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Detecting patchy reionization in the CMB
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1Perimeter Institute for Theoretical Physics, Waterloo ON N2L 2Y5, Canada
2Berkeley Center for Cosmological Physics, University of California, Berkeley CA 94720, USA

3Miller Institute for Basic Research in Science, University of California, Berkeley CA 94720, USA
(Dated: July 7, 2016)

Upcoming cosmic microwave background (CMB) experiments will measure temperature fluctu-
ations on small angular scales with unprecedented precision. Small-scale CMB fluctuations are a
mixture of late-time effects: gravitational lensing, Doppler shifting of CMB photons by moving
electrons (the kSZ effect), and residual foregrounds. We propose a new statistic which separates
the kSZ signal from the others, and also allows the kSZ signal to be decomposed in redshift bins.
The decomposition extends to high redshift, and does not require external datasets such as galaxy
surveys. In particular, the high-redshift signal from patchy reionization can be cleanly isolated,
enabling future CMB experiments to make high-significance and qualitatively new measurements of
the reionization era.

I. INTRODUCTION

On large angular scales (l ∼< 2000), anisotropy in the
cosmic microwave background is mainly sourced by fluc-
tuations at redshift z ≈ 1100. On smaller angular scales
(l ∼> 2000), this “primary” anisotropy is exponentially
suppressed, and CMB fluctuations are mainly a mixture
of several “secondary” or late-time effects.

Among secondary effects with the same blackbody
spectrum as the primary CMB, the largest are gravi-
tational lensing, and the kinematic Sunyaev-Zel’dovich
(kSZ) effect. The kSZ effect refers to Doppler shifting
of CMB photons as they scatter on radially moving in-
homogeneities in free electron density [1–3]. The kSZ
anisotropy can be roughly decomposed into a “late-time”
contribution from redshifts z ∼< 3, when inhomogeneities
are large due to gravitational growth of structure, and
a “reionization” contribution from redshift z ∼ 7, when
the ionization fraction is expected to be inhomogeneous
during “patchy” reionization [4–8].

In Fig. 1 we compare contributions to the temperature
power spectrum CTTl from weak lensing of the CMB, late-
time kSZ, and reionization kSZ, in a fiducial model to
be described shortly. Individually, these three contribu-
tions are very interesting. Gravitational lensing depends
on cosmological parameters such as neutrino mass [9],
late-time kSZ probes the distribution of electrons in dark
matter halos as well as the large-scale velocity field, and
reionization kSZ may provide the first observational win-
dow on patchy reionization, which will shed light on the
formation of first stars and other sources of ionizing pho-
tons. Although the total power spectrum will soon be
measured very precisely at high l [10], it is unclear how
well these signals can be disentangled, since all three com-
ponents have large astrophysical modelling uncertainties,
and the two kSZ contributions are essentially degenerate
at the power spectrum level.

In this paper we will propose a higher-order statistic
which isolates the kSZ signal, and moreover gives infor-
mation about its source redshift dependence, allowing
the late-time and reionization kSZ to be separated. This
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FIG. 1: Fiducial model for the CMB temperature power spec-
trum CTT

l used throughout this paper, split into primary,
lensing, late-time kSZ, and reionization kSZ contributions.

will complement measurements from future 21cm exper-
iments [11, 12]. We describe the intuitive idea here, with
a more formal description in the next section.

We first recall that to a good approximation, the kSZ
power spectrum may be written as an integral [13]:

CkSZ
l =

∫
dz Q(z)

〈
vr(z)

2
〉
Pe

(
l

χ(z)
, z

)
(1)

where Pe(k, z) is the free electron power spectrum, 〈v2
r〉 =

〈v2〉/3 is the mean squared radial velocity, and χ(z) is
the comoving distance to redshift z. The radial weight
function Q(z) is given by

Q(z) = T 2
CMB

H(z)

χ(z)2

(
dτ̄

dz

)2

e−2τ̄(z) (2)

where dτ̄/dz is the optical depth per unit redshift.
Throughout the paper we will use the following nota-

tion frequently. Let K̄ be the sky-averaged small-scale
power spectrum in a fixed high-l band (say 3000 ≤ l ≤
5000). For each direction n̂ on the sky, let K(n̂) be the
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locally measured small-scale power spectrum near sky lo-
cation n̂. The precise definitions of K̄ and K(n̂) will be
given in the next section.

It is intuitively clear that K(n̂) will be better approxi-
mated by using the actual realization of v2

r(n̂, z) along the
line of sight in direction n̂ in the integral in Eq. (1), rather
than the cosmic average 〈v2

r〉. This leads to anisotropy
in K(n̂) on large angular scales.

