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A B S T R A C T   

This paper aims to integrate some key constructs in the cognitive neuroscience of cognitive control and executive 
function by formalising the notion of cognitive (or mental) effort in terms of active inference. To do so, we call 
upon a task used in neuropsychology to assess impulse inhibition—a Stroop task. In this task, participants must 
suppress the impulse to read a colour word and instead report the colour of the text of the word. The Stroop task 
is characteristically effortful, and we unpack a theory of mental effort in which, to perform this task accurately, 
participants must overcome prior beliefs about how they would normally act. However, our interest here is not in 
overt action, but in covert (mental) action. Mental actions change our beliefs but have no (direct) effect on the 
outside world—much like deploying covert attention. This account of effort as mental action lets us generate 
multimodal (choice, reaction time, and electrophysiological) data of the sort we might expect from a human 
participant engaging in this task. We analyse how parameters determining cognitive effort influence simulated 
responses and demonstrate that—when provided only with performance data—these parameters can be recov-
ered, provided they are within a certain range.   

1. Introduction 

What makes an activity effortful? A simple (and perhaps simplistic) 
answer is that effortful activities involve maintaining something in a 
state that it is not normally in. For instance, if you were to raise your arm 
and keep it in the air it will become progressively effortful to maintain 
this posture. However, it takes very little effort to keep your arm by your 
side—a posture that is much more common. This paper argues that this 
framing of effort is also applicable to cognitive, or mental, effort (terms 
we will use interchangeably). Notions of effort have long been consid-
ered in theories of attention. For example, Kahneman (1973) notes that 
‘distraction is resisted at a cost.’ Here, we assume that the only differ-
ence between motor and cognitive effort is that the activity is covert as 
opposed to overt. This means we must appeal to the notion of a mental 
action (Limanowski and Friston, 2018; Pezzulo, 2018)—of which covert 
attention is perhaps the best-known example (Posner, 1980; Rizzolatti 
et al., 1987). To build some intuition as to what we are talking about, try 
to maintain visual fixation on the first word in this paragraph while 
reading the fourth word. It will have felt effortful to maintain fixation on 
the word ‘What’ and to resist looking at the word ‘activity’. As we will 
argue here, this represents the brain expending energy to violate a prior 

belief—here, that your focus of attention should be deployed such that it 
aligns with your fovea (and vice versa) (Manohar et al., 2015). 

The implication of the above is that we need to consider prior beliefs 
about mental actions to understand effort. When these priors are 
formulated in terms of the kinds of behaviour we normally engage in, or 
behaviour we have engaged in frequently in the past, they can be 
thought of as mental (or cognitive) habits. This is not a new idea, and has 
been the focus of recent work that treats delusions as representing 
entrenched cognitive habits (Adams et al., 2021). However, it is a useful 
idea that lets us attempt to formulate cognitive effort in terms of 
violating a mental habit.1 The association between habits and priors 
provides a useful link with previous formulations of effort in information 
theoretic terms (Barceló and Cooper, 2018; Butz, 2022; Ortega and 
Braun, 2013; Zénon et al., 2019). These associate effort with redun-
dancy, in the sense of efficient coding principles (Barlow, 1961), and 
with complexity (Sajid et al., 2020) in the Bayesian sense. In Bayesian 
statistics, complexity quantifies the degree to which we must update our 
prior beliefs to explain the data at hand (Jefferys and Berger, 1992). This 
must be offset against the accuracy with which we can predict those data 
in quantifying the fit of the model to those data. When actions come into 
play, they allow us to modify the data we will receive in the future, and 

* Corresponding author. 
E-mail address: thomas.parr.12@ucl.ac.uk (T. Parr).   

1 We use the terms ‘mental’ and ‘cognitive’ interchangeably when referring to effort or habit. 

Contents lists available at ScienceDirect 

Neuropsychologia 

journal homepage: www.elsevier.com/locate/neuropsychologia 

https://doi.org/10.1016/j.neuropsychologia.2023.108562 
Received 11 October 2022; Received in revised form 3 April 2023; Accepted 11 April 2023   

mailto:thomas.parr.12@ucl.ac.uk
www.sciencedirect.com/science/journal/00283932
https://www.elsevier.com/locate/neuropsychologia
https://doi.org/10.1016/j.neuropsychologia.2023.108562
https://doi.org/10.1016/j.neuropsychologia.2023.108562
https://doi.org/10.1016/j.neuropsychologia.2023.108562
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuropsychologia.2023.108562&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Neuropsychologia 184 (2023) 108562

2

so decisions about which action to take must be based upon anticipated 
data. If cognitive effort is analogous to a complexity cost, it can be 
formulated as the divergence between our habitual priors about our 
actions and our beliefs if we anticipate the consequences of acting in this 
particular context. In active inference, the context sensitive plausibility 
of an action is quantified using an expected free energy functional of 
allowable actions (Sajid et al., 2021a, b) that scores its salience or 
anticipated information gain (Lindley, 1956), under some prior prefer-
ences. We will see later how a formulation of mental planning—based 
upon expected free energy—leads naturally to a measure of cognitive 
effort. 

Our approach here follows that of (Zénon et al., 2019), who frame 
effort explicitly in terms of complexity costs incurred through violating a 
prior belief about some ‘default’ policy. We build upon Zénon et al.‘s 
conceptual analysis with a complete quantitative model, capable of 
simulating behavioural and neronal responses. By formulating effort in 
terms of active inference, which rests upon probabilistic belief-updating, 
we work directly within an information-theoretic framework. This fa-
cilitates translation between the psychological concepts (like effort) and 
information theoretic quantities (like complexity). A key contribution of 
this formulation is that it enables one to recover the prior beliefs 
required to quantify complexity from behavioural data. Ultimately this 
may be important if the notion of effort is to be made practically useful 
in quantitative, empiricial cognitive, and perhaps clinical, research. 

In the classic Stroop task (Stroop, 1935), participants are asked to 
report the font colour that a word is written in, while ignoring the se-
mantics of the word. The word may be congruent with the font colour (e. 
g., the word ‘blue’ written in blue font), incongruent (e.g., the word ‘red’ 
written in blue font) or neutral (e.g., ‘xxxx’ written in blue font). In such 
tasks, the Stroop interference effect is the common finding that accuracy 
is worse, or reaction times are longer (or both), when the word is 
incongruent compared to neutral. The Stroop facilitation effect refers to 
improved accuracy (and or shorter reaction times) in congruent relative 
to neutral conditions. To keep things simple, we will consider only the 
congruent and incongruent conditions in this paper, such that the Stroop 
effect is a combination of facilitation and interference effects. We argue 
that the Stoop task is effortful because our normal mental habit is to read 
a word, and impulse inhibition requires us to overcome this mental habit 
when asked to report the font colour. In other words, an impulse rep-
resents the way in which we might normally respond to something—i.e., 
a mental plan that we commonly adopt—which can be considered a 
prior belief. Maintaining a belief that we should pursue an alternative 
plan therefore incurs a complexity cost that we experience as cognitive 
effort. Put simply, effort is the degree to which we have to ‘change our 
mind’ when updating prior beliefs about our behaviour, after consid-
ering the consequences of action in the context of task demands. Note 
that ‘beliefs’ in this setting are not propositional in nature, they refer to 
(subpersonal) Bayesian belief distributions that may or may not be 
accompanied by qualitative experience. The idea here is that ‘effort’ is 
the qualitative experience of committing to a behaviour that diverges 
from a priori habits. 

There is a vast literature both on the Stroop task and on cognitive 
effort more generally (Altmann and Davidson, 2001; Chuderski and 
Smolen, 2016; Kalanthroff et al., 2018; Phaf et al., 1990; Verguts and 
Notebaert, 2009). While we cannot do this previous research justice in 
the space available in this article, it is worth briefly considering how our 
approach is situated relative to its predecessors. An influential compu-
tational model of the task was based upon a combination of a 
drift-diffusion model and a feedforward neural network (Cohen et al., 
1990). The difference in behaviour between the word-reading and 
colour-naming conditions was elicited by providing more training on the 
former compared to the latter task. This was based upon the assumption 
that Stroop participants have more experience of reading words that 
naming their colours—an assumption we also adopt, but frame in terms 
of a prior belief. This style of modelling has been successful in repro-
ducing a range of features of Stroop tasks, including increased reaction 

times when switching task (Gilbert and Shallice, 2002) and, with some 
modifications, features of functional imaging experiments (Herd, Banich 
and O’Reilly, 2006). 

Our approach here offers a complementary perspective, which in-
verts the methods outlined above. Instead of attempting to connect 
artificial neural populations such that they can perform a task, we focus 
instead upon the structure of the task itself. This structure can be arti-
culated in terms of a generative model and equipped with an objective 
function of the sort used in variational inference. By minimising the 
objective, we find an optimal solution to the task and attempt to identify 
neuronal dynamics, and a notion of mental effort, from this solution. A 
further advantage of this inferential perspective is that it provides a close 
link to information theoretic formulations of effort, as noted by Botvi-
nick et al. (2001). However, it is also worth noting that the subtleties of 
Stroop task results have been much more thoroughly analysed in the 
papers cited above than we attempt in this paper, which simply uses the 
task to provide an illustration of the formulation on offer. 

In what follows, we begin with a brief overview of the active infer-
ence formalism, with a focus on the importance of generative models. 
We then detail a generative model for the Stroop task and unpack its 
inversion; both in terms of behaviour and the electrophysiological 
manifestations of the requisite belief updating. Finally, we consider how 
maintaining different prior beliefs affects performance data, and 
whether we can infer parameters relating to cognitive effort from per-
formance data alone. 

2. Active inference and cognitive effort 

The approach we adopt in this paper is based upon active inference 
(Parr et al., 2022). Active inference formulates behaviour and neuronal 
dynamics as resulting from updating prior beliefs (implicitly) held by the 
brain about the way in which sensory data are generated. From this 
perspective, differences in behavioural and neuronal responses among 
people can be characterised in terms of differences in prior beliefs that 
either reflect healthy variation among the population, or damage to 
brain structures in neurological disease (Adams et al., 2016; Mirza et al., 
2018; Schwartenbeck and Friston, 2016). Our subsequent analysis of 
cognitive effort rests upon this form of computational neuropsychology, 
in which we can ask how differences in prior beliefs affect the perfor-
mance of a neuropsychological task. To make this more explicit, we first 
provide a brief overview of active inference, with a focus on the asso-
ciation between prior beliefs and computational anatomy. 

