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ABSTRACT
In September 2017, two strong earthquakes hit the central region of Mexico, producing substantial 
damage to the historical buildings. A retroactive analysis for assessing the pre-event seismic 
vulnerability of these constructions allowed for testing the suitability of an existing parameter- 
based approach based on material and geometrical features. More than 160 adobe buildings in 
four municipalities of the State of Morelos were surveyed and included in a vulnerability-oriented 
GIS database. Data were collected on-site and managed by resorting to open-source GIS software 
combined with a Python-based database management tool and a cloud-based platform for onsite 
data collection using mobile devices. The parameter-based approach was used for assessing the 
analytical seismic vulnerability of the buildings and implementing a secondary, more conservative 
assessment that considers uncertainties associated with the data acquisition process. The capabil-
ities of the database were further used to train a Machine Learning algorithm aimed at overcoming 
some representativeness limitations of the parameter-based analytical method. This third 
approach was found to be suitable for assessing the vulnerability of the building typologies 
addressed in this investigation. Although the implementation discussed in this paper is limited 
to a specific vernacular typology, it can be used to conduct customized local calibrations.
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1. Introduction

According to the United Nations International Strategy 
for Disaster Reduction (United Nations International 
Strategy for Disaster Risk Reduction 2009), vulnerability 
is defined as “the characteristics and circumstances of a 
community, system, or asset that make it susceptible to 
the damaging effects of a hazard”. Assessing the seismic 
vulnerability of the existing building stock is critical to the 
definition and implementation of proactive and reactive 
seismic risk mitigation actions (Ferreira, Maio, and 
Vicente 2017; Salazar and Ferreira 2020). Nevertheless, 
the evaluation of large numbers of buildings poses 
numerous challenges related to the heterogeneity 
among existing constructions. This aspect is more explicit 
when dealing with historical buildings, typically subjected 
to many sources of uncertainty. Some common analytical 
strategies may be unsuitable for performing fast and reli-
able structural analysis at the urban scale (e.g., structural 

analysis based on numerical models), bringing attention 
to more empirical approaches based on the identification 
of characteristics that seem to enhance the seismic per-
formance of structures.

A relevant precedent of this approach for Reinforced 
Concrete buildings has been developed by (Ruggieri et 
al. 2022), combining a typological classification of struc-
tures with a series of standard numerical models for 
building fragility curves. In this case, the data extraction 
is aided by Machine Learning algorithms, which label 
each building according to a series of externally recog-
nizable features. This tool, known in the literature as 
Vulnerability Analysis using Machine Learning 
(VULMA) (Ruggieri et al. 2021), is composed of a series 
of modules that recognize typological patterns from raw 
data, including pictures. This process is possible given 
expert judgement-based training in which a series of 
categories are manually assigned. Although the need 
for fulfilling some typological assumptions constrains 
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the application of this approach, it was found suitable 
for assessing large sets of constructions.

In the case of unreinforced masonry constructions, the 
approach developed by (Rosti, Rota, and Penna 2021) 
builds up on a preliminary categorization based on the 
classifications created after the Irpinia (1980) and 
L’Aquila (2009) earthquakes for building statistical dis-
tributions to get a set of relevant typological features that 
are then compared against the observed levels of damage. 
By following this approach, the authors have derived a set 
of empirical fragility curves representative of the seismic 
vulnerability of typologically compatible buildings.

This knowledge, based on long-term observations of 
failure and success, has determined constructive tradi-
tions and vernacular architecture principles worldwide. It 
is worth noting that the development of these empirical 
processes is not substantially different to the training of 
computational algorithms, in which a series of existing 
incomes and outcomes are analysed to find patterns and 
relations for predicting the outcome of new income data.

1.1. The earthquakes of September 2017 in Mexico

On the 7th of September 2017, an earthquake (MW = 8.2) 
hit the south coast of Mexico. This event, later known as 

the Tehuantepec Earthquake, had its origin 133 km 
southwest of Pijijiapan (State of Chiapas).

There was extensive damage in the building stock, 
namely in adobe and unreinforced masonry structures 
in the states of Oaxaca and Chiapas (Godínez et al.  
2019). On the 19th of September 2017, the so-called 
Puebla-Morelos Earthquake (MW = 7.1) hit the south 
centre of the country (Figure 1).

This event had its epicentre 12 km southeast 
Axochiapan (State of Morelos), ca. 120 km away from 
Mexico City, producing the collapse of at least 46 struc-
tures in the capital (Alberto et al. 2018; Buendía and 
Reinoso 2019). Both events left behind a large number 
of houses with medium and severe damage in the cen-
tral and southern regions of the country (see Table 1).

1.2. Impact and loss of historical buildings

According to the Global Assessment Report of Disaster 
Risk Reduction Atlas (United Nations Office for 
Disaster Risk Reduction 2017), seismic events in 
Mexico are responsible for annual average losses ran-
ging between 1,001 and 2,000 million USD. The figures 
for the 2017 events are even more significant, with 
estimated reparations costs reaching between 2,000 

Figure 1. USGS Shake maps for the Pijijiapan (left) and Puebla-Morelos (right) Earthquakes (Geodetic Facility for the Advancement of 
Geoscience 2023).

2 R. RAMÍREZ EUDAVE ET AL.



and 4,500 million USD due to ca. 180,000 affected 
houses (ca. of 0.56% of the total of housing units regis-
tered in the national census). States like Oaxaca (6.07%), 
Chiapas (4.71%), and Puebla (1.79%) have been parti-
cularly affected, with around 6%, 5%, and 2% of their 
buildings stocks, respectively, heavily affected by the 
quake (Caprano, Ortiz, and Valencia 2018; Ramírez 
Eudave, Ferreira, and Vicente 2022). The Mexican 
Civil Protection authority (de la Republica 2017) esti-
mated 369 human losses and 180.731 damaged houses 
(from which a 28% was reported as total loss).

In the context of cultural architectonic heritage, the 
Mexican Secretary of Culture estimated that some 2340 
historical monuments were affected, including 1,680 
temples built before 1900 (Ramírez Eudave and 
Ferreira 2021). Nevertheless, the number of damaged 
historical housing units is still unknown. These ancient 
houses are particularly significant in the states of 
Morelos and Puebla (commonly built in adobe), in 
which damages were proportionally more extensive 
(Galvis et al. 2017). Adobe structures in Morelos repre-
sent ca. 4.5% of housing units (Sánchez Calvillo, Alonso 
Guzmán, and López Núñez 2021), reaching proportions 
of more than 20% in other municipalities (undefined). 
The development of a vernacular tradition of adobe 
structures in this region is closely linked to the occur-
rence of seismic events, shaping specific and adapted 
building typologies (Guerrero Baca 2019). The scale of 
damages in several settlements after the Puebla-Morelos 
earthquake urged immediate intervention due to the 
humanitarian crisis derived from the collapses and the 
lack of services, being declared as disaster zones (Ortiz 
et al. 2018).

A relatively common reaction to the loss or damage 
of adobe-based buildings was their replacement with 
new houses by using more industrialized building sys-
tems and technology, including prefabricated modules. 
This process is the product of one or several of the 
following situations (stated by the testimonials gathered 
during the fieldwork phase of this work):

● There is a perception of adobe-based constructions 
as inherently dangerous and vulnerable towards 
seismic actions. This perception was reinforced 
after several official statements from the Mexican 
government (Zatarain 2017).

● Adobe houses are perceived as outdated for some 
contemporary needs.

● There is a lack of good workmanship and artisans 
for repairing and replicating the ancient construc-
tion techniques, and, therefore, quality work for 
adobe construction is often expensive when com-
pared with more recent construction processes and 
technology.

● In many cases, access to public or private funds for 
reconstruction was subjected to the acceptance of 
architectonic criteria and features with no partici-
pation or intervention of the habitats and/or own-
ers. Among others, the urgency to recover and 
rebuild after the seismic events leads to accepting 
these conditions.

● Some owners had to invest their resources in 
reconstruction. These resources, often very limited, 
were insufficient for developing a proper architec-
tural and engineering project, making their bud-
lings less prone to earthquake actions.

Therefore, this substitution process was accompanied 
by the demolition of historical structures and even 
buildings that could be subjected to retrofitting and 
strengthening actions. Furthermore, the retrofitting 
and/or strengthening of adobe structures were per-
ceived as more costly and relatively useless when com-
pared to building new structures.