To estimate the level of anisotropy, suppose we divide
the line of sight into segments of size 50 Mpc (the co-
herence length of the velocity field), and roughly model
the radial velocity vr as an independent Gaussian ran-
dom number in every segment. Since the line of sight is
104 Mpc in length, K(n̂) can be roughly modelled as the
sum of squares of N = 200 independent Gaussians. This
suggests that fluctuations in K(n̂) between different lines

of sight are of fractional size
√

2/N ≈ 0.1. Rephrasing,
if we measure the CMB in two regions of sky separated
by more than ∼1 degree, so that the lines of sight sam-
ple independent realizations of the velocity field, the kSZ
power spectra will differ by ≈ 10%. This is a large non-
Gaussian effect which is not present for lensing and other
secondaries, allowing statistical separation of the kSZ sig-
nal.

In fact we can go further by considering CKKL , the an-
gular power spectrum ofK(n̂). Suppose we write CKKL as
a sum of contributions from multiple source redshift bins.
In the next section we will show (Fig. 2) that the contri-
bution from redshift z has a broad peak at wavenumber
L∗ ∼ k∗χ(z), where k∗ ≈ 0.01 h Mpc−1. Thus the shape
of CKKL is source redshift dependent. In the general case
where CKKL is a sum over redshift bins, we can “decon-
volve” the observed CKKL to infer the contribution from
each bin, thus separating the late-time and reionization
kSZ signals. The main advantage of this method (com-
pared to an analysis based on CTTl ) is its robustness:
we can make statements about reionization which do not
depend on precise modelling of the other contributions.

II. MODELLING THE SIGNAL

We use the following fiducial model for the kSZ
power spectrum and its source redshift distribution. We
model the late-time kSZ using Eq. (1) with Pe(k, z) =
W (k, z)2Pnl(k, z), where Pnl is the nonlinear matter
power spectrum from CAMB [14], and we have defined

W (k, z) = 0.85

(
1 +

kD(z)

0.5 h Mpc−1

)−1/2

(3)

where D(z) is the growth function normalized to D(z) =
1/(1 + z) at high z. This form of W (k, z) is a simple
fitting function which gives approximate agreement with
the “cooling + star formation” model from [15], for both
CkSZ
l and dCkSZ

l /dz. The prefactor 0.85 assumes that at
late times, 15% of electrons are in the neutral medium or
stars [16].

We model the reionization kSZ by assigning a Gaussian
redshift distribution to the simulated kSZ power spec-
trum from Battaglia et al [4]:(

dCkSZ
l

dz

)
rei

=
e−(z−zre)2/2σ2

re

(2πσ2
re)1/2

CBattaglia
l (4)

where (zre, σre) = (8.8, 1.0).
We now give a formal definition of the quantities K̄

and K(n̂) from the introduction. First fix a filter WS(l),
and define a high-pass filtered CMB in Fourier space by
TS(l) = WS(l)T (l). Unless otherwise specified, we choose
WS(l) ∝ (CkSZ

l )1/2/Ctot
l , where Ctot

l is the total CMB
power spectrum, including instrumental noise. We then
define K(n̂) = TS(n̂)2 by squaring in real space, and
define K̄ to be the all-sky average K̄ = 〈K(n)〉. We note
that

K̄ =

∫
d2l

(2π)2
WS(l)2Ctot

l (5)

so that K̄ can be interpreted as average high-l power
(with W 2

S-weighting) and K(n̂) can be interpreted as “lo-
cally measured high-l power near n̂”.

Our main statistic will be CKKL , the “power spectrum
of the power spectrum”. Note that there are two scales,
a small scale l ∼> 3000 selected by the filter WS where
the CMB is measured, and a large scale L ∼< 300 where
clustering in the small-scale power is measured. Viewed
as a four-point estimator in the CMB, CKKL sums over
quadruples T (l1)T (l2)T (l3)T (l4) which are “collapsed”,
in the sense that the CMB wavenumbers |li| are large, but
the intermediate wavenumber L = (l1 + l2) is small. This
is similar to CMB lens reconstruction, where the lensing

potential φ(L) and its power spectrum CφφL are estimated
on large scales using CMB temperature fluctuations on
scales l� L.