Active inference is a normative approach, which means it appeals to 
an optimality criterion. The measure of optimality is known in physics as 
negative (variational) free energy (Beal, 2003) and in machine learning 
as the evidence lower bound (or ELBO). The ELBO approximates 
Bayesian model evidence—which measures the fit between some 
generative model and the data we are hoping to explain. Assuming the 
brain makes use of a model to explain its sensations, we can formulate 
perceptual dynamics as maximising the ELBO to better approximate 
evidence, and action as sampling sensory data to ensure it better fits our 
model. In short, both action and perception work to maximise the ELBO 
or, equivalently, to minimise free energy: 

u←argmin
u

F(o(u),Q)

Q←argmin
Q

F(o(u),Q)

F(o(u),Q) = EQ[ln Q(s, π) − ln P(o(u), s, π)]

(1) 

The first line of Equation (1) says that actions (u) are taken to 
minimise free energy (F) by changing observations (o). The second line 
says that beliefs (Q) are also changed to minimise the same free energy 
functional. The final line defines the free energy in terms of beliefs about 
states (s) and policies (π). Policies are simply hypotheses about the 
alternative state transitions we might actively select (i.e., about alter-
native trajectories or paths into the future). Policies are sometimes 
described as sequences of actions, but it is important not to confuse the 
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mental actions in this paper with actions that change the outside world 
and subsequent outcomes o(u). The free energy in the final line is 
formulated as the expected difference between two log probabilities, 
where the probability distribution indicated by P is the generative 
model; namely, a joint distribution over causes (states and policies) and 
their consequences (observable outcomes). Typically, forming optimal 
beliefs about states and policies (i.e., the second line of Equation (1)) is 
decomposed into two parts: 

Q(s|π)←min
Q

EQ(s|π)[ln Q(s|π) − ln P(o(u), s|π ) ]

Q(π)←min
Q

(
EQ(π)

[
EQ(s|π)[ln Q(s|π) − ln P(o(u), s|π ) ] + ln Q(π) − ln P(π)

] )

(2) 

The first line can be regarded as perceptual inference, while the 
second can be read as planning as inference (Botvinick and Toussaint, 
2012). Biologically plausible implementations of these equations are 
usually cast in terms of neuronal dynamics, formulated as gradient flows 
down free energy gradients. These flows take the following form: 

v̇(j)
πτi = EQ(s\s(j)τ |π)

[
ln P

(
o(u), s\s(j)τ , s(j)τ = i

⃒
⃒π
)]

− ln Q
(
s(j)τ = i

⃒
⃒π
)

s(j)πτ = σ
(
v(j)

πτ
)

π = σ(− E − G)

Gπ = oπτ⋅(ln oπτ + C) + H⋅sπτ

Hi = EP(o|s=i)[ − ln P(o|s = i)]

s(j)πτi = Q
(
s(j)τ = i

⃒
⃒π
)

oπτi = EQ(s|π)[ln P(o = i|s)]
πi = Q(π = i)

(3) 

The final three lines of Equation (3) provide definitions for the ele-
ments of the matrices and vectors above. For example, oπτi is the i-th 
element of the vector oπτ. For full details of these equations, please see 
(Da Costa et al., 2020; Friston et al., 2017a, b, c) and for didactic 
treatments see (Bogacz, 2017; Buckley et al., 2017; Parr et al., 2022; 
Sajid et al., 2021a, b; Smith et al., 2021). However, the key intuitions are 
as follows. The first equality is a gradient descent on free energy, with a 
variational posterior parameterised in terms of an unnormalized log 
probability (v). The bracketed superscript indicates a factor of the dis-
tribution over hidden states. The second line shows conversion to a 
normalised probability (s) using a softmax or normalised exponential 
function (σ). The third line shows the posterior distribution over pol-
icies, with subsequent lines defining the relevant terms. Here, these 
include the expected free energy for each policy (G), and a prior bias (E). 
The E and G are vectors, whose elements correspond to (the negative log 
probabilities of) alternative policies. The expected free energy is used to 
score the implausibility of each policy and does so by penalising risky 
policies whose anticipated outcomes (o) deviate from prior preferences 
(C, again, a negative log probability), and whose ambiguity—defined as 
the expected conditional entropy (H) of the likelihood (observations 
given states) distribution—is high. A complementary interpretation of 
(negative) expected free energy is the combination of expected value 
(where value is the log preference) and expected information gain, in the 
sense of Lindley (1956), i.e., a mutual information between causes and 
consequences given a policy. This can be read as combining the dual 
aspects of Bayes optimality; in the sense of Bayesian decision theory and 
experimental design, respectively. The bias term (E) is particularly 
relevant for our purposes as it determines the strength of a (mental) 
habit. The ‘\’ notation in the equations means ‘excluding’, such that ‘x \ 
xi’ is interpreted as ‘the set of x variables excluding the xi variable.’ In 
what follows, our focus will be on the parameters C and E. The C 
parameter can be variously interpreted as a prior preference or moti-
vation, while E is interpretable as a habitual bias or cognitive demand. 

Although Equations (1)–(3) provide a simple expression of percep-
tion and behaviour, they can sometimes seem overwhelming to those 
unfamiliar with this sort of formalism. One way to develop an intuition 

for this is to think about it as if it were a serial process—noting that in 
practice these steps occur in parallel.  

1. To begin with, there are several policies we could pursue. To infer the 
‘best’ policy, we must calculate the expected free energy—which 
depends upon our prior beliefs (including our prior preferences)—of 
each policy.  

2. To do this, we need to know the anticipated distributions of both 
states and observations if a given policy were to be pursued. States 
may be inferred through belief updating via gradient flows on free 
energy. Outcomes can then be predicted from the resulting beliefs 
about states.  

3. The expected free energy can be calculated by comparing the 
anticipated observations with preferred observations and by adding 
the risk of diverging from preferred outcomes divergence to ambiguity 
about which observations can be predicted. Context sensitive beliefs 
about policies can then be formed, such that the most plausible 
policies have the lowest expected free energy.  

4. Now that we have a distribution over policies, we can then select the 
actions from the policies that ensure preferred, unambiguous out-
comes are realised.  

5. New observations then change the free energy landscape, inducing 
further belief updating. This includes updates in beliefs about pol-
icies to assimilate new evidence for which policy should be pursued. 

So where do we find a notion of cognitive effort in this belief- 
updating process? If effort is interpreted as diverging from a cognitive 
habit, then we can define cognitive effort (ξ) as the divergence between 
context sensitive beliefs about how to act (G) and a context insensitive 
prior belief (E), where Cat indicates a categorical probability distribu-
tion parameterised by a vector of probabilities: 

ξ≜DKL[PG(π)‖PE(π)]
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟

Effort

= EPG [ln PG(π)]
⏟̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅⏟

Context sensitive

− EPG [ln PE(π)]
⏟̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅⏟

Context insensitive

PE(π) = Cat(σ(− E))
PG(π) = Cat(σ(− G − E))

(4) 

Why is this useful? The answer is that it tells us which kinds of prior 
belief are important in determining effort. It can be seen immediately 
that if context-sensitive priors are the same for all policies (effectively,2 

G ¼ 0), then the precision and demand cancel, and effort attains its 
smallest value of zero. The E-vector encodes prior beliefs about policies, 
while the C and H-vectors determine context sensitive beliefs, through 
their contributions to the expected free energy (G, see Equation (3)). 
This means that effort depends both upon preferences for the fruits of an 
effortful activity, and the potential information gain from engaging in 
that activity. 

This formulation of cognitive effort suggests that effort is a mixture 
of context insensitive and context sensitive terms. Cognitive demand 
depends upon the context insensitive term, which is read here as the 
prior potential energy (E) expected under context sensitive beliefs about 
policies. In other words, demand is greatest when the expected policy 
has a high potential or a low habitual probability. The context sensitive 
term is simply the negative entropy of beliefs about—or confidence 
in—policies based upon the current context. This means cognitive effort 
reflects both cognitive demand and uncertainty about the consequences 
of action. We can consider several scenarios under this construction.  

• When the elements of G are of similar magnitude to one another, 
cognitive effort is minimal regardless of E. This is because we do not 
have to update our beliefs much to take account of context. 

2 As G is a vector of potentials (i.e., unnormalized negative log probabilities), 
the condition G = 0 is equivalent to any G in which all elements take the same 
value. 
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Consequently, the terms in Equation (4) cancel one-another out. One 
way of thinking about this is that cognitive effort is expended only 
when we use the expected free energy to contextualise policy se-
lection using goal-relevant information (Dijk and Polani, 2011; 
Donnarumma et al., 2016). This situation may occur when the 
reward for a correct response is minimal, in the context of apathy, or 
when there is no resolvable uncertainty.  

• When elements of G are large relative to others, the effort deployed 
depends upon the overlap (or congruency) between G and E. 
Maximal effort is required when the two are incongruent, but when 
elements of E are not so large as to preclude any context-sensitive 
influence over belief updates (see Fig. 1). In other words, cognitive 
effort must be deployed to overcome a habit that is incongruent with 
our goals, but a sufficiently strong habit prevents deployment of 
effort to overcome that habit. Large elements of G arise when there is 
a definitive reward for a correct response or when some actions sate 
our curiosity. 

In short, these parameters give us a space of explanations for 
measured behaviour in effortful tasks. In what follows, we will manip-
ulate cognitive demand by changing the prior potential (E) when it is 
incongruent with priors based on task demands (G). To manipulate both 
cognitive demand and effort, we will change prior preferences (C) that 
underwrite expected free energy (G). 

There is nothing special about this definition, and others are plau-
sible. An alternative definition might frame minimal cognitive effort as 
the point of congruence between habitual and goal-directed priors (i.e., 
when E = G), and formulate effort as increasing when the two differ (i.e., 
when E ∕= G). The formulation we have adopted is more in line with the 
idea that effort is a complexity cost, that measures how far we must 
update our beliefs about how to act when accounting for context 
sensitivity (i.e., the expected free energy). Normally, a complexity cost is 
formulated as the divergence from priors to posteriors once observa-
tional evidence (a marginal likelihood or free energy) is accounted for. 
However, for planning, the analogous divergence is from a fixed form 
prior to a ‘posterior’ distribution that accounts for anticipated obser-
vations (via an expected free energy). Practically, Equation (4) simply 
provides an unambiguous definition of what we mean by effort. Whether 
this, or another definition, best aligns with subjective experiences of 
effort is ultimately an empirical question. Note that our formulation is 
(approximately) consistent with the notion of expected value of control 
(Shenhav et al., 2013), which offsets the expected value of exerting 
cognitive control against the cost incurred by exerting that control. 

