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Abstract 

This paper develops a novel U-model enhanced double sliding mode controller (UDSMC) for a 
quadrotor based on multiple-input and multiple-output extended-state-observer (MIMO-ESO). UDSMC 

is designed using Lyapunov synthesis and Hurwitz stability to not only cancel the complex dynamics 
and nonlinearity, but also stabilize the uncertainty and external disturbance of the underlying quadrotors. 
MIMO-ESO is designed to estimate the unmeasurable velocities which can reduce the impact of sen- 
sor measurement errors in practice. The difficulties associated with quadrotor velocity’s measurement 
disturbances and uncertain aerodynamics are successfully addressed in this control design. Rigorous 
theoretical analysis has been carried out to determine whether the proposed control system can achieve 
stable trajectory tracking performance, and a comparative real-time experimental study has also been 
carried out to verify the better effectiveness of the proposed control system than the built-in PID control 
system. 
© 2022 The Author(s). Published by Elsevier Ltd on behalf of The Franklin Institute. 
This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

The quadrotor has all advantages of Vertical Take-Off and Landing (VTOL) aircraft along
ith a smaller size, more payload capability, greater hover stability and greater manoeuvrabil-

ty. Compared with conventional aircraft, quadrotor UAV has a simpler mechanical structure
nd easier take-off conditions. Nowadays, particularly in academia and the industry, along
ith the research and development communities, there has been a growth of interest in UAVs

1–3] . Probably, the feasibility of effectively performing various tasks with a wide range of
pplications like courier delivery, spraying of pesticides, aerial photography, surveying and
apping, wildfire surveillance, search and rescue missions, and several others, could have
hetted this popularity [3] . Besides the endurance, cost, and size of the unmanned aircraft
eing highly attractive, the possibility of keeping human pilots out of danger (human capacity
r aircraft failure) could be a matter of high concern [1] . Nevertheless, in the case of practical
ight missions, there could be the risk of the stability of the aircraft being degraded sensi-

ively by obstacles in the air, sudden change of command, and turbulent changes in weather
onditions. Hence, in the flight process, it is crucial to have a flight controller design that
ould provide the aircraft with a robust and accurate control. 

As a result of the quadrotor structures with the existing six-state outputs, which include the
ngles and the robot positions in such a manner that there would be only four rotors available
or control inputs, the quadrotor UAV is known as an underactuated system. The rotational
nd transitional movements of the quadrotor are made possible by the speed variations of the
otors. Overall, basic control target of the quadrotors involves the control of the altitude and the
ttitude for the quadrotor to continue holding the same position in the specified location [4] .
here could be several issues of challenges in the control of the UAVs, such as disturbances

rom the atmosphere and input constraints, nonlinear components, time-varying states and
elays, un-modelled dynamics, uncertainty of the parameters, under-actuation, coupled states,
pen-loop instability, and the MIMO structure [5–6] . Thus, for the control of the quadrotors
everal control schemes have been applied. The literature reported the outcomes of the methods
hat were non-adaptive like the state feedback [7] , Proportional–Integral–Derivative (PID) [8] ,
nd the Linear-Quadratic-Regulator (LQR) [9] . 

Nonetheless, robust and adaptive methods of control would display a better control perfor-
ance because quadrotor system dynamics are nonlinear in addition to being time-varying.
he Sliding Mode Control (SMC) is a conventional method of control for dealing with the
ounded external disturbances, the nonlinearities, the properties of time-variations, and other
ncertainties [10] . Zheng and Xiong [11] developed an integrated approach to quadrotor atti-
ude and position tracking control, in which the dynamics model is divided into underactuated
nd fully actuated subsystems. To compensate for faults in quadrotor motor actuators, the SMC
bserver applies linear parameter changes [12] . While in case of quad-rotor systems that are
nder-actuated and uncertain, it is proposed to have a system for tracking and stability con-
rol according to the technique of the SMC [13] . Nevertheless, in the pertinent paper, a fully
ctuated dynamic model of the quadrotor was not considered suitable for our application. Ini-
ially, the continuous-time quadrotor dynamic model was converted to a discrete-time model
14] . Later, to control the tracking and stability of the modified quadrotor model, discrete
MC was proposed. Mofid and Mobayen [15] studied the efficiency of adaptive SMC under
ncertain model parameters, Lyapunov’s proof method also exhibits its finite-time stability.
he proposed method is evaluated by simulation. 
3521 
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Nonetheless, many issues still remain to be resolved in quadrotor control. Most of the ex-
sting quadrotor controllers are designed based on a simplified dynamic model that ignores its
omplex nonlinearities and disturbances. amongst them, the decoupling problems caused by
he complex transformation between the frame systems is important, which directly increases
he design difficulty of quadrotor position controller [16 , 17] . [18] proposed a nonlinear de-
oupling controller using surface control and disturbance observer, but the radical term that
ppears in the denominator of the decoupling algorithm will undoubtedly limit its applica-
ion. [17] improves the decoupling method based on [18] to achieve position tracking, which
educes the trigonometric computation, but it has the same problem as [18] , the radical item
ill limit its application. [19] only decouples yaw dynamics from other dynamics. [20] pro-
osed a fuzzy logic controller to decouple the position and attitude of the quadrotor, but the
esign of its inner loop attitude controller ignored nonlinear dynamics. Additionally, majority
f the early works have evaluated control methods through simulations [21–25] , only certain
orks could establish real-time control on quadrotors [26–28] . There are significant differ-

nces between real-time experiments and simulations. In most simulation studies, the control
ignal is usually considered to be the torque or force produced by the rotor. Therefore, rotors
ith dynamic models are ignored. Furthermore, aerodynamic perturbations, matrix asymme-

ry of the moment of inertia, mass imbalance, effects of wind and eddy currents, besides the
ir-friction and that between the air and the drone were also neglected. In addition to all the
bove factors, another crucial aspect is the measurement of velocity sensor noise. 

Considering the above real-time experimental results, the experimental test of QBall2 by
uanser in [26] has a spherical outer protective shell, its diameter is about twice the length
f the quadrotor. While protecting the fuselage, this kind of protective shell will also increase
ts mass, which will increase the moment generated when the quadrotor’s attitude changes
nd result in affecting the stability design of the control system as well as its test of the
nti-disturbance ability of the flight controller. The quadrotor in [28] is mounted on a passive
echanical suspension to reduce the effect of rotor vibration, and at the same time limit the

mall angular changes of the aircraft. [27] requires a large amount of actual flight data to train
einforcement learning models, which is therefore time and computationally expensive. In this
tudy, a MIMO-ESO is designed to estimate the disturbance and unmeasured velocities. The
yapunov analysis is used to prove the convergence boundary of ESO estimated error. For

racking a time-varying trajectory of the quadrotor stably, the Double Sliding Mode Control
DSMC) based inverter (for robustness and nonlinear dynamic cancellation) and a U-controller
for the control performance specification), are included in the control system. The Lyapunov
nalysis proved the stability of the proposed control system, and the Hurwitz stability theory
as applied for designing the related sliding manifolds coefficients. The control efficiency is

ested and evaluated by real-time experimental Parrot Minidrone. 
Summarily, the major contributions of this paper are: 

1) To the authors’ knowledge, this is the first study to apply U-control method to a real-time
application (quadrotor control). 

2) Proposing a quadrotor decoupling algorithm, using an indirect control strategy (position
control by controlling the angle) turns the original underactuated system into a fully ac-
tuated system. This decoupling algorithm is implemented by DSMC method, which avoid
the square root calculation in [17 , 18] . 

3) Based on Lyapunov analysis, presenting a MIMO-ESO for unmeasured velocities estimation
and a robust framework for flight control of quadrotors based on the ESO UDSMC method.
3522 
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Fig. 1. Quadrotor aircraft framework. 
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4) Expand the SISO implementation and application of the UDSMI [29] into MIMO sys-
tems with obvious progression in integrating SISO UDSMC and MIMO UDSMC plus
decoupling. 

5) Comparative experimental studies with the built-in PID controller (come from the product)
and SMC method (advanced control algorithm) are involved to show the efficiency of the
proposed controller. 