Continuing the analogy with lens reconstruction, we
define the reconstruction noise NKK

L to be the value of
CKKL that would be obtained if the small-scale tempera-
ture were a Gaussian field. A short calculation gives:

NKK
L = 2

∫
d2l

(2π)2
W 2
S(l)W 2

S(L− l)Ctot
l Ctot

L−l . (6)

In the regime L� l of interest, NKK
L is nearly constant

in L.
Now we would like to model the effect described in the

previous section: large-scale non-Gaussian contributions
to CKKL due to correlated radial velocities along the line
of sight. We introduce a simple model, the “η-model”,
as follows.

We write the sky-averaged small-scale power spectrum
K̄kSZ as an integral K̄kSZ =

∫
dz (dK̄/dz), where

dK̄

dz
=

∫
d2l

(2π)2
WS(l)2 dC

kSZ
l

dz
(7)

and our fiducial model for dCkSZ
l /dz was given in

Eqs. (1), (3), (4). The η-model is the ansatz that, in
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a fixed realization of the radial velocity field vr(n̂, z), the
locally measured small-scale powerK(n̂) can be modelled
as

K(n̂) =

∫
dz

dK̄

dz
η(n̂, z) (8)

where η(n̂, z) = vr(n̂, z)
2/〈vr(z)2〉. In other words, we

assume that the locally generated kSZ power along the
line of sight is proportional to v2

r , but neglect addi-
tional non-Gaussian effects. Fully characterizing kSZ
non-Gaussianity on all scales is outside the scope of this
paper. Here we are simply claiming that at minimum,
the non-Gaussian signal predicted by Eq. (8) must exist.

In the Limber approximation, the contribution to CKKL
predicted by the η-model is

CKKL =

∫
dz

H(z)

χ(z)2

(
dK̄

dz

)2

P⊥η

(
L

χ(z)

)
(9)

where P⊥η (k) is the power spectrum of the field η evalu-
ated at a wavenumber k perpendicular to the line-of-sight
direction. We will compute P⊥η in linear theory, where
it is independent of z, but depends on the direction of
k since η is an anisotropic field. By a short calculation
using Wick’s theorem, P⊥η is given by

P⊥η (k) =
2

〈v2
r〉2

∫
d3k′

(2π)3

(k′r)
2(kr − k′r)2

k2(k− k′)2
Pv(k

′)Pv(k− k′)

(10)
where Pv is the linear velocity power spectrum and kr = 0
has been assumed.

In Fig. 2 we show the contributions to CKKL from late-
time and reionization kSZ, computed using the η-model.
Note that the reionization kSZ makes a larger contribu-
tion to CKKL than the late-time kSZ, even though the
two are comparable in the CMB power spectrum CTTl .
This is because the late-time line-of-sight integral is more
extended in comoving distance χ, so it samples more co-
herence lengths of the velocity field, making the signal
more Gaussian.

A crucial property of the η-model is that the contri-
bution to CKKL from source redshift z is proportional to
P⊥η (L/χ(z)), with no additional L dependence. Thus the
“shape” in L depends only on large-scale linear theory,
but the overall amplitude depends on small-scale physics
(via dK̄/dz).

This independence of small-scale physics means that
we can test the η-model using simplified simulations. We
construct an ensemble of 3D simulations neglecting bary-
onic physics and using the 2LPT approximation to the
N -body equations of motion. Rather than using a light-
cone geometry, we simply project a z = 2 snapshot onto
the 2D periodic “sky” formed by one of the box faces.
The agreement with the η-model is excellent (Fig. 3 top
panel). We plan to extend this simulation pipeline in fu-
ture work, but expect that more accurate simulations will
simply change the overall amplitude, and capture small
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FIG. 2: Modelling the “power spectrum of the kSZ power
spectrum” CKK

L , assuming 2 µK-arcmin noise and θFWHM =
1′. Top panel. Contributions to CKK

L from reconstruction
noise (Eq. (6)) and kSZ (Eq. (9)). Bottom panel. The kSZ
contribution to CKK

L per unit source redshift. The distribu-
tion is strongly bimodal, justifying a decomposition into low-z
and reionization contributions.

effects such as curved-sky corrections and deviations from
the Limber approximation.

So far we have considered contributions to CKKL from
the η-model (our signal), and from Gaussian mode-
counting (the noise NKK

L ). In order to claim that the
signal is robust, it is important to understand how other
non-Gaussian effects may contribute to CKKL .

Some non-Gaussian signals do not cluster on large
scales. For example, even after multifrequency analysis,
the CMB maps will be contaminated by residual thermal
SZ clusters at some level. This signal can be modelled
very accurately as a sum of unclustered Poisson sources
with angular profile Fl. On large scales L where the pro-
file FL is nearly constant, a short calculation shows that
the contribution to CKKL is nearly constant in L. We will
account for this type of contribution by marginalizing an
arbitrary constant δCKKL in our signal-to-noise forecasts.