Fig. 1 shows the influence of these parameters on the effort associ-
ated with a single binary decision in which the fulfilment of one’s 
preferences is incongruent with the mental habit. The strength of the 
preferences versus the strength of the habit determines the effort 
deployed, and the behavioural consequences of this. In what follows, we 
will unpack this in relation to the Stroop task, in which the ambiguity 
(H) is approximately the same under all policies, meaning we need only 
concern ourselves with the habitual bias (E) and prior preferences (C). 

Before we discuss the Stroop model in detail, it is worth emphasising 
the importance of the generative model in determining the form of belief 
updating and behaviour. For readers interested in technical details, 
please see (Friston et al., 2017a, b, c). For our purposes, we will note that 
the belief updating in Equation (3) may be viewed as undoing (i.e., 
inverting) all the operations performed to generate sensory data—at 
least, under a model of how they were generated that is entailed by 
belief updating. This means the sorts of neuronal architecture required 
to perform this belief updating will mirror the architecture of the 
generative model (Parr and Friston, 2018). Fig. 2 shows a graphical 
representation of a (deep temporal) generative model, whose architec-
ture is consistent with the Stroop model we will detail shortly. The 
neuronal message passing that could invert this model is displayed in 
pale orange, illustrating the formal (i.e., structural) relationship be-
tween a model and its inversion. 

The upper (blue) part of Fig. 2 depicts a generative model (i.e., a 
brain’s beliefs about the way in which observations are generated). The 
lettered squares indicate probability distributions, with E labelling the 
context-insensitive habitual prior, A labelling the probability of obser-
vations given states, and B labelling transition probabilities. Each policy 
is associated with a distinct transition matrix. The D vectors give the 

Fig. 1. (Cognitive effort). 
This figure illustrates the central idea of this paper—that cognitive effort may 
be characterised in terms of the divergence between beliefs about how to act 
given our mental habits (i.e., the cognitive demand we must overcome) and our 
beliefs about how we should act under motivational drives (e.g., prior prefer-
ences). The plots above are computed by assuming a binary decision in which 
there is incongruence between the policy favoured by a mental habit and the 
policy most likely to achieve our prior preferences. The upper plot calculates 
the cognitive effort for different combinations of prior beliefs, while the lower 
plot shows the probability of overcoming the mental habit to choose the policy 
associated with the preferred outcome. In the context of low cognitive demand, 
the cognitive effort required to ensure the preferred outcome is obtained is 
minimal. However, a much higher cognitive effort is required with high 
cognitive demand. When the demand exceeds a certain level, this impairs the 
deployment of effort, even in the context of strong preferences. Cognitive de-
mand here is the prior probability of the policy that does not fulfil our pref-
erences. The informational units ‘nats’ are the natural-logarithm equivalent of 
‘bits’—the informational unit calculated with a base-2 logarithm. 
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initial state probabilities. Circles indicate the variables of the generative 
model—the same variables that appear in Equations (1) and (2). An 
arrow from one circle to another indicates that the latter is conditionally 
dependent upon the former. As states and observations are categorical 
variables, the conditional probability distributions take the form of 
matrices or tensors. For instance, Aij = P (oτ = i |sτ = j) and Bπτij = P (sτ+1 
= i |sτ = j, π). In many models—including that we use for the Stroop 

task—the states can be factorised into several different state dimensions. 
In a locomotor model, for instance, we might treat the state as being the 
(Kronecker) product of location along a North-South axis and an East- 
West axis. These factors are layered on top of one another in Fig. 2 
and are labelled for ease of comparison with Fig. 3. A key feature of this 
model is its temporal depth, with the observations at the higher (slower) 
level of the model corresponding to sequences of states at the lower 

Fig. 2. (Deep temporal models). 
This figure illustrates the architecture of a deep temporal model (blue) and the form of the message passing that implements belief updating under this model (pale 
orange). The key message to draw from this figure is its symmetry, in the sense that the structure of the message passing (approximately) recapitulates that of the 
problem. The generative model is displayed as a factor graph (Loeliger, 2004), with squares indicating the factors of various probability distributions. These are 
labelled A-E (and G) as described in more detail in the main text. Each arrow connects variables (shown in circles) that depend upon one another via that factor. 
Multiple layers of states and observations are shown, to indicate that there may be many different types of state and more than one outcome modality. In brief, the 
model we unpack in the main text rests upon a policy (π) that determines the transitions among states (s). Each state predicts an observation (o) which manifests as a 
sequence of states at a lower, faster, level (much like a word predicts a sequence of letters). The lower-level states themselves generate observations, which are 
directly accessible to the agent. The message passing is shown such that the observations contribute to prediction errors (ε), which depend upon current beliefs about 
states (s) and upon the optimal belief accounting for observations and beliefs about temporally proximal states. These errors are used to update our beliefs, sup-
pressing the error. The expected state in the future is used to predict the next observation (and to generate it when this is controllable by the agent). Beliefs about 
lower-level states are coupled to those of the slower higher-level states, which are evaluated under each alternative policy. A different sort of prediction error (ς), 
which quantifies the difference between anticipated (o) and preferred outcomes, then contributes to the expected free energy (G) and posterior expectations about 
the policy (π). Although not shown in the figure, the expectations about the policy are used to average among beliefs about states conditioned upon those poli-
cies—effectively, a Bayesian model average. As such, they indirectly influence the next predicted outcome and, therefore, the action taken. In this kind of (variational 
or marginal) message passing, prediction errors can be read as reporting the free energy gradients that drive belief updating. 
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(faster) level. In effect, the higher-level likelihoods (A) generate initial 
states for the lower-level sequences. Equivalently—from the point of 
view of belief updating—retrospective beliefs about the initial states 
provide evidence for a particular belief state at the higher (slower) level. 
The lower (pink) part of Fig. 2 shows a graphical interpretation of the 
belief-updating detailed in Equation (3) as applied to the generative 
model. In the next section, we detail the states and observations, and 
their relationship. Specific choices of A-E—when substituted into 
Equation (3)—give us the equations required to simulate belief-updating 
and ensuing behaviour. 

3. The Stroop task 

In this section, we describe the deep temporal generative model that 
we used to simulate a simplified version of the Stroop task, in which a 
participant is asked to either read the word or report the font colour it is 
written in. The phrase ‘deep temporal’ refers to the hierarchical sepa-
ration of timescales involved in this model. It means that some things in 
(the higher hierarchical level of) the model change very slowly, while 
other things (in its lower hierarchical level) change more quickly. Fig. 2 
illustrates this by showing a generative model for which each time step 
at the higher level is associated with multiple time steps at the level 

below. In our generative model, the two timescales in question relate to 
the narrative structure of each trial (the slow scale) and sub-components 
within each trial (the fast level). At the fast level, we model a trial that 
begins with a visual stimulus for participants to view, and ends with a 
response (red, green, blue, or yellow). The slow variables generate faster 
variables, which themselves generate observable data. 

Fig. 3 sets out the overall structure. At the slow (i.e., high) level, 
there are three hidden state factors. These include a narrative state, 
which changes from an instructional context to a response context; an 
instruction state, which determines whether the task is to read words or 
to state the font colour; and a response modality. The instruction state 
can be considered equivalent to a ‘task set3’. The response modality is 
the only policy-dependent variable in this generative model and de-
termines the stimulus modality to respond to. This corresponds to what 
has been referred to as a ‘strategy’ in previous work on the Stroop task 
(Lovett, 2005). Crucially, this does not influence the external world (i.e., 

Fig. 3. (The Stroop generative model). 
This figure complements the generic factor graphs and message passing shown in Fig. 2 with the sets of states and observations in our generative model of the Stroop 
task. This represents the brain’s implicit beliefs about how data are generated in the task. This is described in detail in the main text. The light blue arrows show the 
directional conditional dependencies in the model, while the darker blue arrows indicate allowable transitions. Note that the only policy-dependent state sits at the 
slow level (as in the factor graph of Fig. 2) and corresponds to the modality chosen to respond with. Some of the slow level states are duplicates of the faster states, 
enabling inferences about the fast states to be propagated forwards in time (as if held in working memory). The correctness state at the fast level doubles as an 
observation from the perspective of the higher level and is the only part of the model equipped with preferences. Specifically, there is a preference for being correct. 
Note that this state has no influence over the outcomes generated, so depends only upon (empirical) prior beliefs. 

3 For the avoidance of confusion, the states of the generative model are de-
scriptions of the structure of the task. Sometimes the term ‘task set’ is used to 
refer to the cognitive processes in play when engaging in that task (Sakai, 
2008). From our perspective, this use of the term corresponds to the process of 
forming beliefs about the instruction state. 
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outcomes) directly, so it meets the criteria for a mental action. In this 
case, the mental action is to determine the response to word stimuli. 
Either it favours report of the written word or of the font colour. We 
assume a prior bias towards the former, given this is what we normally 
do on encountering a written word. Actions that affect the external 
world, thereby changing outcomes, are specified at the faster level. 
These actions take the form of vocalisation of a response, detailed below. 

The three hidden state factors at the slow level make predictions 
about the states at the fast level. The latter include the instruction and the 
response modality, which are predicted directly by the slow level. In 
addition, the fast level factors include the colour of the font; the written 
word; the task sequence; and a state that reports the correctness of the 
chosen mental action. The task sequence factor contains three levels: 
instruction, viewing, and response. If the narrative state at the slow level 
is instruction, the task sequence state starts as instruction; if the narrative 
state at the higher level is the response state, the task sequence state starts 
as viewing. The instruction state transitions to itself (i.e., it remains as 
instruction), while the viewing state transitions to the response state. 
The correctness state reports correct when the instruction and response 
modality at the slow level are congruent, and incorrect otherwise. 
Crucially, this state has no influence over the observations generated, so 
is inferred from (empirical) prior beliefs only. Prior preferences are set 
such that correctness is more probable than incorrectness. 

The outcomes generated by the lower level include the instruction, 
which is generated only when the task sequence hidden state is the in-
struction. The instruction outcome generated depends upon the instruc-
tion hidden state. During the viewing and response phases of the task 
sequence, a word is generated whose colour is consistent with the colour 
hidden state, and whose text (written word observation) is given by the 
written word state. During the response phase of the task sequence, a 
verbal response is predicted. This depends upon the colour hidden state if 
the modality hidden state is colour, and the written word hidden state if 
the modality hidden state is written. 