The remaining portion of this paper has been arranged as follows. Section 2 introduces
he dynamical model of the quadrotor and control problems for follow up development. In
ection 3 , the MIMO-ESO is derived to estimate the unmeasured quadrotor’s velocities. Sec-

ion 4 presents the UDSMC method firstly, then comes with its quadrotor flight controller
esign procedures, coefficients designed principle and stability analysis. Also, it proposes a
ew decoupling algorithm for the quadrotor flight operation. Section 5 presents the experi-
ental bench tests, which shows the experimental setup procedure, design parameters of the

nvolved control methods and experiment results to compare to demonstrate the efficiency of
he proposed control system. Section 6 concludes the study. 

. Dynamic description and problem statement 

.1. Quadrotor dynamic model 

This study considers and tests followed quadrotor motion control: (1) Roll and pitch control:
hange the output power of the neighbouring motors to tilt; (2) Yaw control: change the
utput power of the opposing motors to generate unbalanced torque; (3) Horizontal movement
ontrol, the roll or pitch of the vehicle will generate a horizontal component of the rotor lift,
hereby realizing the horizontal movement of the quadrotor; (4) Vertical movement control:
ncrease or decrease the output power of all motors by the same account; (5) Hover Control:
ake the output power of all motors the same and the lifting force they generate is equal to

he gravity [1] . 
3523 
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Fig. 1 shows the quadrotor framework and its dynamical model which is established by
he body-frame B( Oxyz ) and the earth-frame E ( Oxyz ) . In quadrotor position control, the
ompensation of the rotation is necessary and obtained from the rotation matrix R : E → B: 

R = R ( φ, θ, ψ ) = R ( z, ψ ) R ( y, θ ) R ( x, φ) 

 ( z, ψ ) = 

⎡ 

⎣ 

cos ψ − sin ψ 0 

sin ψ cos ψ 0 

0 0 1 

⎤ 

⎦ 

R ( y, θ ) = 

⎡ 

⎣ 

cos θ 0 sin θ

0 1 0 

− sin θ 0 cos θ

⎤ 

⎦ 

R ( x, φ) = 

⎡ 

⎣ 

1 0 0 

0 cos φ − sin φ

0 sin φ cos φ

⎤ 

⎦ (1)

here roll φ, pitch θ and yaw ψ angles are quadrotor orientation in the body frames. Then
t comes from (1) : 

 = 

⎡ 

⎣ 

C ψ 

C θ C ψ 

S θS φ − S ψ 

C φ C ψ 

S θC φ + S ψ 

S φ

S ψ 

C θ S ψ 

S θS φ + C ψ 

C φ S ψ 

S θC φ − C ψ 

S φ

−S θ C θS φ C θC φ

⎤ 

⎦ (2)

here S denotes sin(·) and C denotes cos(·) . The translational kinematic equations are attained
y: 

 e = R · v b (3)

here v e = [ u 0 , v 0 , w 0 ] T and v b = [ u b , v b , w b ] T are quadrotor’s linear velocities in the earth-
rame E ( Oxyz ) and body-frame B( Oxyz ) , respectively. This study considers the following
ssumptions to simplify the dynamics modelling complexity [1] : 

1) The structure of quadrotor is rigid and symmetrical. 
2) The propeller that produces lift is rigid. 
3) The air drag forces are proportional to the propellers’ speed. 

Under these assumptions, the quadrotor flight dynamics can be presented by the flight
ynamics of a rigid body under the aerodynamic forces and moments generated by the rotation
f the propeller. Then the translational motions and rotational motions kinetic equations of
uadrotor can be described as: 
 

m s P̈ = F f + F d + F g 

J �̈ = − ˙ � ×
(

J ˙ �
)

+ � f − �a − �g 
(4)

here m s is the total mass of the quadrotor; vector P = [ x, y, z ] T presents the quadro-
or position; F f = R j, 3 

∑ 4 
i=1 F i = R j, 3 K p ω 

2 
i presents the composition of forces generated

y all rotors with R j, 3 being the third column of the rotation matrix R in (2) and K p be-
ng a coefficient related to the square of the angular rotor speed ω 

2 
i , which can be de-

ermined by static thrust tests [30] . F d = diag( −K 1 , −K 2 , −K 3 ) ̇  P presents the composition
f the drag forces along ( X, Y , Z ) axis with K i ( i = 1 , 2, 3 ) being positive translation air
rag coefficients. F g = [ 0, 0, −m s g ] T presents the gravity force acting on the centre of mass
3524 
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ith g being gravitational acceleration. Euler angles vector � = [ φ, θ, ψ ] T donates quadro-
or orientation. J = diag( I x , I y , I z ) ∈ R 

3 × 3 is a positive definite symmetric inertia matrix
f the quadrotor with I i ( i = x, y, z ) being the inertial moment in the body-frame B( Oxyz ) .
a = diag( K ax , K ay , K az ) ̇  � presents the composition of aerodynamic resistance torque with
 ax , K ay and K az being the coefficients of aerodynamic resistance. � f is the moment gener-
ted by the rotation of the propeller for the quadrotor’s fixed frame and �g is the composition
f torques due to the gyroscopic effects [30] , these forces are described by: 

f = 

⎛ 

⎝ 

l ( F 3 − F 1 ) 

l ( F 2 − F 4 ) 

ω 

2 
1 − ω 

2 
2 + ω 

2 
3 − ω 

2 
4 

⎞ 

⎠ = 

⎛ 

⎝ 

lK p 
(
ω 

2 
3 − ω 

2 
1 

)
lK p 

(
ω 

2 
4 − ω 

2 
2 

)
ω 

2 
1 − ω 

2 
2 + ω 

2 
3 − ω 

2 
4 

⎞ 

⎠ (5)

g = 

4 ∑ 

i=1 

J r 

⎛ 

⎝ 

0 

0 

( −1 ) i+1 ω i 

⎞ 

⎠ ̇

 � (6)

here l is the length between the centre of mass of the quadrotor and the axis of rotation of
he propeller, J r is the rotor inertia along the z axis. The angular velocities [ p, q, r ] T in the
ody frame can be obtained by transforming the angular velocity [ ̇  φ, ˙ θ, ˙ ψ ] 

T 
in the inertial

rame as: 
 

 

p 

q 

r 

⎞ 

⎠ = 

⎛ 

⎝ 

1 0 − sin θ

0 cos φ cos θ sin φ

0 − sin φ cos φ cos θ

⎞ 

⎠ 

⎛ 

⎝ 

˙ φ
˙ θ
˙ ψ 

⎞ 

⎠ (7)

Therefore, the mathematical dynamics of a quadrotor can be established by: 
 

 

 

 

 

ẍ = 

1 
m s 

( cos ψ sin θcos φ + sin φ sin ψ ) u 1 − 1 
m s 

K 1 ̇  x 

ÿ = 

1 
m s 

( sin ψ sin θcos φ − cos ψ sin φ) u 1 − 1 
m s 

K 2 ̇  y 

z̈ = 

1 
m s 

( cos θcos φ) u 1 − g − 1 
m s 

K 3 ̇  z 

(8)

 

 

 

 

 

 

 

φ̈ = 

l 
I x 

[(
I y − I z 

)
qr − K ax p − J r q�r + u 2 

]
θ̈ = 

l 
I y 

[
( I z − I x ) pr − K ay q + J r p�r + u 3 

]
ψ̈ = 

1 
I z 

[(
I x − I y 

)
pq − K az r + u 4 

] (9)

here �r = ω 1 − ω 2 + ω 3 − ω 4 presents the total rotor angular velocity, u 1 represents the total
hrust acting on the body in the z-axis, u 2 represents the roll torque and u 3 represent the pitch
orques; u 4 represents the yaw torque. Rewrite them by the angular velocities as follows: 
 

 

 

 

u 1 

u 2 

u 3 

u 4 

⎤ 

⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎣ 

K p 

−lK p 

0 

1 

K p 

0 

lK p 

−1 

K p 

lK p 

0 

1 

K p 

0 

−lK p 

−1 

⎤ 

⎥ ⎥ ⎦ 

⎡ 

⎢ ⎢ ⎣ 

ω 

2 
1 

ω 

2 
2 

ω 

2 
3 

ω 

2 
4 

⎤ 

⎥ ⎥ ⎦ 

(10)

Let us introduce the following notations for simplicity: 

X 1 = P , X 2 = 

˙ P , X 4 = �, X 5 = 

˙ �, F = 

(
F f + F g 

)
/ m s , 

f 2 ( X 2 ) = F d /m s = ( diag ( −K 1 , −K 2 , −K 3 ) X 2 ) /m s , 

f 5 ( X 5 ) = J −1 
(
− ˙ � ×

(
J ˙ �

)
− �a − �g 

)
(11)
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Then the original translational and rotational models of the quadrotor (8) and (9) can be
onverted into 

 

 

 

 

 

 

 

˙ X 1 = X 2 
˙ X 2 = f 2 ( X 2 ) + F + d 2 
˙ X 4 = X 5 
˙ X 5 = f 5 ( X 5 ) + J −1 � f + d 5 

(12)

here d 2 and d 5 present lumped disturbances absorbing the uncertainties and external dis-
urbances in the translational and rotational subsystems, respectively, where the uncertainties
onsist of inaccurate parameters, unmodelled unknown nonlinearities, etc. and the disturbances
ncludes unpredictable environmental variables, sensor measurement noise, etc. The introduc-
ion of lumped disturbances can describe the quadrotor model more accurately, which will
acilitate the design of MIMO-ESO and controllers. 

