ΩO in the double horizon peridynamic formulation. 

First, let us consider the integration over the inner horizon ΩI. By making analogy with the derivation of 

equations from Eq. (2) to (4) by replacing 𝛿 with 𝜀, one can obtain 

( ) ( )
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2 u x u xu
d O
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Note that the inner horizon size 𝜀 can be chosen arbitrarily small, such that 𝑂(𝜀4) ≪ 𝑂(𝛿4) 

Next, let us consider the integration over the outer horizon ΩO. Multiplying each term in Eq. (2) by the 

influence function 1/|𝜉| gives 

( ) ( )
( ) ( ) ( )

2 3
2 3

2 3

1 1
sgn sgn

2 3!

u x u x u u u
O

x x x
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                                                           (8) 

Note that when 𝜉 varies over the outer horizon, the residual term ranges as 

( ) ( ) ( )3 3 3

OO O O                                                                                                              (9) 

In order to reduce the residual to be consistent with that of the inner horizon, multiplying Eq. (8) by |
𝜀3

𝜉3
| 

implies 

( ) ( )
( ) ( ) ( )

3 3 2 3 3 3
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                                (10) 

Now considering 𝑥 as fixed and integrating over the outer horizon results in 
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                                                   (11) 

Ignoring residual gives 
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Introducing two weight functions 𝜔𝐼 and 𝜔𝑂 for inner and outer horizon, respectively, such that 

1I O + =                                                                                                                                                     (13) 

and combining Eq. (7) with (12) gives 
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                                                                                                                                                                       (14) 

in which the weight functions can be chosen by considering each horizon size in proportion to the total horizon 

size as 

I O

  
 

 

−
= =                                                                                                                                       (15) 

Coupling Eq. (15) with (14) and substituting into (1) yields the refined PD EoM for 1D bar as 
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                                                                                                                                                                       (16) 

Note that when the inner horizon size equals to the outer horizon size, 𝜀 = 𝛿, Eq. (16) reduces to the traditional 

PD form. 

3. Boundary Conditions 

From PD point of view, except damage situation, each material point must be completely embedded in its PD 

influence domain. Moreover, for those material points adjacent to the boundary, whose domain is incomplete, 

it is necessary to introduce fictitious region outside the boundary such that the completeness of PD Equation 

of Motion (EoM) is ensured. The width of fictitious region can be chosen as equal to the horizon size 𝛿, as 

shown in Fig. 2. Two types of BCs and their implementation in PD framework are explained below. 

 

Double horizon peridynamics



5 
 

 

Figure 2. Real and fictitious domains 

3.1 Fixed Boundary Conditions 

Recall the EoM in classical elasticity: 

( )
( )

( )
22

2 2

,
, , 0

u x tu
x t E b x t x L

t x



= +  

 
                                                                                               (17)                                                                   

Suppose the body is constrained at 𝑥 = 0 such that 𝑢(0, 𝑡) ≡ 0, the representation of Eq. (1) at this point is: 

( )2

2

0

,
0

x

u x t
E

x
=


=


                                                                                                                                       (18)                                                                                                             

One can obtain by performing central difference for Eq. (18) that 

( ) ( ) ( )

( )
2

, 2 0, ,
0

u x t u t u x t
E

x

− − + 
=


                                                                                                             (19) 

where  ∆𝑥 is incremental distance. Simplifying Eq. (19) and swapping the difference notation ∆𝑥 by 𝜉 leads 

to 

( ) ( ), , 0u t u t   − = −  
                                                                                                                      (20) 

Here, the material point 𝑥 = −𝜉 lies in the fictitious region and Eq. (20) ensures that the fixed BC is satisfied 

for PD EoM. 