An important feature of this task is that no explicit feedback is given. 
The preferred ‘correct’ outcome is internalised and plays the role of a 
first level hidden state. Constructions of this sort are reminiscent of the 
somatic marker hypothesis (Bechara and Damasio, 2005), which pro-
poses that decision making depends upon preferred interoceptive states. 
The hypothesis suggests that such states may be simulated by the brain 
through an ‘as-if’ loop—normally associated with medial temporal or 
ventral frontal structures. This means there need not be any change in 
the body, but that decision-making may proceed based upon the sensory 
data we would have received as if we were receiving sensory feedback 
about these decisions. 

The temporal structure of the model is important in that it allows for 
inferences about slowly-changing variables (including the task instruc-
tion) to be maintained over the course of sequences of fast-changing 
variables (including the colours and written words). This facilitates a 
form of working memory, sometimes referred to as a ‘semi-Markovian’ 
model (Marković et al., 2021). 

Fig. 4 provides a heuristic expression of the computational anatomy 
involved in solving this task. Although primarily to aid intuition as to the 
mechanics of the active inference scheme employed, it also serves to 
illustrate how the message-passing architectures illustrated in Fig. 2 can 
be used to motivate neuroanatomical hypotheses. This is important from 
a computational neuropsychology perspective, as it lets us relate 
anatomical lesions to aberrant prior beliefs, we might anticipate 
following damage to this part of the network. For instance, if we asso-
ciate posterior beliefs about the mental policy (to select a response 
modality) with the output of the basal ganglia, we might anticipate 
damage to parts of this subcortical circuit would change the prior bias 
towards reading, as opposed to naming the colour of, text. In contrast, 
when we associate beliefs about the slowly changing variables with the 
prefrontal cortices, we might anticipate that our ability to predict the 
correct state would deteriorate with damage to these cortices (Parr et al., 
2019), giving the appearance of a reduced preference for being correct. 

This anatomy may or may not be a good hypothesis as to the compu-
tational neuropsychology of cognitive effort. However, if we were to 
subscribe to this hypothesis, it predicts that we can associate the de-
terminants of cognitive effort with the basal ganglia (E) and the pre-
frontal cortices (C). 

Fig. 4. (Computational anatomy). 
This figure is intended to convey some intuition for the architecture of the 
inferential message passing required to perform belief updating under the 
model of Fig. 3, and to suggest how it might manifest in neural circuitry. For 
simplicity many of the connections, and some of the intermediate nodes, from 
the lower part of Fig. 2 have been omitted. In addition, the lateralisation should 
not be taken seriously—some nodes have been placed on one side of the graphic 
simply to avoid visual clutter. In brief, the instruction outcome informs first 
level beliefs about the instruction via the auditory cortices in the temporal 
lobes. These beliefs are propagated to the second level, where slowly changing 
beliefs about the instruction and the intended response modality are held. 
Slowly changing neural activity, of the sort we would anticipate being associ-
ated with these beliefs, is often associated with the prefrontal cortices (Fuster, 
1973). Beliefs about sequences and narratives (omitted from the figure) are 
sometimes associated with the hippocampi (Foster and Wilson, 2007; Frölich 
et al., 2021; Huerta and Rabinovich, 2004; Pezzulo, Kemere and van der Meer, 
2017), which share reciprocal connections with the prefrontal cortices. At the 
second level, beliefs about the instruction are used to formulate beliefs about 
the intended response modality under each alternative policy, and the (first 
level) consequences of these alternative choices, perhaps involving the anterior 
cingulate cortex (Scherbaum et al., 2012; Shenhav et al., 2013, 2017). These 
consequences are used to formulate beliefs about the most appropriate policy (i. 
e., the policy that ensures the preferred ‘correct’ state at the first level), ulti-
mately favouring the policy in which the instruction and modality match. The 
policy then weights the conditional beliefs about the modality, resulting in a 
Bayesian model average. The relationship between conditional beliefs, policies, 
and Bayesian model averages, has previously been noted to have a similar ar-
chitecture to cortico-basal ganglia circuitry (Friston et al., 2017a, b, c). At this 
point, beliefs about the policy may also be influenced by other prior bia-
ses—here that the most informative modality from a visual stimulus to a verbal 
response is the writing itself, and not the colour of the text. In other words, we 
have a prior bias towards reading written words. Beliefs about the modality at 
the second level are then propagated to the first level as prior beliefs about the 
modality that determines the response. Beliefs about the colour and the word 
are formulated based upon visual data through colour (V4 (Pasupathy et al., 
2020)) and word (visual word-form (McCandliss et al., 2003)) regions of the 
extrastriate cortices. Their ultimate influence on the verbal response depends 
upon the first level modality beliefs. For example, if the modality is believed to 
be the written word, then the written word hidden state is assumed to precisely 
predict the response outcome. 
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4. Simulated behaviour and electrophysiology 

For the simulations that follow, the prior bias is set such that 85% of 
the time, our synthetic brain expects to read the word presented to it, 
and 15% of the time, it expects to name the colour. The prior preferences 
are set such that, prior to normalisation, being correct has a log prob-
ability of 1 and being incorrect has a log probability of − 1. This means 
there is a prior belief in place that the mental policy will be selected such 
that being correct is e2 (≈7.4) times more probable than being incorrect. 
This can be read as the degree of preference for being correct, which is 
weighted against the strength of habitual policies in predicting the likely 
outcomes. Overt actions are selected based upon the predicted distri-
bution over outcomes. In other words, outcomes are realised by overt 
actions based upon the subject’s predictions: 

oτ+1 ∼ Cat(uτ)

uτ = σ(λ ln(A)sτ+1)

sτ+1 =
∑

π
ππsπ,τ+1

(5) 

Note that the s variable is a function (Bayesian model average) of 
beliefs about policies. This means that policies are inferred, as opposed 
to ‘selected,’ but do influence the actions that go on to be selected. This 
explicitly disambiguates the processes of planning and acting. The 
λ-parameter is an inverse temperature parameter that determines the 
degree of stochasticity in action selection. Equation (5) is a relaxation of 
the first line of Equation (1)—which is recovered for very large λ. If λ is 
much smaller, more randomness is introduced. We use λ = ¼ to account 
for the fact that this model is not intended as a model of everything that 
is going on in the brain, and there may be other computations going on 
that could influence action selection. In place of simply selecting the 
most probable action, the overt action involves sampling the next 
observation from a distribution given by a softmax function of the free 
energy for the next time step. The only part of the free energy that de-
pends directly on observation is the expected log likelihood (or accu-
racy), expressed here in linear-algebraic terms. This expected 
observation in turn depends upon the covert mental action, which un-
derwrites beliefs about the future. 

Fig. 5 shows the behaviour generated by inverting the generative 
model under the two alternative instructions (i.e., report the colour of 
the text or read the written word). Practically, this means setting the 
instruction hidden state of the data-generating process. The prior belief 
held by our synthetic participant is not changed between these 

conditions. Note that responses are 100% correct when the task is to 
read the word, but there is an error following the fourth stimulus when 
the task is to report the font colour. For this stimulus, the word ‘red’ is 
read out, while the correct response would have been ‘blue’, which is the 
font colour. There is also an error for the tenth stimulus. It is significant 
here that both of these error responses are the written words, so are not 
simply random errors. This is consistent with the ‘interference’ phe-
nomenon originally noted during this task (Stroop, 1935). From our 
perspective, it represents insufficient deployment of cognitive effort to 
overcome cognitive demands (see Fig. 1). Mathematically, this means 
that E dominates Equation (3), having more influence relative to G. In 
other words, the mental habit of reading is stronger than the context 
sensitive (i.e., instructional set) motivation to perform the task correctly. 
The perfect performance in the reading condition is consistent with the 
lower cognitive demand of this task, which is consistent with what we 
expect to do 85% of the time even without preferences and instructions. 

An interesting observation from Fig. 5 is that the incorrect responses 
do not seem to occur at random but following correct responses to 
congruent stimuli. Intuitively, this is because the correct response for 
congruent stimuli provides evidence for both colour-naming and word- 
reading conditions. In contrast, the correct response for incongruent 
stimuli provides definitive evidence for one instruction over the other. 
When the evidence is ambiguous for one stimulus, the relative uncer-
tainty about the instruction is then propagated to the next stimulus, 
making it more likely that an error will be made. This emergent property 
of our simulations—that responses may depend upon previous elements 
of the stimulus sequence—coheres with an established phenomenon 
referred to as the congruency sequence effect (Botvinick et al., 2001; 
Schmidt et al., 2015; Shenhav et al., 2013). It also implies that the 
pattern of responses may be significant in drawing inferences based 
upon behavioural data—not just the overall accuracy statistics that are 
often used to characterise behaviour in Stroop tasks. 

As detailed in the figure legend, we can compute the effort associated 
with performance based upon Equation (4). As expected, the colour- 
naming condition requires greater deployment of effort than the word- 
reading condition. Interestingly, there is no variation in effort with 
congruency. This initially seems at odds with observations that incon-
gruent trials are subjectively experienced as more aversive (Dignath and 
Eder, 2015; Dreisbach and Fischer, 2012). However, while related, it is 
important to distinguish between something being aversive and effort-
ful. Aversion would be more relevant in this task if choices influence 

Fig. 5. (Simulated behaviour). 
The rows in this figure show the sequence of 
stimuli presented, and the response given to 
each stimulus during simulation of an artifi-
cial agent with the generative model outlined 
above. In the left column, when the task is to 
report the font colour, the responses are 
nearly all correct, with two exceptions. When 
incorrect, the responses are consistent with 
what would have been correct in the reading 
condition. Interestingly, the incorrect re-
sponses follow from correct responses when 
the word and the colour are congruent—i.e., 
the previous response would have been 
consistent with either modality. In the written 
word condition (shown in the right panel), all 
responses are correct. For the word-reading 
condition ξ ≈ 5.5 nats for each decision, 
while for the colour-naming condition ξ ≈ 7.0 
nats for each decision. Interestingly, the effort 
deployed (ξ) does not vary with congruency, 
offering a dissociation between effort and 
performance which, as we will see later, is 
enhanced in the congruent condition.   

T. Parr et al.                                                                                                                                                                                                                                     



Neuropsychologia 184 (2023) 108562

9

whether they saw more congruent or incongruent stimuli. Given the 
greater chance of fulfilling one’s preferences—when stimuli are con-
gruent—we would expect a larger expected free energy associated with 
choices leading to the incongruent versus congruent condition, resulting 
in (the behavioural signs of) an aversion to incongruent stimuli. It may 
be that it is difficult to disambiguate between the subjective experiences 
of effort and aversion, and both may be at play in this task. With clear 
definitions of each quantity, there is scope to disambiguate between 
these through estimation of the associated parameters in a generative 

model. Based upon the simulations here, subjective experiences of 
aversion to incongruent stimuli would not be consistent with variations 
in effort as defined above. 

