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Magnetic resonance imaging (MRI) has been considered for the quantification of iron overload in the liver. 
Iron overload was found to correlate with T2* measurement using T2* weighted images. In this work, we 
address the problem of iron overload estimation in the liver using MRI. We propose a general framework 
for all liver models proposed in the literature. The iron overload estimation task is then formulated 
as a minimization problem, and suitable regularization functions are assigned to the unknown model 
parameters. Subsequently, an alternating direction method of multipliers (ADMM) is used to estimate 
these unknown parameters. Three different models are derived, tested and compared; namely the single 
exponential (SEXP), the bi-exponential (BiEXP), and the exponential plus constant (CEXP). Simulations 
conducted using synthetic datasets indicate good correlation between estimated and ground truth T2* 
for all models. Moreover, the algorithms are evaluated using MRI scans of nine patients of different iron 
concentrations, using a 3-Tesla MRI scanner. The estimated T2* values of the proposed approaches are 
found to correlate with those obtained by the MRI scanner console. Moreover, the proposed approaches 
outperform several existing methods in the literature for iron overload estimation.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/).
1. Introduction

1.1. Thalassemias

Thalassemias are genetic disorders causing the body to produce 
insufficient hemoglobin and red blood cells. The repeated transfu-
sions by chronic blood transfusion cause progressive accumulation 
of iron in different body organs. Thalassemia major patients re-
ceive around 0.4 mg/kg/day of heme iron, that is 10 to 50 times 
the physiologic rate of iron absorption [41]. This iron overload by 
this transfusion mainly increases due to intestinal iron absorption 
by tissue hypoxia, apoptosis of defective erythroid precursors gen-
erated by ineffective erythropoiesis, and hemolysis of native and 
transfused red blood cells [31]. Due to the additive iron-loading 
operations, iron overload becomes severe in early childhood. Pa-
tients must undergo iron chelation therapy, otherwise affected pa-
tients die from endocrine and cardiac dysfunction in the second 
decade of life [4,8,18].
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1.2. Iron overload

Hepatic iron overload may cause poor life quality and even 
lead to mortality. Hence, liver iron quantification is important for 
such patients. In hereditary hemochromatosis (HH), quantification 
of iron overload in the liver enables identification of patients suit-
able for phlebotomy therapy and helps exclude clinical disease in 
patients at risk for HH based on genetic studies. Quantification 
of liver iron content also gives important foreknowledge regard-
ing the risk for developing hepatic complications such as hepatic 
fibrosis and cirrhosis [7,1]. On the other hand, in thalassemias 
and other iron-loading anemias, quantification of liver iron content 
provides an indication of the total body iron content [5]. Around 
70% of total body iron is deposited in the liver and hence is the 
main iron storage site [13]. Therefore, it was found that the iron 
content in the liver correlates closely with total body iron and ac-
counts. Thus, quantifying liver iron content is an indicative of total 
body iron to guide, monitor, and initiate therapy [13]. Hepatic iron 
content also serves as a biomarker for endocrine and cardiovascu-
lar complications in patients with thalassemias. Usually mild iron 
overload can be an assisting factor in the development of hepatic 
disorders [20], hence quantifying the iron content in the liver is 
now considered relevant in the management of chronic liver dis-
eases such as viral hepatitis, alcoholic liver disease, non-alcoholic 
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fatty liver disease, and porphyria cutanea tarda [33]. Liver biopsy 
is currently the gold standard technique for quantifying iron con-
tent in the liver. However, due to the technique’s invasiveness, high 
cost, and the sampling error, it limits its widespread use. On the 
other hand, serum ferritin could be used for quantifying iron con-
tent. However, this technique can be affected by inflammation and 
infection, and hence becomes nonspecific [28].

1.3. MRI for iron overload estimation

Recently, magnetic resonance imaging (MRI) has been consid-
ered for evaluating iron content using T2* measurement [9,3,34,
40], and has shown promising results. By plotting the signal in-
tensity of a number of T2*-weighted images at different time to 
echo (TE’s), against TE, the T2* (measured in ms), and its inverse 
r = 1/T2* (measured in 1/s), can be calculated using curve fitting. 
It has been shown that iron content in the liver results in abnor-
mally reduced T2* values that were not observed in other clinical 
conditions.