Other non-Gaussian signals do cluster on large scales,
most importantly gravitational lensing. In the middle
panel of Fig. 3, we show the bias to CKKL obtained from
simulated CMB lensing maps, using a pipeline similar
to [17]. The lensing bias is comparable to the recon-
struction noise and non-constant on large scales.
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instrumental noise. Middle panel: Lensing contribution to
CKK

L from simulations, before and after template subtraction.
Bottom panel: Estimated non-Gaussian contribution to CKK

L

from large-scale clustering of small scale modes, computed
using a model (“δ-modulation”) described in the text.

However, we have found that CKKL can be “lens-
cleaned” as follows. Let us make the ansatz that on large
scales, lensing produces terms in K(n̂) proportional to
the local lensing convergence κ and squared CMB gradi-
ent (∇T )2:

K(n̂) ⊃ ακ(n̂) + β(∇T (n̂))2 (11)

We lens-clean K on large scales by constructing tem-
plate maps (∇T )2 and κ, and subtracting best-fit multi-

ples of the templates from K(n̂) before computing CKKL .
Our template (∇T )2 map is made by low-pass filtering to
` < 2000 and squaring. We assume that a template map
of κ is also available in the survey region from CMB po-
larization lens reconstruction (a detailed forecast shows
that κ has high signal-to-noise for noise levels ∼< 6 µK-
arcmin).

Remarkably, this simple template-cleaning procedure
removes nearly all lensing power in simulation (Fig. 3
middle panel). Furthermore the residual power is con-
stant in L, so that it is removed by our previously men-
tioned marginalization. We therefore expect that CMB
lensing bias to CKKL can be made negligible.

Next we would like to consider clustered secondaries.
One type of non-Gaussian contribution is “δ-modulated
power”: power along the line of sight whose amplitude is
linear in the local overdensity δ(n̂, z). Schematically, we
write:

K(n̂) ⊃
∫
dz

dK̄

dz

(
1 + β(z)δ(n̂, z)

)
(12)

where β(z) is a linear bias parameter which relates the
small-scale CMB power along the line of sight to the local
density. This type of model, in conjunction with the Pois-
son and Gaussian terms previously considered, is often
used to model large-scale clustering of small-scale modes
(e.g. [18–20]).

We will study δ-modulated power from three sources:
the late-time kSZ, reionization kSZ, and residual CIB.
The model predicts the following contribution to CKKL :

CKKL =

∫
dz

H(z)

χ(z)2
β(z)2

(
∂K̄

∂z

)2

Pδ

(
l

χ(z)
, z

)
(13)

so in each of the three cases, we will need to know the red-
shift distribution dK̄/dz of the small-scale power, and the
bias-like parameter β. Considering dK̄/dz first, our fidu-
cial model for the kSZ has already been described, and for
the CIB we conservatively assume residual contamination
with total power spectrum equal to the late-time kSZ,
and Gaussian redshift distribution with (z̄, σz) = (2, 1).

Considering β next, assigning precise values would re-
quire dedicated simulations beyond the scope of this pa-
per, but we will make rough estimates as follows. In the
limit of high l, the kSZ power spectrum is 1-halo dom-
inated (or during reionization, 1-bubble dominated). In
this limit, the locally generated kSZ power is simply pro-
portional to the number density of sources, and therefore
the parameter β is equal to the usual linear bias b. For
the late-time kSZ and CIB, we will take β ≈ 1.5 as a fidu-
cial value. For the reionization kSZ, we will take β ≈ 6,
a typical bubble bias from simulations [21].

In Fig. 3, bottom panel, we show the clustering contri-
butions to CKKL from δ-modulated late-time kSZ, reion-
ization kSZ, and residual CIB. In all three cases, the mod-
elling is approximate but should give a rough estimate
for the size of the non-Gaussian clustering effect. We find
that the clustering terms are small compared to our main
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signal plus reconstruction noise, and have fairly different
L-dependence so that there is little degeneracy. This re-
sult makes intuitive sense: clustering terms proportional
to Pv dominate on large scales, since terms proportional
to Pδ are suppressed by positive powers of k. It is also
consistent with the excellent agreement between the η-
model and the 3D simulations seen in the top panel of
Fig. 3.

In summary, the η-model predicts a large kSZ signal in
CKKL , that this prediction agrees with simulations, and
that it is robust to a wide range of possible contaminants.

