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A B S T R A C T

There has been an increasing interest in translating artificial intelligence (AI) research into clinically-validated
applications to improve the performance, capacity, and efficacy of healthcare services. Despite substantial
research worldwide, very few AI-based applications have successfully made it to clinics. Key barriers to
the widespread adoption of clinically validated AI applications include non-standardized medical records,
limited availability of curated datasets, and stringent legal/ethical requirements to preserve patients’ privacy.
Therefore, there is a pressing need to improvise new data-sharing methods in the age of AI that preserve
patient privacy while developing AI-based healthcare applications. In the literature, significant attention
has been devoted to developing privacy-preserving techniques and overcoming the issues hampering AI
adoption in an actual clinical environment. To this end, this study summarizes the state-of-the-art approaches
for preserving privacy in AI-based healthcare applications. Prominent privacy-preserving techniques such
as Federated Learning and Hybrid Techniques are elaborated along with potential privacy attacks, security
challenges, and future directions.
1. Introduction

The term artificial intelligence (AI), first coined by John McCarthy
in 1956, refers to the capability of computers to perform tasks similar
to those performed by humans. In other words, AI simulates human
intellect through computer programs mimicking human actions artifi-
cially. However, AI requires lots of data and computing to realize its full
potential. While computing power has undoubtedly aided in the revival
of AI, data has enabled AI to achieve all of its current accomplishments.
In recent years, AI-empowered software solutions have seen widespread
adoption. Notably, AI is becoming a de facto standard for processing
large amounts of data to support complex decisions, which is not
just difficult but rather impossible for humans in certain fields. The
amount of data created today significantly outpaces humans’ capacity
to consume, comprehend, and use it to inform non-trivial decisions in
a timely manner. Henceforth, AI has many applications across different
fields. It is hard to find one industry that will not benefit from this great
innovation of our times [1].

In healthcare, AI is unlocking new possibilities by advancing
medicine in entirely unimaginable ways and solving some of the grand
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global healthcare challenges. For example, AlphaFold, a recent AI-
powered protein structure prediction algorithm solved the protein
folding problem that hampered crucial advancements in biology and
medicine for the past 50 years [2]. Likewise, innovations like In Silico
Trailing allows pharmaceutical companies to simulate clinical trials
for drug discovery on wider population models with greater control
and fewer resource constraints to create great drug products.1 There
are enormous applications of AI in healthcare. Fig. 1 presents major
healthcare specialities where researchers have been attempting to apply
AI-based digital solutions. On the downside, there are ethical concerns
about the potential misuse of these innovations. It took six hours for
drug discovery AI to identify 40,000 potentially lethal molecules and
most potent nerve agents [3]. Regardless, the transformations AI could
bring to healthcare are unanimously agreed upon, ranging from ad-
vancing rapid diagnosis, personalizing care, and reducing unnecessary
outpatient appointments that could save billions to the economy [4].

AI algorithms, specifically created through machine learning (ML),
require large amounts of high-quality data to learn to perform pattern-
matching tasks at human-level performance. The fact that data drives
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Fig. 1. Illustration of artificial intelligence technology landscape in healthcare.
these algorithms creates enormous concerns regarding data privacy,
especially, when data required for AI training encode sensitive and
confidential patient information. Any leakage or misuse of data of any
sort could result in massive damage to patients, healthcare providers,
and software vendors. Most healthcare datasets predominantly contain
patient information and there are stringent regulations such as Euro-
pean Union General Data Protection Regulation (GDPR) which shall be
respected at all costs while working with these datasets. Google recently
faced a class-action style lawsuit for breaching UK data protection
law for its AI solution that was created to identify patients at risk of
acute kidney injury. There is a huge drive in the healthcare community
to revitalize prevailing data management practices and create novel
methods for healthcare data to promote AI research while preserving
data privacy. An attack on healthcare data sources or AI models that
allows the opponent to obtain sensitive and confidential data such as
location, health records, or identity information, is highly unwanted
and is a significant concern for the users’ privacy.

To accrue the potential of AI in healthcare, notwithstanding its
human surpassing performance, data privacy and security concerns
shall be fully addressed [5]. Many recent studies have highlighted
privacy issues in deploying AI-based systems, especially in healthcare.
For instance, Hall et al. [6] noted that providers and patients would
lose faith in telehealth solutions if the underlying data and technologies
do not have proper security and privacy preservation. Tom et al. [7]
explained the need for data protection in the age of AI-enabled ophthal-
mology. The authors focused on the balance between innovation and
privacy. Mamdouh et al. [8] highlighted the privacy concerns related
to the internet of things (IoT), primarily focusing on how privacy will
be affected by the use of IoT in healthcare. Similarly, the privacy and
security aspects of medical IoTs have been analyzed in [9].

In this paper, we present a comprehensive survey of existing litera-
ture on data privacy for developing healthcare AI systems. We provide a
detailed overview of privacy challenges data owners face while sharing
datasets with researchers to allow translational AI research in more
secure ways. We discuss different attack types and ways they can
compromise user privacy. In addition, we also elaborate on potential
solutions to overcome these privacy issues. The salient contributions of
this paper are the following:

(1) We present a diverse overview of privacy concerns associated
with using AI when they are used in developing healthcare
applications.

(2) We develop a pipeline of machine learning (ML) techniques for
healthcare and show how they can be attacked at each step to
compromise the privacy of the developed system.
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(3) We present a taxonomy of privacy preservation techniques that
can be used to withstand privacy threats.

(4) Finally, we discuss the limitations and pitfalls of existing
privacy-preserving techniques and highlight different open re-
search questions that require further development.

Related Surveys: Torkzadehmahani et al. [14] provided a survey on
privacy-preserving AI and presented its target application in
biomedicine. The authors described different preserving techniques in
detail and also highlighted their limitations. Kaissis et al. [13] have
provided an overview of different techniques to preserve and secure
the AI-based system targetting medical imaging and discussed future
aspects of medical imaging. Churi et al. [12] give a brief review on
privacy preservation in data publishing, focusing on the healthcare do-
main. Tanuwidjaja et al. [11] proposed a survey on deep learning (DL)
techniques for privacy preservation, their explanation, the challenges,
and the pros and cons of each technique. Abouelmehdi et al. [10]
presented a survey on security and privacy in extensive data health-
care. The authors described different privacy preservation techniques,
challenges, and privacy laws. In this paper, a comprehensive review
of privacy-preserving techniques for healthcare is presented. Table 1
provides a comprehensive comparison of this paper with the existing
survey and review articles.

Organization of this paper: Section 2 presents an overview of privacy
and AI, privacy and healthcare, and associated challenges. Section 3
provides a brief explanation of the types of attacks on ML and DL sys-
tems. Section 4 describes the different privacy-preserving techniques,
focusing on healthcare domain applications. Section 5 discusses the
limitation of using privacy-preserving techniques. Section 6 describes
the future direction in this domain. Finally, we conclude the paper in
Section 7.

2. Background

2.1. Historical perspective of privacy in medicine

The process of maintaining the security and confidentiality of pa-
tient records is known as medical privacy or health privacy. It involves
both the security of medical records and the confidentiality of con-
versations between healthcare professionals. The terms can also refer
to the physical privacy of patients from other patients and providers
while in a medical facility, and to modesty in medical settings. Modern
concerns include the degree of disclosure to insurance companies,
employers, and other third parties. Patient care management systems
(PCMS) and electronic health record (EHR) have brought about new
privacy concerns, which must be balanced with efforts to cut back on
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Table 1
Comparison of this paper with existing privacy-focused healthcare surveys.

Reference Year Scope Privacy attacks Privacy preserving techniques Challenges Future
directions

Insights
and
pitfalls

Applications Healthcare ML DL Data Model Cryptographic Non
cryptographic

Hybrid Federated
learning

[10] 2018 Big data
related

√ √

× × × ≈ × × ×
√

× ×

[11] 2019 All
√

×
√

× ×
√ √ √

× ×
√

×
[12] 2019 Data

publishing

√

≈ × × × × × × × × ≈ ×

[13] 2020 Medical
imaging

√ √

× ≈
√ √ √

×
√

× ≈ ×

[14] 2022 Biomedicine
√ √ √

× ×
√ √ √ √ √ √

×
This paper 2022 Healthcare

√ √ √ √ √ √ √ √ √ √ √ √

√

= discussed, × = not discussed, ≈ = partially discussed, ML = privacy preservation on ML algorithms, DL = privacy preservation on DL algorithms.
duplication of services and medical errors [15]. Many countries have
passed laws that aim to protect people’s privacy, including Australia,
Canada, Turkey, the United Kingdom, the United States, New Zealand,
and the Netherlands. Though many of these laws are more effective in
theory than in practice. The United States passed the Health Insurance
Portability and Accountability Act (HIPAA) in 1996 to strengthen the
law to protect healthcare facilities. Also in 2018, the GDPR replaced the
Data Protection Directive [16]. In 2012, the European Union (EU) Com-
mission proposed a European Data Protection Regulation to replace the
EU Data Protection Directive. The regulation permits EU residents to
ask search engines to delink their personal information from the results
of a search for their name [17]. On May 25, 2018, GDPR took effect in
the EU, and the European Economic Area (EEA), as data protection and
privacy regulation. It also applies to personal data transfers outside of
the EU and EEA [18–20].

2.2. AI and privacy

In the context of ML and big data, privacy refers to safeguarding
against adversarial attacks whose primary goal is to infer sensitive
information from the victim, resulting in inadvertent data leaking [5].
Big data has altered the digital world as its effects get more pervasive,
with a rising number of enterprises relying on big data analytics for the
fulfillment of their everyday operations. In the digital era, our capacity
to manage how our data is kept, updated, and shared between parties
is critical to our privacy. Over the past years, with the introduction of
powerful internet-based data mining tools, privacy has become a press-
ing social problem. Data privacy and control over personal information
are becoming increasingly crucial as a result of the big data explosion
and the AI age; the critical components of privacy protection and AI add
to the risks to individual privacy [21]. Advanced AI methods like DL
are naturally excellent at analyzing massive data sets, and it is probably
one of the most efficient ways to analyze large amounts of data in an
acceptable period [22].

2.2.1. Data exploitation
The term data exploitation can be defined as the illegal use of

individuals’ private data. Many consumer products, ranging from smart
home appliances to computer software, include features that make
them vulnerable to data mining empowered by AI models. The majority
of people are unaware of how much data their apps and devices gen-
erate, analyze, or trade, resulting in privacy violations. Despite these
concerns, recent years have witnessed increasing demand for remote
monitoring systems and applications like health-monitoring systems
that include different wearable devices being used for data collection
related to important medical parameters of individual health such as
blood pressure, glucose level, and heart rate, etc. As the demand and
dependence on digital technology are new and reliant in this modern
era, the possibility of data exploitation increases day by day, resulting
in the compromise of the user’s privacy [23].
3

2.2.2. Identification and tracking
In the context of privacy, the terms identification and tracking

refer to the uninformed and illegal use of users’ private data for
identification and tracking purposes. Many consumer products, from
computer software to offices, schools, and home appliances, include
AI-based features that make them susceptible to privacy concerns and
result in the breach of customers’ privacy. Attackers can transform
data into a weapon by using AI as a misinformation tool. Similarly,
in the case of surveillance, which is a binary term originating from
the French verb ‘‘to keep an eye on’’. The worst scenario, in this case,
is that the people using these devices themselves have no idea how
they are sharing their data without their explicit consent, ultimately
worsening privacy concerns. Sharing becomes a virtue with digital
technology. Simultaneously, governments and corporations have never
had a better capacity to monitor people’s behavior. Slick AI systems
rely on data, and the rise of authoritarianism throughout the world
implies that massive data collection might spell tragedy. Identification
management is critical for following and serving patients from the
minute they walk into a hospital, visit a general practitioner, or visit
a healthcare business. Accurate data on the patient is necessary at
all times through several applications. However, if this accurate and
sensitive data is breached or compromised by an adversary, it results
in a privacy violation.