This loss of cultural heritage represents a long-term 
impact to the detriment of both tangible and intangible 
assets (these constructions are the materialization of the 
accumulated knowledge of several generations). 
Moreover, this loss represents a hazard for sustaining 
long-term consolidated economic dynamics, such as the 
touristic attractiveness of some historical centres. As 
stated in the Historic Urban Landscape (HUL) guide-
lines (UNESCO 2016), the conservation of these envir-
onments is especially meaningful given the permanent 
nature of the loss of historical assets. For example, the 
municipality of Tepoztlán (State of Morelos) is very 
illustrative: the integration of landscape, urban, and 
historical architecture sustains strong cultural and eco- 
touristic activities that represent the main local eco-
nomic activity (Alvarado and C 2015).

The study herein presented aims to explore assess-
ment strategies for proactively identifying vulnerable 
constructions, admitting that prevention is preferable 
to reparation and substitution. This task is inscribed in 

Table 1. Affected housing units per State as a result of the 
Earthquakes of the 7th and 19th of September, 2017 (de la 
Republica 2017).

Housing units

State Damaged Collapsed

State of Mexico 6,059 2,468

Mexico City 5,765 2,273
Morelos 15,352 1,323
Puebla 27,812 3,214

Oaxaca 63,336 21,823
Chiapas 59,397 18,058

Guerrero 2,976 1,451
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some international guidelines, such as the Chart of the 
Sendai Framework for Disaster Risk Reduction 2015– 
2030 (United Nation 2015), whose first urgent action is 
“Understanding Risk”, including pre-disaster risk 
assessments.

Furthermore, according to the “Geoethics” principles 
(Peppoloni and Di Capua 2021), the awareness of 
potential risk situations is key to having successful pub-
lic policies and represents a professional responsibility 
for developing better practices involving a more robust 
social role. Hence, the vulnerability assessment of his-
torical constructions is complementary to cultural and 
economic sustainability and an opportunity for a more 
informed and participative decision-making process 
towards risk mitigation.

1.3. Outline of this study

This work´s first step is based on the use of a seismic 
vulnerability assessment approach extensively applied 
in European historical cities for analysing some 
Mexican built environments. This approach, developed 
from the Italian GNDT-II method (GNDT 1993), is 
based on the retroactive identification of material, phy-
sical, and geometrical parameters that seem to influence 
the seismic behaviour of masonry constructions. 
Therefore, the evidence of seismic events in the last 
three decades allowed us to enhance, enrich, and adapt 
this approach, leading to different variations and cali-
bration of parameters for different regions and several 
cities.

For this method’s purposes, the descriptive model of 
constructions considers a total of 14 parameters drawn 
from a straightforward survey. The first insight for 
applying this method was explored in the city of 
Atlixco, Puebla, finding the suitability of using the 
Mexican Catalogue of Historical Monuments for feed-
ing the aforementioned survey (Ramírez Eudave and 
Ferreira 2021). Nevertheless, some limitations related 
to the uncertainties during data acquisition were 
found. A second experience with more than 80 build-
ings (Ramírez Eudave, Ferreira, and Vicente 2022) 
allowed having a better understanding of the suitability 
of this approach, its limitations and its possibilities.

The present study is aimed to explore the suitability 
of this method on a different Mexican traditional typol-
ogy (that of adobe-based structures), based on the com-
parison between the levels of physical damage predicted 
by the method against the real effects, this is the 
observed physical damage that the 2017 Earthquake 
had, feeding a discussion about the representativeness 
of the vulnerability-oriented model and the studied built 
environment. Despite the VIM approach being mostly 

applied to stone or brick masonry constructions, the 
version adopted for this study (Ramírez Eudave, 
Ferreira, and Vicente 2022) explicitly accepts the suit-
ability of assessing adobe-based constructions without 
performing specific calibrations. This capability of the 
parametric method is possible since adobe is part of the 
vulnerability classes defined and typified in the EMS-98 
approach.

Given that we accept that the set of parameters is 
representative for conditioning the level of damage, 
it is possible to accept it as a Handcrafted Feature 
Extraction Technique (Dash et al. 2022). This means 
that a series of features that can be extracted from a 
certain element (in this case, buildings) are valuable 
for predicting a certain phenomenon (such as seis-
mic structural response). Therefore, it is possible to 
use this methodology as a base for training a 
Machine Learning algorithm to recognize potentially 
different configurations of the vulnerability-oriented 
survey that better represent this sample, leading to a 
new potential use of the parameter-based 
methodology.

2. Materials and methods

This work was performed by following a series of field 
surveying campaigns in four different municipalities of 
the State of Morelos: Jojutla, Tepoztlán, Tlayacapan and 
Yautepec, in which there exists a complete and relatively 
updated Catalogue of Historical Monuments (INAH  
2019). This research is aimed to compare the level of 
damage that the structures had in the context of two 
different approaches for predicting it: a parametric vul-
nerability index approach (considering both, a direct 
and a range-based application for addressing some epis-
temic uncertainties) and a machine learning algorithm 
for finding a more suitable model based on the method’s 
survey.

2.1. Vulnerability Index Method (VIM): parameters 
and procedure

The version of the Vulnerability Index Method (VIM) 
herein used coincides with the one reported for Atlixco, 
Puebla (Ramírez Eudave, Ferreira, and Vicente 2022), in 
which the criteria for grading the parameters are exten-
sively reported. Each parameter (see Table 2) is gradu-
ated in four different growing vulnerability classes (A, B, 
C, D) that represent how negative a given configuration 
is for the overall behaviour of the structure. Each grade 
is later associated with a numeric value Cvi that is later 
multiplied by the parameter’s weight pi (a numerical 
representation of the relative relevance that the 
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parameter has among the set of all parameters) in order 
to obtain a weighted sum of all parameters as a global 
vulnerability index I�vf as per Equation 1, later normal-
ized for obtaining a vulnerability value V (Equations 2 
and 3).

An approach for estimating the damage grade μD ¼

0 : 5f g given a certain seismic intensity is given in Eq.4. 
This expression includes a ductility factor for the struc-
ture Q ¼ 1 : 4f g and represents a damage curve in 
which the macroseismic intensity is associated with a 
damage grade μD, conceptually framed in the EMS-98 
system (Centre Europèen de Géodynamique et de 
Séismologie 1998). A correction for the vulnerability is 
given in Eq. 5 for macroseismic intensities below 7. 

I�vf ¼
X14

i¼1
Cvi � pi (1) 

Iv ¼
I�v � 100

750
(2) 

V ¼ 0:592þ 0:0057� Iv (3) 

μD ¼ 2:5þ 3� tanh
IEMS� 98 þ 6:25� V � 12:7

Q

� �� �

� f V; Ið Þ; 0 � μD � 5
(4) 

f V; Ið Þ ¼ e
V

2�I� 7ð Þ

1
I � 7
I > 7

�

(5) 

A critical aspect of this approach is the correspondence 
between the mean damage grade µD and a set of discrete 
damage grades DK, qualitatively characterized according 
to the macroscopic observed evidence of damage, as 
shown in Table 3. The VIM method was implemented 
for calculating the levels of damage that would theore-
tically correspond to the studied buildings when facing a 
seismic event with the intensity of the Puebla-Morelos 
earthquake (i.e., for obtaining values for μD).

The correlation between Dk and μD later permitted 
the comparison between the levels of damage obtained 
from the VIM approach against the real observed 
consequences (Dk) that the September 2017 
Earthquake had on the assessed structures. For this 
purpose, the intensity information (in MMI scale) 
from the United States Geological Service was con-
sulted (USGS 2017). The intensity maps for this earth-
quake lead to take an intensity Mw ¼ 7 for the 
municipality of Jojutla, Mw ¼ 7.1 for Tepoztlán and 
Mw ¼ 7:3 for Yautepec and Tlayacapan (Sahakian et 
al. 2018). The ductility of all the structures herein 
analysed was based on the recommendations of the 
Complementary Technical Code for Seismic Design of 
the Building for Mexico City (Gobierno del Distrito 
Federal 2017), which is the reference for most of the 
country. This code recommends a value of Q ¼ 1 for 
unreinforced masonry.

Table 2. Vulnerability Index Method parameters, as used for Atlixco, Mexico (Ramírez Eudave, Ferreira, and Vicente 2022).