.2. Problem statement 

According to the dynamical model from (14) to (16) , the quadrotor control system can
e separated into: a fully actuated subsystem composed of φ, θ and ψ and a underactuated
ubsystem composed of x, y and z. However, in the attitude control of the quadrotor, the
hanges of the pitch angle θ and roll angle φ will cause the drone to tilt, so that the lift
orce of the rotor generates a horizontal component, then the horizontal movement can be
ealized. In this case, this study will directly use u 1 to control the quadrotor altitude z, and
ncidentally realize the x, y position tracking of the quadrotor by controlling the pitch θ

nd roll φ angle. Therefore, the new subsystems implemented by the decoupling algorithm
ill be separated into: a fully actuated subsystem composed of z and ψ and a underactuated

ubsystem composed of x, y, φ and θ . 
Denote by [ x d , y d , z d ] T and [ φd , θd , ψ d ] T the desired positions and attitude angles respec-

ively. The central control problem considered in this study is to design a robust tracking
ontrol system including a decoupling algorithm, position and attitude control algorithms to
nsure that the quadrotor can follow the desired position and attitude trajectories asymptoti-
ally and stably despite the modelling errors and unknown external system disturbances. In
ther words, the control strategy proposed in this study should ensure the position tracking
rrors ( e x = x d − x, e y = y d − y, e z = z d − z) and the attitude tracking errors ( φx = φd − φ,
y = θd − θ , ψ z = ψ d − ψ) converge to zero. 

. ESO design and analysis 

This section introduces the specific MIMO-ESO design process for translational and ro-
ational subsystems. This MIMO-ESO provides not only quadrotor’s velocities but also dis-
urbance estimation. According to the ESO design [31] , it is necessary to assume d 2 and
 5 are continuously differentiable and their derivatives h 3 and h 6 are bounded. Introduce
 3 = d 2 and X 6 = d 5 for additional state variables, then convert the original translational
nd rotational models of the quadrotor (12) into: 
 

 

 

˙ X 1 = X 2 
˙ X 2 = f 2 ( X 2 ) + F + X 3 
˙ X 3 = h 3 

⎧ ⎨ 

⎩ 

˙ X 4 = X 5 
˙ X 5 = f 5 ( X 5 ) + J −1 � f + X 6 
˙ X 6 = h 6 

(13)
3526 
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With the definition of X T = [ X 1 X 2 X 3 ] 
T 

and X R = [ X 4 X 5 X 6 ] 
T 

, system (13) can
e covert into: 

˙ X T = A X T + F 1 ( X T ) + L 2 F + �T 
˙ X R = A X R + F 2 ( X R ) + L 2 

(
J −1 � f 

) + �R 
(14)

here A = 

[ 0 I 3 0 
0 0 I 3 
0 0 0 

] 
, F 1 ( X T ) = [ 0 f 2 ( X 2 ) 0 ] 

T 
, F 2 ( X R ) = [ 0 f 5 ( X 5 ) 0 ] 

T 
, �T =

 0 0 h 3 ] 
T 

, �R = [ 0 0 h 6 ] 
T 

and L 2 = [ 0 I 3 0 ] 
T 

. I i presents an i × i, i ∈ R 

+ iden-
ity matrix and 0 is a zero vector with proper dimensions. Therefore, the MIMO-ESO design
ased on dynamic modelling information in (11) is: 
 

 

 

 

 

 

 

·
� 

X T = A ̂

 X T + F 1 

( ˆ X T 

)
+ L 2 F + β1 

(
X 1 − ˆ X 1 

)
·
� 

X R = A ̂

 X R + F 2 

( ˆ X R 

)
+ L 2 

(
J −1 � f 

) + β2 

(
X 4 − ˆ X 4 

) (15)

here ˆ X T = [ ̂  X 1 ˆ X 2 ˆ X 3 ] 
T 

and 

ˆ X R = [ ̂  X 4 ˆ X 5 ˆ X 6 ] 
T 

are the estimated state variable

atrix, F 1 ( ̂  X T ) = [ 0 f 2 ( ̂  X 2 ) 0 

] 
T 
, F 2 ( ̂  X R ) = [ 0 f 5 ( ̂  X 5 ) 0 

] 
T 

β1 and β2 are

he observer gain matrices with β1 = [ 3 ω 1 · I 3 3 ω 

2 
1 · I 3 ω 

3 
1 · I 3 ] 

T 
and β2 =

 3 ω 2 · I 3 3 ω 

2 
2 · I 3 ω 

3 
2 · I 3 ] 

T 
. The parameters ω 1 , ω 2 ∈ R 

+ are the only tuning param-
ters presenting the observer bandwidths. Then introduce the estimation errors as ˜ X T =
 T − ˆ X T = [ ̃  X 1 ˜ X 2 ˜ X 3 ] 

T 
and 

˜ X R = X R − ˆ X R = [ ̃  X 4 ˜ X 5 ˜ X 6 ] 
T 

, respectively. Their scaled

stimation errors are defined as Q T = [ Q 1 Q 2 Q 3 ] 
T = [ ̃  X 1 ˜ X 2 /ω 1 ˜ X 3 /ω 

2 
1 ] 

T 
and

 R = [ Q 4 Q 5 Q 6 ] 
T = [ ̃  X 4 ˜ X 5 /ω 2 ˜ X 6 /ω 

2 
2 ] 

T 
. Thus, the scaled estimation errors are:

 

 

 

˙ Q T = ω 1 · A 1 Q T + L 2 

(
f 2 ( X 2 ) − f 2 

( ˆ X 2 

))
· ω 

−1 
1 + L 3 h 3 · ω 

−2 
1 

˙ Q R = ω 1 · A 1 Q R + L 2 

(
f 5 ( X 5 ) − f 5 

( ˆ X 5 

))
· ω 

−1 
2 + L 3 h 6 · ω 

−2 
2 

(16)

ith A 1 = 

[ −3 · I 3 I 3 0 
−3 · I 3 0 I 3 
−I 3 0 0 

] 
and L 3 = [ 0 0 I 3 ] 

T 

ssumption 1. The derivatives of the lumped disturbances satisfy | | h 3 | | ≤ ε 1 and | | h 6 | | ≤
 2 with ε 1 , ε 3 > 0. Functions f 2 and f 5 belong to C 

2 (with 2 continuous derivatives) and are
lobally Lipschitz with respect to X 2 and X 5 with c 1 , c 2 ∈ R 

+ , that is, 
 

 

 

‖ f 2 ( X 2 ) − f 2 
( ˆ X 2 

)
‖ ≤ c 1 ‖ X 2 − ˆ X 2 ‖ = c 1 ω 1 ‖ Q 2 ‖ ≤ c 1 ω 1 ‖ Q T ‖ 

‖ f 5 ( X 5 ) − f 5 
( ˆ X 5 

)
‖ ≤ c 2 ‖ X 5 − ˆ X 5 ‖ = c 2 ω 2 ‖ Q 5 ‖ ≤ c 2 ω 2 ‖ Q R ‖ 

(17)

emark 1. Since A 1 is Hurwitz matrix in (16), there exists a positive definite matrix P satis-
ying A 

T 
1 P + PA 1 = − I 9 . Select observer bandwidth ω 1 > 2c 1 ‖ PL 2 ‖ for translational

ubsystem and Substituting A 1 into the above equation, it comes P = 

[ I 3 −0. 5 I 3 −I 3 
−0. 5 I 3 0 −0. 5 I 3 
−I 3 −0. 5 I 3 4I 3 

] 
.

hen choose the following Lyapunov candidate function as: 