In the literature, there has been several approaches for es-
timating T2* values in T2*-weighted sequence of the liver. All 
these methods consider fitting the signal intensities acquired at 
multiple TE’s to an exponentially decaying curve using the Lev-
enberg Marquardt algorithm [34,38,35,27,26,24,23,25,13]. Although 
the analysis process is conceptually straightforward, there are a 
number of factors that could affect the resulting T2* value, in-
cluding the choice of the fitting model, way of processing the 
intensities (voxel-wise, average/median of a number of voxels, etc.) 
and region of interest (ROI). Due to the heterogeneous iron con-
centration in the liver, susceptibility artifacts, and inclusion of 
vasculature, the user’s selection of the ROI for estimation of T2* 
affects the results, which results in partial volume effect that 
affects T2* measurement of the liver parenchyma [38]. T2* can 
be calculated pixel-wise (relaxivity map). However, due to these 
reasons, T2* computation inside a defined ROI is preferred to 
avoid heterogeneous results between adjacent pixels. On the other 
hand, the choice of the appropriate exponential fitting model is 
critical for T2* calculation. There has been several models pro-
posed in the literature, including the single-exponential, the bi-
exponential and the exponential plus constant models [39,35,34,
32].

1.4. Model for data fitting

The simplest model for data fitting is a single-exponential 
model given by,

s = a exp (−rt) , (1)

where s is measured signal intensity, a is the signal intensity ex-
pected at TE = 0, r is the reciprocal of T2*, e.g. r = 1/T2*, and 
t = TE is time to echo vector. The limitation of this model is that 
it assumes uniform iron concentration within each tissue voxel, 
which was found to be incorrect [17], as the voxels may con-
tain both iron-dense (iron-loaded hepatocytes and/or Kupffer cells) 
and iron-sparse components (bile, blood, interstitial fluid) [42]. 
These components act in an opposite manner, that the iron-dense 
one generates rapidly decaying signal, whereas the iron-sparse 
one generates slowly decaying signal. Hence, following this, the 
single-exponential fitting model assumes, as a simplification, that 
a single exponential describes the contributions of both compo-
nents.

Numerous data-fitting models have been proposed to address 
the limitations of the single-exponential model mentioned above 
[8,10,34,29,17,22,16], including
2

1. The single-exponential model with offset (CEXP). In this 
model, a constant offset c is added to account for long T2* 
components. This model can be written as,

s = a exp (−rt) + c. (2)

2. The bi-exponential model (BiEXP). In this model, two com-
ponents are considered in the modelling process: an iron-
dense, short-T2* component and an iron-sparse, long-T2* com-
ponent). This model can be written as,

s = a exp (−r1t) + b exp (−r2t) , (3)

where a and b are the iron-dense, short-T2* and iron-sparse, 
long-T2* components, respectively, and r1 and r2 are their cor-
responding inverse T2*.

Each of the two models mentioned above has pros and cons, and 
consensus has not yet been reached regarding which model is op-
timal for T2* estimation.

1.5. Contributions

In this work, we address the problem of iron content estima-
tion in thalassemia patients using magnetic resonance imaging. 
The main contributions of this work are fourfold.

1. We propose a general framework for the problem of iron over-
load estimation in the liver using MRI. To the best of our 
knowledge, it is the first time in the literature this general 
framework is introduced.

2. We formulate the iron overload estimation task as an opti-
mization problem, assign suitable regularization functions to 
the unknown model parameters and use an alternating direc-
tion method of multiplier to estimate these parameters. To the 
best of our knowledge this is the first time in the literature 
this problem is formulated and solved using such way.

3. We test and compare three different types of imaging mod-
els, namely the single exponential (SEXP), the bi-exponential 
(BiEXP) and the exponential plus constant (CEXP), using ex-
tensive simulations conducted using synthetic datasets where 
ground truth is available, and using real patient datasets of 
different iron overload. The proposed methods are compared 
against several existing methods in the literature.

4. We develop algorithms dedicated to images that follow the 
exponential decaying models, which do not rely on strong 
assumptions about the modality or the application. The de-
veloped methods can thus be applied to a wide range of 
imaging systems and applications, including myocardial iron 
overload estimation, life-time estimation in fluorescence mi-
croscopy, and others.

The remaining sections of the paper are organized as follows. 
Section 2 provides a general formulation to the problem of iron 
overload estimation in the liver, followed by Section 3 which sum-
marizes the proposed model and an ADMM estimation strategy to 
recover the unknown model parameters. Section 4 provides the 
derivation of three different algorithms; namely SEXP, BiEXP, and 
CEXP, from the general framework proposed in Section 3. Simu-
lations conducted using synthetic, and real patient datasets are 
presented in Sections 5 and 6, respectively. Limitations, conclusions 
and suggestions for future work are finally reported in Sections 7
and 8 respectively.