2.2.3. Risks of biometric recognition
Biometrics are the individual personal characteristics that are re-

quired to be protected and remain confidential in biometric recogni-
tion systems. Nowadays, AI is getting increasingly competent at doing
voice [24] and face recognition [25], which are the two fundamental
means used for biometric recognition. Biometric information includes
a person’s face, fingerprints, voice, and iris. Because these criteria are
sensitive, no one is obligated to provide them, and no service can be
rejected for the same reason. Anonymity in public spaces can easily be
jeopardized by using these techniques. With these recognition systems,
law enforcement can easily find people without giving people a reason
to be suspicious. Voice recognition is frequently utilized in healthcare
because it allows patients to get care from the comfort of their own
homes, as chatbots, or conversational agents, are computer programs
that replicate human text or voice conversations. They are becoming
more common in a variety of industries, including healthcare. Chat-
bots have the potential to improve patient care by offering improved
accessibility, personalization, and efficiency [26]. In healthcare, there
are several advantages to employing voice recognition technology.
However, data required for the operation of such applications can
cause serious privacy-related issues. The sensitive data of such appli-
cations, if compromised, results in the exposure of complete biometric
information and the medical history of patients.
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2.2.4. Prediction and profiling
AI’s capabilities are not simply restricted to data or analysis. It may

also be used to sort, score, categorize, evaluate, and rank individuals
using the collected information as input to train AI models. This is
frequently done without the individual’s classified’s agreement, and
they frequently have little capacity to influence or contest the findings
of these assignments. China’s social score system exemplifies how such
data might be used to restrict access to finance, employment, housing,
and social services [27]. Electronic medical records and evidence-
based medicine are two trends that define our era of medicine for
patient profiling [28]. However, attacks on electronic health records
will result in privacy concerns. Using its advanced techniques, AI can
infer or anticipate sensitive information from non-sensitive data. For
example, keyboard typing patterns may be used to infer emotional
states including uneasiness, confidence, melancholy, and worry. Even
more worrisome, data such as activity logs, location data (COVID-19
trace and track apps are good examples), and similar metrics may
be used to identify a person’s political opinions, ethnic identification,
sexual orientation, and even overall health [29].

2.3. Healthcare data breaches

Data breach provides adversary access to confidential, sensitive,
or protected information of the user. Medical identity theft and even
medical data breaches are increasing at disproportionate rates as cy-
bercrime spreads across industries [30]. Even though all forms of
identity theft can cause significant financial harm, medical identity
theft can have a direct impact on the patient’s physical health. Even
in the healthcare professions, the influence of cybercrime has reached
extraordinary levels and is proving to be highly destructive. According
to the identity theft resource center, 51 healthcare/medical data breach
instances were reported in the first few months of 2014 [30].

Over the last few years, there have been a lot of reported privacy-
related issues, and data breaches are common in the healthcare sector.
The first case of an apparent data privacy breach was observed in
2005 [31]. From 2005 to 2019, the total healthcare data breached
was 249.9 million [31]. According to several practitioners, the overall
number of people affected by healthcare data breaches was 249.09
million from 2005 to 2019. In the previous five years alone, 157.40
million people have been affected [31]. The most damaging data breach
observed in the healthcare domain happened in January 2015, when
Anthem released the news that 78.8 million patients’ records had been
hacked, including their names, ID numbers, and health records [31,32].
Names, Social Security numbers, home locations, and birth dates were
the compassionate data stolen from the cyber attack. The victims were
mostly Anthem health plan customers, though some were not because
Anthem also handled the paperwork for several insurance carriers. In
2015, Excellus suffered a healthcare data breach that affected 10.5
million people [33]. In the same year, the University of California,
Los Angeles Health, and Premera Blue Cross [34]. In 2018, AccuDoc
Solutions was breached, and the personal healthcare information of 2.7
million people was affected. It is the largest breach in that year [35]. In
2019, American Medical Collection Agency [36], Domition Dental [37]
similarly faced data breach. In 2020, Florida Healthy Kids Corpora-
tion, 20/20 Eye Care Network, Inc, Forefront Dermatology, S.C. and
Eskenazi Health faced major healthcare breaches [38].

The online healthcare system faces a significant challenge in pre-
serving patient privacy [39]. The challenge is to provide digital services
protecting patients, Health Information Systems (HIS), and security
protection. The crucial and essential stored information in HIS is a
wellspring for data breaches and system hacking. The researchers are
working to propose a solution for making HIS secure and private [40].
At the same time, the quality of healthcare services has increased
with the EHR system. Automated, precise, and timely medical facilities
decrease the possibility of data breaches in EHRs. AI-based healthcare
systems can be made safe and private by making them hard to hack
while they are being developed. This can be done using different
techniques to protect privacy (which will be discussed later).
4

Fig. 2. Challenges towards building privacy-preserving AI in healthcare.

2.4. Challenges in ensuring privacy

Privacy preservation is a tedious task in itself. With the involvement
of AI algorithms, privacy-related concerns have increased (as different
privacy attacks can be realized on the AI models). A taxonomy of dif-
ferent challenges hindering efficient privacy preservation is presented
in Fig. 2.

2.4.1. Adaptability
The privacy-preserving machine learning (PPML) techniques are

application-specific, i.e., they are specifically designed for particular
ML algorithms and cannot be generalized for all methods. Since ML is
an emerging field, new algorithms are introduced every day. Therefore,
developers must develop novel methods for preserving privacy con-
cerning the new algorithms [41]. The distributed approach proposed
by Papernot et al. [42] or local differential privacy (LDP) is often
used as these approaches have been shown to work in the majority
of applications. Since 2017, Microsoft has used LDP to capture the
number of seconds a user has spent using a certain app on Windows 10.
Systems, Applications, and Products in Data Processing (SAP) use local
differential privacy to minimize the difficulty and expense of managing
a privacy budget [43]. Most privacy-protection techniques cannot be
directly adapted to the new algorithm because they are tailored to
specific use cases.

2.4.2. Scalability
A problem is also faced when a high-processing-power algorithm

is designed to ensure privacy, which gives a good result when tested
on small data but takes more time and power for large datasets. ML
is advancing towards low processing power, high communication cost,
and better speed. While the PPML techniques are obtruded, excessive
computational power and communication costs are massive limita-
tions in modern-day usage. For instance, the literature argues that
homomorphic encryption is computationally very expensive [44]. The
solution to this problem is distributed/parallel processing usage and
only transferring the most important information to the algorithm [45].
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2.4.3. Legibility
Informing data owners of their data collection is referred to as legi-

bility. The data owners should be provided with complete information
about where their data is held and how their privacy is protected.
Most companies, like Facebook, Google, and Amazon, employ differ-
ential privacy for personal data they store in their systems. It is still
challenging to assure users that their data privacy is preserved [45].

2.4.4. AI ethics
The ethical implications of AI-powered solutions are enormous.

With the broader adoption of AI across industries, algorithms make
crucial decisions affecting human lives. AI ethics advocates ensuring
algorithms are fair, unbiased, and transparent. There should be a mech-
anism to understand the algorithm’s underlying decision-making logic.
There is a trade-off between developing a highly accurate algorithm
and devising a less precise but ethically correct one. In most cases, the
confidentiality of patients’ data needs to be respected, which negatively
affects model performance as crucial patients’ sensitive data like genetic
biomarkers were not allowed to be utilized during the model train-
ing [13]. For a more detailed discussion on the related concepts, we
refer interested readers to a recent survey on ethical and trustworthy
ML for healthcare [46].

2.4.5. Authentication and access control
Accredited users can get the patient’s medical history or confiden-

tial information from the EHR stored inside the HIS. The security of
authentication data is of paramount importance. If an adversary gets
access to such information, the consequences could be severe, as it is
pretty challenging to identify such an unaccredited intruder [47].

2.4.6. Data integrity
The accuracy of data plays a crucial role in the delivery of reli-

able medical AI solutions. Unauthorized intruders holding such vital
information might change data, compromising data integrity. Data
poisoning usually produces these modifications, resulting in inaccurate
results. Thus, protecting data from any poisoning attacks is crucial but
a very challenging task [47].

2.4.7. Robustness
The protection of data from tampering is also paramount as models

use it to make crucial care decisions like differential diagnosis. An
intruder might change the contents of the data and might influence
the model’s output. A robust mechanism to secure healthcare data
should be built into the system to protect against similar attacks,
e.g., the EHR system [48]. The patient owns his medical record and
has complete access to it. For example, in a medical hospital, each
patient’s data is kept safe and only the special person assigned to the
task has access to the confidential information. The adversary attacks
the data and modifies the details of the patient, resulting in invalid
owner access. The challenge is to prevent the unauthorized data owner
from protecting the privacy of the data owner [49].

2.4.8. Tradeoff between privacy and utility
Assume that a healthcare system wants to disclose its data but first

has to de-identify it. They aim to disclose data that is as accurate as
possible (minimize utility loss) while also avoiding prejudice (minimize
fairness loss). We can observe that there can be variance in the trends
among both fairness and utility loss when we look at the outcomes from
both artificial and real-world data episodically. This variance might be
due to a variety of data properties. Therefore, it is very important to
develop methods to address the trade-off between privacy and utility.
5

It will eventually help to improve fairness and privacy [50].
3. Privacy attacks on ML

In this section, we will provide a comprehensive overview of dif-
ferent privacy attacks that can be realized on ML-based systems.
Specifically, we have categorized such attacks into two dimensions,
i.e., attacks on the data (i.e., data privacy) and attacks on the model
(i.e., model privacy). The ML pipeline is presented in Fig. 3 which
illustrates these attacks at different stages of the ML pipeline. The
complete definition of the attacks in ML is described in the section
below.

3.1. Data privacy

In healthcare, data privacy is of utmost importance, and in many
cases, the user wants to secure the data before developing or deploying
ML-based systems. Let us take an example of a medical study or a
model trained for hospital specialists from the EHR. If the data owner
and the calculation party are different, the private data would be sent
to the computation party over a secure channel. It would, however,
most likely be stored in its original form on the compute server,
meaning it would not be encrypted or altered. The confidential data
would be vulnerable to insider and outsider attacks, making this the
most severe threat. The privacy includes the features, membership, and
exact values of the data. The data privacy attack has three types: re-
identification, reconstruction attacks, and property inference attacks,
which are described next.

3.1.1. Re-identification/de-anonymization
A re-identification attack is the reverse of the de-identification

method. In this attack, the source is providing data, and the data
is identified. For example, attributes of heart disease are collected
using the records of different patients’ medical history if the attack
is performed on the results of this system in patients’ identification,
including their names and medical records.