Parameters Class (CviÞ Weight (pi) Relative weight

Group 1. Structural building system A B C D 50/100
BP1. Type of resisting system 0 5 20 50 2.50 16.67

BP2. Quality of the resisting system 0 5 20 50 2.50 16.67
BP3. Conventional strength 0 5 20 50 1.00 6.67

BP4. Maximum distance between walls 0 5 20 50 0.50 3.33
BP5. Number of floors 0 5 20 50 0.50 3.33
BP6. Location and soil conditions 0 5 20 50 0.50 3.33

Group 2. Irregularities and interaction 20/100
BP7. Aggregate position and interaction 0 5 20 50 1.50 10.0

BP8. Plan configuration 0 5 20 50 0.50 3.33
BP9. Height regularity 0 5 20 50 0.50 3.33

BP10. Wall façade openings and alignment 0 5 20 50 0.50 3.33
Group 3. Floor slabs and roofs 18/100
BP11. Horizontal diaphragms 0 5 20 50 0.75 4.91

BP12. Roofing system 0 5 20 50 2.00 13.09
Group 4. Conservation status and other elements 12/100
BP13. Fragilities and conservation status 0 5 20 50 1.00 6.86
BP14. Non-structural elements 0 5 20 50 0.75 5.14
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2.2. Data management and acquisition framework

A Geographic Information System environment was 
used for storing and managing the data of this study, 
given the advantages of having a geographic reference 
for identifying each construction during the on-site 
campaign. The open-code and free software QGIS (ver-
sion 3.12 București) (QGIS Development Team 2021) 
was selected for this purpose. A convenient capability of 
using QGIS for assembling the database was the use of 
the plug-in Mergin (Dobias, Sab Varga, and Petrik  
2021), a cloud-based storage service that allows the 
access and edition of the QGIS file from multiple mobile 
devices, such as smartphones equipped with the app 
Input (Ramirez Eudave et al. 2023).

The survey was programmed as an attribute table for 
the layers that would later store the polygons correspond-
ing to the constructions, containing a total of 68 fields for                        

storing field data and assessment results (see Table 4), 
including qualitative, quantitative, and Boolean data. 
Besides having this geographic database as a 
Geopackage file, a python-based front-end was pro-
grammed for performing reading and edition actions on 
the database. This front-end component integrates the 
possibility of calculating the vulnerability index and the 
levels of damage based on the parameters stored in the 
GIS database. The purpose of this script is to facilitate 
data management and calculations while keeping the 
integrity of the primary database (see Figure 2).

2.3. Characterization of the sample and field 
surveying

Given the affinity of the National Catalogue of 
Historical Monuments regarding the parameters 

Table 4. General composition of the QGIS layer attribute table.

Type of fields Number of fields Data content

Identification 2 Address and unique primary key.
Building parameters 41 Geometrical and material features are considered for the grading of the parameters of the VIM.

Seismic parameters 1 The seismic intensity in the EMS-98 scale.
Quality Check 14 Index for grading the level of uncertainty related to each parameter.

Results 10 Storage of the vulnerability index, intermediate and final results.
Total 68

Figure 2. Screenshot of the python-based front-end (Ramirez Eudave 2022).

INTERNATIONAL JOURNAL OF ARCHITECTURAL HERITAGE 7



considered in the VIM, those municipalities with the 
larger samples of catalogued buildings were selected. 
Among these municipalities, those whose entries in the 
Catalogue were completely fulfilled were preferred: 
Jojutla, Tepoztlán, Tlayapacan, and Yautepec. It is 
important to note that only constructions destinated to 
housing were considered for this study, discarding other 
historical structures such as churches, agricultural com-
plexes or other industrial facilities. Although the pre-
sence of adobe constructions in these municipalities is 
variate (Table 5), the assets considered in the National 
Catalogue of Historical Monuments (i.e., constructions 
built before the year 1900) are predominantly adobe- 
based constructions.

An original indicative list of 198 constructions was 
prepared, as shown in Table 6. These constructions were 
visited to perform visual inspections to accomplish the 
vulnerability survey and correct any outdated informa-
tion from the National Catalogue of Historical 
Monuments (NCHM). This campaign led to the exclu-
sion of several constructions (for example, some build-
ings were inexistent or structurally heavily modified 
when the earthquake hit) profiling a final universe of 
167 valid cases that were characterized, stored, and 
analysed.

The fieldwork allowed the accomplishment of a series 
of activities:

(i) Visual confirmation of the descriptive informa-
tion contained in the National Catalogue of 
Historical Monuments. The position of the con-
struction was confirmed or corrected. Then, the 
information contained in the Catalogue was 

compared against the field data gathered, lead-
ing to corrections, if necessary.

(ii) Photographic register of the interior and exter-
ior. All constructions were at least registered by 
the exterior. In many cases, access was not 
allowed or restricted. When access was not per-
mitted, the interior description of the construc-
tions was based on the content of the National 
Catalogue of Historical Monuments. It is con-
venient to recall that only buildings with a com-
plete datasheet (i.e., with architectonic floor 
plan, photographs, and descriptions) were con-
sidered valid samples during the preliminary 
selection.

(iii) Damage questionnaire to the owners/users of 
the constructions. Besides communicating the 
goal and procedure of the fieldwork, the users 
were asked to describe the type of damage that 
structures had after the 2017 Earthquakes. The 
diagram that illustrates the classification of 
damage to masonry buildings in the EMS-98 
scale (Centre Europèen de Géodynamique et 
de Séismologie 1998) was shown to better clas-
sify the level of damage (see Figure 3).

(iv) Geometrical measurements (e.g., exterior mea-
sures for contextualizing the architectonic plan 
drawing of the Catalogue).

(v) Register of information for grading vulnerability 
index parameters.

Many of the fields were able to be directly registered 
on-site by using the app “Input” for editing the GIS 
database. In some cases, quantitative vulnerability index 

Table 5. General description of the housing environment for the studied municipalities according to the Census of 2014 (undefined).

Municipality Number of housing units Adobe-based housing units Proportion

Jojutla 3705 83 2.24%
Tepoztlán 3866 423 10.94%

Tlayacapan 2246 451 20.08%
Yautepec 3927 95 2.42%

Total 13744 1052 7.65%

Table 6. Number of buildings/cases considered per municipality.

Municipality Indicative list (obtained from the NCHM) Effective building case records used Percentage

Jojutla 68 55 80.89%

Tepoztlán 47 37 78.72%
Tlayacapan 34 33 97.06%
Yautepec 49 42 85.71%

Total 198 167 84.34%
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parameters were able to be graded only after performing 
some calculations, assisted by the python-based 
front end.

Although there is a certain variability throughout the 
sample, most of the assessed constructions (see Figure 4) 
share several characteristics.

The vernacular typologies found in these municipa-
lities are common to most of the State of Morelos and 
present little variations (Quintana Leonardo and 
Guerrero Baca Luis 2010). These houses commonly 
consist of a single-storey level (ground) room with a 
rectangular plan configuration for rural areas, whilst 

Figure 3. EMS-98 five damage grade scale (Centre Europèen de Géodynamique et de Séismologie 1998) and examples of buildings 
with corresponding damage grades from 1 to 5 in the studied municipalities.
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urban houses present a series of rooms of similar sizes, 
internally connected and aligned with the street 
(Figure 4).

The most common structural solution is one-leaf 
adobe walls built with units of ca. 52 cm in length, 36  
cm in width, and 9 cm in thickness. Although there are 
no additional means of reinforcement or strengthening, 
there is good interlocking and layering and most con-
structions have visible stone foundations. Most founda-
tions reach a height of between 0.50 and 1.00 m from the 
level of the street, mainly as a strategy for isolating the 
adobe walls from the soil humidity and rainwater 
(Figure 5). The most common roof solution is a plane- 
pitched roof that facilitates rainwater collection by the 
means of dedicated ceramic pipes. The openings in 

these constructions are proportionally small, solved by 
means of timber lintels or stilted arches.

The adobe walls present earth-mortar joints in 
which small ceramic pieces or stones are embedded 
to offer better protection (Figure 6). The adobe units 
are visibly homogeneous, and only two elements are 
easily recognizable: the earth matrix and fine vegetal 
fibre elements.

All the local inhabitants that were inquired about 
the typical constitution of adobe bricks described the 
production of adobe from a mixture of the soil avail-
able onsite and horse manure that is compressed in 
wooden formworks and sun-dried. Even if many of the 
constructions have no external render, the inhabitants 
often state that this is a relatively recent tendency, 

Figure 4. Examples of urban (left) and rural (right) houses.

Figure 5. Typologically representative constructions from the municipality of Tepoztlán.
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mostly for offering an attractive “rural” visual land-
scape for tourism purposes.

The physical damage of the number of structures 
assessed was classified as per the EMS98 scale and is 
summarized in Table 7.

3. Results and discussion

The results analysis for this experiment had three 
main stages. The first approach consisted of a direct 
comparison between the observed damages and the 
mean damage grade estimated using the seismic vul-
nerability index approach. A second stage of analysis 
considered some limitations found during the field-
work campaign and, finally, a third stage considered 
the use of Machine Learning algorithms for assessing 
how suitable is its use for predicting the levels of 
damage and calibrating the weights of the 
Vulnerability Index Method for specific typologies 
and built environments.