3.2 Neumann Boundary Conditions 

Suppose the body is subjected to a concentrated load of 𝑝(𝑡) at 𝑥 = 𝐿 . In classical elasticity theory, the 

boundary condition can be represented as 

( )
( )

( )
,

,

x L

u x t
L t E p t

x


=


= =


                                                                                                                      (21) 

Again, performing central difference with respect to 𝑢 gives 

( ) ( )
( )

, ,

2

u L x t u L x t
E p t

x

+ − −
=

                                                                                                               (22) 

After performing some algebra and rearranging the central difference notation according to PD convention, 

one can obtain that 
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( ), 2 , 0
p t

u L t u L t
E

    + = + −  
                                                                                              (23) 

Note that, 𝑝(𝑡) can be eliminated from Eq. (23) and absorbed in Eq. (16) if it is considered as the body force 

operated by Dirac delta. According to this point of view, Eq. (23) reduces to 

( ) ( ), , 0u L t u L t   + = −  
                                                                                                               (24) 

and Eq. (24) is called the free boundary condition relationship in PD framework. 

4. Analytic Solutions for Static Problems 

4.1 Fixed-Fixed Rod 

Consider a rod subjected to fixed-fixed boundary condition and arbitrary distributed loading as shown in Fig. 

3.  

 

Figure 3. Rod subjected to fixed-fixed boundary condition and arbitrary distributed loading 

The length of the bar is denoted as 𝐿 and Young’s modulus is 𝐸. As explained earlier, the PD EoM and BCs 

can be expressed as 

( ) ( ) ( ) ( ) ( ) ( )
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 
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                                                                                                         (26a, b) 

According to the completeness characteristic of a trigonometric system, it is reasonable to assume that the 

displacement function accommodates in the vector space spanned by trigonometric functions, i.e. 

( )
( ) ( ) ( )

( ) ( ) ( )

1 2 3

1 2 3

1
, cos , cos , cos , ...
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u x Span
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 
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                                                                         (27) 

which can be expressed as a linear combination in terms of the bases as follows: 

( ) ( ) ( )0

1

cos sin
2

n n n n

n

a
u x a s x b s x



=

= + +                                                                                                        (28) 

Substituting Eq. (28) into (26a) yields 
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cos sin cos sin
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Without considering rigid body motion, one can obtain that 
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Substituting Eq. (30) into (26b) yields 
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Plugging Eq. (32) back into (30) implies 
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One can obtain that 
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Similarly,  
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Substituting Eq. (34) and (35) into (25) yields 
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                                                                                                                                                                       (36) 

According to the orthogonal property of trigonometric functions, the coefficients can be determined as 
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( )
0

3 3

2 4 4

sin
2

2 1
cos 1 cos 1 cos 1

L

n

n x
b x dx

Lb
L E n E n n

d d d
L L L

  

  



    
  

    

−

− −

= −
      

− + − + −      
      



  

                        (37) 

Hence, the analytical PD solution is 

( )
( )

0

3 3
1

2 4 4

sin sin
2

2 1
1 cos 1 cos 1 cos

L

n

n x n x
b x dx

L L
u x

L E n E n n
d d d

L L L

  

  

 

    
  

    



−=

− −

 
 
 =

      
− + − + −      

      




  

            (38) 

Note that when 𝜀 = 𝛿, Eq. (38) reduces to analytical solution for classical PD theory as 

( )
( )2

0

1

sin

sin
1

1 cos

L

n

n x
b x dx

n xLu x
nEL L

d
L






 








=

−

 
=  

   − 
 






                                                                                          (39) 

4.2 Fixed-Free Rod 

Consider a rod subjected to fixed-free boundary condition and arbitrary distributed loading as shown in Fig. 

4.  

 

Figure 4. Rod subjected to fixed-free boundary condition and arbitrary distributed loading 

The PD EoM and BCs for this case can be expressed as 

( ) ( ) ( ) ( ) ( ) ( )
( )

3 3

2 3 3

2
0

u x u x u x u x u x u xE E
d d d b x

  

  

   
  

      

−

− −

 + − + − + −
+ + + = 

  
           (40) 

( ) ( )

( ) ( )
0

u u

u L u L

 
 

 

− = −
 

+ = −

                                                                                                            (41a, b) 