3.1.2. Reconstruction attacks
A reconstruction attack is a privacy attack in which a significant

portion of the raw dataset is constructed again. Reconstruction is most
effortlessly perceived by considering the dataset as an assortment of
lines, one for every person. Assume that each column contains a signif-
icant amount of non-private recognizing data as well as a mysterious
piece, one for each individual [51]. For example, whether or not a
person has the gene for Alzheimer’s illness. The main target of the
reconstruction attack is to find the mysterious bits of all the people
in the dataset.

3.1.3. Property inference attacks
The capacity to separate dataset properties that were not explicitly

encoded as features or were not connected to the learning task is
called a property inference attack. The ratio of women and men in
the healthcare dataset is not the dataset’s attribute. Face recognition
using neural networks is a good example of a property inference attack.
For example, when the model was trained, the dataset did not include
any information about how many people wore glasses, which would be
excluded by the attacker.

3.2. Model privacy

In the ML model, privacy concerns include securing both the model
parameters and training algorithms. A standard ML model serves prac-
tice through cloud providers such as Google Cloud Platform, Microsoft
Azure, or Amazon SageMaker. Models, in that case, are deployed via the
ML API services, and users get charged per API usage. If their models
are revealed, they will suffer a significant loss. The attackers can target
the infrastructure where the model has been deployed or the model’s
parameters. Similarly, the other companies that are providing online
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Fig. 3. Pipeline of the privacy attacks in ML techniques.
services, if their model architecture or even parameters are revealed,
will suffer a great loss [52]. In the literature, the security and privacy-
related implications of cloud-hosted ML models have already been
studied and different types of attacks have been formulated [53]. This
raises the issue of model privacy for AI-based healthcare applications,
as patient privacy must not be compromised at any cost.

3.2.1. Model extraction attack
Model extraction is also known as black-box attacks, and the adver-

sary aims to reconstruct the model by extracting the information. The
substitute model is generated using this information, which performs
similarly to the original model under the attack. The substitute model’s
main task is to create a model that accurately matches the original
model during the testing phase. The data is taken from the input
distribution and during the learning process.

3.2.2. Membership inference attack
Shokri et al. [54] proposed a membership inference attack, in which

the attacker’s main aim is to determine if an input 𝑦 is part of the
training set or not. The episode is realized on the DL model trained in
the supervised learning strategy while assuming black-box settings. For
instance, recognizing a person’s participation in an emergency clinic’s
wellness examination training set reveals whether this individual was
previously a patient there or not. White-box attacks can also be a threat
if the attacker has access to the model’s parameters and gradients,
which will allow for a more constructive white-box inference attack
that will significantly reduce the accuracy.

3.2.3. Model inversion attack
In the model inversion attack, the attacker aims to construct training

data from the model predictions, exposing the privacy of the sensitive
records. For example, a malicious person tries to recover the secret
dataset used to train a supervised neural network in model inversion
attacks. If a model inversion attack works, it should produce samples
that are realistic and varied and that accurately describe each class in
the private dataset.

3.2.4. Shadow model attack
A shadow model attack is very similar to an inference model attack

and can be considered a sub-type of membership inference attack. In
this attack, the adversary attempts to learn the features and statistical
properties of the model using the shadow model (SM). SM imitates
the target model, but we know the training dataset in this case. The
adversary can target both the white or black-box attacks. Then the
training of the attack model is done on the input and output labels of
SM [54].
6

3.2.5. Adversarial ML attacks
In adversarial ML attacks, the trained ML/DL models are fed with

such samples that contain carefully crafted imperceptible adversarial
perturbations [53]. The key objective of such attacks is either to
mislead the model’s decisions or to achieve the intended outcomes. An
untargeted adversarial attack is the most generic type of attack where
the only objective is to cause the classifier to increase classification
error. On the other hand, the targeted adversarial attack is a more chal-
lenging attack in which the aim is to get an input sample misclassified
into the target class.

3.2.6. Membership memorization attack (MMA)
Song et al. [55] proposed a new attack on the models that memorize

a lot during their training. The MMA determines whether or not a
particular data record was included in the model’s training dataset.
When an opponent has complete knowledge of a record, discovering
that it was used to train a specific model indicates information leaking
through the model. It can, in rare situations, directly result in a data
breach.

3.2.7. Model-reuse attacks
Model-reuse attacks in which deliberately created primitive models

(‘‘adversarial models’’) infect host ML systems and cause them to fail in
a very predictable manner when targeted inputs (‘‘triggers’’) are used.
The system consists of a feature extractor and a classifier. The attacker
wants to implement the backdoor logic, so they create the malicious
feature extractors. In the model reuse attack, the attacker has trigger
input and one of the target classes, and the extractor does not know the
classifier or tuning part.

3.3. Overview of privacy attacks in healthcare

In the literature, different types of privacy attacks have been real-
ized on the AI models trained using health data. For instance, Alam
et al. [56] proposed a person re-identification attack that is the most
concerning issue in publicly shared data by HIPPA. The author uses
temporal and spatial information separately and then uses that informa-
tion to identify the person using the designed framework. The proposed
framework uses the Multi-Modal Siamese Convolutional Neural Net-
work (mmSNN) model. The proposed framework shows that physicians
provide group (PPG) based breathing rate and heart rate in conjunction
with hand gesture contexts to be utilized by attackers to re-identify
the users from HIPAA-compliant wearable data. The author uses the
datasets Gamer’s Fatigue Dataset, Restaurant Data, Older Adult Data,
and Healthy Adult Fatigue Data. The method achieved 65% accuracy
from all the datasets to identify the person. In a similar study, Karmaker
et al. [57] presented a broad probabilistic re-identification framework

that can be used to evaluate the likelihood of compromises based on
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Table 2
Privacy attack in the healthcare domain.

Reference Year Attack
type

Attack Technique Performance Dataset Target area

[56] 2021 Data RI Used multimodal Siamese neural network
to learn spatial and temporal information
separately and then used them to identify
the person.

The results show that the proposed
framework provides 65% accuracy
on all datasets to reidentify a person.

Gamer’s Fatigue,
Restaurant data,
Older Adult, and
Healthy Adult
Fatigue
datasets.

Reidentification
of person publicly
shared healthcare
datasets.

[57] 2018 Data RI Probabilistic naive re-identification the
the framework that may be used to
evaluate
the likelihood of compromises based
on explicit assumptions in specific
scenarios

Compared to medical condition attributes,
demographic attributes were shown to be
more likely to be disclosed. Meningitis
was discovered to be the most commonly
disclosed anemia was the least common
in social media data.

De-identified
medical
research data set,
the HCUP National
(Nationwide)
Inpatient
Sample (NIS)

Disclosing medical
and demographic
attributes on the
social media.

[58] 2021 Model AD Hierarchical position selection, which uses
RL framework to pick the attacked
positions,
and substitute the selection which uses a
score-based method to identify substitutes.

The victim model is HiTANet, MedAttacker
consistently achieves the best attack
success rate, with success rates of
3.08%, 2.20%, and 1.74% higher than
the other methods.

Heart failure,
Kidney diseases,
and Dementia.

Electronic
health
care system.

[59] 2020 Model AD A new framework of AD attack with the
use
of ML as an adversary with only a
rudimentary understanding of
data distribution. The model can change
patient status in the healthcare system.

The adversarial attack is done on
Whitebox and BlackBox. On decision
tree highest accuracy drop is observed
that is 32.27% using the HopSkipJump
while the success rate is 15.68%.

Social Media
health data

Smart healthcare
system.

[60] 2020 Model AD Different AD attacks are implemented on
the
COVID-19 detection approaches that use
DL approaches.

The tests reveal that DL models that ignore
protective mechanisms against adversarial
perturbations are nevertheless vulnerable
to adversarial attacks.

COVID-19 Medical domain

[61] 2022 Model MI The problem from the standpoint of the
data
owner, who wants to estimate the risk of
the
disclosure before releasing any health data.

The partial synthetic data is vulnerable
to the attack at a very high rate than
fully synthetic data.

Datasets derived
from several health
data resources

EHR

[62] 2021 Model MI Realistic inference attack on the DL a
model
trained on 3D neuroimaging.

Properly identified if an MRI scan was
used in model training with a 60% to over
80% success rate

MRI images 3D neuro-
imaging

[63] 2021 Model MI MI framework is used to test the empirical
privacy leakage

Membership inference attacks on CLMs
result in non-trivial privacy leakages of up
to 7%, according to the author’s findings.

MIMIC III,
UMM, VHA

Clinical
language
processing
(CLMs)

[64] 2019 Model MI The mimic model behaves similarly to the
public model in terms of prediction, and is
used to reveal the discrepancies
in prediction between the training and
testing
datasets

Attack performance against XGBoost-trained
ML models, logistics, and an online
cloud platform. Achieve inference
accuracy & the precision of 73% and 84%
on average, and 83% and 91%
at best, using genuine data

Weibo dataset Health data

[65] 2022 Model Mi Inversion framework that builds on the
fundamentals of gradient-based model
inversion attacks.

Outperform existing gradient-based
approaches both in a quantitative
and qualitative manner.

BraTS Brain tumor
segmentation

Re-identification (RI) attack, Model inversion attack = MI, Membership inference attack = MI, and Adversarial Attack = AD.
explicit assumptions in specific scenarios. The authors proposed a set
of beliefs that can be used to produce a first-cut risk estimate for
practical case studies. The Naive Re-identification Framework (NRF)
is the name given to the framework based on these assumptions. The
author uses NRF to investigate and quantify the risk of re-identification
that arises from releasing de-identified medical data in the context of
publicly available social media data as a case study. The results of this
case study show that NRF can be used to get a reasonable estimate of
re-identification risk, compare the risks of different social media, and
look at how dangerous it is for people to share information about their
demographics and medical conditions on social media.

To exploit the ML classifiers used in an intelligent healthcare system
(IHS), a new type of adversarial attack where an adversary with only
a rudimentary understanding of data distribution, and the AI model
can realize both targeted and untargeted attacks is presented in [59].
Adversarial attacks adjust medical device readings in the IHS, resulting
in a change in patient status (disease-affected, average condition, activi-
ties, etc.). On an IHS, the attack employs five adversarial ML algorithms
(HopSkipJump, Fast Gradient Method, Crafting Decision Tree, Carlini
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& Wagner, Zeroth Order Optimization) to carry out various malicious
behaviors (e.g., data poisoning, misclassifying outputs, etc.). The au-
thor undertakes white-box and black-box attacks on an IHS based on
an adversary’s training and testing phase capabilities. The suggested
adversarial approach can dramatically decrease the effectiveness of
evaluating whether a sample was used to train the model. The pro-
posed adversarial approach can significantly reduce the effectiveness
of assessing whether a sample was used to train the model. The author
used the (de-identified) medical research data set. The author used the
National (Nationwide) Inpatient Sample (NIS) provided by Healthcare
Cost and Utilization Project (HCUP) to test the attack. They showed that
a simple access to the model prediction only (i.e., black box settings),
access to the model itself (i.e., white box settings), or a leaked sample
from the training data distribution can be used for this insight-based
ML-based IHS in correctly identifying illnesses and expected behaviors
of patients, ultimately leading to erroneous therapy.