3.1. Simple parameter-based analysis

It is important to note that the qualitative scale for 
classifying the observed post-seismic damages on struc-
tures corresponds to intervals for mean damage grade 
μD. The first comparison for assessing the suitability of 
the method on the given number of building cases 
consisted in checking if the analytical value obtained 
for μD was comprised in the permissible range of the 
real/observed damage Dk;2017 (see Figure 7). A total of 
104 out of the 166 cases (62.28%) present coincidence 

between the predicted μD and observed Dk;2017 levels of 
damage (see Table 8).

When the method fails at predicting the level of 
damage, it is often an underestimation of it (i.e., analy-
tical levels of damage were less severe than the real 
damages observed and described in situ). It should be 
noted that the semantic descriptors used in the VIM 
approach for modelling the built environments (type of 
structures, materials, etc.) were enough for describing 
the buildings herein presenter. Nevertheless, it is perti-
nent to consider that some relevant phenomena or 
characteristics may not fit in this survey model.

For example, despite the general conservation status of 
the construction being a parameter assessed for deter-
mining the vulnerability to seismic actions, earth-based 
structures may have more specific deterioration issues 
and fragility due to moisture content in structural ele-
ments. This specific defect is not included in the original 
approach but can intuitively be significant for assessing 
the state of construction. This observation becomes even 
more relevant when considering the number of construc-
tions that had lost the external renders for aesthetic 
reasons. This discussion is not further developed in the 
context of this article since the moisture content of the 
constructions at the moment of the earthquake is 
unknown. Nevertheless, it provides an opportunity for 
discussing, enriching, and adapting the VIM survey for 
future experiences.

Another reasonable explanation for this lack of 
representativeness is related to a condition that worsens 
the structural behavior, such as an unfavourable soil- 
structure interaction. Besides, a certain grade of unre-
presentativeness can be a consequence of the limitations 

Figure 6. Typical adobe configuration in a house in the municipality of Tlayacapan.
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for having reliable data acquisition, namely, due to field 
restrictions (inaccessibility, lack of safe conditions for 
performing field works, etc.).

3.2. The role of uncertainty

Given the access limitations during the fieldwork and the 
consequent uncertainties in the evaluation associated 
with certain parameters, it was decided to take into 
account the Quality Check (QC) approach proposed for 
the city of Atlixco (Ramírez Eudave, Ferreira, and Vicente  
2022). This approach adds a code for each parameter to 
express how reliable the data acquisition process (and, 
therefore, the grade assignation) was.

The four possible values for the QC are:
QC0: High reliability. Grade verified with a high level 

of certainty. Data are explicitly contained on the data-
sheets and have been verified in situ.

QC1: Medium reliability. Deduced from secondary 
sources, (photographs, drawings, testimonies, etc).

QC2: Low reliability. Inferred based on typological 
similarities and hypothesis based on experience.

QC3. Absence of information. The grade is merely 
indicative but still better than a random decision.

Parameters for which the reliability of the evaluation 
was considered to be QC0 or QC1 level, no further 
action is taken and the vulnerability classes assigned 
for that parameter are accepted. Otherwise, the hypoth-
esis of having a lower vulnerability class than the initi-
ally proposed is sustained. Therefore, an alternative 
conservative assignation of the vulnerability class is 
adopted by downgrading one or two classes, , respec-
tively, for QC2 and QC3 (e.g., from A to B or from A to 
C). As an example, in a construction for which access 

was not granted, the surveyor may decide that the inner 
conservation status (assessed by parameter BP13) is 
good, according to typological similarities and previous 
experiences. But, since no visual confirmation was pos-
sible, a QC2 reliability level must be assigned to this 
parameter. This means that the vulnerability-oriented 
survey will initially consider BP13 with a grade A, whilst 
the conservative boundary of the vulnerability index will 
be calculated assuming that this same parameter can 
have a grade B (or C, in case of having a QC3).

Therefore, the mean damage grade μD becomes an 
interval with two boundaries: a lower limit that corre-
sponds to the vulnerability class initially given during 
the field campaign and an upper limit that correspond 
to a more conservative assessment in which the uncer-
tainties have been considered, as the safe side definition.

This approach is possibly easier to understand when 
expressed graphically, as shown in Figures 6 to 13. For each 
building, the boundaries for the analytical damage range, 
μD and μD;conservative (obtained by applying the VIM), are 
represented through a black horizontal bar and a cross, 
respectively, while the intervals for the discrete qualitative 
observed damage grades assigned (the real damages 
observed in the building) are represented through a 
white bar, facilitating the interpretation of the overlapping 
among both intervals.

With this approach, the vast majority of predicted 
damage intervals overlap with the corresponding 
intervals of observed damages (see Table 9). This 
observation is consistent with the results reported 
for Atlixco, supporting the feasibility of the joint use 
of an alternative and more conservative value for 
assigning an interval for the physical damage instead 
of closed and nominal values.
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Figure 7. Comparison between the intervals for the permissible range of observed damage (bars) and analytical damage (black crosses) 
by sample.
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Nevertheless, this approach does not solve the poten-
tial lack of representativeness associated with the con-
ceptual models used in the VIM approach. Even if the 
calibration and adjustment of the methodology by 
means of analytical approaches are possible, the experi-
ence herein presented explores the suitability of resour-
cing to machine learning tools for predicting the 
damage grades from the set of parameters already 
acquired, unveiling hidden patterns and potential redis-
tributions of the weights originally proposed.

3.3. Machine learning approach

The use of trained algorithms for recognizing patterns 
and subjacent relations has been demonstrated to be 
suitable for numerous problems in which the relations 
between input data and outcomes (results) still present 
hidden or not well-defined mechanisms. Given that the 
proposed procedure is intrinsically attached to a regres-
sive analysis of cause-effect elements based on cate-
gories (both for the parameters and the damages), the 
use of computational analysis is a strong and suitable 
measure for expanding the boundaries of this 
methodology.

It is important to note that the VIM approach is 
based on an existing empirical parameter-based metho-
dology built on the evidence of past events: the analysis 
from numerous seismic events, the classification of the 
structures and their damages, representing a process of 
domain knowledge Handcrafted Feature Extraction. 
This process is critical for recognizing which descriptors 
(features) are more important for determining an out-
come (Guyon and Elisseefl 2006). For the case of the 
seismic vulnerability of masonry structures, this feature 
extraction has been empirically conduced and refined 
based on numerous observations, leading to determin-
ing the set of 14 parameters used in this investigation. 
This approach is a response to the limitations that 
robust structural analysis (strongly customized in the 
case of historical structures) has when dealing with large 
numbers of buildings or constructions to be assessed.

3.3.1. Machine learning principles
Although the use of Machine Learning and Deep 
Learning approaches (subfields of Artificial 
Intelligence) for studying complex processes is not 
new, their use in the context of complex civil engineer-
ing applications is not generalized yet. A relatively 
recent field of application of Machine Learning algo-
rithms is the health monitoring of historical structures 
and heritage buildings, in which heterogeneity, com-
plexity, and variability are still relevant challenges for 
more generalized approaches (Mishra 2021).

The use of these resources should always be accom-
panied by awareness regarding their limitations, bias 
and the limits of the control that the user has towards 
the several “black boxes” that these processes imply 
(Vadyala et al. 2022). It is possible to obtain apparent 
accurate predictions and structured models even from 
weak evidence and scarce data. Therefore, to have a 
robust control of the representativeness of input data, 
the integrity of data and the correct selection of models 
and cases are critical aspects to consider. In this case, the 
existence of a precedent data model (that of VIM) is 
useful for contextualizing the results obtained when 
performing the Machine Learning algorithm design 
and assessment.

3.3.2. Implementation
The approach adopted for this case study accepts a 
series of assumptions related to the type and quality of 
data. The most important one is that the labelling of the 
input and outcome data has been directly adopted from 
the VIM methodology. In other words, the parameters, 
grading, and levels of damage have been adopted as is, 
so the database used in the previous sections did not 
suffer alterations.

The general workflow herein presented is that pro-
posed in the documentation of the freeware learning 
library scikit-learn (Pedregosa et al. 2012). This library 
supports many of the most common classification, 
regression, and clustering algorithms for Python pro-
gramming environment, namely through the NumPy 

Table 7. Number of structures assessed by municipality and level of damage.

Municipality DK ¼ 0 DK ¼ 1 DK ¼ 2 DK ¼ 3 DK ¼ 4 DK ¼ 5

Jojutla 3 5 3 26 17 1
Tlayacapan 3 7 7 11 4 1

Yautepec 5 15 9 10 2 1
Tepoztlán 5 15 12 3 1 1

Total 16 42 31 50 24 4
9.58% 25.15% 18.56% 29.94% 14.97% 2.40%
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library. The implementation herein presented was pro-
grammed as part of the database front-end manager to 
work within the original database (Ramirez Eudave  
2022).