 ( Q T ) = Q 

T 
T PQ T (18)
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Substituting (16) and (17) into the time derivative of V ( Q T ) , it has 

˙ 
 ( Q T ) = 

˙ Q 

T 
T P Q T + Q 

T 
T P 

˙ Q T 

= ω 1 Q 

T 
T A 

T 
1 P Q T + 

⎛ 

⎝ 

L 2 

(
f 2 ( X 2 ) − f 2 

(
ˆ X 2 

))
ω 1 

⎞ 

⎠ 

T 

P Q T + 

(L 3 h 3 

ω 

2 
1 

)T 

P Q T + ω 1 Q 

T 
T P A 1 Q T 

+ Q 

T 
T P 

L 2 

(
f 2 ( X 2 ) − f 2 

(
ˆ X 2 

))
ω 1 

+ Q 

T 
T PL 3 

L 3 h 3 

ω 

2 
1 

= ω 1 Q 

T 
T 

(
A 

T 
1 P + PA 1 

)
Q T 

+ 

⎛ 

⎝ 

L 2 

(
f 2 ( X 2 ) − f 2 

(
ˆ X 2 

))
ω 1 

⎞ 

⎠ 

T 

P Q T + 

(L 3 h 3 

ω 

2 
1 

)T 

P Q T + ω 1 Q 

T 
T P A 1 Q T 

+ Q 

T 
T P 

L 2 

(
f 2 ( X 2 ) − f 2 

(
ˆ X 2 

))
ω 1 

+ Q 

T 
T PL 3 

L 3 h 3 

ω 

2 
1 

(19)

According to Remark 1 , P is a symmetric positive definite matrix, it comes from (19) that

 

 

L 2 

(
f 2 ( X 2 ) − f 2 

( ˆ X 2 

))
ω 1 

⎞ 

⎠ 

T 

P Q T = Q 

T 
T P 

L 2 

(
f 2 ( X 2 ) − f 2 

( ˆ X 2 

))
ω 1 

(L 3 h 3 

ω 

2 
1 

)T 

P Q T = Q 

T 
T P 

L 3 h 3 

ω 

2 
1 

(20)

Substituting (20) into (19) , we have 

˙ 
 (Q T ) = ω 1 Q 

T 
T (−I 9 ) Q T + 2Q 

T 
T P 

L 2 f 2 (X 2 ) − f 2 ( ̂  X 2 ) 

ω 1 
+ 2Q 

T 
T P 

L 3 h 3 

ω 

2 
1 

≤ −ω 1 || Q T || 2 + 2Q 

T 
T P 

L 2 (c 1 ω 1 || Q T || ) 
ω 1 

+ 2Q 

T 
T P 

L 3 · ε 1 

ω 

2 
1 

≤ −ω 1 ‖ Q T ‖ 2 + 

2c 1 ω 1 ‖ Q T ‖ · ‖ PL 2 ‖ · ‖ Q T ‖ 
ω 1 

+ 

2ε 1 ‖ Q T ‖ · ‖ PL 3 ‖ 
ω 

2 
1 

= −( ω 1 − 2c 1 ‖ PL 2 ‖ ) ‖ Q T ‖ 2 −
(−2ε 1 ‖ PL 3 ‖ 

ω 

2 
1 

)
‖ Q T ‖ 

= −‖ Q T ‖ 
(

( ω 1 − 2c 1 ‖ PL 2 ‖ ) ‖ Q T ‖ − 2ε 1 ‖ PL 3 ‖ 
ω 

2 
1 

)
(21)

Therefore, the designed MIMO-ESO is stable, and the estimation error will be bounded
ith ‖ Q T ‖ ≤ 2ε 1 ‖ PL 3 ‖ 

( ω 1 −2c 1 ‖ PL 2 ‖ ) ω 2 1 
after a finite time, that is, the estimated velocity variable ˆ X 2

an track the real velocity precisely. According to Remark 1 , ω 1 > 2c 1 ‖ PL 2 ‖ means a
ufficiently large ω 1 can reduce the upper bound of the estimation error. 

emark 2. The stability proof for rotational subsystems is the same as for transla-
ional subsystem from (18) to (19) . The observer bandwidth in rotational subsystem
s selected as ω 2 > 2c 2 ‖ PL 2 ‖ , the derivative of the Lyapunov function 

˙ V ( Q R ) ≤
‖ Q R ‖ ( ( ω 2 − 2c 2 ‖ PL 2 ‖ ) · ‖ Q R ‖ − 2ε 2 ‖ PL 3 ‖ · ω 

−2 
2 ) , therefore, the upper bound for esti-

ation error in rotational subsystem is ‖ Q R ‖ ≤ 2ε 2 ‖ PL 3 ‖ 
( ω 2 −2c 2 ‖ PL 2 ‖ ) ω 2 2 

and inversely proportional to
he value of the bandwidth. 

emark 3. The larger observer bandwidth ω 1 and ω 2 can reduce the estimation error but
ay lead to the high-frequency oscillation due to the high-gain integration, which will reduce
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he robustness of the MIMO-ESO and the whole control system. Therefore, designers should
onsider an appropriate compromise/ trade-off between the estimation quality and the system
obustness. 

. Controller design and analysis 

To accomplish this position and attitude control system for, a decoupling algorithm and
obust UDSMC method is presented in this section. Fig. 2 shows the quadrotor control frame-
ork, where IMU is internal measurement unit, providing basic motion and rotation informa-

ion of the quadrotor aircraft, UDSMC is U-model based double sliding controller module. 

.1. UDSMC 

.1.1. U-control - U-model based control 
U-model, a solely interested input and output mapping with time varying parameters ab-

orbing the other dynamic variables and coefficients, is a class of derived control-orientated
tructure, which could be converted from any existing data driven and principal models [32] .
y inverting the U-model, the control systems can be designed independently from model

nformation. The U-control is shortened from U-model based control. In the past decade,
-control as a new control method has been well studied. Interesting readers can find the

epresentative publications from the reference list. 
U-model based control (U-control) can separate the controlled plant inversion and baseline

ontroller design in double feedback loops. Fig. 3 shows the Continues-time (CT) U-control
Fig. 2. The quadrotor control framework. 

Fig. 3. U-control design framework. 
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Fig. 4. UDSMC system design framework. 
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ystem framework [32] . The inner loop in U-control is plant’s dynamic inversion design to
ancel system nonlinearities and dynamics, that is, for a model-matched U-control framework,
he product of the dynamic inverter and controlled plant should be converted into an identity

atrix or a unit constant. Therefore, this U-control can become universal phase delay-free,
ast-response and convenient but highly sensitive to the modelling errors and disturbances,
hich requires robust dynamic inversion algorithm [33–35] . The output of U-control system

s specified with a second order linear dynamic (of course, user can assign the other types of
ontrollers) below 

 = 

G c1 G 

−1 
0 G P 

1 + G c1 G 

−1 
0 G P 

r + 

G P 

1 + G c1 G 

−1 
0 G P 

d (22)

here G c1 denotes a linear invariant controller, G P denotes the controlled plant and G 

−1
0 

enotes its regular inverter. r is the reference tracking signal. Model G P equals G 0 achieves
hen system is free of system external disturbance and modelling errors, remarkably, the
utput of U-control system (17) can be simplified when G P = G 0 : 

 = 

G c1 

1 + G c1 
r = Gr (23)

Concretely, G is the gain of the whole closed-loop control system, which can be designed
nd adjusted by typically different damping ratio ζ and natural frequency ω n of G c1 . 

emark 4. The implementation of inversion requires the controlled plant be Bounded Input
nd Bounded Output (BIBO) stable and no unstable zero dynamic [44]. When the highest-
rder derivatives of system input u 

(m) is solved, the other u relative derivatives can be obtained
y do integral operation of u 

(m) . 