Liu et al. [64] introduced SocInf, with an emphasis on membership
inference as a basic issue. SocInf’s main idea is to build a mimic model
that behaves similarly to the public model in terms of prediction, and
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Fig. 4. Taxonomy of privacy-preserving techniques. (Legends: Homomorphic Encryption = HE, Secure Multiparty Computation = SMPC, Differential Privacy = DP, Federated
Learning = FL, Deep Learning = DL).
then use the mimic model to reveal the discrepancies in prediction
between the training and testing data sets. The targeted attack is on
social media health data. SocInf can determine if a particular record
is in the victim model’s training set or not by using extensive ana-
lytics on the mimic model’s predictions. SocInf’s attack performance
is tested against XGBoost-trained ML models, logistics, and an online
cloud platform. The experiment findings reveal that SocInf can achieve
inference accuracy and precision of 73% and 84%, on average, and
83% and 91%, at best, using genuine data. Clinical language models
(CLMs) have been used to improve performance in biomedical natural
language processing tasks using clinical data. Jagannatha et al. [63]
through white-box or black-box access to CLMs, look at the dangers
of training-data leakage. For DL models like Bidirectional Encoder
Representations from Transformer (BERT) and Generative Pre-trained
Transformer (GPT), they realized membership inference attacks to
estimate empirical privacy leakage. Membership inference attacks on
CLMs result in non-trivial privacy leakages of up to 7%, according to
the author’s findings. Three datasets were used for experimentation,
namely MIMIC III, UMM (UMass Memorial Health Care), and VHA
(Veterans Health Administration) hospitals.

Zhang et al. [61] approached the membership inference problem
from the standpoint of the data owner, who wants to estimate the risk
of disclosure before releasing any health data. Usynin et al. [65] present
a new model inversion framework that builds on the fundamentals of
gradient-based model inversion attacks but also depends on match-
ing the reconstructed image’s attributes and style to data controlled
by an adversary. While keeping the same honest but curious threat
paradigm, the author’s strategy surpasses previous gradient-based tech-
niques both qualitatively and statistically, allowing the attacker to
gain enhanced reconstructions while staying undetected. MedAttacker
is the first black-box adversarial attack to test the vulnerability of
health risk prediction algorithms. Ye et al. [58] proposed a medAttacker
8

that handles the issues posed by EHR data in two ways: hierarchical
position selection, which uses a reinforcement learning (RL) framework
to pick the attacked positions, and substitute selection, which uses a
score-based method to identify substitutes. It initializes its RL position
selection policy by exploiting the temporal context inside EHRs, in
particular, each visit’s contribution score and the saliency score of each
code, which may be easily linked with the score-based deterministic
substitution selection process changes. Real-world health insurance
claim datasets, included heart failure, renal illness, and dementia. For
HiTANet as victim model, which uses time information for health risk
prediction, MedAttacker consistently achieves the best attack success
rate, with success rates of 3.08%, 2.20%, and 1.74% higher than the
second-best method patient wise weighted sampling (PWWS) in the
heart failure, kidney disease, and dementia datasets, respectively.

Gupta et al. [62] demonstrated a realistic membership inference
attack on DL models trained for 3D neuroimaging applications. The au-
thor predicted that brain age prediction models (deep learning models
that predict a person’s age based on a brain MRI scan) are vulnerable to
attacks. Depending on model complexity and security assumptions, the
author properly identified if an MRI scan was used in model training
with a 60% to over 80% success rate. The experiment was done on
T1 structural MRI scans of healthy subjects from the UK Biobank
dataset. Rahman et al. [60] with appropriate adversarial scenarios, the
author tested several COVID-19 diagnostic approaches that rely on DL
algorithms. The results of the tests reveal that DL models that ignore
protective mechanisms against adversarial perturbations are neverthe-
less vulnerable to adversarial attacks. Finally, the author went over the
adversarial generation process, the attack model implementation, and
the changes to the existing DL-based COVID-19 diagnostic applications
in detail. Throughout the survey, we have observed that the attacks
faced by healthcare are usually adversarial attacks, model inversion,

membership inference attacks, and re-identification attacks. Table 2
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Fig. 5. Working of homomorphic encryption technique.

presents the summary of different privacy attacks in the healthcare
domain.

4. Privacy preserving techniques

Developing reliable healthcare AI systems using ML for different
clinical tasks requires large amounts of carefully curated data. A key
barrier in the path of broader AI adoption is data access and its im-
plementation at the commercial level. PPML ameliorates privacy tech-
niques and infrastructure for improved security for data and ML, which
is of utmost importance to overcome these barriers. This is important,
especially in the case of the sensitive dataset, for the invention of better
life-saving treatment, better diagnosis, and the selection of the right
decision in an urgent situation. Numerous privacy-preserving methods
allowed different information gatherings to cooperatively train ML
models without delivering their private information in its unique struc-
ture. This was essentially performed by using cryptographic methodolo-
gies or differentially private information release [66]. Table 3 shows a
comparison between privacy preservation techniques. In the training
and testing of AI models, data privacy is most important when deal-
ing with confidential or sensitive data. However, to achieve perfectly
privacy-preserving AI, there are four pillars of PPML, i.e., training data
privacy, input privacy, output privacy, and model privacy. The first
three deal with data creator privacy, and the last protects the model
creator’s privacy. Fig. 4 describes the taxonomy of privacy preservation
techniques.

4.1. Cryptographic techniques

The word cryptography comes from the Greek word kryptos, which
means ‘‘hidden’’. Cryptography studies communication methods or
strategies that assure secure data delivery from the sender to the
recipient. The content is safely shared between the sender and the
recipient while maintaining its confidentiality and integrity. The pri-
mary mechanism employed in this strategy for privacy preservation is
encryption [67].

4.1.1. Homomorphic encryption
Homomorphic encryption (HE) is the technique in which the data

owner encrypts its data and sends it for computation. The computa-
tional tasks are performed on the data without decrypting the data, and
the output results of encrypted data are sent to the data owner. Fig. 5
explains the general operation of the HE that allows computation on
encrypted data while preserving data attributes, allowing a third party
to perform algorithms on the data without having inside knowledge.
For example, if one wants to classify the data using the ML approach, he
can operate on the data without knowing the actual data. Genomic data
is increasingly used to train reliable ML models for precision medicine
and stratified healthcare as DNA reveals the crucial relationship be-
tween biomarkers and diseases. But this data is susceptible and requires
safeguarding.
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Chowdhury et al. [68] proposed a new cipher, called DeCrypt,
which was based on Triple Data Encryption Standard (3DES) that
was resilient to a man-in-the-middle attack. Based on the results of
the experiments, the DeCrypt cipher offers superior long-term security
against sweet-32 attacks and is 61% faster than 3DES. When compared
to 3DES, the proposed algorithm is more efficient because it requires
less time to perform both encryption and decryption. Sarkar et al. [69]
provide the algorithm that gives secure, fast, and private genome
imputation using the ML approach. To ensure the privacy-preserving
of the genome imputation, ML algorithms are used with homomorphic
encryption techniques. The linear models are converted into encrypted
models using homomorphic encryption techniques. The Paillier cryp-
tosystem is used for encryption; this method selects a random number
and raises its power to N. This eliminates the need for every N-th
power for new encryption, making it a faster algorithm for encryption.
The privacy-preserving method proposed performs 99% equivalent to
the state-of-the-art plaintext solutions. Paul et al. [70] created the
collective learning protocol, which is a secure system for exchanging
classified time-series data inside an organization’s entities to partly
train binary classifier model parameters. Each data characteristic is
encrypted by the protocol. The protocol is performed on the Medical
Information Mart for Intensive Care (MIMIC-III) dataset [70] and the
CKKS encryption scheme was used).

Lu et al. [78] focus on the privacy preservation of the patients
sharing their data. The cryptographic techniques used for this purpose
mainly aim to target the cloud environment for genomic data sharing.
To ensure privacy, both genotype and phenotype are encrypted using
homomorphic encryption. All the data statistics are shown using the
frequency tables; the proposed method shows the statistics of encrypted
data in the same format using frequency tables training the healthcare
data, i.e., clinical data and genome data privacy-preserving. Carpov
et al. [79] present a method to preserve the secrecy of data shared
on the cloud for computation, i.e., many wireless gadgets or apps send
data of patients for regular monitoring of their health using different
algorithms. In this method, a mobile app is developed to share the
client’s data with the cloud while HE is used as an encrypting tool to
secure the data from attacks or to evaluate the data privately.

4.1.2. Secure Multiparty Computation (SMPC)
SMPC represents a subfield of cryptography that performs data

computation by distributing the data between different parties. Each
party applying the algorithm to its secure data without knowing the
rest of the data results in privacy preservation. For example, three
employees want to calculate their average salary while maintaining
privacy during the computation. They solve this issue by using the
SMPC algorithm known as additive secret sharing [80]. Fig. 6 depicts
the general process of the SMPC technique.

Each person breaks their salary into three parts to secure their data
and keeps one part of the data for himself and shares the other two
parts, one with each person. As a result, each gets three data parts.
The data is useless for the other person when computation is done,
as he does not know about the rest of the data, while it is useful for
the person knowing the complete data, as he can get the result by
adding the results of the distributed data. In this way, data privacy is
ensured [81].

Akgun et al. [82] offer a way of querying genomic datasets in
a privacy-protected manner using secure multi-party computing. The
suggested technique allows genomic databases to be safely maintained
in semi-honest cloud settings by privately outsourcing genomic data
from an unlimited number of sources to the two non-colluding proxies.
It uses XOR-based sharing to provide data privacy, query privacy,
and output privacy, and unlike earlier systems, it allows searches to
be performed effectively on hundreds of thousands of genomic data
points. The framework functions as a virtual machine, abstracting safe
computing protocols. The benefit of the implementation of the Garbled
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Table 3
Comparison of privacy preserving techniques.

Privacy preservation
techniques

Reference Description Advantages Disadvantages

Homorphic
Encryption

[71] Encryption of data is done by the
data owner and the data is
decrypted after all the
computation is done

Allows secure, efficient cloud use,
collaboration with a third party.
HE can be used to receive
outsourced services for
research and analysis
without risking non-compliance.

Slow, Either require
programmed or dedicated
client–server app to work
properly.

Secure Multiparty
Computation

[72] Data computation by distributing
the data between different parties.
Each party applies the algorithm
to its secure data without knowing
the rest of the data results in the
privacy preservation

A significant number of the parties
are malevolent and conspiratorial,
the input data will stay private even
if it is searched for an indefinite
period of time and resources

Communication Overhead,
In the computation,
assumptions must be made
regarding the
proportions of malevolent
coordinating parties.

Garbled Circuits [73] Allows two mistrusting parties to
jointly evaluate a function using
their own private inputs without
the requirement for a trusted
third party

Low round complexity, low latency,
and, most critically, relative
technical simplicity

Not reusable all the variants
are used for one time.
Privacy is compromised
if more than one input is
given for the particular
circuit.

Secret Sharing [74] Technique of spreading the share
among group of people

Ideal for highly sensitive and highly
important information

Large size of shares

Differential Privacy [75] Adding the noise into data to
introduce the data anonymity.
All the commutation analysis
is done on the anonymous
data without any client’s identity
revelation

Due to its composability, tolerance
to post-processing, and graceful
deterioration in the presence of
correlated data, provides strong
and resilient assurances that
permit modular design and
study of differentially
private methods

Greater noise infusion
than previous methods.
This is because standard
approaches just need to
prevent linking, whereas
differential privacy
prevents linkage by
preventing reconstruction

Federated Learning [76] The data is distributed to different
groups and companies, forming
different datasets. The training
using this kind of dataset results
in local privacy

Data protection: Keeping the
training dataset on the devices
eliminates the need for a data
pool for the model. Continual
learning in real-time,
data diversity

Attacks and failure in
robustness, need to
improve efficiency
and effectiveness

Blockchain [77] This technique is private and shares
personal data protect user data with
private key encryption and
zero-knowledge proofs.