3.3.3. Importing data
The vulnerability database was built in a GIS environ-
ment using Geopackage files in native format. Thus, the 
management of the database was held by means of 
GeoPandas, a Python open-source library that supports 
the management of geospatial information as well as 
more typical non-geographical data frames. This library 
allows the management of GIS native files 
(Geopackages, shapefiles, etc.) as tabular data keeping 
the integrity of georeferenced information. Therefore, 
these capabilities allowed us to read and import the 

database, namely the 14 parameters (and their asso-
ciated vulnerability classes).

For this process, it becomes critical to assign labels 
and recognize which components of data represent fea-
tures and target outcomes. In other words, it is neces-
sary to identify which data is meaningful for 
conditioning the outcome. For example, the database 
includes the address of the constructions, an informa-
tion that is not critical to explain the level of physical 
damage of the structure. Nevertheless, this dataset 
already contains 14 labelled parameters (the labels are 
the parameters’ classes) that we already consider valid 
for defining and estimating the level of damage (i.e., the 
outcome) of a structure in the context of a determined 
earthquake. The process of recognizing these features is 
part of the so-called Handcrafted Feature Engineering, 

Table 8. Summary of successful predictions for the level of physical damage.

Municipality Successful Failed Success ratio (%)

Jojutla 27 28 49.09%
Tepoztlán 28 9 75.68%

Tlayacapan 19 14 57.58%
Yautepec 30 12 71.43%

Total 104 63 62.28%

Figure 8. Analytical and real damage grade intervals for the municipality of Jojutla (1 of 2).
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Figure 9. Analytical and real damage grade intervals for the municipality of Jojutla (2 of 2).

Figure 10. Analytical and real damage grade intervals for the municipality of Tlayacapan.
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Figure 11. Analytical and real damage grade intervals for the municipality of Yautepec (1 of 2).

Figure 12. Analytical and real damage grade intervals for the municipality of Yautepec (2 of 2).
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which can otherwise be performed by the means of 
domain knowledge or other approaches.

Given that this process is an inherent part of assum-
ing the VIM methodology, all the 14 parameters con-
sidered in the database are meaningful for defining the 
level of physical damage (outcome) of the structure. 
Nevertheless, in contrast to the VIM approach, the ML 
algorithm does not assess the parameters from a given 
weighted importance (i.e., the only information the 
algorithm has is that the parameters are related to the 
outcome). Instead, the ML algorithm will fit a distribu-
tion of weights per parameter that represents a more 
fitted and representative model.

This clarification is especially relevant because, in 
contrast, some ML processes are also aimed at the iden-
tification of learned features from raw data (Khurana, 
Samulowitz, and Turaga 2018).

3.3.4. Cleaning and splitting data
This step was performed in the scope of input data 
presented in sections 3.1 and 3.2, in which the integ-
rity of the database and the completeness of entries 
were verified. According to the good practices 
reported in similar classification problems, 20% of 
data were reserved for performing verification tests. 
This fraction may vary according to several criteria 
and the size of the sample, but common practices in 

this field often accept an interval of 15–20% as a 
reasonable ratio.

3.3.5. Creating a model (algorithm selection)
The selection of a suitable algorithm is one of the most 
critical steps for representing a problem with Machine 
Learning tools. For this exercise, a Supervised Learning 
approach (i.e., data for training associates sets of features 
with specific outcomes that are expected to further predict 
new sets of features) was carried out. Given that the target 
outcome consists of discrete damage grades (a level of 
damage DK ¼ 0; 1; 2; 3; 4; 5f g), the model has been cate-
gorized as a classification problem (i.e., data is labelled with 
two or more classes and the Machine Learning processes 
would find valuable vectors for pointing outcomes from 
the labelled features. As schematized in Figure 14, the field 
dataset (the 166 observations that include the parameter’s 
grading and the real post-seismic levels of damage) is used 
for training the RFC algorithm, so the algorithm recog-
nizes patterns between the parameters and the levels of 
damage. This trained model replicates these patterns for 
predicting the outcomes that can result from a given 
combination of parameter grades. The prediction can be 
used for obtaining outcomes from new samples and/or 
assessing the accuracy of the model by predicting 
already-known outcomes. In this case, 20% of the data 
was reserved for performing this assessment process.

Figure 13. Analytical and real damage grade intervals for the municipality of Tepoztlán.
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The problem herein presented is a classification and 
regression task since the parameters are given but their 
relative impact on the outcome is not provided to the 
algorithm. If some parameters (features) of the income 
data are not useful, this algorithm minimized/reduces 
its relative sensitivity on the model.

By following the observations of (Buitinck et al.  
2013), this problem can be modelled by the means of 
the Random Forest Classifier (RFC) learning algorithm. 
This algorithm ensemble numerous decision trees (i.e., 
flowchart models in which an outcome is a product of a 
specific path of several conditional statements or nodes) 
that fit fractions of data instead of creating a unique tree 
model. This algorithm prevents model overfitting by 
using multiple trees and the so-called bagging method. 
As schematized in Figure 15, the bagging process con-
sists in randomly splitting the complete dataset into a 
series of equally sized datasets. Since the selection is 
randomized, each observation can appear in more 
than one tree. The number of trees is not limited by 
the number of observations of the dataset. Each subset is 
used for training a customized individual decision tree 
(i.e., for fitting a partial model based on the subset of 
observations). When a new observation is introduced to 
the model, each tree “votes” according to its particular 
training. The complete model assigns an outcome based 
on the overall “votes” of the partial decision trees. The 
sum of all these random trees represents the so-called 
“Random Forest”.

Among the many available algorithms for perform-
ing classification works, the RFC was considered espe-
cially suitable because does not make assumptions about 
the underlying distribution of data and because it per-
mits a better understanding of the relative influence that 
the features have (assuming that all the selected features 
are meaningful).

Given that this classification problem departs from 
an already-established survey (that has been tested, cali-
brated, and enriched based on the evidence of multiple 
seismic events) instead of raw data, we accept that all the 
features are valid and influence the outcome. There is a 
subjacent decision-tree structure for the VIM analytical 
procedure. The conceptual compatibility between the 

analytical development of the VIM approach and the 
RFC is therefore considered key for comparing both 
techniques.

The application of RFC for modelling seismic vulner-
ability-related phenomena has some relevant prece-
dents, such as the mapping based on damages after 
seismic events (Han et al. 2020), post-earthquake recon-
naissance for reinforced concrete structures (Midwinter, 
Yeum, and Kim 2022) and structural elements damage 
models (Lei et al. 2020).

3.3.6. Training the model, making predictions and 
evaluating the model
The model herein presented was trained using the 
hyperparameters (parameters whose values control the 
learning process and determine the values of model 
parameters that a learning algorithm ends up learning) 
setup summarized in Table 10. No relevant character-
istics of the dataset seemed to be critical for rejecting the 
default settings, except the number of trees, which was 
set according to the observations of (Oshiro, Perez, and 
Baranauskas 2012). Given the nature of this classifica-
tion problem (a relatively simple one), no further 
adjustments were needed.

A series of predicted classifications were obtained by 
using the data reserved for testing the model (34 ran-
dom samples), integrating a new data frame that 
allowed the comparison between the real outcomes 
(the DK, 2017 levels of damage) against those predicted 
by the model (Figure 16).

This process allowed us to understand how represen-
tative and effective the model is. The metrics for evalu-
ating the model were obtained by using the classification 
report embedded in the Sklearn package (see Table 11). 
This report offers three main metrics for each class:

(a) Precision. The ratio of successful identifications 
of a class divided by the number of times that the 
label was predicted in the model. This is the ratio 
of the true positives divided by the sum of true 
and false positives.

(b) Recall. The ratio of successful identifications of a 
class divided by the number of samples that 

Table 9. Summary of samples in which the observed and estimated damages are overlapped.

Municipality Successful Failed the criteria Success ratio (%)

Jojutla 50 5 90.91%
Tepoztlán 34 3 91.89%

Tlayacapan 32 1 96.97%
Yautepec 40 2 95.24%

Total 156 11 93.41%

18 R. RAMÍREZ EUDAVE ET AL.



belong to that class. This ratio expresses how 
many relevant identifications were retrieved.

(c) F1-score. Represent the harmonic mean between 
precision and recall, representing the perfor-
mance of the model.

An explicit representation of the results is the confusion 
matrix, in which the correspondence between the true 
and predicted labels (i.e., discrete levels of damage) is 
shown in Figure 17. This confusion matrix exhibits how 
most of the classes were correctly identified by the 
model, but there is a lack of representativeness in iden-
tifying the highest level of damage DK ¼ 5. This phe-
nomenon can be easily associated with the relatively 
small number of samples used for training purposes in 
this class (4 out of 167, 2.4%; however, it appears only 
once in the test split of the sample) since this is the most 
infrequent class, it is expected to be less likely recog-
nized by the algorithm.