An advantage of having a process theory associated with the belief- 
updating—that generated the behavioural responses in Fig. 5—is that 
we can examine these belief updates as we might examine neuronal 
responses. Fig. 6 shows the electrophysiological correlates of these 
inferential dynamics and offers some hints as to the mechanisms that 
underwrite the behaviour in Fig. 5. The belief plots (Panels 6a, c, e, g, i, 

Fig. 6. (Synthetic neurophysiology). 
Exploiting the duality between inferential dynamics and physiology (sometimes characterised as a Markovian monism (Friston et al., 2020)), we can examine the 
belief-updating process as it might manifest in neuronal activity. These plots show the same sequences as in Fig. 4 but offer an insight into the mechanisms that 
generated the behaviour seen in the previous figure. The 6 plots on the left (a, b, e, f, i, j) relate to the colour-naming condition and the 6 plots on the right relate to 
the word-reading condition (c, d, g, h). Panels b and d depict the congruency of the stimuli and whether or not a correct response was given at each time-step (each 
trial comprises 2 time-steps—one for viewing and one for responding to the stimulus). White indicates congruency or correctness, black indicates incongruency or 
incorrectness, and grey indicates time-steps at which no response was given. The plots depicting beliefs (a, c, e, g, i, k) are formulated as raster plots. Each row 
represents a neuron, with spikes shown in black, and the absence of a spike shown in white—each neuron is replicated 16 times as if we had run the experiment 
identically 16 times and measured the response of that neuron. These spikes are generated by sampling from the posterior probabilities inferred through free energy 
minimisation, under the assumption that the average population activity of subsets of neurons encodes these probabilistic beliefs. The black horizontal lines in the 
belief plots separate each hidden state factor. The factors in the fast level are ordered as follows: written word, colour, task sequence, instruction, response, correct. In the 
slow level, the order is: narrative, instruction, response. Some key observations are as follows. First, the hierarchical model ensures beliefs about the first level states 
evolve much faster than those associated with the second level states or policies. Second, note the first level neural population that shows an alternating firing rate 
pattern, representing the alternation between viewing and responding to a stimulus. Third, the distinction between the two policies under the colour-naming 
condition (a) is less definitive than in the word-naming condition (c). This is because the colour-naming condition involves two conflicting sources of informa-
tion: a belief that correct responses will be given if the instruction is followed and a prior belief that word-reading is a more common policy. In contrast, when the 
instruction is consistent with prior beliefs, greater confidence can be obtained. The local field potential plots depict the (filtered) rates of change of posterior beliefs. 
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and k) show samples from either π (for beliefs about policies) or s (for 
beliefs about states) as if we were measuring spikes from single neurons 
from a population of neurons encoding these variables with their 
average firing rates. The associated local field potentials (Panels 6f, h, j, 
and l) are generated from the rates of change of the firing rates, with the 
highest frequencies suppressed to eliminate the effects of the artificial 
discretisation in time. The two key things to draw from Fig. 6 are (i) the 
much faster change in belief states at the first (faster) level of the model 
(lower row of plots) compared to the second (slower) level (middle row 
of plots), (ii) the differences in the amplitudes of the local field potentials 
associated with congruent and incongruent stimuli (and correct and 
incorrect responses), and (iii) the prior bias in policy selection means 
that beliefs about policies are more precise (i.e., shown as a difference in 
shading between rows) in the word-reading condition compared to the 
font-colour condition. The most obvious place to see the second of these 
observations is the local field potential for the neuron shown in green in 
Panel 6f. Note the small increase in amplitude whenever the stimuli are 
congruent (as indicated in Panel 6 b), and the much larger increase when 
a response is incorrect—consistent with the ‘error-related negativity’ 
(Yeung et al., 2004), an increased amplitude of evoked response with 
erroneous as opposed to correct responses. 

Fig. 7 shows the types of descriptive statistics that are often pre-
sented for empirical data, for the simulations described above. In the left 
column of plots in Fig. 7, the simulations in Figs. 5–6 have been 
extended to 64 stimulus presentations (including the initial instruction). 
We have plotted the percentage correct, the reaction time distribution, 
and average evoked responses. From the data in Fig. 7, it is clear that 
performance of the task is 100% when colour and word stimuli are 
congruent, and also in the incongruent condition when the task is to read 
the written word. However, in the incongruent condition when the task 
is to name the font colour, there are some errors. Therefore, this simu-
lation reproduces the Stroop effect: When the task is to name the font 
colour, there is a difference in accuracy between congruent and incon-
gruent trials (that is not present when the task is to read the word). 

Depending upon the precise trial design, we might not expect 100% 
response rates in the incongruent word-reading condition (or even in the 
congruent conditions). For example, if participants are asked to respond 
very quickly, we might expect a small number of errors in all conditions. 
This increased error rate can be simulated by decreasing the λ-parameter 
from Equation (5). For example, when λ and e are relatively small (e.g., 
1/8 and − 1/2, respectively)—corresponding to an increasingly difficult 
task with only a slight word-reading bias—we observe a small number of 
errors in all conditions. However, the pattern of errors is non-unform; 
with many errors in the incongruent colour-naming condition, some in 
the incongruent word-reading condition, and very few in the two 
congruent conditions. This is shown in the right column of plots in Fig. 7. 

The same interaction between instruction and congruency is dis-
played for the reaction time distributions. Before unpacking these, it is 
worth briefly outlining the way in which reaction times are generated, as 
this deviates from previous active inference process theories. Previously, 
reaction times have been computed simply by timing how long it takes a 
computer to simulate the neuronal message passing. While this has been 
sufficient to reproduce some simple behavioural phenomena, it does 
make reproducibility (and model fitting) challenging, as different 
computers at different times might take different lengths of time to 
perform the same computation. In this paper, reaction times are based 
upon confidence, as is common in modelling reaction times (Feltgen and 
Daunizeau, 2021; Ratcliff and McKoon, 2008). The basic idea is that 
confidence, or precision, manifests biologically in synaptic time con-
stants (Feldman and Friston, 2010). Increased precision leads to faster 
neuronal computation, and therefore faster response times. Specifically, 
the reaction time is taken to be a function of the entropy of the predicted 
verbal outcome at the next time step. Entropy and precision are 
inversely related, so greater entropy implies longer reaction times. The 
reaction time distributions in Fig. 6 are constructed by sampling from 
the following process: 

rτ =
1
2

exp(n − uτ+1⋅ln uτ+1)

n ∼ N

(

0,
1

256

) (6) 

For those familiar with drift-diffusion modelling of reaction times 
(Ratcliff and McKoon, 2008), the negentropy in Equation 6 can be 
thought of as the (log) drift rate that determines the decision time, with 
the n variable accounting for the influence of diffusion. The log normal 
distribution ensures no negative reaction times. Note that the range of 
reaction times resulting from Equation 6 are approximately the same 
ranges as measured empirically (Coderre et al., 2011). The qualitative 
relationships between reaction times to incongruent and congruent 
stimulus presentations are also consistent, with longer reaction times 
when the stimuli are incongruent. Note the longer reaction times asso-
ciated with incongruent colour-naming compared to incongruent 
word-reading, consistent with our prior bias towards reading words. 

The lower plot in Fig. 7 is generated by averaging the local field 
potentials during the font-colour task in the congruent and incongruent 
conditions. The greater amplitude response in the congruent conditions 
reproduces qualitative empirical findings (Badzakova-Trajkov et al., 
2009; Coderre et al., 2011). The neuronal populations responsible for 
this evoked potential are those associated with the response modality at 
the second level—i.e., the controllable state that represents the cognitive 
policy. This reflects the fact that both response modalities are afforded 
evidence by the congruent stimuli, promoting belief updating when only 
one of the two modalities was previously thought plausible. The 
behavioural correlate of this is the higher tendency to make an error 
when an incongruent stimulus presentation follows a congruent pre-
sentation, remarked upon above in relation to Fig. 5. 

5. From priors to behaviour 

We next turn to the question of how variation in the cognitive de-
mand or cognitive effort between subjects, or between the same subject 
under different experimental (e.g., pharmacological) manipulations, 
manifests in behaviour. This analysis is in the spirit of Musslick et al. 
(2019) who used a similar approach to associate model parameters with 
behavioural measures. To do this, we simulated task performance in the 
font-colour condition for 25 subjects who have different prior beliefs (i. 
e., with different C and E parameter combinations). We formulated these 
differences using log scaled versions4 of the parameters outlined above, 
where e can be conceptualised as cognitive demand and c can be con-
ceptualised as the motivation to overcome this demand (i.e., the pref-
erence for being correct): 

C∝exp(c) × [ − 1 1 ]T

E∝exp(e) × [ − 0.85 0.85 ]T
(7) 

The upper plots in Fig. 8 report the percentage correct responses 
(Panel 8a) and the average reaction times under different combinations 
of these priors (Panel 8 b). These plots show that percentage correct 
becomes worse as cognitive demand increases but becomes better as the 
motivation to deploy cognitive effort increases—as we would intuitively 
expect. There is a slightly more complex relationship between the two 
parameters for reaction times. Nevertheless, the fastest reaction times 
are found in the context of low demand and high effort, as we would 
expect. Note that each cell in Panels 8a and b corresponds to an indi-
vidual simulated subject who has different values for c and e; here, we 
express cognitive demand (e) not as a fixed property of the task itself, 
but how demanding a given subject finds the task, which is not neces-
sarily the same for all simulated subjects. The relevance of this is that we 

4 Log scale parameters are a common device in statistical inference to ensure 
positivity of the estimated parameter. 
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present all participants with exactly the same task sequence, implying 
any difference in cognitive demand relates to the subject, not the task. 