Again, suppose the displacement function belongs to the vector space spanned by bases of trigonometric 

functions and hence can be expressed as 

( ) ( ) ( )0

1

cos sin
2

n n n n

n

a
u x a s x b s x



=

= + +                                                                                                        (42) 

Using Eqs. (41a, b) one can obtain: 

( )2 1

2
n

n
s

L

−
=                                                                                                                                                (43) 

and 
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( )
( )

1

2 1
sin

2
n

n

n x
u x b

L



=

−
=                                                                                                                            (44) 

Plugging Eq. (44) back into (40) and performing algebraic simplifications results in 

( )

( )

( ) ( )
( )

3 3
1

2 4 4

2 12 1
cos 1

22 1
sin

2 2 1 2 1
cos 1 cos 1

2 2

n

n

nE
d

Ln x
b b x

L n nE
d d

L L





 

 




 

  
 

  

−

−=

−

 − 
− +  

−   
= − 

 − −    
− + −     

      




 

              (45) 

where the coefficients can be determined as 

( )
( )

( ) ( ) ( )

0

3 3

2 4 4

2 1
sin

2 2

2 1 2 1 2 12 1
cos 1 cos 1 cos 1

2 2 2

L

n

n x
b x dx

Lb
L n n nE E

d d d
L L L

  

  



   
  

    

−

− −

−

= −
 − − −     

− + − + −      
      



  

   

                                                                                                                                                                       (46) 

Substituting Eq. (46) into (44) yields the PD analytical solution as 

( )
( )

( ) ( )

( ) ( )

0

3
1

2 4

2 1 2 1
sin sin

2 2 2

2 1 2 12 1
cos 1 cos 1

2 2

L

n

n x n x
b x dx

L Lu x
L n nE E

d d
L L

  

  

 

 
 

   



−=

− −

− −

= −
 − −   

− + + −    
    




  
                       (47) 

In particular when 𝜀 = 𝛿, Eq. (47) reduces to the analytical solution for traditional PD model as 

( )
( )

( )

( )

( )2
0

1

2 1
sin 2 12 sin

22 11
cos 1

2

L

n

n x
b x dx n xLu x

LE Ln
d

L















=

−

−
−

= −
− 

− 
 






                                                                      (48) 

5. Analytical Solutions for Free Vibration Condition 

5.1 Fixed-Fixed Rod 

Let the PD EoM, BCs and ICs to be expressed for the fixed-fixed rod as:  

( )
( ) ( ) ( ) ( ) ( ) ( )2 3 3

2 2 3 3

2
,

u x u x u x u x u x u xu E E
x t d d d

t

  

  

   
   

      

−

− −

 + − + − + −
= + + 

  
         (49) 

( ) ( )

( ) ( )

, ,
: 0

, ,

u t u t
BCs

u L t u L t

 
 

 

− = −
 

+ = − −

                                                                                           (50a, b) 

( ) ( )

( ) ( )

0

0

,0

:
,0

u x u x

ICs u
x v x

t

=



=


                                                                                                                           (51a, b) 
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By using separation of variables approach, the displacement function can be decomposed as 

( ) ( ) ( ),u x t X x T t=                                                                                                                                        (52) 

Hence, Eq. (49) can be rewritten as 

( ) ( ) ( ) ( ) ( ) ( )2 3 3

2 2 3 3

2 X x X x X x u x X x u xT E E
X T d d d

t

  

  

   
   

      

−

− −

  + − + − + −  
= + +  

    
          

                                                                                                                                                                       (53) 

Isolating variables yields: 

( ) ( ) ( ) ( ) ( ) ( )2 3 3

2 2 3 3

1 2 X x X x X x u x X x u xT E E
d d d

T t X

  

  

    
   

      

−

− −

  + − + − + −  
= + + = −  

    
          

                                                                                                                                                                       (54) 

which gives 

( ) ( ) ( ) ( ) ( ) ( )3 3

2 3 3

2 X x X x X x u x X x u xE E
d d d X

  

  

   
   

      

−

− −

 + − + − + −
+ + = − 

  
         (55a) 

and 

2

2
0

T
T

t
 


+ =


                                                                                                                                            (55b) 