It is possible to retrieve which is the relative impact 
that every parameter has in the classification process. At 
this point, it becomes convenient to be aware of the 
limits imposed due to the variability throughout the 
sample, i.e., the impact of a determined parameter will 
be smaller if it does not present relevant variations for 
differencing samples. The sample herein studied pre-
sented relatively small variations in some parameters 
given the typological coherence amongst the structures 
(Figure 18). The feature importance (see Figure 19) of 
the model reflects this phenomenon.

The model for this sample exhibits relatively low 
importance for certain parameters, such as BP3 
(Conventional strength), BP5 (Number of floors) 
and BP14 (Non-structural elements), which is con-
sistent with the typology observed in situ: one-storey 
constructions with no remarkable features in the 
facades and with similar plan distributions. On the 
other hand, parameters such as BP2 (Quality of the 
resisting system), BP7 (Aggregate position) and BP13 

(Conservation state) are critical for assigning a vul-
nerability class. Regardless of the physical meaning 
of these parameters, the algorithm identifies that 
BP2, BP7, and BP13 seem to have a more consistent 
effect in the outcomes, and it determines that these 
parameters are strongly conditioning the results. It is 
convenient to recall that, therefore, this weight dis-
tribution can be seriously limited when analysing a 
very different typology that would become an “out-
lier”, such as a building with more than three 
storeys.

The most obvious way for improving this approach is to 
enlarge the dataset to enhance the representativeness of 
extreme values. The generation of synthetic data under 
the assumption of normality was considered. To check 
the suitability of this approach (e.g., by using Montecarlo 
or Latin Hypercube sampling methods), the normality of 
the distribution of the observed level of damage was 
assessed by the means of the Kolmogorov–Smirnov test. 
The normality hypothesis H0 is not supported at a signifi-
cance level α ¼ 0:05, obtaining P-values<0.00001 and, 
therefore, this experiment is not suitable based on the 
existing evidence and the dataset was not enlarged. This 
procedure would have been useful for enlarging the dataset 
without losing its representativeness and having a larger 
number of extreme observations. It is important to keep in 
mind that larger datasets obtained in situ may provide 
evidence for finding representative statistical distributions 
for the levels of damage.

4. Final remarks and future work

This work presents a series of processes based on the 
vulnerability assessment of structures damaged as a 
consequence of the 2017 earthquakes in the centre of 
Mexico. A total of 167 constructions were surveyed to 
obtain a set of 14 parameters that allowed the estimation 
of vulnerability index and consequently the 

Figure 14. Flow diagram of the training and prediction processes.
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determination of mean damage grade when subjected to 
a determined intensity earthquake.

The sample herein presented corresponds to a typo-
logically homogeneous housing dataset distributed 
throughout four municipalities of the State of Morelos, 
emphasizing the predominance of adobe-based struc-
tures. All the constructions were surveyed in situ, 
accomplishing a database containing the pre-seismic 
characteristics of the buildings. This process was possi-
ble with the support of the National Catalogue of 
Historical Monuments, interviews with the building 
owners and users and visual in-situ inspections. The 
level of physical damage that every construction evi-
denced/experienced was compared with the predicted 
level of damage according to the VIM methodology.

A first attempt consisted of the direct application of 
the method, neglecting some sources of uncertainty 
identified during the surveying campaign (incomplete-
ness of information, the impossibility of accessing all 
constructions, etc.), resulting in a 62.28% of acceptable 
agreement (i.e., the estimated damage was comprised 
with an interval of the real/observed damage).

A second exercise was developed by enriching the 
method with the addition of a quality check in which the 
uncertainty for assigning a certain vulnerability class is 
accepted and integrated for obtaining an alternative, 
more conservative, level of physical damage. This process 

led to having two values (that of the first attempt and a 
conservative one) for constituting a range for the mean 
damage grade. This approach was revealed to have a better 
fitting with the field observations since 93.41% of the pre-
dicted and real/observed defined intervals are overlapped.

A third approach was performed by the means of 
Machine Learning techniques, specifically by using a 
Random Forest Classification algorithm. This algorithm 
was trained for solving the categorization of the level of 
damage by establishing other relations among the para-
meters rather than the one used for the analytical 
approach. Despite the overall performance of the 
model, it is considered satisfactory (with an accuracy 
score of 94.12%), since these results are limited to the 
size and typology of the sample. The analysis of the 
proportional importance of the parameters demon-
strates that the trained model would not be suitable for 
assessing constructions with a very different typology. 
Furthermore, the number of samples, specifically in 
what concerns the relatively small number of samples 
for the extremes of the levels of damage (no damage at 
all or total collapse, corresponding to Dk = 0 and Dk = 5 
respectively) difficult to have a good representation of 
these constructions. Since the normal Gaussian distri-
bution of damage throughout the sample cannot be 
statistically sustained, some approaches for generating 
synthetic data are not suitable. Therefore, the size of the 

Figure 15. Schematization of the bagging process.

Table 10. Hyperparameter setup for training the RFC algorithm.

Hyperparameter Description Value

max_depth The longest path between the root node and the leaf node “None” (unlimited)
min_sample_split The minimum number of observations in any node to split it. Default (2)

max_leaf_nodes Limits the growth of the tree. “None” (unlimited)
min_samples_leaf Minimum of samples present after splitting a node. Default (1)

n_estimators Number of trees in the forest. 128
max_features Maximum number of features provided to each tree “Auto”

bootstrap Data point sampling method. When set as “true”, there is a replacement. True
criterion The method used for measuring the quality of a split. Gini
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sample is considered a limitation for obtaining more 
conclusions than the ones presented in this work. A 
necessary further development in this sense is the crea-
tion of larger datasets (based on precedent seismic 
events) that can be used for finding typical statistical 
distributions as well.

The assumption of using this algorithm as a suitable tool 
for similar problems is sustained given the positive results 

of classifying the buildings into five damage classes. The 
evidence of typological fitting of the model is consistent 
with some empirical observations on site and offers an 
interesting field for enhancing the capabilities of the VIM 
approach by adjusting the relative weight of the parameters 
for diverse typologies in which there are enough data for 
training the model. In other words, it is possible to take 
advantage of the vulnerability survey as a Handcrafted 

Figure 16. Schematization of the evaluation of the model.

Table 11. Classification report.

Class (DK ) Precision Recall F1 score Samples

0 1 1 1 3
1 1 1 1 8

2 1 1 1 4
3 0.92 1 0.96 12

4 0.83 0.83 0.83 6
5 0 0 0 1

Macro average 0.79 0.81 0.80 34
Weighted average 0.91 0.94 0.93 34

Figure 17. Confusion matrix. True values correspond to observed levels of damage.
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Feature Extraction base for developing straightforward 
models under the basis of regional and/or typological sets.

The implementation process presented and discussed in 
this article prove that the weights originally assigned to the 
VIM parameters can be adjusted to obtain a better fit (for 
better representing) to the common vernacular typology 
found in Morelos. Based on this observation, it is thus 
possible to affirm that this same process can be applied to 

develop customized models for locally built environments. 
The existence of information regarding previous seismic 
events (characterization of the constructions, levels of 
damage, etc.) can be used to train this ML algorithm and 
predict the effects that future seismic events may have on 
specific buildings typologies.

The tools developed for this experimental program 
(namely those related to data acquisition and management) 
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Figure 18. Vulnerability class distribution per parameter.

Figure 19. Relative importance by feature according to the RFC model.
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make possible the systematization and analysis of existing 
and new data within the workflow herein presented.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was partly financed by FCT/MCTES through 
national funds (PIDDAC) under the R&D Unit Institute for 
Sustainability and Innovation in Structural Engineering 
(ISISE), under reference UIDB/04029/2020. This research 
was funded by the Portuguese Foundation for Science and 
Technology (FCT) through grant number PD/BD/150385/ 
2019. The field campaigns in the State of Morelos were 
financed by the Instituto de Ingeniería – Universidad 
Nacional Autónoma de México (Institute of Engineering – 
National Autonomous University of Mexico) through the 
project R562.

ORCID

Rafael Ramírez Eudave http://orcid.org/0000-0003-0733- 
6685
Tiago Miguel Ferreira http://orcid.org/0000-0001-6454- 
7927
Romeu Vicente http://orcid.org/0000-0002-5456-1642
Paulo B. Lourenco http://orcid.org/0000-0001-8459-0199
Fernando Peña http://orcid.org/0000-0002-0385-2941

References

Alberto, Y., M. Otsubo, H. Kyokawa, T. Kiyota, and I. 
Towhata. 2018. Reconnaissance of the 2017 Puebla, 
Mexico earthquake. Soils and Foundations 58 (5):1073–92. 
doi:10.1016/j.sandf.2018.06.007.