To gain a greater understanding of these relationships, we tested a 
series of hypotheses about the contributions of these prior parameters to 
(simulated) behaviour. First, we used variational Laplace (Friston et al., 
2007) to estimate the coefficients of the following models: 

P(yc|βc, λc, c, e) = N
(
σ
(
[X(c, e)βc, 1]T

)

1, exp(− λc)
)

P(βc) = N (0, I)

P(λc) = N (4, 1)

P(yr |βr, λr, c, e) = N (X(c, e)βr, exp(− λr))

P(βr) = N (0, I)

P(λr) = N (4, 1)

X(c, e) =
[

1 c e c × e c2 e2
]

(8) 

The data yc are the proportion correct and yr are the log mean re-
action times. The softmax function ensures the expected proportion 
correct lies between 0 and 1, while the use of the logarithm for the re-
action times ensures the expected reaction time is positive. The models 

above can be thought of simply as linear models of the kind we might use 
in a regression analysis, but with non-linearities applied to ensure the 
model outputs conform to the allowed ranges for the available data. The 
β-coefficients in the above can be estimated for simulated data, as shown 
in Fig. 8. 

Estimating the values of the β-coefficients (and the λ-parameters) 
allows us to ask which of these coefficients are important in explaining 
the synthetic data. Specifically, we can ask whether the coefficients have 
values that are non-zero. If not, this would effectively mean removing 
these parameters from the equation (i.e., ‘pruning’ them away). To do 
this, we specify priors over combinations of β-coefficients as precisely 
zero and examine whether the marginal likelihood increases or 
decreases—thereby allowing us to estimate whether the parameter is 
useful for explaining the data (i.e., proportion correct or reaction times). 
Bayesian model reduction (Friston et al., 2018; Friston et al., 2016) is a 
statistical technique used to perform these comparisons quickly and 
efficiently. 

The middle plots of Fig. 8 show the patterns of behaviour predicted 
under the models of Equation (8) using the posterior modes of the 
β-coefficients. The lower plots show the (posterior) probabilities that 
each β-coefficient is non-zero. These are computed for each parameter 
by summing the posterior probabilities for various models in which that 
parameter was allowed to vary from zero. Here, we find evidence (with a 

Fig. 7. (Condition specific effects). 
This figure offers a construct validation of this model 
against data measured from experiments using the 
Stroop task. The two columns reproduce the same 
measurements under different parameter settings. 
Here, we simply illustrate that different behavioural 
and electrophysiological patterns can be reproduced 
with different parameter values. The changes from 
the left to the right column are a reduction in the 
strength of the habitual bias and reduced precision in 
response generation, which together increase 
response variability. The parameters used here were 
chosen to emphasise the qualitative differences be-
tween conditions characteristic of the Stroop task. 
The upper plots show the proportion of errors in 
different conditions. In the left plot, no errors were 
observed in the congruent conditions, or in the word- 
reading condition. However, performance was worse 
during the font-colour condition when the stimuli 
were incongruent. A more nuanced pattern is shown 
in the right plot, with worse performance in both 
incongruent conditions relative to congruent and 
worse performance in the incongruent colour-naming 
condition specifically. The middle plots show the re-
action time distributions for each condition. Reaction 
times were modelled as detailed in the main text. This 
shows similar distributions in the congruent condi-
tions, but longer reaction times in the incongruent 
conditions, with font-colour naming requiring a 
longer reaction time than word-reading. The lower 
plots show the evoked responses in the font-colour 
condition averaged over trials within congruent and 
incongruent stimulus presentations. The evoked re-
sponses are simply the local field potentials as shown 
in Fig. 6 taken from the second level neuronal pop-
ulations representing the response modality. Electro-
physiologically, the Stroop effect is often 
characterised by greater amplitude of congruent 
relative to incongruent waveforms (Badzakova--
Trajkov et al., 2009), consistent with the simulated 
waveforms in this plot.   
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posterior probability approaching one) for an effect of c and e (and an 
additional constant term) on the proportion correct, but no convincing 
evidence for higher order interactions (posterior probability ≈ 0.5). The 
reaction times are best explained when effects of the interaction c£e 
(posterior probability ≈ 0.9) and of the quadratic term c2 (posterior 
probability ≈ 0.6) are included in the model. All other effects are 
associated with a posterior probability of <0.5, implying evidence 
against non-zero values for the associated coefficients. The c£e inter-
action suggests that reaction times are not simply an additive combi-
nation of c and e; instead, the fastest responses are made when greater 
motivation is deployed in the context of a high cognitive demand. 

A final point to note about the plots in Fig. 8 concerns the relation-
ship between reaction time and accuracy with variations in each 
parameter. As seen most clearly in panels 8c and 8 d for small c, those 
values of e for which reaction times are longer are also those for which 
accuracy is greater. For larger values of c, this relationship is abolished. 

The implication is that, when preferences are relatively weak, variation 
in e leads to a speed-accuracy trade-off of the sort frequently encoun-
tered in tasks requiring cognitive control (Bogacz et al., 2010; Chittka 
et al., 2009; Drugowitsch et al., 2012; Heitz, 2014; Henmon, 1911). As 
preferences for being correct become stronger, the speed-accuracy 
trade-off is first attenuated, and then the relationship between the two 
disappears. This is interesting in the context of empirical work (Manohar 
et al., 2015) demonstrating the disruption of the trade-off when the 
incentive for correct responses (i.e., the strength of preferences) is 
increased. As c increases from left-to-right in 8c and 8 d, the same 
pattern is seen. There is a straightforward explanation for this phe-
nomenon under the model presented here. As reaction times are 
assumed to be a function of confidence in one’s next action, we see that 
confidence will be high when there is a strong prior habit (i.e., when e is 
large) provided there are not strong preferences that contradict this (i.e., 
when c is small). In the extreme case, this means we can confidently and 

Fig. 8. (From priors to behaviour). 
This figure illustrates the effect on average reaction 
times and error rates in each condition when prior 
beliefs are varied to either make the task more 
demanding (e) and to encourage a greater deploy-
ment of cognitive effort (c). The upper plots show the 
results of simulating behaviour under each of these 
priors. The middle plots illustrate the pattern when 
we fit the models of Equation (8) (i.e., the β-co-
efficients) to these simulated data. The lower plots 
show the results of an application of Bayesian model 
reduction to these models to determine the relevance 
of the β-parameters in explaining the simulated data. 
Specifically, we compare the evidence for all models 
with and without a given parameter in play and use 
this to compute the posterior probability of models 
with the parameter. The interpretation of these re-
sults is that there is good evidence (posterior proba-
bility ≈ 1) to suggest the first three parameters (i.e., a 
constant term, the influence of c, and the influence of 
e) are needed to explain the proportion correct data. 
However, the data are uninformative about (i.e., 
provide no evidence for or against) the importance of 
parameters representing the second order terms. Re-
action times are better explained by the constant, 
linear, and interaction (c£e) terms, with evidence 
against a non-zero e2.   
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quickly perform our habitual (word-reading) action every time. How-
ever, this will clearly result in lower accuracy. As e becomes smaller, 
confidence in our next action declines, but accuracy will increase as we 
cease to be biased by our cognitive habits. The implication is that 
variance in e at small c will necessarily lead to a speed-accuracy 
trade-off. Such results have implications for a wide range of studies 
examining variations in movement vigour with changes in the value 
attained following these movements (Reppert et al., 2015; Summerside 
et al., 2018; Yoon et al., 2018). 

6. Computational phenotyping 

Having demonstrated that behavioural measures can be predicted 
based upon the prior beliefs of the behaving subject, we now turn to the 
question of whether we can infer these prior beliefs from behaviour. This 
is not a straightforward problem, as is evident in the plots of Fig. 8, in 
which different combinations of parameters lead to the same behav-
ioural measures. This pattern of results is intuitively sensible, as we 
might expect similar behaviour in a cognitively demanding task in 
which a great deal of cognitive effort is deployed and in a less cogni-
tively demanding task in which less cognitive effort deployed. The 
implication is that there is a many-to-one mapping from prior parame-
ters to behaviour, and that the problem of inferring priors from behav-
iour is an example of an inverse problem. 

Such problems are common. Examples include the problem of 
inferring the voxels responsible for patterns of measured electromag-
netic activity on the scalp in electroencephalography or magnetoen-
cephalography research, or the 3-dimensional geometry of an object 
based upon the photoreceptor activity on a retinal sheet. Almost 
invariably, these problems call upon Bayesian inference for their solu-
tions (Baillet and Garnero, 1997; Calvetti and Somersalo, 2018; Wat-
zenig, 2007). The reason for this is that the prior plausibility of each 
parameter of the model (here, the c and e parameters), required for 
Bayesian inference, enforces a unique solution. This is not always 
the ‘correct’ solution—in the sense of recovering the parameters used 
to generate the data—but is the best explanation for the data 
available. The notion of ‘best’ here accounts for the fact that the data 
generated by any given model could also be generated by a more 
complicated model. However, Occam’s razor favours the explanation 
that—simultaneously—is the simplest and most accurate account of the 
data. 

To infer the c and e parameters, we specified prior beliefs that the 
two parameters were distributed according to normal distributions, each 
with zero mean and prior variances of 1/126. The small prior variances 
are based on the results in Fig. 8, which show that the model is highly 
sensitive to variations in the parameters. Small increases in c or de-
creases in e from their prior values lead to 100% accuracy. If the pa-
rameters are outside of the range that accuracy and reaction times vary, 
then model inversion will not estimate the parameters with high cer-
tainty—because the data are ambiguous. For example, this would be the 
case for hypothetical populations who perform the Stroop task perfectly. 
We can assume that this task is only useful for inferring parameters 
related to effort when at least some errors are made. The log likelihood 
function for this model is obtained by forcing the active inference 
scheme to select the same actions as were chosen with the (synthetic) 
behavioural data and presenting it with the same sensory data. In many 
analyses of the Stroop task, choice data are usually summarised in terms 
of the accuracy with which the task is performed. However, our 
modelling approach makes use of not only the overall accuracy, but of 
the sequence of choices (i.e., verbal responses) made. This allows for 
sequential effects to inform the fitting of the model to data. The log 
likelihood is influenced by both the responses that were made and the 
speed of the responses, given as: 

L (c, e, o, r)=
∑

τ
ln(oτ⋅uτ− 1(c, e, ot≤τ− 1))

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
Choices

−
∑

τ

1
256

(ln rτ + uτ(c, e, ot≤τ)⋅ln uτ(c, e, ot≤τ) + ln 2)2

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
Reaction times

(9) 

This expression fuses the two forms of performance data generated 
by the model (Sander and Beyerer, 2013; Wei et al., 2020). The log 
likelihood of choices is based upon Equation (5). The log likelihood of 
reaction times is obtained by inverting the expression in Equation 6. In 
both cases, we have made the dependence upon c and e explicit. Given 
this log likelihood, we can employ variational Laplace, as before, to infer 
the posterior densities for c and e. Fig. 9 illustrates the mode and 90% 
credible intervals of these inferences using data generated (using the 
same stimulus stream) under various values of the c and e parameters. 
To assess parameter-recovery, we use simulations generated with a 
range of different parameter settings. Specifically, we used the param-
eters in Fig. 8, where the sequence of parameter settings in Fig. 9 
correspond to the parameters in the matrix of Fig. 8a, after concate-
nating the rows. We hoped to see a clear relationship between the pa-
rameters used to simulate the data and the recovered parameters. 