III. FORECASTS AND DISCUSSION

In this section, we will present signal-to-noise forecasts.
The first type of forecast we will consider is “single-bin
detection”: total signal-to-noise of the kSZ CKKL summed
over all source redshifts, marginalized over an arbitrary
constant δCKKL as previously described. In our fiducial
model, a single-bin detection would get 86% of its signal-
to-noise from reionization and 14% from the late-time
kSZ. Therefore a single-bin detection of CKKL at the ex-
pected level would be strong evidence for patchy reion-
ization in the CMB.

The next observational milestone would be a “two-bin
detection”, in which we fit for the overall amplitude of
the high-z signal (z ≥ 4), marginalized over an arbitrary
multiple of the low-z contribution (z ≤ 4). A two-bin
detection would measure the amplitude of the patchy
reionization signal without any assumptions on the low-z
amplitude.

Finally, we consider a “three-bin detection”: detection
significance of the z ≥ 5 contribution, marginalized over
independent redshift bins with 0 ≤ z ≤ 2.5 and 2.5 ≤ z ≤
5. A three-bin detection would establish the bimodal
redshift dependence of the kSZ sources, with peaks at
late time and during reionization, and little or no power
in between, which would also provide a powerful check
on systematics.

The precise definitions are as follows: given N con-
tributions (δCKKL )1, · · · , (δCKKL )N to CKKL such that
CKKL =

∑
iAi(δC

KK
L )i (for example N redshift bins),

we forecast signal-to-noise on the amplitudes Ai by com-
puting the N -by-N Fisher matrix

Fij =
fsky

2

Lmax∑
L=Lmin

(2L+ 1)
(δCKKL )i (δCKKL )j

(CKKL )2
tot

(14)

The signal-to-noise of (δCKKL )i, marginalizing over sig-

nals j 6= i, is given by S/N = (F−1
ii )−1/2. The signif-

icance of our “N -bin detection”, where N = 1, 2, 3, is
defined to be the signal-to-noise of the highest redshift
bin, taking (CKKL )tot to be the sum of contributions from
the lower redshift bins plus reconstruction noise, and
marginalized over the other redshift bins plus a contri-
bution of the form δCKKL = constant. The maximum
multipole Lmax in Eq. (14) will depend in practice on
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FIG. 4: Forecasted S/N for 1-bin, 2-bin, and 3-bin detections
as defined in the text, for varying noise level, and beam size
θFWHM = 1′ (blue/upper curves) or θFWHM = 3′ (red/lower
curves).

the extent to which secondary contributions to CKKL can
be modelled as L increases. As a fiducial value, we have
used Lmax = 300 here.

In Fig. 4 we show forecasted signal-to-noise as func-
tions of instrumental noise level and beam size. These
results include improvements from a generalization of the
Fisher matrix in Eq. (14) in which multiple K-fields are
defined corresponding to bins in CMB wavenumber l.
However, we find that the only case where this signifi-
cantly improves signal-to-noise is the three-band detec-
tion with θFWHM ∼< 2′.

It is seen that the signal-to-noise is a steep function
of noise level, favoring a deep small-field observing strat-
egy. However, for surveys smaller than a few hundred
square degrees, there is a signal-to-noise penalty beyond
the simple fsky scaling in Fig. 4, since CKKL cannot be
measured on super-survey scales L ≤ Lmin = (2π/θsurv).
This signal-to-noise penalty ranges from 5–10% for a 1000
deg2 survey, and 25–50% for a 100 deg2 survey, depend-
ing on the noise level and forecast chosen.

Including this penalty, some example surveys which
achieve N -bin detections are as follows. A 3σ one-bin
detection can be achieved by a survey with area A = 500
deg2, noise ∆T = 4 µK-arcmin, and beam θFWHM = 1.4
arcmin. Likewise two-bin and three-bin 3σ detections can
be achieved by surveys with (A,∆T , θFWHM) = (900, 3, 1)
and (2400, 2, 1) respectively. An ambitious future survey
with 1 µK-arcmin noise, 1 arcmin beam, and fsky = 0.5
can achieve 1-bin, 2-bin, and 3-bin detections with sig-
nificance 279σ, 44σ, and 16σ.

In this paper, we have identified a new non-Gaussian
signal in the CMB which is a distinctive observational
signature of the kSZ effect. It should soon be detectable,
and an exciting milestone will be a “clean” detection of
patchy reionization, with minimal assumptions on mod-
elling of other CMB secondaries. Future experiments
such as CMB-S4 will have sufficient signal-to-noise to
measure the signal with more granularity and constrain



6

the redshift and wavenumber dependence of the kSZ
sources, opening up a qualitatively new observational
window on the epoch of reionization.
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