.1.2. UDSMC 

Section 4.1.1 gives the basic concept of U-control system. The conventional U-inverter
s sensitive to the accuracy of system modelling, which will therefore result in suboptimal
ontrol performance in practical control applications. Zhu et al. first used DSMC method
o derive a robust dynamic inverter G 

−1 
0 in DUSMC [29] of the controlled plant G P . For

 model-mismatched U-control framework, the feedback loop gain containing the dynamic
nverter (sliding mode inverter) and controlled plant should be converted into an identity

atrix or a unit constant [29] . The UDSMC design framework is shown in Fig. 4 , where x d 
s the desired state variables, G P sw 

−1 and G P eq 
−1 are dynamic inverters when sliding manifold

 g stays outside and inside the sliding boundary δ, respectively; u sw 

and u eq are switching
nd equivalent controller, respectively. The block in Fig. 4 containing | s| < δ is a selection
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⎧⎨
⎩  
witch module, which means that when | s| < δ, u eq will be activated, otherwise u sw 

will be
ctivated. The two-step independent design procedure of UDSMC is described as follows: 

1) Using DSMC to design the inverter in the inner loop (cancellation of both nonlinearity and
dynamics of the plant so that the external loop controller design has no request of plant
model information, that is model-free controller design in the external loop) 
The double sliding mode inverter (DSMI) in inner loop aims to achieve G 

−1 
0 G P = 1 . The

DSMI design procedure is described as follows 
i. Design global sliding manifold S g with the boundary δ in the SM interval to specify

the controlled system with the desired control performance specification: 

S g = S + δ1 , 0 ≤ | δ1 | ≤ δ (24)

where S = ce + ˙ e is the classical sliding manifold function, c is the sliding coefficient.
ii. Design the switching controller u sw 

to drive the system states to the sliding manifold
(with the boundary) and ensure that the system state slides on the manifold. Let ˙ S g =
f g + f u u sw 

, where f g represents all the neglected bounded terms in the classical SMC
design, then it comes 

u sw 

= −k g sgn 

(
S g 

)
(25)

iii. where k g ∈ R 

+ is a positive gain coefficient and sgn(∗) is the sign function. 
iv. Design a local sliding manifold S l with the equivalent controller u eq . With the satis-

faction of the classical Hurwitz stable, S l = S. Let ˙ S l = f l + f u u eq , where f l represents
all the neglected bounded terms in the classical SMC design. Consider the matching
condition of f l = k 2 be satisfied, where k 2 is a bounded tangent factor associated with
S, then it comes 

u eq = −k l S (26)

v. Finally, the DSM controller is designed as u = u eq + u sw 

= −( k g sgn( S g ) + k l S ) 

Remark 5. It should be mentioned that the model inversion should exist and satisfy the
Lipschitz continuity with globally uniformly [29] : 

‖ G ( x 1 ) − G ( x 2 ) ‖ ≤ γ1 G ‖ x 1 − x 2 ‖ , ∀ x 1 , x 2 ∈ R 

n 

‖ G 

−1 ( x 1 ) − G 

−1 ( x 2 ) ‖ ≤ γ2 G 

−1 ‖ x 1 − x 2 ‖ , ∀ x 1 , x 2 ∈ R 

n 

2) Designing the invariant controller in the external loop (specify the control system perfor-
mance) 
Design a linear invariant controller G c1 with customer-defined damping ratio ζ and un-

damped natural frequency ω n , that is, G c1 = 

G 

1 −G 

and G = 

ω 2 n 
s 2 +2ζω n s+ ω 2 n 

. 

.2. Decoupling algorithm 

Inspired by [36] , assume system (8) is fully actuated and convert it into 

 

 

 

ẍ = u x − 1 
m s 

K 1 ̇  x 
ÿ = u y − 1 

m s 
K 2 ̇  y 

z̈ = u z − g − 1 
m s 

K 3 ̇  z 
(27)
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here u x , u y and u z are assumed position controllers shown as: 
 

 

 

u x = 

u 1 
m s 

( cos ψ sin θcos φ + sin φ sin ψ ) 

u y = 

u 1 
m s 

( sin ψ sin θcos φ − cos ψ sin φ) 

u z = 

u 1 
m s 

( cos θcos φ) 

(28)

By squaring both sides of the above equations, it comes: 
u 1 

m s 
= 

√ 

u 

2 
x + u 

2 
y + u 

2 
z = 

u z 

cos θcos φ
(29)

Therefore, the desired roll and pitch angles ( φd , θd ) can be calculated by: 

d = arcsin 

(
m s 

u x sinψ − u y cosψ 

u 1 

)
(30)

d = arctan 

(
u x cosψ + u y sinψ 

u z 

)
(31)

emark 6. It should be noticed that the roll, pitch and yaw angles ( φ, θ, ψ) are bounded
nd meet the satisfaction of: φ, θ ∈ ( −π/ 2, π/ 2 ) and ψ ∈ ( −π, π) , which are necessarily
onsidered avoiding the singularity problems in the aerodynamic and controller design [30] . 

Assuming the body of quadrotor is rigid, the position controllers for x and y are designed by
sing UDSMC method. According to system (23) , the sliding manifolds and their derivatives
re defined as 

 P = C P e P + ̇

 ˆ e P , S P1 = S P + δP , S P2 = S P , ˙ S P1 = f P + U Psw 

, ˙ S P2 = K P + U Peq (32)

here S P = [ S x , S y , S z ] T , S P1 = [ S x1 , S y1 , S z1 ] T , C P is designed positive definite diagonal
atric, e P = [ e x , e y , e z ] T = [ x − x d , y − y d , z − z d ] T , δP = [ δx , δy , δz ] T , f P = [ f x , f y , f z ] 

T with
f x = c x ̇  ˆ e x − 1 

m s 
K 1 ̇

 ˆ x, f y = c y ̇  ˆ e y − 1 
m s 

K 2 ̇
 ˆ y and f z = c z ̇  ˆ e z − g − 1 

m s 
K 3 ̇

 ˆ z; K P is bounded unknown
angent matrices of S P . The corresponding position controllers are designed as: 

 P = −K P1 sgn ( S P1 ) − K P2 S P2 (33)

here K P1 and K P2 are designed positive definite diagonal matrices, U P = U Psw 

+ U Peq ,
gn ( S P1 ) = [ sgn ( S x1 ) , sgn ( S y1 ) , sgn ( S z1 ) ] 

T . 
Assuming a Lyapunov function V P = 

1 
2 S 

T 
P1 S P1 + 

1 
2 S 

T 
P2 S P2 , its corresponding derivative is: 

˙ 
 P = 

1 

2 

˙ S 

T 
P1 S P1 + 

1 

2 

˙ S 

T 
P2 S P2 + 

1 

2 

S 

T 
P1 ̇

 S P1 + 

1 

2 

S 

T 
P2 ̇

 S P2 ≤ S 

T 
P1 ̇

 S P1 + S 

T 
P2 ̇

 S P2 

= S 

T 
P1 ( f P − K P1 sgn ( S P1 ) ) + S 

T 
P2 ( K P − K P2 S P2 ) 

≤ −‖ S P1 ‖ ( K P1 − f P ) − ‖ S P2 ‖ ( K P2 − K P ) (34)

To satisfy 

˙ V P < 0 for horizontal position control stability, it comes K P1 − f P > 0, K P2 −
 P > 0, therefore 

 P1 > ‖ f P ‖ and K P2 > ‖ K P ‖ (35)

emark 7. This study divides the control system into two main subsystems: fully actuated
ubsystem composed of z and ψ and underactuated subsystem composed of x, θ and y, φ.
ccording to Fig. 1 , for a given reference positions x d and y d , this study first converts system

14) into a fully actuated control system, and its position controllers are designed respectively
y using UDSMC method. Then the desired angles reference for positions control are cal-
ulated through the decoupling system accordingly. Next, the design steps of the subsequent
ully actuated and underactuated controller will be introduced in detail. 
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.3. Uncoupled/fully actuated subsystem controller 

Fully actuated subsystem controller is designed by UDSMC method to ensure the altitude
ariables z and yaw angle ψ can converge to their desired values z d and ψ d . Additionally,
ssuming that the structure of quadrotor is rigid and symmetrical, therefore, the sliding man-
folds are designed as 

 F = C F e F + 

˙ ˆ e F , S F 1 = S F + δF , S F 2 = S F , ˙ S F 1 = f F + f F U 

U F sw 

, ˙ S F 2 = K F + f F U 

U Feq (36)

here S F = [ S 1 , S 4 ] T are sliding manifolds for fully actuated subsystem, S F 1 = [ S g1 , S g4 ] T ,
 F = diag( c z , c ψ 