As shown in Fig. 8, the recovery of the c parameter is generally very 
good, while the e parameter is relatively poor (i.e., the estimate is mostly 
outside of the credible interval) with some improvement in datasets 
16–25. Note however, that the rank order of estimates for e is preserved 
(higher ‘true’ values of e are associated with higher estimated values). 
Where the estimates are poor, this implies the model has found an 
alternative, simpler, way to generate the same data through different 
combinations of parameters than those that generated the data. How-
ever, as shown in the lower panel, the difference between the c and e 
parameters is inferred much more reliably. This occurs because there is a 
high degree of covariance between the two parameters under the pos-
terior estimates, meaning that the marginal density for each parameter 
neglects an important degree of freedom. The expected differences be-
tween the two account for this covariance. The implication is that, in 
explaining data under the hypothesis that differences in cognitive effort 
underwrite behavioural differences, it is the motivation to deploy 
cognitive effort relative to the effort demanded by the task (for that in-
dividual) that matters, and not the absolute value of the motivation or 
demand. In principle, this means a single parameter related to effort may 
be sufficient to characterise performance on the Stroop task. In sum-
mary, this parameter recovery exercise demonstrates that it is possible to 
use active inference to ‘phenotype’ (and infer the prior beliefs of) par-
ticipants of a Stroop task; and suggests that the most reliable parameter 
to be used in empirical studies is the difference between the c and e 
parameters in our model. This is consistent with previous studies that 
have shown it is difficult to independently estimate the absolute values 
of cognitive demand and motivation. For instance, Caplin et al. (2020), 
in an economic context, focus upon the relationship between analogous 
parameters via an ‘incentive-based psychometric curve’ as opposed to 
absolute parameter values, and Musslick et al. (2019) also note the 
collinearity between demand and motivation. Having said this, our 
successful recovery of the c parameter and the preservation of rank 
order in estimation of the e parameter (analogous to the ordinal re-
lationships achieved by Musslick et al. (2018)) is encouraging that these 
data do provide information about each parameter independently, and 
that they may be useful measures in computational phenotyping. 

Our final analysis followed on from that shown in Fig. 9. We re-fitted 
the model with and without each data modality (reaction times and 
choice data) to establish the relative information afforded by each. In-
formation gain is quantified by the KL-Divergence from our prior beliefs 
about each parameter to our posterior beliefs following fitting of the 
model to (simulated) data. This approach has previously been employed 
for the purposes of feature selection, when the most informative data- 
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features need to be chosen from imaging data to inform neuronal models 
(Zeidman et al., 2019). Table 1 shows the results of this analysis. The 
main result is that reaction time data alone provides much more limited 
information about the c and e parameters compared to either the com-
bined reaction time and choice data, or the choice data alone. A sec-
ondary result is that, for many of the synthetic datasets, more 
information is provided by the choice data alone than by the combina-
tion of choice and reaction time data, despite non-zero information 
provided by reaction time data alone (although this is not a consistent 
effect). While counterintuitive, this result depends upon the fact that 
information gain is not a distance measure, implying we cannot simply 
add the information gain associated with two data modalities individ-
ually and expect to arrive at their combined information gain (Amari 
and Cichocki, 2010). The key conclusion to draw from Table 1 is that 

both modalities are informative about our parameters of interest. 
However, if we had to pick one, choice data is the more useful of the two. 

7. Discussion 

In the above, we have introduced a formalisation of cognitive effort, 
and illustrated its face validity through its manifestation in a commonly 
used neuropsychological task. This application reproduced established 
phenomena including the congruency sequence effect (Duthoo et al., 
2014; Egner, 2007) i.e., that incorrect responses on a Stroop task are 
more likely for incongruent stimuli immediately following congruent 
stimuli. Further to this, we have shown that it is possible to draw in-
ferences about the parameters determining effort from behav-
iour—noting that these inferences reflect the simplest explanation for 

Fig. 9. (Model fits). 
The plots in this figure illustrate the results of fitting 
the active inference scheme, using the generative 
model of Fig. 3. The red markers indicate the pa-
rameters used to generate a synthetic behavioural 
sequence (and set of reaction times), with the blue 
bars indicating the expectation and 90% credible in-
tervals associated with the estimates. The e parameter 
is shown in the upper plot (labelled ‘demand’). The c 
parameter is shown in the middle (motivation) plot. 
The final plot shows the difference between c and e, 
accounting for the posterior covariances. Note that, 
while the estimation of e is less accurate at lower 
values, the differences between the two is better 
estimated. This reflects the fact that, while there is no 
unique parameter combination that generates the 
data, the relationship between the two parameters is 
key. In addition, the estimated modes correlate (i.e., 
preserve rank-order) with each parameter, even if the 
absolute values are not recovered.   
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behaviour and do not necessarily recover the ‘true’ parameters used to 
generate those data. Nevertheless, these inferences do tell us something 
about the ‘true’ parameters—specifically, the difference between the c 
and e parameters of the model, which can be conceptualised as the 
motivation to deploy cognitive effort relative to the effort demanded by 
the task (for a particular individual). In principle, this type of inversion 
could be used to track disease progression or recovery over time (or with 
alternative treatments), through estimating the parameters that best 
explain behaviour and their evolution. For instance, this could help in 
predicting disease trajectories in (frontotemporal) dementias (Mat-
ías-Guiu et al., 2019) or in measuring rehabilitation efficacy in traumatic 
brain injury patients (Ben-David et al., 2011). It may also be helpful in 
evaluation of psychiatric conditions in which aspects of cognitive con-
trol are impaired (Grahek et al., 2019). Quantitative phenotyping of this 
sort has the benefit of being mechanistic, in the sense that estimated 
parameter values can be used to generate behaviour characteristic of 
that phenotype. This may be particularly useful in predicting behav-
ioural consequences of therapeutics designed to target the parameters in 
question. It is important to note that limited deployment of cognitive 
effort is not the only plausible explanation for reduced performance in a 
Stroop task. As an example, clinical conditions involving visual 
impairment (or higher order visual function) might limit the applica-
bility of this approach with a visual Stroop task. However, the same 
principles are likely to apply to modified versions of this task, such as the 
auditory Stroop task which has been deployed in Parkinson’s disease 
(Janssen et al., 2019), a condition associated with visual dysfunction 
(Weil et al., 2016). 

We illustrated that the inversion of a generative model of this sort 
can be interpreted neurobiologically, both through the anatomy implied 
by its conditional independencies (Fig. 5), and by the electrophysio-
logical manifestations of belief-updating (Fig. 7). As a consequence, the 
parameters determining cognitive effort may themselves be interpreted 
in terms of their physiological roles. Almost invariably, these kinds of 
parameters (effectively, inverse temperature, precision, or softmax pa-
rameters) play the role of synaptic efficacies (Friston, 2017; Kanai et al., 
2015; Moran et al., 2013; Parr et al., 2018) that enhance the influence of 

some neural populations over others. This is significant in that (i) the 
inferential procedures described above offer a way to estimate synaptic 
function (more precisely, the relative synaptic function associated with 
the inputs to those neuronal populations that influence policy selection) 
and (ii) it implies that neuromodulatory pharmacotherapies may target 
these synapses. In clinical neurology, this may be particularly signifi-
cant, given apathy—which may reflect insufficient effort to meet 
demand—is a common feature to several different syndromes (Heze-
mans, 2020). Difficulty in suppressing impulses is also a feature of tic 
disorders (Rawji et al., 2020) and can be an adverse effect of some of the 
medications used to treat Parkinsonism (Grall-Bronnec et al., 2018). 
Identification of the aberrant priors that cause these problems might 
then help to guide the choice of therapeutic agent. 

The key finding—from our parameter-recovery exercise—was that of 
the two data modalities, choice data furnished more information about 
the parameters than reaction times. This coheres with previous findings 
that choice data (as summarised by the accuracy or error rate) vary 
significantly between patients with frontal lobe lesions and healthy 
controls, while reaction times do not (Vendrell et al., 1995). While the 
most useful data modality will depend upon the question being 
asked—and multimodal data may be the most useful—our analysis can 
be read as an endorsement of performance measures that take (possibly 
summarised) choice data into account (Scarpina and Tagini, 2017). One 
could go further than this and argue that the most useful summaries of a 
participant’s performance are those that contain all the information 
required to reproduce their behaviour, qualitatively. This is the advan-
tage of a computational phenotype with parameters that play a mech-
anistic role in generating behaviour. It also allows us to ask ‘what if’ 
questions, by taking an individual phenotype and modifying a param-
eter to see how this might influence behaviour. The ability to address 
these questions has potential in clinical practice, in which we may wish 
to ask how a patient (whose phenotype we have estimated) might 
respond to alternative therapies. 

In our simulations, c and e are separate parameters. This raises the 
question: Does the brain entertain separate estimates of cognitive de-
mand and motivation to deploy cognitive effort, or does it entertain only 
the motivation relative to the effort demanded by the task? If we take 
our generative model as a theoretical framework, the two parameters 
relate to different constructs—the cognitive demand (e) and preferences 
(c)—so we might predict that these are encoded separately. As described 
in Section 3, one hypothesis is that cognitive demand relates to basal 
ganglia responses and preferences relate to prefrontal cortex responses. 
Previous theoretical frameworks have also distinguished between the 
effort that is required and the effort that is deployed to perform a given 
cognitive task (e.g., see (Richter, 2016)). For example, Kahneman 
(1973) distinguishes the ‘evaluation of demands on capacity’ as separate 
from ‘available capacity.’ Under the current framework, the deployed 
effort depends on preferences, which relates to longstanding ideas that 
the importance of success (Richter, 2016) or attractiveness of a goal 
(Brehm and Self, 1989) determines effort—the idea being that, if an 
individual places high importance on success in a given task, they will be 
willing to deploy more effort to perform it. The difference between e and 
c that is reconstructed in Fig. 9 resonates with the idea that an individual 
performs a cost-benefit analysis (Croxson, Walton, O’Reilly, Behrens and 
Rushworth, 2009; Székely and Michael, 2021) to evaluate the benefit 
they would gain from exerting effort, relative to the amount of effort that 
is demanded to perform the task successfully. 