By comparing Eq. (55a) with (25), we can consider 𝑋(𝑥) as an analogue to 𝑢(𝑥) and 𝜆𝑋(𝑥) to 𝑏(𝑥). Thus, 

associating with Eq. (33) and (36), one can obtain 

( )
1

sinn

n

n x
X x b

L



=

=                                                                                                                                     (56) 

and 

3 3
1 1

2 4 4

2 1
cos 1

sin sin

cos 1 cos 1

n n n

n n

E n
d

Ln x n x
b b

L LE n n
d d

L L





 

 




  


   
 

  

− 

−= =

−

   
− +   

    
= −  

       
− + −          


 

 

                        (57) 

which results in the PD ‘’eigenvalues’’ as 

3 3

2 4 4

2 1
1 cos 1 cos 1 cosn

E n E n n
d d d

L L L

  

  

    
   

    

−

− −

       
= − + − + −       

        
                              (58) 

The general solution to Eq. (55b) can be expressed as 

( ) * *cos sinn n
n n nT t A t B t

 

 

   
= +      

   
                                                                                                          (59) 
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Substituting Eq. (59) and (56) into (52) and rearranging the coefficient notations yields the general PD 

solution as 

( )
1

, cos sin sinn n
n n

n

n x
u x t A t B t

L

  

 



=

    
= +       

     
                                                                                    (60) 

Differentiating Eq. (60) with respect to time yields: 

( )
1

, sin cos sinn n n
n n

n

u n x
x t A t B t

t L

   

  



=

    
= − +             
                                                                      (61) 

Applying the ICs gives: 

( ) ( ) ( ) ( )0 0 0
0

1

2
,0 sin sin

L

n n

n

n x n x
u x u x A u x A u x dx

L L L

 

=

=  =  =                                           (62a) 

( ) ( ) ( )0 0 0
0

1

2
,0 sin sin

L
n

n n

n n

u n x n x
x v x B v B v x dx

t L L L

   

 



=


=  =  =


                               (62b) 

As a summary, the PD analytical solution for free vibration of fixed-fixed rods can be summarized as 

( )
1

, cos sin sinn n
n n

n

n x
u x t A t B t

L

  

 



=

    
= +       

     
                                                                                  (63a) 

3 3

2 4 4

2 1
1 cos 1 cos 1 cosn

E n E n n
d d d

L L L

  

  

    
   

    

−

− −

       
= − + − + −       

        
                            (63b) 

( )0
0

2
sin

L

n

n x
A u x dx

L L


=                                                                                                                            (63c) 

( )0
0

2
sin

L

n

n

n x
B v x dx

L L

 


=                                                                                                                     (63d) 

In particular when 𝜀 = 𝛿, the PD ‘’eigenvalues’’ reduce to 

2

2 1
1 cosn

E n
d

L






 

 −

  
= −   

  
                                                                                                                  (63e) 

which is valid for traditional PD model. 

5.2 Fixed-Free Rod 

Let the PD EoM, BCs and ICs for the fixed-free rod to be expressed as: 

( )
( ) ( ) ( ) ( ) ( ) ( )2 3 3

2 2 3 3

2
,

u x u x u x u x u x u xu E E
x t d d d

t

  

  

   
   

      

−

− −

 + − + − + −
= + + 

  
       (64)       

    

( ) ( )

( ) ( )

, ,
: 0

, ,

u t u t
BCs

u L t u L t

 
 

 

− = −
 

+ = −

                                                                                             (65a, b) 
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( ) ( )

( ) ( )

0

0

,0

:
,0

u x u x

ICs u
x v x

t

=



=


                                                                                                                           (66a, b) 

By using separation of variables approach, i.e., 

( ) ( ) ( ),u x t X x T t=                                                                                                                                        (67) 

two characteristic functions can be obtained by substituting Eq. (67) into (64) as 

( ) ( ) ( ) ( ) ( ) ( )3 3

2 3 3

2 X x X x X x u x X x u xE E
d d d X

  