) is designed positive definite diagonal matric, e F = [ e z , e ψ 

] T =
 z − z d , ψ − ψ d ] T , δF = [ δz , δψ 

] T , f F = [ f g1 , f g4 ] 
T with f g1 = c z ̇  ˆ e z = g − 1 

m s 
k 3 ̇  ˆ z − ¨̂

 z d and f g4 =
 ψ ̇

 ˆ e ψ 

+ pq 

I x −I y 
I z 

− k 6 
I z 

r − ψ̈ d ; f F U 

= diag ( f u1 , f u4 ) with f u1 = 1 and f u4 = 

C 
I z 

; K F is bounded

nknown tangent matrices of S F . U F sw 

= [ u 1 sw 

, u 4sw 

] T is the switching controller and U Feq =
 u 1 eq , u 4eq ] T is the equivalent controller. The corresponding controllers for this fully actuated
ubsystem are designed as: 

 F = −K F 1 sgn ( S F 1 ) − K F 2 S F 2 (37)

here K F 1 and K F 2 are designed positive definite diagonal matrices, U F = [ u 1 , u 4 ] T = U F sw 

+
 Feq , sgn ( S F 1 ) = [ sgn ( S g1 ) , sgn ( S g4 ) ] 

T . 
Assuming a Lyapunov function V F = 

1 
2 S 

T 
F 1 S F 1 + 

1 
2 S 

T 
F 2 S F 2 , its corresponding derivative

s: 

˙ 
 F = 

1 

2 

˙ S 

T 
F 1 S F 1 + 

1 

2 

˙ S 

T 
F 2 S F 2 + 

1 

2 

S 

T 
F 1 ̇

 S F 1 + 

1 

2 

S 

T 
F 2 ̇

 S F 2 ≤ S 

T 
F 1 ̇

 S F 1 + S 

T 
F 2 ̇

 S F 2 

= S 

T 
F 1 ( f F − f F U 

( K F 1 sgn ( S F 1 ) ) ) + S 

T 
P2 ( K F − f F U 

( K F 2 S F 2 ) ) 

≤ −‖ S F 1 ‖ ( f F U 

K F 1 − f F ) − ‖ S F 2 ‖ ( f F U 

K F 2 − K F ) (38)

To satisfy 

˙ V F < 0 for altitude control and yaw angle control stability, it comes f F U 

K F 1 −
f F > 0 and f F U 

K F 2 − K F > 0, therefore 

 F 1 > ‖ f F ‖ f −1 
F U 

and K P2 > ‖ K F ‖ f −1 
F U 

(39)

emark 8. According to Eqs. (28) and ( 42 ), the relationship between u z and u 1 is: u z =
u 1 cos θcos φ

m s 
. Therefore, the design of u 1 can be converted into the design of u z . 

.4. Coupled/underactuated subsystem controller 

Underactuated subsystem controller is also designed by UDSMC method to maintain the
orizontal position variables [ x, y ] and pitch and roll angles variables [ φ, θ] can converge to
heir desired values [ x d , y d ] and [ φd , θd ] with only two control inputs u 2 and u 3 . Accordingly,
he sliding manifolds are designed as 

S U N = C U N1 e U N1 + C U N2 ̇
 ˆ e U n1 + C U N3 e U N2 + C U N4 ̇

 ˆ e U n2 S U N1 

= S U N + δU N , S U N2 = S U N ˙ S U N1 = f U N + f U NU 

U U Nsw 

˙ 
 U N2 = K U N + f U NU 

U U Neq (40)

here S U N = [ S 2 , S 3 ] T are sliding manifolds for fully actuated subsystem, S U N1 =
 S g2 , S g3 ] T ; C U N1 = diag ( c 1 , c 5 ) , C U N2 = diag ( c 2 , c 6 ) , C U N3 = diag ( c 3 , c 7 ) , C U N4 =
3533 
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iag ( c 4 , c 8 ) are designed positive definite diagonal matrices, e U N1 = [ e x , e y ] T =
 x − x d , y − y d ] T , e U N2 = [ e θ , e φ] T = [ θ − θd , φ − φd ] T δU N = [ δ2 , δ3 ] T , f U N =
 f g2 , f g3 ] 

T with f g2 = c 1 ̈e y + c 2 ̇  ˆ e y + c 3 ( ̂  q ̂  r I y −I z 
I x 

+ 

J r 
I x 

ˆ q �r − k 4 l 
I x 

ˆ p ) − φ̈d + c 4 ̇  ˆ e φ and f g3 =
 5 ̈̂  e x + c 6 ̇  ˆ e x + c 7 ( ̂  p ̂  r I z −I x 

I y 
− J r 

I y 
ˆ p �r − k 5 l 

I y 
ˆ q ) − θ̈d + c 8 ̇  ˆ e θ ; f U NU 

= diag ( f u2 , f u3 ) with f u2 = 

c 3 l 
I x 

nd f u3 = 

c 7 l 
I y 

; K U N is bounded unknown tangent matrices of S U N . U U Nsw 

= [ u 2sw 

, u 3 sw 

] T is the

witching controller and U U Neq = [ u 2eq , u 3 eq ] T is the equivalent controller. The corresponding
ontrollers for this fully actuated subsystem are designed as: 

 U N = −K U N1 sgn ( S U N1 ) − K U N2 S U N2 (41)

here K U N1 and K U N2 are designed positive definite diagonal matrices, U U N = [ u 2 , u 3 ] T =
 U Nsw 

+ U U Neq , sgn ( S U N1 ) = [ sgn ( S g2 ) , sgn ( S g3 ) ] 
T . Assuming a Lyapunov function V U N =

 V 2 , V 3 ] T = 

1 
2 S 

T 
U N1 S U N1 + 

1 
2 S 

T 
U N2 S U N2 , its corresponding derivative is: 

˙ 
 U N = 

1 

2 

˙ S 

T 
U N1 S U N1 + 

1 

2 

˙ S 

T 
U N2 S U N2 + 

1 

2 

S 

T 
U N1 ̇

 S U N1 + 

1 

2 

S 

T 
U N2 ̇

 S U N2 ≤ S 

T 
U N1 ̇

 S U N1 + S 

T 
U N2 ̇

 S U N2 

= S 

T 
U N1 ( f U N − f U NU 

( K U N1 sgn ( S U N1 ) ) ) + S 

T 
U N2 ( K U N − f U NU 

( K U N2 S U N2 ) ) 

≤ −‖ S U N1 ‖ ( f U NU 

K U N1 − f U N ) − ‖ S U N2 ‖ ( f U NU 

K U N2 − K U N ) (42)

To satisfy 

˙ V 2 < 0 for x position and roll angle control stability and 

˙ V 3 < 0 for y position
nd pitch angle control stability, it comes f U NU 

K U N1 − f U N > 0 and f U NU 

K U N2 − K U N > 0,
herefore 

 U N1 > ‖ f U N ‖ f −1 
U NU 

and K U N2 > ‖ K U N ‖ f −1 
U NU 

(43)

.5. The sliding manifolds coefficients 

Let the sliding manifold S 2 and its derivative equal to zero: 

 U N = C U N1 e U N1 + C U N2 ̇
 ˆ e U N1 + C U N3 e U N2 + C U N4 ̇

 ˆ e U N2 = 0 (44)

˙ 
 U N = C U N1 ̇

 ˆ e U N1 + C U N2 ̈̂  e U N1 + C U N3 ̇
 ˆ e U N2 + C U N4 ̈̂  e U N2 = 0 (45)

From (45) , it has 

¨̂
  U N2 = −C 

−1 
U N4 

(
C U N1 ̇

 ˆ e U N1 + C U N2 ̈̂  e U N1 + C U N3 ̇
 ˆ e U N2 

)
(46)

From (44) , it comes 

˙ ˆ  U N1 = −C 

−1 
U N2 

(
C U N1 e U N1 + C U N3 e U N2 + C U N4 ̇

 ˆ e U N2 

)
(47)

Substituting (47) into (46) , it comes, 
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¨̂
  UN2 = −C 

−1 
UN4 

(
C UN1 

(
−C 

−1 
UN2 

(
C UN1 e UN1 + C UN3 e UN2 + C UN4 ̇

 ˆ e UN2 

))
+ C UN2 ̈̂  e UN1 + C UN3 ̇

 ˆ e UN2 

)
= C 

−1 
UN4 C UN1 C 

−1 
UN2 

(
C UN1 e UN1 + C UN3 e UN2 + C UN4 ̈̂  e UN2 

)
− C 

−1 
UN4 C UN2 ̈̂  e UN1 − C 

−1 
UN4 C UN3 ̇

 ˆ e UN2 

= C 

−1 
UN4 C UN1 C 

−1 
UN2 C UN1 e UN1 + C 

−1 
UN4 C UN1 C 

−1 
UN2 C UN3 e UN2 

+ 

(
C 

−1 
UN4 C UN1 C 

−1 
UN2 C UN4 − C 

−1 
UN4 C UN3 

)˙ ˆ e UN2 − C 

−1 
UN4 C UN2 ̈̂  e UN1 (48)