It is often assumed that effort is dissociable from the accuracy of 
performing a given task (e.g. (Borghini and Hazan, 2018; Koelewijn 
et al., 2012),). The current framework is based on the view that effort is 
different from—but nevertheless contributes to—task performance, and 
can therefore be inferred from performance, provided that it is within a 
certain range. Clearly, when performance is at 100%, different levels of 
effort could plausibly have been exerted to perform at that level, and this 
would not be distinguishable from accuracy alone. However, it is 
possible that in some situations reaction times could differentiate 

Table 1 
This table quantifies the information gain, quantified as the KL-Divergence from 
prior to posterior beliefs, following fitting of the model to different combinations 
of reaction time and choice data.  

Dataset Information gain 
(Choice and reaction 
time data)/nats 

Information gain 
(Choice data)/nats 

Information gain 
(Reaction time data)/ 
nats 

1 4.26 14.73 7.28 
2 2.41 11.73 5.35 
3 2.15 12.49 3.52 
4 5.11 19.08 0.47 
5 11.15 30.39 0.28 
6 4.04 29.57 5.89 
7 1.33 17.21 2.55 
8 0.69 11.73 2.42 
9 2.05 12.49 0.28 
10 11.38 27.06 0.73 
11 3.89 43.48 0.99 
12 3.03 29.57 1.19 
13 2.10 20.42 0.28 
14 4.18 11.73 1.34 
15 8.80 12.49 3.09 
16 6.35 53.02 1.43 
17 7.68 53.02 0.93 
18 6.67 43.48 1.16 
19 9.76 29.57 3.70 
20 6.79 11.73 2.78 
21 14.42 64.72 6.00 
22 13.43 53.02 5.04 
23 13.72 53.02 4.45 
24 13.78 43.48 5.09 
25 18.73 29.57 9.19  
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different amounts of effort at a particular level of accuracy. Fig. 7 shows 
that, under this framework, the amplitude of evoked potentials relate to 
effort, which is compatible with the common use of event-related po-
tentials (Delogu et al., 2019) and pupillometry (Beatty and 
Lucero-Wagoner, 2000; van der Wel and van Steenbergen, 2018) to 
index effort. 

Finally, as we have highlighted the compatibility between our 
approach and those of other authors, it is important to identify where we 
differ and why. To address this, we first take a specific example, and then 
consider more general differences. The specific example is drawn from 
Butz (2022) and is of special relevance as the Resourceful 
Event-Predictive Inference (REPI) perspective on cognitive effort in that 
paper also draws upon ideas from active inference. The REPI model has 
been successful in reproducing some features of effortful behav-
iour—focusing upon the Simon effect. The model equates cognitive 
effort with a mutual information between causes and their conse-
quences. Interestingly, this same mutual information appears in the 
expected free energy: 

Gπ = oπτ⋅C + oπτ⋅ln oπτ + H⋅sπτ = oπτ⋅C − H[Q(oτ|π) ] + EQ[H[P(oτ|sτ) ] ]

= oπτ⋅C − DKL[Q(oτ|π)Q(sτ|π)‖Q(oτ, sτ|π) ]
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟

Mutual information

(10) 

See, for comparison, Equation (3) in Butz (2022). As a large (nega-
tive) expected free energy causes a greater deviation from the habitual 
prior distribution over policies, a large mutual information means 
greater deployment of cognitive effort—and a greater chance of over-
coming a cognitive habit. In this sense, our formulation is (qualitatively, 
if not quantitatively) aligned with that of the REPI model. 

However, the two formulations differ in relation to the role of pref-
erences. As is evident from Equation 6, when elements of C, determining 
the preferences, are large they can also facilitate deployment of cogni-
tive effort. This means effort may be motivated either by the potential to 
explore or to exploit. An important aspect of the REPI model—that we 
have not considered here—relates to the concept of task-switching. 
Specifically, priors like E do not need to be fixed and can themselves 
be learned or can depend upon higher levels of a deep generative model. 
Although this deep contextualisation of habitual priors was not neces-
sary for the Stroop task, the machinery to do so, using active inference, 
has been developed—see, for example (Parr et al., 2021; Parr and Pez-
zulo, 2021)—and may be necessary for models of effort in the setting of 
task-switching as addressed by REPI. 

More generally, perhaps the most significant conceptual departure 
from most treatments is that everything in our account is formulated in 
terms of beliefs. By beliefs, we do not mean consciously held (i.e., 
propositional) beliefs but probability distributions, which may implic-
itly be represented by the activities of neuronal populations, and which 
are updated during perceptual inference. To those unfamiliar with this 
style of computational neuroscience, it may seem unusual to frame 
everything in inferential terms. However, the benefit is simplification. 
There is one process in play; namely, the minimisation of variational free 
energy through belief-updating. This process is not specific to the Stroop 
task and has been shown to be applicable to a wide range of tasks and 
behaviours e.g., (Adams et al., 2015; Brown et al., 2013; Cullen et al., 
2018; Daucé and Perrinet, 2020; FitzGerald et al., 2015; Kaplan and 
Friston, 2018; Pezzulo et al., 2015; Smith et al., 2019; Tschantz et al., 
2021). This means the only assumption that must be made is about the 
form of the forward model people might use to predict sensory outcomes 
while performing a Stroop task. In proposing this model, all we have 
done is set out the minimal set of states required to generate stimuli (and 
expected responses) in a Stroop task. This contrasts with other ap-
proaches, which require assumptions about the imposition of ‘top-down 
attentional biasing’ and other such cognitive processes that might be in 
play during the task. Rather than make assumptions about the cognitive 
processes required to solve the task, we simply apply a generic 

optimisation procedure to a description of the task (the generative 
model) and ask whether phenomena that look like top-down attentional 
biasing, conflict monitoring (Botvinick et al., 2001), and the behavioural 
consequences of effort emerge from inversion of the model. It may be 
that the computational mechanics ultimately look very similar under 
different approaches. If so, it is encouraging that different routes to 
solving the problem arrive at the same destination. 

8. Conclusion 

In summary, we have set out a theory of cognitive effort inspired by 
information theoretic formulations of this notion (Zénon et al., 2019). 
This sees effort as the divergence between our beliefs about covert action 
given only habits and given a full prior belief that accounts for explor-
ative and exploitative drives. In other words, effort is deployed to 
overcome a mental habit.5 Numerical analysis of this formulation 
showed its ability to influence performance in a common neuropsy-
chological task: a Stroop task. In addition to reproducing the basic 
Stroop effect, our simulations also produced behaviour consistent with 
the established congruency sequence effect and the speed-accuracy 
trade-off that is ubiquitous in the cognitive control literature. We 
additionally found that, consistent with empirical findings (Manohar 
et al., 2015), the speed-accuracy trade-off was attenuated with greater 
preference for being correct. Through our simulations, we observed a 
clear relationship between priors and behaviour. We show that prior 
beliefs may be estimated from behaviour using Bayesian inference to 
overcome the inherent inverse problem. This implies simple behavioural 
tasks may be sufficient to phenotype those with heterogenous cognitive 
syndromes according to the balance between cognitive demand and 
effort. A key finding of this work is that behavioural choice data appears 
to be more informative than reaction times, although both contribute 
useful information, in characterising the parameters that underwrite 
performance of a Stroop task. An important reason for wishing to esti-
mate these phenotypic parameters is that they enable predictions about 
the effort individual participants might experience when performing a 
Stroop task. This offers an opportunity to evaluate the validity of our 
proposed definition of effort by comparing these predictions with the 
subjective experiences of experimental participants. 
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5 Zénon et al. (2019) suggest a broader formulation of effort, in which effort 
can be linked to any attempt to overcome a prior belief; be it about policies or 
something else. 

T. Parr et al.                                                                                                                                                                                                                                     

https://www.fil.ion.ucl.ac.uk/spm/


Neuropsychologia 184 (2023) 108562

17

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

No data was used for the research described in the article. 

Acknowledgments 

The Wellcome Centre for Human Neuroimaging is supported by core 
funding (203147/Z/16/Z). GP received funding from the European 
Union’s Horizon 2020 Framework Programme for Research and Inno-
vation under the Specific Grant Agreements No. 945539 (Human Brain 
Project SGA3) and No. 952215 (TAILOR), and by the European Research 
Council under the Grant Agreement No. 820213 (ThinkAhead). EH 
received funding from RNID (PA25_Holmes). KJF is supported by a 
Canada-UK Artificial Intelligence Initiative (Ref: ES/T01279X/1). 

References 

Adams, R.A., Aponte, E., Marshall, L., Friston, K.J., 2015. Active inference and 
oculomotor pursuit: the dynamic causal modelling of eye movements. J. Neurosci. 
Methods 242, 1–14. https://doi.org/10.1016/j.jneumeth.2015.01.003. 

Adams, R.A., Bauer, M., Pinotsis, D., Friston, K.J., 2016. Dynamic causal modelling of eye 
movements during pursuit: confirming precision-encoding in V1 using MEG. 
Neuroimage 132, 175–189. https://doi.org/10.1016/j.neuroimage.2016.02.055. 

Adams, R.A., Vincent, P., Benrimoh, D., Friston, K.J., Parr, T., 2021. Everything is 
connected: inference and attractors in delusions. Schizophrenia Res. https://doi.org/ 
10.1016/j.schres.2021.07.032. 

Altmann, E.M., Davidson, D.J., 2001. An Integrative Approach to Stroop: Combining a 
Language Model and a Unified Cognitive Theory. Paper Presented at the Proceedings 
of the Twenty-Third Annual Conference of the Cognitive Science Society. University 
of Edinburgh, Edinburgh, Scotland.  

Amari, S.-i., Cichocki, A., 2010. Information geometry of divergence functions. Bull. Pol. 
Acad. Sci. Tech. Sci. 58 (1), 183–195. 

Badzakova-Trajkov, G., Barnett, K.J., Waldie, K.E., Kirk, I.J., 2009. An ERP investigation 
of the Stroop task: the role of the cingulate in attentional allocation and conflict 
resolution. Brain Res. 1253, 139–148. https://doi.org/10.1016/j. 
brainres.2008.11.069. 

Baillet, S., Garnero, L., 1997. A Bayesian approach to introducing anatomo-functional 
priors in the EEG/MEG inverse problem. IEEE (Inst. Electr. Electron. Eng.) Trans. 
Biomed. Eng. 44 (5), 374–385. https://doi.org/10.1109/10.568913. 
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