Alvarado, R., and C. C. 2015. Conservación del patrimonio 
cultural en el Pueblo Mágico de Tepoztlán, Morelos (2001- 
2012). Territorios 16 (32):15–33. doi:10.12804/territ32. 
2015.01.

Buendía, L., and E. Reinoso. 2019. Análisis DE los DAÑOS en 
viviendas Y edificios comerciales durante LA ocurrencia del 
sismo del 19 DE septiembre DE 2017. Revista de Ingeniería 
Sísmica 101 (101):19–35. doi:10.18867/ris.101.508.

Buitinck, L., G. Louppe, M. Blondel, F. Pedregosa, A. 
Mueller, O. Grisel, V. Niculae, P. Prettenhofer, A. 
Gramfort, J. Grobler, et al. 2013. API design for machine 
learning software: Experiences from the scikit-learn pro-
ject 1–15.

Caprano, S., S. Ortiz, and R. Valencia. 2018. Los efectos 
económicos de los sismos de septiembre. Revista 
Economía Informa 408 (Enero–febrero):16–33.

Centre Europèen de Géodynamique et de Séismologie 1998. 
European macroseismic scale 1998. Cahiers Du Centre 
Européen de Géodynamique et de Séismologie 15: 99. 
doi:10.2312/EMS-98.full.en.

Dash, T., S. Chitlangia, A. Ahuja, and A. Srinivasan. 2022. A 
review of some techniques for inclusion of domain- 

knowledge into deep neural networks. Scientific Reports 
12 (1):1040. doi:10.1038/s41598-021-04590-0.

de la Republica, S. 2017. Extensión territorial de la tragedia. 
Notas Estrategicas 1 (17):1–8.

Dobias, M., M. Sab Varga, and P. Petrik. 2021. 
Lutraconsulting/Mergin: 2021.6.1. Zenodo. doi:10.5281/ 
zenodo.6376045.

Ferreira, T. M., R. Maio, and R. Vicente. 2017. Analysis of the 
impact of large scale seismic retrofitting strategies through 
the application of a vulnerability-based approach on tradi-
tional masonry buildings. Earthquake Engineering and 
Engineering Vibration 16 (2):329–48. doi:10.1007/s11803- 
017-0385-x.

Galvis, F., E. Miranda, P. Heresi, H. Davalos, and J. R. Silos. 
2017. Preliminary statistics of collapsed buildings in 
Mexico city in the september 19, 2017 puebla-morelos 
earthquake. John A. Blume Earthquake Engineering 
Center, Stanford University (Issue October).

Geodetic Facility for the Advancement of Geoscience. (2023). 
September 19, 2017 M7.1 Earthquake 5km ENE of Raboso, 
Mexico Data Event Response. 2017 UNAVCO Highlights. 
https://www.unavco.org/highlights/2017/2017.html 

GNDT. 1993. Manuale Per Il Rilevamento Della Vulnerabilità 
Sismica Degli Edifici.

Gobierno del Distrito Federal. 2017. Decreto por el que se 
reforman y adicionan diversas disposiciones del 
Reglamento de Construcciones del Distrito Federal. 
Gaceta Oficial de La Ciudad de México 188: 2–701.

Godínez, E., A. Tena, H. Archundia, A. Gómez, R. Ruíz, and J. 
Escamilla. 2019. Structural damage in housing and apart-
ment buildings located in the Southeast of Mexico due to 
the september sismo de tehuantepec del 7 de septiembre. 
Revista Internacional de Ingeniería de Estructuras 24 
(2):223–58.

Guerrero Baca, L. F. 2019. Comportamiento sísmico de 
viviendas tradicionales de adobe, situadas en las faldas del 
volcán Popocatépetl, México. Gremium 6 (11):104–17. 
doi:10.56039/rgn11a11.

Guyon, I., and A. Elisseefl. 2006. An introduction to feature 
extraction. Studies in Fuzziness and Soft Computing 207:1– 
25. doi:10.1007/978-3-540-35488-8_1.

Han, J., J. Kim, S. Park, S. Son, and M. Ryu. 2020. Seismic 
vulnerability assessment and mapping of gyeongju, 
South Korea using frequency ratio, decision tree, and 
random forest. Sustainability 12 (18):7787. doi:10.3390/ 
su12187787.

INAH. 2019. Catálogo Nacional de Monumentos Históricos 
Inmuebles. Centro de Documentación de La CNMH. 
https://catalogonacionalmhi.inah.gob.mx/consultaPublica .

INEGI - Instituto Nacional de Estadística y GeografíaEncuesta 
Intercensal 2015.Subsistema de Información Demográfica y 
Social.2023.https://www.inegi.org.mx/programas/intercen 
sal/2015/#Microdatos .

Khurana, U., H. Samulowitz, and D. Turaga. 2018. Feature 
engineering for predictive modeling using reinforcement 
learning. Proceedings of the AAAI Conference on Artificial 
Intelligence 32 (1). doi:10.1609/aaai.v32i1.11678.

Lei, X., L. Sun, Y. Xia, and T. He. 2020. Vibration-based 
seismic damage states evaluation for regional concrete 
beam bridges using random forest method. Sustainability 
12 (12):5106. doi:10.3390/su12125106.

INTERNATIONAL JOURNAL OF ARCHITECTURAL HERITAGE 23

https://doi.org/10.1016/j.sandf.2018.06.007
https://doi.org/10.12804/territ32.2015.01
https://doi.org/10.12804/territ32.2015.01
https://doi.org/10.18867/ris.101.508
https://doi.org/10.2312/EMS-98.full.en
https://doi.org/10.1038/s41598-021-04590-0
https://doi.org/10.5281/zenodo.6376045
https://doi.org/10.5281/zenodo.6376045
https://doi.org/10.1007/s11803-017-0385-x
https://doi.org/10.1007/s11803-017-0385-x
https://www.unavco.org/highlights/2017/2017.html
https://doi.org/10.56039/rgn11a11
https://doi.org/10.1007/978-3-540-35488-8_1
https://doi.org/10.3390/su12187787
https://doi.org/10.3390/su12187787
https://catalogonacionalmhi.inah.gob.mx/consultaPublica
https://www.inegi.org.mx/programas/intercensal/2015/#Microdatos
https://www.inegi.org.mx/programas/intercensal/2015/#Microdatos
https://doi.org/10.1609/aaai.v32i1.11678
https://doi.org/10.3390/su12125106


Midwinter, M., C. M. Yeum, and E. Kim. 2022. Explainable 
machine learning for seismic vulnerability assessment of low- 
rise reinforced concrete buildings 371–79. doi: 10.1007/978- 
981-19-0656-5_31.

Mishra, M. 2021. Machine learning techniques for structural 
health monitoring of heritage buildings: A state-of-the-art 
review and case studies. Journal of Cultural Heritage 
47:227–45. doi:10.1016/j.culher.2020.09.005.

Ortiz, R. M., R. F. Reséndiz, C. M. J. Ortiz, R. M. Martínez, C. 
M. Ortiz, and C. A. G. Bazán. 2018. El sismo del 19 de 
septiembre. ¿Cómo enfrentamos la crisis en Morelos, 
México? Cadernos Metrópole 20 (42):325–45. doi:10.1590/ 
2236-9996.2018-4202.

Oshiro, T. M., P. S. Perez, and J. A. Baranauskas. 2012. How 
many trees in a random forest? 154–68. doi: 10.1007/978-3- 
642-31537-4_13.

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, 
O. Grisel, M. Blondel, A. Müller, J. Nothman, G. Louppe, et al. 
2012. Scikit-learn: Machine Learning in Python. Journal of 
Machine Learning Research 12:2825–30.

Peppoloni, S., and G. Di Capua. 2021. Current definition and 
vision of geoethics. In Geo-societal Narratives, 17–28. Springer 
International Publishing. doi:10.1007/978-3-030-79028-8_2.

QGIS Development Team. (2021). QGIS Geographic 
Information System. https://www.qgis.org 

Quintana Leonardo, M., and S. L. F. Guerrero Baca Luis. 2010. 
La casa tradicional de adobe en Yecapixtla, México: Un 
análisis tipológico. Arquitectura Construida En Tierra, 
Tradición e Innovación. Congresos de Arquitectura de 
Tierra En Cuenca de Campos 2004/2009:155–66.

Ramirez Eudave, R. 2022. Seismic vulnerability calculator and 
database (software). 2.0. doi:10.5281/zenodo.7180849.