  

   
   

      

−

− −

 + − + − + −
+ + = − 

  
         (68a)   

and 

2

2
0

T
T

t
 


+ =


                                                                                                                                            (68b) 

By comparing Eq. (68a) with (40), we can consider 𝑋(𝑥) as an analogue to 𝑢(𝑥) and 𝜆𝑋(𝑥) to 𝑏(𝑥). Thus, 

associating with Eq. (44) and (45), one can obtain 

( )
( )

1

2 1
sin

2
n

n

n x
X x b

L



=

−
=                                                                                                                         (69a) 

and 

( )

( )

( ) ( )

( )
3 3

1 1

2 4 4

2 12 1
cos 1

22 1 2 1
sin sin

2 22 1 2 1
cos 1 cos 1

2 2

n n n

n n

nE
d

Ln x n x
b b

L Ln nE
d d

L L





 

 




  


  
 

  

− 

−= =

−

 − 
− +  

− −  
= − 

 − −    
− + −     

      


 

 

                                                                                                                                                                           

                                                                                                                                                                     (69b) 

which results in the PD ‘’eigenvalues’’ as 

( ) ( ) ( )3 3

2 4 4

2 1 2 1 2 12 1
1 cos 1 cos 1 cos

2 2
n

n n nE E
d d d

L L L

  

  

   
   

    

−

− −

 − − −     
= − + − + −     

       
            

                                                                                                                                                                       (70) 

Similar to the derivations of the previous case, the refined PD analytical solution can be obtained as 

( )
( )

1

2 1
, cos sin sin

2

n n
n n

n

n x
u x t A t B t

L

 

 



=

     −
= +       

     
                                                                       (71a) 

( ) ( ) ( )3 3

2 4 4

2 1 2 1 2 12 1
1 cos 1 cos 1 cos

2 2
n

n n nE E
d d d

L L L

  

  

   
   

    

−

− −

 − − −     
= − + − + −     

       
          

                                                                                                                                                                     (71b) 

( )
( )

0
0

2 12
sin

2

L

n

n x
A u x dx

L L

−
=                                                                                                                  (71c) 
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( )
( )

0
0

2 12
sin

2

L

n

n

n x
B v x dx

L L





−
=                                                                                                           (71d) 

In particular when 𝜀 = 𝛿, the PD ‘’eigenvalues’’ reduce to 

( )
2

2 12 1
1 cos

2
n

nE
d

L






 

 −

− 
= − 

 
                                                                                                           (71e) 

which is valid for the traditional PD model. 

6. Numerical Results 

6.1 Fixed-Fixed Rod Under Static Conditions 

In the first case, a 1-Dimensional rod with a length of L = 1m is subjected to a body load of b(x) =1000(1-x)10 

N/m3 under static conditions. Both edges of the rod are fixed (Fixed-Fixed). Elastic modulus of the rod is 

specified as E = 200 GPa.  

          

                                          (a)                                                                                    (b) 

Figure 5. Variation of the displacement field along the rod by changing inner horizon size, , for a horizon 

value of  = 0.1m. 

Variation of the displacement field along the rod by changing inner horizon size,  = , /2, /5, /10, for a 

horizon size value of  = 0.1m are given in Fig. 5. As shown in this figure, as the size of the inner horizon 

decreases, double horizon peridynamic (DH PD) solution converges to the classical continuum mechanics 

solution. 
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                                        (a)                                                                              (b) 

Figure 6. Variation of the displacement field along the rod by changing the horizon size and using 

traditional or double horizon approach. 

In Fig. 6, two different scenarios are compared. Firstly, as the horizon size decreases from  = 0.1 m to  = 

0.05 m, peridynamic solution converges to the classical continuum mechanics solution as expected. On the 

other hand, even if a larger horizon size is used, i.e.  = 0.1 m, the new double horizon peridynamics (DH PD) 

approach provides closer results to CCM solution for an internal horizon size of,  =0.01 m. 