Let Y 1 = e U N2 , Y 2 = 

˙ Y 1 = 

˙ ˆ e U N2 and Y 3 = e U N1 . The cascaded form is obtained as: 

˙ 
 1 = Y 2 

˙ 
 2 = C 

−1 
UN4 C UN1 C 

−1 
UN2 C UN1 e UN1 + C 

−1 
UN4 C UN1 C 

−1 
UN2 C UN3 e UN2 + 

(
C 

−1 
UN4 C UN1 C 

−1 
UN2 C UN4 − C 

−1 
UN4 C UN3 

)
e UN2 

−C 

−1 
UN4 C UN2 ̇

 ˆ e UN2 ̇  Y 3 = −C 

−1 
UN2 C UN1 e UN1 − C 

−1 
UN2 C UN3 e UN2 − C 

−1 
UN2 C UN4 e UN2 (49)

When the system state variables approach to their equilibrium points, that is, e U N2 → 0,
˙ ˆ  U N2 → 0, e U N1 → 0, thus, Y 1 → 0, Y 2 → 0, Y 3 → 0. After the linearization operation around
he equilibrium points, it comes 

¨ e U N1 = H e U N2 + N (50)

here H = diag( u 1 cos ψcos φ/m s , −u 1 cos ψ/m s ) , e U N2 = [ θ − θd , φ − φd ] T , N =
 u 1 sin φ sin ψ/m s − K 1 ̇

 ˆ x/m s − ẍ d , u 1 sin ψ sin θcos φ/m s − K 2 ̇
 ˆ y/m s − ÿ d ] 

T 
. Then substi-

ute (50) into (49) and use Y 1 , Y 2 , Y 3 to replace the related items, the new cascaded form is
btained after organization as: 

˙ 
 1 = Y 2 

˙ 
 2 = 

(
C 

−1 
U N4 C U N1 C 

−1 
U N2 C U N3 − C 

−1 
U N4 C U N2 H 

)
Y 1 + 

(
C 

−1 
U N4 C U N1 C 

−1 
U N2 C U N4 − C 

−1 
U N4 C U N3 

)
Y 2 

+ C 

−1 
U N4 C U N1 C 

−1 
U N2 C U N1 Y 3 − C 

−1 
U N4 C U N2 N 

˙ Y 3 

= −C 

−1 
U N2 C U N3 Y 1 − C 

−1 
U N2 C U N4 Y 2 − C 

−1 
U N2 C U N1 Y 3 (51)

Let Y = [ Y 1 , Y 2 , Y 3 ] T , its derivative matrix form is ˙ Y = AY , where 

 = 

⎡ 

⎣ 

A 11 A 12 A 13 

A 21 A 22 A 23 

A 31 A 32 A 33 

⎤ 

⎦ (52)

The matrix A is Hurwitz and the system states will be asymptotically approaching their
quilibrium points [36] . Assuming C 

−1 
U N4 � = 0 and C 

−1 
U N2 � = 0, the parameters in (51) are ob-

ained from (52) : 

 11 = A 13 = 0, A 12 = I 2 

 21 = C 

−1 
U N4 C U N1 C 

−1 
U N2 C U N3 − C 

−1 
U N4 C U N2 H 

 22 = C 

−1 
U N4 C U N1 C 

−1 
U N2 C U N4 − C 

−1 
U N4 C U N3 

 23 = C 

−1 
U N4 C U N1 C 

−1 
U N2 C U N1 

 31 = −C 

−1 
U N2 C U N3 , A 32 = −C 

−1 
U N2 C U N4 , A 33 = −C 

−1 
U N2 C U N1 (53)
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Fig. 5. Parrot Minidrone experimental platform. 
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Let | λ · I 6 − A | = 0, that is, 

λ · I 2 −I 2 0 

A 21 λ · I 2 − A 22 A 23 

A 31 A 32 λ · I 2 − A 33 

∣∣∣∣∣∣ = 0 (54)

Determinant (54) can be calculated as: 

( λ · I 2 ) 3 − ( A 22 + A 33 ) ( λ · I 2 ) 2 + ( A 33 A 22 − A 21 − A 32 A 23 ) ( λ · I 2 ) + ( A 33 A 21 − A 31 A 23 ) = 0 

(55)

Let the characteristic equation be ( λ · I 2 + 2I 2 ) 3 = 0, after the comparison this equation
ith (55) , it has: 
 

 

 

−( A 22 + A 33 ) = 6 I 2 
A 33 A 22 − A 21 − A 32 A 23 = 12I 2 

A 33 A 21 − A 31 A 23 = 8 I 2 
(56)

After organization, Let c 4 = c 8 = 1 , then the other coefficients are: c 1 = 

8 m s 
u 1 cos φcos ψ 

, c 2 =
12m s 

u 1 cos φcos ψ 

, c 3 = 6 , c 5 = − 8 m s 
cos ψu 1 

, c 6 = − 12m s 
cos ψu 1 

, c 7 = 6 . 

. Experimental studies 

The proposed ESO UDSMC based quadrotor control system has been tested by the Parrot
ambo Minidrone position tracking experiment. In order to evaluate the real-time position and

ttitude tracking performance of quadrotor under UDSMC method, its experiment results will
e compared with the PID controller and sliding mode controller. The PID controller is the
riginal built-in controller of the Parrot Minidrone and has been adjusted by the manufacturer
or optimum performance. 

.1. Experiment setup 

The Parrot Mambo Minidrone, which is shown in Fig. 5 , is equipped with 6-DOF iner-
ial measurement unit (3-axis accelerometer and 3-axis gyroscope), an ultrasound sensor and
ressure sensors that can detect quadrotor’s altitude, a pressure sensor, a 60FPS camera with
 resolution of 120 ×160 pixels. The support package provided by MATLAB/Simulink can
onnect with Parrot Mambo Minidrone via Bluetooth 4.0, and access mini drone’s internal
ensor data and deploy the control algorithm in real time, the output of which will be sent
ack to MATLAB/Simulink and displayed on it. The sampling time of the mini drone control
ystem is T = 0. 005 s, the position [ x, y, z ] ′ and the attitude [ φ, θ, ψ ] ′ of the minidrone are
3536 
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Table 1 
Parrot Minidrone parameters. 

Variables Values Units 

m s 0. 063 kg 
l 0. 108m m
g 9 . 81 m/ s 2 

J r 0. 1021 × 10 −6 kg m 

2 

I x 5 . 85 × 10 −5 kg m 

2 

I y 7 . 17 × 10 −5 kg m 

2 

I z 1 × 10 −4 kg m 

2 

Table 2 
Design parameters of ESO UDSMC. 

Variables Values 

ω i ( i = 1 , 2 ) 15 
δi ( i = P, F, U N ) [ 0. 8 , 0. 8 ] T 

C P diag ( 0. 5 , 0. 6 , 0 ) 
K Pi ( i = 1 , 2 ) diag ( −4, 6 , 0 ) 
C F diag ( 3 . 6 , 5 , 0 ) 
K F 1 diag ( 4, 0. 01 ) 
K F 2 diag ( 3 , 0. 008 ) 
C UN1 diag ( 8 m s / u 1 cos φcos ψ, −8 m s /cos ψu 1 ) 
C UN2 diag ( 12m s / u 1 cos φcos ψ, −12m s /cos ψu 1 ) 
C UN3 diag ( 6 , 6 ) 
C UN4 diag ( 1 , 1 ) 
K UN1 diag ( 0. 0002, 0. 003 ) 
K UN2 diag ( 0. 001 , 0. 0015 ) 

e  

[  

p

5

 

t  

s  

G  

d  

a  

i  

⎧⎪⎪⎨
⎪⎪⎩  
stimated by the built-in sensor fusion algorithm based on Kalman filter; the linear velocity
 u, v, w ] ′ and angular velocity [ p, q, r ] ′ are calculated/estimated by ESO. The simulation
ackage is performed on MATLAB/Simulink 2021a. 