Decentralization, Immutability,
Transparency, and Access control.

Complexity, publicly
available blockchains,
scalability, and not much
secure to data breach.
Fig. 6. Working of Secure Multiparty Computation technique.

Circuit (GC) protocol in the arithmetic and boolean circuits in the
YASHAM (ABY) framework is that it has XOR-based sharing [83].

Li et al. [84] proposed a novel SMPC system model that consists
of two servers. First, the patient encrypts their health record using
HE and sends its data to the hospital server. The hospital processes
the encrypted data and finds the traits of disease from its database
that match the patient’s health record and encrypts the data using HE
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and symmetric encryption algorithms. Kumar et al. [85] proposed a
system to ensure privacy in the e-healthcare system. The confidential
data is shared by the patient with the hospital or clinic server using
an online mode of operation. The Paillier encryption algorithm is used
for encryption purposes, shared with the hospital server and matched
with disease records. Privacy preservation is made more secure in
the model as it deals with many other threats. Marwan et al. [86]
designed the framework using the Paillier homomorphic algorithm
for data encryption. This technique is used for distributed databases
for computation, which allows the hospitals to collectively calculate
the number of people affected by the pandemic without revealing
confidential information. Jangde et al. [87] highlighted that the threats
of fraud in the healthcare domain can be overcome using SMPC. Due
to its simplicity, the method is better than the previous ones.

4.1.3. Garbled circuits (GC)
A garbled circuit is a cryptographic approach that allows two dis-

trusting parties to jointly evaluate a function over their private inputs
without the requirement for a third party. Using the garbled circuit
protocol, the function must be written as a Boolean circuit. Fig. 7
explains the generic working of the technique.

In [88], Yao first proposes a garbled circuit as a secure two-party
computation solution. Sancho et al. [89] offers a distributed access
control system that uses Garbled Circuits to execute an extensible Ac-
cess Control Markup Language (XACML) like policy assessment across
organizations, guaranteeing that no properties of one organization may
be learned by others. Because garbled circuits are employed as the
underlying protocol, an analysis of the suggested method’s complexity
in terms of non-XOR gates is presented. There are also some examples
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Fig. 7. Working of garbled circuits technique.

Fig. 8. Working of secret sharing technique.

of how much it would cost to use this method with different policy
sizes, as well as a rough estimate of how many evaluations could be
done per second.

Gong et al. [90] present a method for genome-aware health moni-
toring that is both private and secure. Users can only learn diagnostic
outcomes based on their genetic and biological sensing data using the
proposed method, while the healthcare practitioner learns nothing.
Security analyses and performance assessments were carried out to
demonstrate the efficacy and efficiency of the suggested technique.
The author uses the GC to implement a subprotocol to compare two
integers. Barni et al. [91] proposed two alternative electrocardiograms
(ECG) classification methods are presented: the first is based on a
quadratic discriminant function classifier and is implemented using a
hybrid technique that combines homomorphic encryption and garbled
circuit theories; the second is based on a neural network (NN) classifier
and exclusively uses garbled circuit constructs. This method worked
because NN could limit the size of the input, output, and internal values
of the calculation in bits.

4.1.4. Secret sharing
Secret sharing (also known as secret splitting) is a method of dis-

seminating information among a group of individuals, with each person
receiving a piece of the information. Individual shares are useless on
their own, thus the secret can only be reconstructed when a huge
number of them, maybe of diverse kinds, are united together. Fig. 8
represents the general working principle of secret sharing.

Dey et al. [92] proposed a technique that aims to address the
issue related to the electronic health system. The method is used to
strengthen the electronic health system against tricksters. The algo-
rithm uses a perceptron-based session key and a logistic map-based
intermediate key was proposed. A lossless strict secret-sharing method-
ology is used to protect clinical data and patient privacy. Simple
11
Fig. 9. Working of differential privacy technique.

mathematical operations are used to create the secret shares. The
system is tested on the electronic health system of COVID-19.

Sarosh et al. [93] proposed a distributed security module for the
protection of clinical images that contributes to 80% of medical data.
The Rivest Cipher 6 (RC6) encryption algorithm is used with the
computational secret-sharing scheme for the storage of the images in
a distributed manner. Perfect secret sharing (PSS) is used to share
the key. Using PSS, the 𝑛 images and 𝑛 − 1 key shares can be made
public because of this efficient algorithm. The remaining key shares
can be made protected and secure using the Deoxyribonucleic Acid
(DNA) substitution method. Analysis of the proposed scheme ensures
the robustness of the scheme over the state of the art against attack.
Anand et al. [94] proposed using Non-Subsampled Contourlet Trans-
form (NSCT) and Multiresolution Singular Value Decomposition, to
develop a robust X-ray image watermarking system. The maximum en-
tropy component of the X-ray carrier image is first deconstructed using
NSCT for watermark embedding. Multi-Scale Singular Value Decompo-
sition (MSVD) is then used to retrieve low and high-frequency features
of the carrier and mark the image. Moreover, the watermark detail is
hidden by altering the carrier image’s detail with the appropriate factor.
Finally, to obtain a secure tagged carrier picture, Shamir’s (𝑘, 𝑛) secret-
sharing procedure is used. Objective assessments of 200 X-ray images of
COVID-19 patients demonstrate that the suggested method not only has
outstanding invisibility but also has a high level of robustness against
diverse attacks.

4.2. Non cryptographic techniques

4.2.1. Differential privacy (DP)
DP is a privacy-preserving technique that provides data anonymity

by introducing noise into the data. All the commutation analysis is
done on the anonymous data without any client’s identity revelation.
The dataset usually consists of an enormous amount of information
about individuals, so privacy preservation is necessary for confiden-
tiality [95]. For example, Apple uses DP for privacy preservation to
collect data from devices like Macs, iPads, etc. Amazon applies the
DP algorithm to get the customer’s personal preference for shopping.
Behavioral data was accumulated by Facebook using the DP to preserve
the confidentiality law of the country. Fig. 9 explains the working of
DP.

Sangeetha et al. [96] proposed the work in which instead of the data
release, a DP-based model release with Support Vector Machine (SVM),
Random Forest method, Logistic Regression, K-Nearest Neighbor, Deci-
sion Tree, and Naive Bayes are six ML classifiers suggested for a private
model release. The model’s accuracy is assessed by an experimental
evaluation utilizing the benchmark heart disease dataset. The publicly
available private model can be used to predict heart disease in patients.
The heart disease dataset from the UCI ML repository was used in this
study.

Ziller et al. [97] presents an open-source parallelized deep neural
network (DNN) framework for the modification of per sample gradient.
Privacy is preserved using the Gaussian DP system, and modification
automation is ensured by using the shared memory of the neural
network weights. Medical image segmentation, assess its application to
the paediatric pneumonia dataset, an image classification task, and the
Medical Segmentation Decathlon Liver dataset.
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Fig. 10. Privacy preservation using federated learning.
Muftuoug et al. [98] proposed the method of ensuring privacy
for the medical and location data collected from wearable devices or
any other instrument. A total of 139 COVID-19-infected chest X-ray
(CXR) images were collected, and a total of 373 public data sources
were utilized to develop a diagnosis concept. It was trained using
EfficientNet-B0, a powerful deep-learning network for making quick
and effective decisions for medical providers during the PCR test. The
EfficientNet-B0 model is used to diagnose COVID-19 from CXR images,
and DP is implemented on it. In the Private Aggregation of Teacher
Ensembles (PATE) methodology, the authors used the DP method to
assure privacy. Their method achieved an accuracy of 71% while the
original model’s accuracy was 94.7%. Even though accuracy is compro-
mised, promising results were obtained in preserving the privacy of the
data.

Vadavalli et al. [99] proposed an algorithm that is not only used for
breast cancer detection but also deals with the privacy concerns of the
patient. The algorithm uses the DP approach. This algorithm modifies
the important information about patients in the data collection. As a
consequence, it not only increases the privacy of patient information
when compared to other ways, but it also aids in obtaining accurate
findings. The benefit is that it will have the least influence on the
truth-finding approach’s accuracy because the suitable characteristics
for the cancer prediction data set will not be changed. This suggested
system uses the Expectation–Maximization Algorithm to forecast the
truth-finding. This is the first time that a differential privacy protection
technique and a truth-finding strategy have been combined in this way.
The proposed method has provided an accuracy of 96.14%.

4.2.2. Federated learning (FL)
FL seeks to create a combined ML model based on data from

different locations. In FL, there are two processes: model training and
model inference. Information, but not data, can be transferred between
parties throughout the model training process. At each location, the
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exchange does not expose any protected private sections of the data.
The trained model might be kept by one party or shared by several.
The model is used to infer a new data instance during inference time.
In a business-to-business (B2B) environment, for example, a federated
medical-imaging system may receive a new patient with diagnoses from
many institutions. The parties work together to make a prognosis in
this scenario. Finally, a fair value-distribution system should be in
place to share the benefits generated by the collaborative approach.
Mechanisms should be designed in a way that ensures the federation’s
long-term viability. In general, FL is an algorithmic framework for
developing ML models that has the following characteristics: a model is
a function that maps a data instance at one party to an outcome [100].
Fig. 10 represents the general idea of FL.

• Two or more parties are interested in working together to create
an ML model. Each side has data that it would want to contribute
to the model’s training.

• During the model-training process, each party’s data remains with
that party.

• The model can be partially transmitted from one party to another
using an encryption strategy that prevents other parties from
re-engineering the data at any particular party.

• The resulting model’s performance is a close approximation of an
ideal model developed with all data transferred to a single party.

FL comes with several built-in privacy features. The raw data stays
on the device, while updates transmitted to the server are focused on
a specific purpose, transitory, and aggregated as quickly as possible
in the spirit of data reduction. In the case of EHR, FL algorithms can
aid in finding patients with a similar medical history [101]. In [102],
the authors elaborated on how FL techniques can be used in hospitals
to help in taking records of how many patients are admitted to the
intensive care unit (ICU) and even help in finding the approximate stay
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of patients in the hospital. The wonders of FL are also prominent in the
field of medical imaging or even segmentation techniques, i.e., lung
image segmentation or breast tumor segmentation.

Dou et al. [103] proposed a system with external validation on
patients from a worldwide study, demonstrating the efficacy of an
FL system for detecting COVID-19-linked computed tomography (CT)
anomalies. Investigate FL strategies to create a privacy-preserving AI
model for COVID-19 medical image diagnostics that can generalize well
to new datasets. During pandemics, FL might be a valuable technique
for quickly developing therapeutically relevant AI across institutions
and nations, alleviating the load of centralized aggregation of enor-
mous volumes of sensitive data. The model was pre-trained using the
DeepLesion dataset and then fine-tuned with COVID-19 internal train-
ing images. Qayyum et al. [104] for an automated diagnosis of COVID-
19 used the developing idea of clustered FL (CFL). An automated
system like this might help relieve the strain on healthcare institutions
throughout the world, which have been under a lot of pressure since
the COVID-19 pandemic broke out in late 2019. On two benchmark
datasets, the author tests the proposed framework’s performance under
various experimental conditions. On both datasets, promising results
were obtained, with improvements of 16% and 11% in overall F1-
Scores over the multi-modal model trained in the conventional FL setup
on the X-ray and ultrasound datasets, respectively.