Ramírez Eudave, R., and T. M. Ferreira. 2021. On the potential of 
using the Mexican national catalogue of historical monuments 
for assessing the seismic vulnerability of existing buildings: A 
proof-of-concept study. Bulletin of Earthquake Engineering 19 
(12):4945–78. doi:10.1007/s10518-021-01154-5.

Ramírez Eudave, R., T. M. Ferreira, and R. Vicente. 2022. 
Parameter-based seismic vulnerability assessment of 
Mexican historical buildings: Insights, suitability, and 
uncertainty treatment. International Journal of Disaster 
Risk Reduction 74:102909. doi:10.1016/j.ijdrr.2022.102909.

Ramirez Eudave, R., D. Rodrigues, T. M. Ferreira, and R. 
Vicente. 2023. Implementing Open-Source Information 
Systems for Assessing and Managing the Seismic 
Vulnerability of Historical Constructions. Buildings, MDPI 
13 (2):540. doi:10.3390/buildings13020540.

Rosti, A., M. Rota, and A. Penna. 2021. Empirical fragility curves 
for Italian URM buildings. Bulletin of Earthquake Engineering 
19 (8):3057–76. doi:10.1007/s10518-020-00845-9.

Ruggieri, S., M. Calò, A. Cardellicchio, and G. Uva. 2022. 
Analytical-mechanical based framework for seismic overall 
fragility analysis of existing RC buildings in town 

compartments. Bulletin of Earthquake Engineering 20 
(15):8179–216. doi:10.1007/s10518-022-01516-7.

Ruggieri, S., A. Cardellicchio, V. Leggieri, and G. Uva. 2021. 
Machine-learning based vulnerability analysis of existing 
buildings. Automation in Construction 132:103936. doi:10. 
1016/j.autcon.2021.103936.

Sahakian, V. J., D. Melgar, L. Quintanar, L. Ramírez-guzmán, 
X. Pérez-campos, and A. Baltay. 2018. Ground motions 
from the 7 and 19 September 2017 Tehuantepec and 
Puebla-Morelos, Mexico, Earthquakes. Bulletin of the 
Seismological Society of America 108 (6):3300–12. doi:10. 
1785/0120180108.

Salazar, L. G., and T. M. Ferreira. 2020. Seismic vulnerability 
assessment of historic constructions in the downtown of 
Mexico City. Sustainability 12 (3):1276. doi:10.3390/ 
su12031276.

Sánchez Calvillo, A., E. M. Alonso Guzmán, and M. D. C. 
López Núñez. 2021. Vulnerabilidad sísmica y la pérdida de 
la vivienda de adobe en Jojutla, Morelos, México, tras los 
sismos de 2017. Vivienda y Comunidades Sustentables 10 
(10):9–29. doi:10.32870/rvcs.v2i10.162.

UNESCO. (2016). The HUL Guidebook: Managing heritage 
in dynamic and contantly changing urban environments. 
The 15th World Conference of the League of Historical 
Cities, 59. http://historicurbanlandscape.com/themes/196/ 
userfiles/download/2016/6/7/wirey5prpznidqx.pdf 

UNISDR - United Nations Office for Disaster Risk Reduction. 
(2017). GAR Atlas: Unveiling Global Disaster Risk 
(UNISDR - United Nations Office for Disaster Risk 
Reduction (ed.); 1st ed.). Imprimerie Gonnet. https:// 
www.preventionweb.net/files/53086_garatlaslr2.pdf 

United Nation. (2015). General Assembly: resolution adopted 
by the general assembly on 3 june 2015. 2015 Third UN 
World Conference on Disaster Risk Reduction (WCDRR), 
08955(June), 1–24.

United Nations International Strategy for Disaster Risk 
Reduction. 2009. Terminology on disaster risk reduction. 
doi:10.7591/9781501701498-008.

USGS. (2017). M 7.1 - 1km E of Ayutla, Mexico. (Last revised: 
February/2020). Earthquake Hazards Program. https:// 
earthquake.usgs.gov/earthquakes/eventpage/us2000ar20/ 
map?historic-seismicity=true&shakemap-intensity=false 

Vadyala, S. R., S. N. Betgeri, J. C. Matthews, and E. Matthews. 
2022. A review of physics-based machine learning in civil 
engineering. Results in Engineering 13:100316. doi:10.1016/ 
j.rineng.2021.100316.

Zatarain, K. (2017). Peña Nieto afirma erróneamente que 
“la caída de viviendas [tras el sismo en Oaxaca] se 
debió a que están hechas de adobe.” ArchDaily 
México. https://www.archdaily.mx/mx/880216/pena- 
nieto-afirma-erroneamente-que-la-caida-de-viviendas- 
tras-el-sismo-en-oaxaca-se-debio-a-que-estan-hechas- 
de-adobe

24 R. RAMÍREZ EUDAVE ET AL.

https://doi.org/10.1007/978-981-19-0656-5_31
https://doi.org/10.1007/978-981-19-0656-5_31
https://doi.org/10.1016/j.culher.2020.09.005
https://doi.org/10.1590/2236-9996.2018-4202
https://doi.org/10.1590/2236-9996.2018-4202
https://doi.org/10.1007/978-3-642-31537-4_13
https://doi.org/10.1007/978-3-642-31537-4_13
https://doi.org/10.1007/978-3-030-79028-8_2
https://www.qgis.org
https://doi.org/10.5281/zenodo.7180849
https://doi.org/10.1007/s10518-021-01154-5
https://doi.org/10.1016/j.ijdrr.2022.102909
https://doi.org/10.3390/buildings13020540
https://doi.org/10.1007/s10518-020-00845-9
https://doi.org/10.1007/s10518-022-01516-7
https://doi.org/10.1016/j.autcon.2021.103936
https://doi.org/10.1016/j.autcon.2021.103936
https://doi.org/10.1785/0120180108
https://doi.org/10.1785/0120180108
https://doi.org/10.3390/su12031276
https://doi.org/10.3390/su12031276
https://doi.org/10.32870/rvcs.v2i10.162
http://historicurbanlandscape.com/themes/196/userfiles/download/2016/6/7/wirey5prpznidqx.pdf
http://historicurbanlandscape.com/themes/196/userfiles/download/2016/6/7/wirey5prpznidqx.pdf
https://www.preventionweb.net/files/53086_garatlaslr2.pdf
https://www.preventionweb.net/files/53086_garatlaslr2.pdf
https://doi.org/10.7591/9781501701498-008
https://earthquake.usgs.gov/earthquakes/eventpage/us2000ar20/map?historic-seismicity=true%26shakemap-intensity=false
https://earthquake.usgs.gov/earthquakes/eventpage/us2000ar20/map?historic-seismicity=true%26shakemap-intensity=false
https://earthquake.usgs.gov/earthquakes/eventpage/us2000ar20/map?historic-seismicity=true%26shakemap-intensity=false
https://doi.org/10.1016/j.rineng.2021.100316
https://doi.org/10.1016/j.rineng.2021.100316
https://www.archdaily.mx/mx/880216/pena-nieto-afirma-erroneamente-que-la-caida-de-viviendas-tras-el-sismo-en-oaxaca-se-debio-a-que-estan-hechas-de-adobe
https://www.archdaily.mx/mx/880216/pena-nieto-afirma-erroneamente-que-la-caida-de-viviendas-tras-el-sismo-en-oaxaca-se-debio-a-que-estan-hechas-de-adobe
https://www.archdaily.mx/mx/880216/pena-nieto-afirma-erroneamente-que-la-caida-de-viviendas-tras-el-sismo-en-oaxaca-se-debio-a-que-estan-hechas-de-adobe
https://www.archdaily.mx/mx/880216/pena-nieto-afirma-erroneamente-que-la-caida-de-viviendas-tras-el-sismo-en-oaxaca-se-debio-a-que-estan-hechas-de-adobe

	Parametric and Machine Learning-Based Analysis of the Seismic Vulnerability of Adobe Historical Buildings Damaged After the September 2017 Mexico Earthquakes
	Abstract
	1. Introduction
	1.1. The earthquakes of September 2017 in Mexico
	1.2. Impact and loss of historical buildings
	1.3. Outline of this study

	2. Materials and methods
	2.1. Vulnerability Index Method (VIM): parameters and procedure
	2.2. Data management and acquisition framework
	2.3. Characterization of the sample and field surveying

	3. Results and discussion
	3.1. Simple parameter-based analysis
	3.2. The role of uncertainty
	3.3. Machine learning approach
	3.3.1. Machine learning principles
	3.3.2. Implementation
	3.3.3. Importing data
	3.3.4. Cleaning and splitting data
	3.3.5. Creating a model (algorithm selection)
	3.3.6. Training the model, making predictions and evaluating the model


	4. Final remarks and future work
	Disclosure statement
	Funding
	ORCID
	References