6.2 Fixed-Free Rod Under Static Conditions 

In the second case, same properties are considered as in the first case except the right edge is left as free 

condition whereas the left edge is fixed under static conditions. First, the effect of the internal horizon size is 

investigated by changing the inner horizon size as,  = , /2, /5, /10, for a horizon size value of  = 0.1m. 

As shown in Fig. 7, as the inner horizon size decreases, double horizon peridynamic (DH PD) results converge 

to the CCM solution based on the variation of displacements along the rod. 

             

                                          (a)                                                                                    (b) 

Figure 7. Variation of the displacement field along the rod by changing inner horizon size, , for a horizon 

value of  = 0.1m. 
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                                        (a)                                                                             (b) 

Figure 8. Variation of the displacement field along the rod by changing the horizon size and using 

traditional or double horizon approach. 

Next, two different horizon size values are considered,  = 0.1 m, 0.05 m, by using traditional peridynamics 

and as expected, for the smaller horizon size value, peridynamic results are closer to CCM results (see Fig. 8). 

On the other hand, if double horizon peridynamic (DH PD) formulation is utilised, better agreement can be 

obtained even for a larger horizon size  = 0.1 m by considering the inner horizon size as  = 0.01 m. 

6.3 Fixed-Fixed Rod Under Free Vibration Conditions 

In the third case, the capability of the double horizon peridynamic formulation under the dynamic free 

vibration conditions is investigated. The length of the rod is the same as the two previous cases. The horizon 

size is specified as  = 0.1m. Elastic modulus and density are given as E = 200 GPa and  = 7850 kg/m3. Initial 

conditions are imposed as 

( ) ( )
55,0 0.01 1u x x x= − m                                                                                                                             (72a) 

( ) ( )
55,0 10 1

u
x x x

t


= −


 m/s                                                                                                                          (72b) 

As shown in Fig. 9, the variation of the displacement at the centre of the rod (x=0.5 m) as the time progresses 

is obtained by changing the internal horizon value as  = , /5, /10, /100. Similar to the static cases, as the 

internal horizon size decreases, double horizon peridynamic (DH PD) results capture the CCM results very 

well for the same outer horizon size value which demonstrates the capability of the double horizon approach. 
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(a)   (b) 

Figure 9. Variation of the displacement field at the centre of the rod (x=0.5 m)by changing inner horizon 

size, , for a horizon value of  = 0.1m. 

6.4 Fixed-Free Rod Under Free Vibration Conditions 

In the final numerical case, the same properties are considered as in the previous case except by assigning free 

condition for the right edge and fixed condition for the left edge under free vibration conditions and imposing 

the initial conditions as: 

( ) 5,0 0.01u x x= m (73a) 

( ),0 0
u

x
t


=


m/s          (73b) 

 (a) (b) 

Figure 10. Variation of the displacement field at the centre of the rod (x=0.5 m) by changing inner horizon 

size, , for a horizon value of  = 0.1m. 

As in the previous case, four different internal horizon values are considered as  = , /5, /10, /100 and the 

variation of the displacement at the centre of the rod (x=0.5 m) is obtained as the time progresses as shown in 

Fig. 10. Similar to the previous case, double horizon peridynamic (DH PD) results match very well with the 

CCM results as the internal horizon size decreases.  

7. Conclusions

In this study, a new double horizon peridynamics formulation was introduced by utilising two horizons instead 

of one as in traditional peridynamics. To demonstrate the capability of the current approach, four different 

numerical cases were examined by different boundary (fixed-fixed and fixed-free) and initial conditions under 

static and dynamic conditions for different outer and inner horizon size values. For both static and dynamic 

cases, it was observed that as the inner horizon decreases, peridynamic solutions converge to classical 

continuum mechanics solutions even by using a larger horizon size value. Therefore, the proposed approach 

can serve as an alternative approach to improve computational efficiency of peridynamic simulations by 

obtaining accurate results with larger horizon sizes. Potential future directions can be extending the current 

formulation to 2-Dimensional and 3-Dimensional models, and problems including fracture. 
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