Roth et al. [105] in a real-world collaborative scenario, they study
the application of FL to create medical imaging classification models.
This FL initiative brought together seven clinical institutions from
across the world to train a model for breast density categorization based
on the Breast Imaging, Reporting, and Data System (BIRADS). They
successfully train AI models in federation despite significant variances
in datasets from all locations (mammography system, class distribution,
and data set size) and without centralizing data. The results reveal that
models trained with FL outperform models trained only on an institute’s
local data by 6.3% on average. Furthermore, when the models’ general-
izability is examined using the testing data from the other participating
sites, they find a 45.8% relative improvement. Sheller et al. [106] used
the FL approach for multi-institutional collaborations for the privacy of
each institute’s data. FL among ten institutions produces models that
are 99% as good as centralized data models, and generalizability is
assessed using data from institutions outside the federation. The author
explores the effects of data distribution among cooperating institutions
on model quality and learning patterns, suggesting that improved data
access through multi-institutional collaborations can improve model
quality more than the faults produced by the collaborative technique.
As a case study in evaluating FL against clinical decision support (CDS)
on a medical imaging job, the challenge of differentiating healthy brain
tissue from tissue infected by cancer cells was used. FL protects data on
each device by sharing model changes, such as gradient information,
rather than the original data. Model updates, on the other hand, can re-
veal sensitive information because they are based on original data. The
adversaries can realize privacy attacks against FL, therefore, the need
of making FL private is a need of the state of the art [107]. In [108],
the authors presented a systematic review of incentivized FL along with
describing various security implications. The authors argue that the
adversarial threat rises with the use of incentives-driven FL. Therefore,
an extra privacy layer is needed in FL architecture for privacy concerns.
For instance, Qayyum et al. [109] presented a learning-based approach
to make FL robust against label-flipping attacks.

4.3. Blockchain

Blockchain technology has the potential to revolutionize the health-
care sector by addressing issues related to data privacy and security.
By using an immutable database and masking user identities through
public key transactions, blockchain can improve the interoperability
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of current health records and provide a secure and reliable way to
store and access medical information [110]. Additionally, the perma-
nent storage of data on the blockchain can provide valuable historical
information for research and analysis [111]. The incorporation of smart
contracts and the integration of blockchain with IoT technology further
enhances the potential for automation and efficiency in the healthcare
industry [112]. Overall, the combination of blockchain and AI has
the potential to provide verified historical data, improved privacy and
security, increased interoperability, and ease of automation in the
healthcare sector.

Zerka et al. [113] proposed a novel approach called Chained Dis-
tributed ML (CDML) which combines sequential distributed learning
with a blockchain-based platform to address legal restrictions in multi-
centric research. This approach can predict two-year lung cancer sur-
vival using open data from NSCLC-Radiomics and showed no statisti-
cally significant difference in performance compared to a centralized
approach in six different scenarios. The combination of blockchain and
distributed learning improves adaptability, trust, and the pace of AI
adoption in multi-centric research. Additionally, Zhang et al. [114]
proposed a blockchain-based system for protecting sensitive medical
records using DP noise in FL as a privacy-preserving mechanism. The
system also addresses the challenge of storage by keeping only the
Interplanetary File System’s hash value of the data in the blockchain
and storing the original data locally.

Alzubi et al. [115] proposed a new method for protecting the
privacy of electronic medical records using deep learning (DL) and
blockchain technology. A CNN model was trained to detect normal
and abnormal users, and access to the records was secured by inte-
grating blockchain with cryptography-based federated learning (FL).
Ngan et al. [116] proposed PriFL-Chain, which uses differential privacy
(DP) in FL settings to train ML models without requiring users to
disclose their raw data. The blockchain keeps a public record of user
contributions. The system also uses Mobile Edge Computing (MEC) and
InterPlanetary File Systems to reduce the load on the master server,
save data communication costs, and increase adaptability. This com-
bined strategy of FL, blockchain, InterPlanetary File System, and MEC
effectively protects privacy, reduces the cost of training ML models, and
enables the use of diverse community-sourced data. Edge computing
can also be used to minimize the cost associated with the transmission
and processing of data on cloud services [117].

4.4. Hybrid privacy-preserving techniques

With the increasing demand for privacy, researchers have started
working on more efficient algorithms to present accurate methods. For
this purpose, different preservation techniques are joined together to
fulfill the task. Models that are more accurate and secure produce better
outcomes while maintaining model privacy.

4.4.1. Hybrid privacy-preserving deep learning (HPPDL)
We divide the privacy-preserving techniques based on privacy tech-

niques as follows: HE-based privacy preserving deep learning (PPDL),
Secure MPC-based PPDL, and DP-based PPDL are the four types of PPDL
methods.

Jain et al. [118] proposed research to investigate the use of Fully
Homomorphic Encryption, a type of privacy-preserving ML technology,
to enable Convolutional Neural Network (CNN) inference on encrypted
real-world datasets. The computational depth of fully homomorphic
encryption is limited. They are also high-resource operations. The
datasets used for the experiment are MNIST and the melanoma dataset.
TensorFlow ImageDataGenerator was used to enhance random pictures
from a downloaded dataset to create image training data. The original
photos were scaled down to 128 × 128 RGB images. The pictures
might be classified as benign or malignant. The network is a modified
version of the well-known LeNet model, in which the activation layer
is put after the pooling layer, conventional rectified linear unit (ReLU)

is substituted with approximate ReLU, and only the first completely
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Table 4
Privacy preservation techniques (PPT) in healthcare literature review.

PPT Type Reference Year Method Performance Applications

HE Cryptographic [69] 2021 The linear models are converted into encrypted
models using Pillar techniques.

Retaining an imputation efficacy of over 0.99
AUC score using multiple optimizations &
approximations.

Gene
imputation

[70] 2021 Created the collective learning protocol, which
is a system for exchanging classified time-series
data inside an organization

The in-hospital mortality prediction model’s the
area under the precision–recall curve, the score
increased.

Medical
Healthcare

SMPC Cryptographic
[82] 2022 Offers a way for querying genomic datasets in

a privacy-protected manner using SMPC.
It is feasible to query a genomic database with
3000000 variations in under 400 ms using only
five genomic query predicates.

Diagnosis and
treatment

[84] 2020 To ensure the privacy of Paillier encryption the
algorithm is used for encryption purposes
shared with the hospital server.

The technique can withstand a variety of
known security threats. It is low cost for
patients & can anticipate more disease.

EHR

[85] 2020 The data is exchanged using the HE technique
to secure patient data. The SMPC is used
between the patient and the hospital.

It ensures the security and dependability of
user data, the model is very sluggish as it is
not operated on plain data.

Electronic
heath system

GC Cryptographic [89] 2020 Offers a distributed access control system that
guarantees no properties of one organization
may be learned by others.

Although the results of the findings are
encouraging, more study is required for the
experiment on real-world data.

Polices of data
sharing

SS Cryptographic
[92] 2022 A perceptron-based session key and a logistic

map-based intermediate keys were proposed. A
lossless strict secret sharing.

On three separate session key groups, the
computed average cryptographic times were
74.83, 62.1, and 43.1 ms.

EHR

[93] 2021 Rivest Cipher 6 encryption algorithm is used
with the computational secret sharing scheme
for the storage of the images.

The number of Pixels Change Rate (NPCR)
values is larger than 99.55 percent.

Healthcare

[94] 2021 Using Non-Subsampled Contourlet Transform &
Multiresolution Singular Value Decomposition
of a robust system is proposed.

Test on 200 X-ray images of COVID-19 patients
show that the suggested method not only has
outstanding invisibility, a high level of
robustness against diverse attacks.

COVID-19
detection

DP Non cryptographic
& Non hybrid

[96] 2022 Proposed the work in which instead of the data
release, a DP-based on model release six ML
classifiers suggested privacy.

Higher values may improve accuracy, according
to experimental results on the benchmark
dataset.

Heart disease
prediction

[97] 2021 Privacy is preserved using the Gaussian DP
system & modification automation is ensured
by using the sharing of a memory of the neural
network weights.

The classification & recognition model had a
mean receiver operator characteristic AUC of
0.848 in the private setting and 0.960 in the
non-private setting.

Medical
Segmentation,
Classification.

[98] 2020 The efficient net-B0 model is used to diagnose
COVID-19 from CXR images and DP is
implemented on it.

The accuracy obtained is 71% while the
original model accuracy is 94.7%. Even though
accuracy is compromised but promising results
are obtained.

Diagnose
COVID-19

[99] 2019 This algorithm modifies the important
information about patients in the data
collection.

The proposed method is capable of providing
96.14% accuracy.

Breast cancer
detection

(continued on next page)
connected layer contains an activation layer. The monotonic softmax
function is not required for the inference process. The author used the
Cheon-Kim-Kim-Song (CKKS) approach for encryption.

Rouhani et al. [119] introduced DeepSecure, a framework that
allows DL to be used in a privacy-preserving context. The author used
an approach with convolutional neural networks (CNN) to perform the
learning process and used the GC protocol to make it private. DeepSe-
cure allows client–server interaction to perform learning processes on
a cloud server utilizing data from the user. They used a moderately
genuine adversary model to prove their systems. The GC model has
been widely demonstrated to keep client data confidential during the
data transfer time. The disadvantage of this technique is that it places
a limit on the number of instances that may be handled per round.

Yue et al. [121] proposed a new system for evaluating time-series
medical pictures encrypted by a HE technique and presented the HE
convolutional-LSTM network (HE-LSTM). To extract discriminative spa-
tial features, many convolutional blocks are built, and LSTM-based
sequence analysis layers are a technique for encoding temporal data
from encrypted image sequences. A weighted unit and a sequence vot-
ing layer are also being developed to combine both spatial and temporal
attributes with various weights to increase performance while reduc-
ing missed diagnoses. The author experimented on two datasets, the
BreaKHis public dataset and a Cervigram dataset, whose results show
that the proposed framework can encode both visual and sequential
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dynamics from the encrypted image sequence. The proposed method
achieved 0.94 AUCs for both datasets. Vizit et al. [122] proposed a
solution-based HE for the privacy of medical domain sensitive data. The
considered encryption scheme, Matrix Operation for Randomization or
Encryption (MORE), enables the computations within a neural network
model to be directly performed on floating-point data with a relatively
small computational overhead. The author first trains a model on
encrypted data to estimate the outputs of a whole-body circulation
(WBC) hemodynamic model and then provides a solution for classifying
encrypted X-ray coronary angiography medical images. The findings
highlight the potential of the proposed PPDL methods to outperform
existing approaches by providing, within a reasonable amount of time,
results equivalent to those achieved by unencrypted models. Zhang
et al. [120] proposed a novel privacy-preserving approach for training
deep neural networks. For every training iteration, we add decaying
Gaussian noise to the gradients. This is in contrast to Google’s Tensor-
Flow Privacy’s conventional method, which uses the same noise scale
throughout the whole training process. The suggested solution, in con-
trast to existing methods, used a closed-form mathematical expression
to calculate the privacy loss. It is simple to calculate and can be useful
when users want to determine the best training time. To validate the
efficiency of the suggested method, the author presents substantial ex-
perimental findings utilizing one real-world medical dataset, i.e., chest
radiographs from the CheXpert collection, to see the effectiveness of
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Table 4 (continued).
PPT Type Reference Year Method Performance Applications

FL Non cryptographic
& non hybrid

[103] 2021 An AI method with a worldwide validation the
effort to construct privacy-preserving a
CNN-based model for identifying CT
abnormalities in COVID-19 patients.