.2. Experiment parameters 

The initial position for quadrotor experiments is [ 0, 0, 0 ] m. Table 1 lists
he variable values of Parrot Minidrone and Table 2 shows the UDSMC de-
ign parameters. The invariant controller in the outer loop is design as
 c1 = 

1 
0. 01 s 2 +0. 2s . The parameters of the PID controller are design as K P =

iag [ 0. 1 , −0. 1 , 0. 8 , 0. 003 , 0. 0024, 0. 004 ] , K I = diag [ 0. 1 , −0. 1 , 0. 24, 0. 006 , 0. 048 , 0. 002 ]
nd K D 

= diag [ −0. 2, 0. 2, 0. 5 , 0. 00012, 0. 000096 , 0. 00012 ] for [ x, y, z, φ, θ, ψ ] ′ . The slid-
ng mode controller design is followed by [36] . The sliding manifolds are designed as

 

 

 

 

 

 

 

s 1 = c z ( z d − z ) + ( ̇  z d − ˙ z ) 
s 2 = c ψ 

( ψ d − ψ ) + 

( ˙ ψ d − ˙ ψ 

)
s 3 = c 1 ( ̇  x d − ˙ x ) + c 2 ( x d − x ) + c 3 

( ˙ θd − ˙ θ
) + c 4 ( θd − θ ) 

s 4 = c 5 ( ̇  y d − ˙ y ) + c 6 ( y d − y ) + c 7 
( ˙ φd − ˙ φ

) + c 8 ( φd − φ) 

(57)
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Table 3 
Design parameters of SMC. 

Variables Values Variables Values 

c z 5 c ψ 5 
ε 1 0.8 ε 2 0.8 
η1 2 η2 2 
c 1 11 c 5 11 
c 2 6 c 6 6 
c 3 1 c 7 1 
c 4 6 c 8 5 
ε 3 −0.2 ε 4 0.2 
η3 −1.5 η4 1.5 

a⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
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t  
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a  

m  

t  
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b  
nd its controllers are designed as 
 

 

 

 

 

 

 

 

 

 

 

u 1 = m s 
c z ( ̇ z d −˙ z ) + ̈z d + g+ ε 1 sgn ( s 1 ) + η1 s 1 

cosφcosθ

u 2 = 

I x 
l 

(
c 5 
c 7 

( ̈y d − ÿ ) + 

c 6 
c 7 

( ̇  y d − ˙ y ) + φ̈d + 

c 8 
c 7 

( ˙ φd − ˙ φ
) + 

1 
c 7 

( ε 4 sgn ( s 4 ) + η4 s 4 ) 
)

u 3 = 

I y 
l 

(
c 1 
c 3 

( ̈x d − ẍ ) + 

c 2 
c 3 

( ̇  x d − ˙ x ) + θ̈d + 

c 4 
c 3 

( ˙ θd − ˙ θ
) + 

1 
c 3 

( ε 3 sgn ( s 3 ) + η3 s 3 ) 
)

u 4 = I z 
(
c ψ 

( ˙ ψ d − ˙ ψ 

) + ψ̈ d + ε 2 sgn ( s 2 ) + η2 s 2 
)

(58)

The related controller parameters are listed in Table 3 . 

.3. Experiment results 

In this experiment, the sampling time of the sensor and flight control system in quadrotor
s 5 ms, which means that every 5 milliseconds, Parrot quadrotor reads and processes sensor
ata. Compared to the 1 ms sampling time in [37] (the latest real-time quadrotor control
esearch), this experiment is more challenging and requires higher-quality controllers. The
osition tracking control performance of Parrot Minidrone is tested and evaluated by following
he desired linear and spiral path. The quadrotor takes off from the ground, first quickly
limbs to a height of 1 m, then follows the trajectory from (0,0) to (0,0.5) to (1,0.5) and
nally reaches the (1,1) position according to the specified linear trajectory at 40 s. After

his, quadrotor climbs to a height of 1.5 m at a steady speed in 20 s, and hovers at a height
f 1.5 m for 20 s. At the same time, during the climbing and hovering process, the aircraft
akes a circular motion with a radius of 30 cm. 
The practical trajectory of the Parrot Minidrone is shown in Fig. 6 and Fig. 7 . The

urther analysis of the tracking results is shown in Fig. 8 , it shows the practical posi-
ion tracking results of the quadrotor in each axis. To compare the tracking results for
hese three controllers numerically, the RMS values of the tracking errors are introduced

s e RMS = 

√ 

1 
n ( e 

2 
1 + e 2 2 + . . . + e 2 n ) with n being the total sampling size, the results are shown

n Table 4 . Intuitively, From Table 4 and Fig. 8 , both the proposed ESO UDSM controller
nd the built-in PID controller can drive the quadrotor tracking the desired trajectory. And the
ore stable trajectory, less tracking error and faster response speed with the proposed con-

roller than the PID controller in each channel can be observed. This shows that the proposed
ontrol algorithm is superior to the control algorithm that comes with the Parrot Minidrone
roduct. Meanwhile, from Table 4 , the proposed UDSMC is only slightly better than SMC,
ut UDSMC does not exhibit large overshoot in the XY axis and less chattering in the Z axis
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Fig. 6. Actual flight and desired trajectory in 3-D space. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 

Fig. 7. Actual flight and desired trajectory in horizontal plane. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 

Table 4 
RMS results for trajectory tracking. 

PID ESO UDSMC SMC 

x(m) 0.0827 0.0302 0.0376 
y(m) 0.0780 0.0114 0.0218 
z(m) 0.0679 0.0674 0.0691 
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Fig. 8. Actual trajectory tracking results. 
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Fig. 9. control inputs results. 

Table 5 
RMS results for control inputs. 

Channel PID UDSMC SMC 

Pitch control torque ( N · m) 1 . 5748 × 10 −6 2.4246 ×10 −5 3.5199 ×10 −4 

Roll control torque ( N · m) 1.7226 ×10 −5 3.0336 ×10 −5 3.5850 ×10 −4 

Yaw control torque ( N · m) 2.3294 ×10 −5 1.3768 ×10 −5 0.0011 
Altitude control thrust ( N) 0.6189 0.6223 0.6749 

(  

a
 √
 

c  

t  

h  

s  
 Fig. 8 ). This shows that the proposed algorithm still has certain advantages compared with
dvanced control algorithms. 

Fig. 9 presents the control inputs for involved three controllers and the RMS ( u RMS =
 

1 
n ( u 

2 
1 + u 

2 
2 + . . . + u 

2 
n ) ) results are shown in Table 5 . The huge difference in control input

hattering can be clearly observed in Fig. 9 (d). From Table 4 , frequent switching function
riggers make large control input energy of SMC. Compared with PID, the proposed UDMSC
as a larger control input energy, but within the acceptable range. Therefore, considering the
uperior control performance of the proposed controller, although it has obvious fluctuations
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nd higher control input energy, the implementation of ESO UDMSC on quadrotor can be
uccessful. 

emark 9. It should be noted that the performance of the built-in PID controller could be
mproved after careful tuning. However, this is very empirical and the original parameters
or PID controller are not changed in this experiment. From Fig. 9 , the chattering problems
ppears in both UDSMC and SMC in this experiment because of the frequent switching
perations due to long sampling time. Saturation function can reduce chattering but may
esult in the decrease of the robustness and tracking performance. 

emark 10. Although these advanced control algorithms can achieve better control perfor-
ance, however, in real-time applications, considering the computational cost, hardware sam-

ling time, and unpredictable changes in external environmental factors, PID is still a mature
ontroller that cannot be completely replaced. 

. Conclusions 

This study proposes a robust control strategy for quadrotor trajectory tracking based on
he ESO UDSMC method. Compared with the built-in PID and SMC based flight control
ystem of the Parrot Minidrone, the proposed control strategy not only achieves the fast
esponse of the quadrotor control system, but also guarantees flight stability and efficient
esired flight trajectories tracking performance without offline identification of the quadrotor
ynamic system. At the same time, the 5 ms system sampling time also makes the designed
ontrol system have a large room for improvement with advanced computational algorithms
or most quadrotors. 

However, because of the small size, lightweight and low motor torque of the Parrot
inidrone quadrotor used in the experiment, which cannot conduct flight tests in long-distance

ights or complex environments. Also, this experiment does not involve variable load and un-
redictable wind disturbance (indoor experiment). One of the future works will evaluate the
roposed controller for stable flight under unknown wind disturbance. It is believed that with
he improvement of UAV hardware support, the proposed quadrotor control system can reach
etter control performance. 
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