The FL model had the best results on this set,
with an AUC of 88.15% (86.38–89.91), the
sensitivity of 73.31% (70.44–76.18), and
accuracy of 91.93% (89.48–94.38).

COVID-19
detection

[104] 2021 For an automated diagnosis of COVID-19 used
the developing the idea of clustered FL.

On both datasets, promising results are
obtained, with comparable outcomes overall
F1-Score improvements of 16% and 11% have
been reached.

COVID-19
detection

[105] 2020 To create medical imaging classification models
in a real-world collaborative scenario, the
author used FL.

When the model is applied to a client’s test
data, it shows a 6.3% relative improvement.
The models’ generalizability increased by 45.8%
on average.

Breast cancer
classification

[106] 2020 Demonstrates that data-private collaborative
learning techniques, especially FL can attain the
data maximum learning capacity.

The federated learning across ten institutions
results in models that are 99% as good as
centralized data models, and assess the
generalizability using data from institutions
outside the federation.

Brain Tumor

[102] 2018 They have developed a decentralized iterative
cluster Primal-Dual Splitting technique for the
solving of the large-scale SVM problem.

Converges faster than the present centralized
method. However at the cost of the
communication between the agents.

EHR

HPPDL Hybrid

[118] 2022 The use of Fully HE, a type of PPML
technology, to enable CNN inference on
encrypted real-world datasets. The CKKS
encryption is used was used.

On melanoma, the test accuracy of this simple
CNN model was found to be 80%, which is just
slightly lower than the usual approach.

Skin cancer
diagnosis

[120] 2021 The author proposed privacy using DP. For
each iteration Gaussian noise is added.

Achieved the AUC of 80% which is more than
the DP stochastic gradient descent method.

Chest
radiography

[121] 2021 For evaluating time series medical images
encrypted by a completely HE technique, the
HE-CLSTM convolutional LSTM the network is
presented.

Test accuracy increases to 93.71%, However,
the time complexity increases. There is a
trade-off between accuracy and efficiency.

Computer
Aided
diagnosis

[122] 2020 The considered encryption scheme is Matrix
Operation for Randomization or Encryption
(MORE).

The results are not changed same as encrypted
data is just a marginal increase in the
computation time.

Medical Images

[119] 2018 Used GC protocol with CNN to perform the
learning process &make it private.

58 folds throughput increases, run time
decreases

EHR

HPPFL Hybrid

[123] 2022 A privacy-preserving FL strategy based on the
cryptographic primitive of homomorphic
re-encryption.

The scheme did model training while training
model and data privacy.

Medical
diagnosis

[124] 2022 To private the local model Rényi DP training
using a Gaussian noise mechanism.

In terms of private model training, the author
found the DenseNet121 model is superior
toResNet50 for all variables studied. The
DenseNet with DP is more robust towards
attack.

Medical images

[125] 2020 Two domain adaption algorithms in this FL
formulation, taking into account for the
systemic heterogeneity in fMRI distributions
from different sites.

The findings show that using multisite data
without sharing, data can improve neuroimage
analysis performance and lead to the discovery
of credible disease-related biomarkers.

Medical
Diagnosis

[126] 2019 Proposed an FL environment, and explore the
possibility of using DP methods to secure
patient data.

Sharing fewer variables yields lower overall DP
costs and consequently improved model
performance by fixing the per-parameter DP
costs.

Brain Tumor
Segmentation

(continued on next page)
the proposed method. The proposed method achieved an AUC of 80%,
which is more than the differential privacy stochastic gradient descent
method, which is 60% so the result showed that the proposed model
secures more privacy.

4.4.2. Hybrid privacy-preserving FL (HPPFL)
Despite having great potential for privacy preservation concerns,

FL itself faces threats of privacy compromise. The FL can face attacks
like membership inference attacks, and adversarial attacks that result
in the need for a privacy-aware FL [128]. For example, based on local
model updates from an IoMT device, an attacker can use membership
inference attacks to predict the existence of a data sample in the local
training dataset [129], such as blood type, disease name, gender infor-
mation, and any other private information. This encourages researchers
to innovate privacy-enhancing FL designs for applications, especially
related to sensitive domains like healthcare.

Lee et al. [101] proposed a privacy-preserving framework for pa-
tient similarity learning across institutions in a federated context. The
proposed method can find similar patients from one hospital to another
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without sharing any information about each patient. A federated pa-
tient hashing architecture was created, as well as a unique technique
for learning context-specific hash codes to represent patients across
institutions. The generated hash codes of corresponding patients may
be used to effectively compute the similarities between patients. In k
nearest neighbor with 𝑘 = 3, attained a mean area under the curves of
0.9154 and 0.8012 with balanced and unbalanced data, respectively,
while privacy was assured using HE. The dataset used is MIMIC-III. Li
et al. [126] proposed an FL environment, and explored the possibility of
using DP methods to secure patient data. On the BraTS dataset, develop
and test FL algorithms for brain tumor segmentation. The findings
of the experiments demonstrate that model performance and privacy
protection costs are mutually exclusive.

Ku et al. [123] proposed a privacy-preserving FL strategy based
on the cryptographic primitive of homomorphic re-encryption, which
can both secure and train user data via homomorphic re-encryption.
The IoT device encrypts and uploads user data, the fog node collects
user data, and the server completes data aggregation and re-encryption
in this approach. Furthermore, this technique can complete model
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Table 4 (continued).
PPT Type Reference Year Method Performance Applications

[127] 2019 Two layers of privacy protection in this
framework are used. First, the model training
process,it does not transmit or share raw data
Second, it makes use of a DP strategy to
protect the model from future privacy breaches.

Despite DP being widely used in federated
settings, it can result in a considerable loss in
model performance for healthcare applications.

EHR

[101] 2018 A privacy-preserving framework for patient
similarity learning across institutions in a
federated context. The HE is used for
encryption

In k nearest neighbor with k = 3, attained
mean the area under the curves of 0.9154 and
0.8012 with balanced and unbalanced data,
respectively

EHR

Bc Decentralized

[115] 2022 Uses DL and Bc technology to propose a new
method for protecting the privacy of patients’
electronic medical records.

The method shows more promising results than
other existing techniques.

Medical Data

[116] 2022 PriFL-Chain which uses DP to be applied to FL
in order to train ML models

Effectively protect privacy, reduce the cost of
training ML models and make use of diverse
community-sourced data.

Medical data

[114] 2021 A blockchain-based system for protecting
sensitive medical records (MPBC). Employs DP
noise in FL as privacy-preserving in this
framework.

Approach has been proven secure through
extensive analysis, so medical data can be
implemented with confidence.

Medical data

[113] 2020 A novel distributed learning approach, Chained
Distributed ML C-DistriM which combines
sequential distributed learning with a Bc-based
platform.

The combination of Bc and distributed learning
helps to improve openness, trust, and the pace
at which AI is adopted in multicentric research.

Medical
Diagnosis

Homomorphic Encryption = HE, Secure Multiparty Computation = SMPC, Garbled Circuits = GC, Secret Sharing = SS, Differential Privacy = DP, Federated Learning = FL, Deep
Learning = DL, Blockchain = Bc, Hybrid Privacy-Preserving Deep Learning = HPPDL, Hybrid Privacy-Preserving FL = HPPFL.
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training while protecting user data and local models, according to the
security analysis and experimental findings.

Li et al. [125] used a privacy-preserving method to solve the chal-
lenge of multi-site functional magnetic resonance imaging (fMRI) clas-
sification on ABIDE datasets. The author focuses on resolving the infor-
mation privacy challenges faced by recovering private information from
model gradients or weights. The author presented a privacy-preserving
technique to handle the challenge of multi-site fMRI classification
in this paper. The author presented an FL technique to handle the
challenge, in which a decentralized iterative optimization algorithm
is used and shared local model weights are changed via a random-
ization mechanism. Two domain adaption algorithms are in this FL
formulation, taking into account the systemic heterogeneity in fMRI
distributions from different sites. The author looks into a variety of
practical elements of FL optimization and compares FL to other training
methods. Ziegler et al. [124] by using image reconstruction attacks on
local model updates from specific clients, The author showed that both
model designs are susceptible to privacy violations. During the final
rounds of training, the attack was extremely successful. The author
combined Rényi differential privacy with a Gaussian noise mechanism
into local model training to reduce the probability of privacy violation.
The author analyzes model performance and attack susceptibility for
privacy budgets.

Choudhury et al. [127] proposed an FL system that can learn a
global model using distributed health data stored locally at several
places. Two layers of privacy protection in this framework are used.
First, throughout the model training process, it does not transmit or
share raw data between sites or with a centralized server. Second, it
makes use of a differential privacy strategy to better protect the model
from future privacy breaches. One million patients’ data is collected
from the EHR for two healthcare applications. The Medical Information
Mart for Intensive Care (MIMIC III) dataset is used by the author. Ali
et al. [44] proposed to use HE in FL settings for textual misinformation
detection related to the spread of messages related to COVID-19 on a
social networking platform.

Table 4 shows different privacy preservation techniques in the
healthcare domain.
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4.5. Available tools for PPML

TenSEAL2 is a library that combines HE with traditional ML frame-
works. It takes care of all the difficulties that come with implementing
tensor operations on encrypted data. Data encryption scrambles data
into ‘‘ciphertext’’, making it difficult for those who do not have the
necessary decryption key or password. TenSEAL is based on Microsoft
SEAL’s implementation of the CKKS. CKKS is a public key encryption
technique that generates both a secret and a public key. While the
public key can be shared for encryption, the private key must be kept
private for decryption.

Clients can use one of the available frontend languages (C++ or
ython) to deal with plain or encrypted tensors. The buffer protocol
s used to exchange messages in a client–server situation. The context,
lain tensors, and tensors are the three main components of the core
pplication programming interface (API) [130].

PySyft3 is an open-source multi-language toolkit for enabling secure
nd private ML by wrapping and extending popular DL frameworks
ike PyTorch in a transparent, lightweight, and user-friendly manner.
ts goal is to make privacy-preserving ML techniques as accessible
s possible to researchers and data scientists using Python bindings
nd common tools, as well as to be extensible so that new FL, Multi-
arty Computation, or DP methods can be implemented and integrated
lexibly and easily [131].

PyGrid4 is a peer-to-peer platform for federated learning and data
cience based on the PySyft architecture. Gateways and nodes are the
wo parts of the architecture. The Gateway component acts as a DNS
erver, directing requests to the nodes that have the necessary datasets.
he nodes are given by the data owners: they are private data clusters
hat their owners will maintain and monitor. The data does not leave
he server of the data owner. The data scientists may then utilize PyGrid
o do private statistical analysis on that dataset or even federated
earning across several datasets from different institutions [132].

In the year 2020, OpenMined released PyDP,5 a Python wrapper for
oogle’s Differential Privacy project. The library includes a collection
f differentially private algorithms for generating aggregated statistics

2 https://github.com/OpenMined/TenSEAL
3 https://github.com/OpenMined/PySyft
4 https://github.com/OpenMined/PyGrid
5
 https://github.com/OpenMined/PyDP

https://github.com/OpenMined/TenSEAL
https://github.com/OpenMined/PySyft
https://github.com/OpenMined/PyGrid
https://github.com/OpenMined/PyDP
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Table 5
Comparison of privacy preserving tools.

Library Language Key Features Applications Privacy Preserving Techniques

TenSeal Python API
C++

An open-source library that can be readily incorporated
into major ML frameworks for PPML using
homomorphic encryption.

Tensors,Images HE

PySyft Python An open source library provide the private and secure DL. Images, Text HE, SMPC, DP, FL
PyGrid Python A peer to peer network collects data to train AI models. Text Data-centric FL, SMPC
PyDP Python An open source library containing several differential

privacy algorithms.
Text, Images DP

SyferText Python A library use privacy-preserving natural language
processing.

Text SMPC, FL

TensorFlow
Federated

Python Able to computation on decentralized data Text, Images FL
over numeric datasets, including private or sensitive data. As a result,
PyDP gives you complete control over the privacy and correctness of
your Python model [133].

SyferText6 is a python module that allows for privacy-preserving
natural language processing. It uses PySyft to do FL and encrypted
computations on text data using SMPC. SyferText is used in two primary
scenarios: Secure plaintext preprocessing allows text to be preprocessed
on a remote system without jeopardizing data privacy. Deploy a secure
pipeline: SyferText will be able to package a whole pipeline made up of
preprocessing components and trained PySyft models and safely deliver
it to PyGrid [134]. TensorFlow Federated (TFF)7 is an open-source
framework for decentralized data ML and other computations. TFF was
created to enable open study and experimentation through FL, an ML
technique in which a shared global model is built across multiple clients
that store their training data locally [135].

A comparison of these tools is summarized in Table Table 5 for
reference.

5. Insights and pitfalls

The methods of preserving privacy are explained in detail, but
there are some limitations to achieving privacy in AI-based healthcare
systems, as outlined next.

• The applications using big and complicated homomorphic en-
crypted algorithms have certain limitations. Like today, all the
HE-based encryption methods have computational overhead, de-
fined as the ratio of the encrypted version’s calculation time to
the plain version’s computational time.
This cost significantly increases execution time and makes com-
plicated functions of homomorphic computation unfeasible [136].
To ensure the computation’s security, random numbers must
be produced in SMPC. The creation of random numbers neces-
sitates computing cost, which might slow down the execution
time [13]. Secret sharing necessitates communication and con-
nectivity among all parties, resulting in greater communication
costs than plaintext computation. The DP computational cost is
also very high, which limits the use of the technique [137].

• While using HE, the main problem faced is the lack of multi-user
capability. If a large number of clients want to encrypt their data
to ensure privacy and they all belong to the same system, it results
in a problem as the algorithm will fail to support multiple parties.
The solution to this problem can be that each user will be assigned
a separate database, which becomes impossible if the dataset is
huge and there are a lot of users [136].

• DP is best for low-sensitivity queries. The downside of main-
taining differential privacy is that it usually needs more noise
infusion than conventional methods. The major issue in DP is
noise handling. As in low-sensitive data noise, the slight change

6 https://github.com/OpenMined/SyferText
7 https://github.com/tensorflow/federated
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in the record does not affect the result much, but in the case of
highly sensitive data, noise handling limits the working of the
algorithm [137].

• Currently, there are a handful of libraries available that support
one or more encryption schemes. But even if libraries support the
same scheme, they are not explainable. The encryption parame-
ters are not in the standardized format. The explainability of the
parameters is different in different libraries. This standardization
effort contains a high-level overview of the security and secure
parameter recommendations, as well as possible applications and
design concerns. It is a good start, but developing solutions now
forces one to use a certain library. It can be challenging to
pick a particular library. The explainable ML model is needed to
implement AI in healthcare applications.

• Existing work lacks implementation of hybrid techniques in the
healthcare domain. Moreover, the implementation of privacy-
preserving techniques results in accuracy compromise. Accuracy
is a major concern for the implementation of AI in the healthcare
domain.

6. Future research directions

Recent advances in AI have paved the way for the adoption of in-
telligent algorithms in healthcare systems. While motivations for using
privacy-preserving techniques in the healthcare system are elaborated
in-depth, this section presents several future research and development
directions in this field.

6.1. Developing privacy-aware ML

In the current digital age, preserving the privacy of users is of
utmost importance. Therefore, the development of privacy-preserving
ML models is required. It can be particularly useful for developing
such ML-based applications that require sensitive data, e.g., health-
care, biometrics, etc. Privacy-aware ML models can ensure the safe
execution of the system and can eventually help in gaining the trust
of end-users. Different techniques can be used to preserve privacy (as
described above). However, the literature shows that these techniques
are still vulnerable to different attacks. Therefore, the development of
privacy-aware ML models is still an open issue that demands further
development.

6.2. Developing adversarially robust ML

Ensuring the robustness of the ML/DL models has emerged as a
major challenge in recent years. Despite the remarkable performance of
these models in different complex tasks, these models have been shown
to be vulnerable to carefully crafted adversarial samples. Although
different defense strategies have been proposed. It is very important
to ensure that these models perform dependably even in the presence
of data corruption, distributional shifts, and malicious threats when
we employ them in real-world security-critical applications. Despite
significant attention from the research community, the development of
adversarially robust ML models remains an open-ended problem.

https://github.com/OpenMined/SyferText
https://github.com/tensorflow/federated
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6.3. Distributed ML

Multi-node ML methods and systems are referred to as distributed
ML. They can enhance performance, boost accuracy, and scale to bigger
input data volumes. Distributed ML and edge computing have pro-
gressed to the point where they can transform a company. Distributed
devices, such as the Internet of Things (IoT) generate a vast amount
of data, which might be used to identify hidden patterns and provide
other insights about the user’s private data. In general, distributed ML
enables a cloud/server to collect a combined model(s) from multiple
participants, where each participant trains their model locally using
their private data rather than transmitting the actual data to the server.
FL has appeared as a major advancement in the last few years. How-
ever, the literature shows that sensitive information can be inferred by
exploiting parameter updates of individual participants [138].

6.4. Tiny ML in healthcare

TinyML offers a lot of promise in healthcare by improving different
monitoring and personal health devices. Wearable technologies have a
large power budget to continuously sense and transmit an individual’s
physiological and activity data, which necessitates constant connectiv-
ity and privacy protection. TinyML-based, small, pre-trained inference
models for signal de-noising, temporal analysis, and classification on
the device can thoroughly assess personal data in real-time, avoiding
the need for data to stream continuously and reducing the risk of
private data disclosure (in case data is shared over the servers for
analytics). Low-power, highly accurate, real-time inference algorithms
development for wearable devices will be especially important for in-
creasingly complicated, data-rich physiological sensors like ECG, which
continue to offer a considerable problem for today’s wearable technolo-
gies. Several firms are experimenting with TinyML-like frameworks to
improve personal health goods like hearing aids. Other personal health
and well-being apps, such as vision enhancement or gait tracking, are
likely to follow a similar trend. Continuous monitoring and assessment
of an individual’s well-being and mental health will be possible thanks
to multi-sensor data fusion and deep neural network inference on an
embedded device, enhancing the ways to treat people with various
mental conditions like dementia, depression, and post-traumatic stress
disorder (PTSD) [139]. For instance, in [140], the authors leveraged
multi-sensor data (i.e., from smartphone sensors and a wearable device)
to identify locomotor impairment. In the literature, privacy and security
aspects of embedded ML have already been investigated from a human-
centric perspective [141]. Specifically, the authors presented a pipeline
for developing secure, private, and robust human-centric embedded ML
applications such as healthcare. We envision that with development of
tiny ML for deployment on such small-size devices will eventually lead
to the protection of users’ private data.

6.5. Addressing the trade-off of privacy vs. performance

The performance of ML models is tested using different metrics to
identify which model is the most effective at discovering correlations
and patterns between variables in a dataset based on the input, or
training data. The greater a model’s ability to generalize to ‘unseen’
data is, the better predictions and insights it can provide, and hence the
more commercial value it can give, especially in healthcare, where the
system’s performance for diagnosis of the disease is a crucial and life-
saving task. Therefore, it is quite challenging to preserve the privacy of
the patient while also obtaining a more accurate system. To enhance
the performance of AI systems, large volumes of data are required,
but this may compromise the privacy rights of those involved [142].
Utilizing various privacy-preserving approaches has an impact on the
model’s performance. For example, when using the DP technique to
protect the model’s privacy, noise is added to the training dataset,
and the model’s accuracy suffers as a result. Consequently, to ensure
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the system’s appropriate working, a proper trade-off between privacy
and accuracy must be made. Privacy-preserving techniques have been
widely developed in several FL frameworks to ensure data privacy. The
privacy-preserving techniques used in such FL frameworks, on the other
hand, tend to impair accuracy and efficiency. As a result, while imple-
menting privacy-preserving features to the FL, it is important to strike
a compromise between data utility and data privacy [143]. Privacy-
preserving ML techniques approaches have an inherent compromise
between the model’s utility and the privacy provided by the applied
technique.

6.6. Towards hybrid techniques

Hybrid methods use a combination of different privacy-preserving
techniques and can provide better results in privacy preservation. They
can also address privacy concerns in complex problems which might be
difficult to solve using simple techniques. Different privacy-preserving
strategies have different limits that must be overcome to enhance
privacy solutions. Hybrid techniques are better since they combine
techniques in several ways to create a more private model.

The literature suggests that the privacy preservation techniques in
developing AI-based healthcare systems should be more on hybrid tech-
niques as they are better for the complex scenario and to solve existing
issues with the present techniques [144]. For example, FL, distributes
computing across clients, however, the cost of communication among
the clients and sender is the primary obstacle to FL scalability. This
problem is inherited by hybrid techniques, and it is aggravated in
FL-SMPC. Combining HE with FL (FL-HE) introduces a new scaling
barrier to FL. There is a developing body of work on communication-
efficient FL systems that can greatly increase FL scalability and make
it suited for large-scale applications, such as those in biomedicine and
healthcare [14].

7. Conclusions

Recent advances in AI has sought the attention of healthcare service
providers to invest in AI-based solutions that have the potential to
solve perennial healthcare problems related to workers’ productivity,
efficiency, and care outcomes. Healthcare is a highly regulated sec-
tor, and it is expected that these intelligent algorithms will take a
while before being deployed in clinics to yield actual benefits. Since
modern AI algorithms use data to learn to perform complex tasks,
protecting privacy and confidentiality is the primary concern when
sensitive datasets are shared for developing AI algorithms. This con-
cern is addressed in other sectors by employing privacy preservation
techniques which have shown promising results and are found crucial
to promoting AI research. Many researchers have been trying to adapt
these strategies for healthcare datasets handling. These concerns and
strategies shall be assessed for their efficacy for broader AI adoption
across all medical specialities. To this end, we present a comprehensive
review of privacy-preserving techniques in the healthcare domain. We
developed a taxonomy of privacy attacks and explained techniques
that can be used to protect against such attacks involving healthcare
datasets and AI models. Finally, we discussed various challenges and
pitfalls of different privacy-preserving machine learning (PPML) tech-
niques and highlighted numerous open research issues that require
further development.
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