2. Problem formulation

Fig. 1 shows an example of two decay curves of different T2* 
values akin to those obtained using T2* weighted images. As the 
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Fig. 1. Plot of time to echo (TE) versus corresponding intensity values, for T2* = 5
and T2* = 10.

time to echo (TE) increases, the intensity follows an exponential 
decaying model with a time constant T2*. The higher the iron 
concentration is, the faster the decay of the intensities when TE 
increases, and hence the lower the corresponding T2* value. The 
core idea is to estimate the time constant T2*, which is an in-
dicative to the total iron content in the liver. However, with the 
presence of noise and vasculature, the estimation of the T2* value, 
and hence the iron concentration, becomes difficult. In this work, 
we propose a robust, yet fast general framework for T2*estimation 
using T2* weighted magnetic resonance images.

For simplicity, in the rest of the manuscript, we denote TE 
vector by t = [t1, t2, · · · , tM ] ∈ RM and r = 1

T2* . Hence, given a 
sequence of magnetic resonance images (each of size K × L) of 
the liver taken at different TE, denoted by S ∈ RK×L×M , for signal 
intensities of voxel n, denoted as sn = [s1, s2, · · · , sM ] ∈ RM , the 
problem of r estimation of voxel n is formulated such that

sn =
I∑

i=1

an(i) exp
(−rn(i) t

) + cn + wn, (4)

where an = {an(1)
, an(2)

, · · · , an(I)} are set of scalars representing 
physical phenomena, including initial signal intensity when TE = 0, 
iron-dense and iron-sparse, components, etc., cn is an offset which 
may account for long T2* components, and wn is a low-energy 
noise component, which is assumed to be independent and identi-
cally distributed (i.i.d.) Gaussian with zero mean [6,21]. Setting cn

to cn = 0 and I = 1, in Eq. (4) give the single exponential model as 
follows

sn = an exp (−rnt) + wn, (5)

whereas, setting cn to cn = 0 and I = 2 give the bi-exponential 
model, given by

sn =
2∑

i=1

an(i) exp
(−rn(i) t

) + wn, (6)

and finally setting I to I = 1 gives the exponential plus constant 
model, which can be written as

sn = an exp (−rnt) + cn + wn. (7)

The primary objective here is that, for each voxel, we need to 
estimate the r constant(s) using the model mentioned above in 
Eq. (4), from the observations s. However, the signal intensities 
a = {a(1), a(2), · · · , a(I)} and the offset c are also unknown. Thus 
we propose to estimate jointly (r, a, c) from the observations s. To 
3

solve this problem, we propose an optimization-based method to 
estimate the unknown parameters.

3. Proposed model

The recovery of a, r and c using the general model in Eq. (4) is 
formulated as the following unconstrained minimization problems

minimize
{a(i),r(i)}I

i=1,c

N=K×L∑
n=1

1

2
‖sn −

I∑
i=1

an(i) exp
(−rn(i) t

) − cn‖2
2

+
I∑

i=1

(
α(i)�1(a(i)) + β(i)�2(r(i))

) + γ �3(c),

(8)

where �1(a), �2(r) and �3(c) are regularization functions on a, 
r and c respectively, α, β and γ are positive scalar parameters 
controlling the degree of regularization of a, r and c respectively, 
and ‖·‖2 denotes the �2-norm. In this work, we promote spatial 
correlation between voxels, thus the variables a and r are as-
signed total variation (TV) regularization e.g., �1(a) = ‖a‖TV and 
�2(r) = ‖r‖TV. The TV of observed signals with excessive detail 
tend to be high, that is the integral of the absolute image gradient 
is high. According to this principle, minimizing the TV of the sig-
nal — subject to data fidelity — suppresses unwanted detail whilst 
preserving important details such as edges [36]. On the other hand, 
in order to preserve the conjugacy of the parameter c, we assume 
that it is smooth, and hence it is assigned �3(c) = ‖c‖2

2. Therefore, 
problem (8) can be written as follows

minimize
{a(i),r(i)}I

i=1,c

N=K×L∑
n=1

1

2
‖sn −

I∑
i=1

an(i) exp
(−rn(i) t

) − cn‖2
2

+
I∑

i=1

(
α(i)‖a(i)‖TV + β(i)‖r(i)‖TV

) + γ ‖c‖2
2.

(9)

The TV function can be written as follows. For a given vec-
torization x ∈ RN of an image X ∈ RK×L , the anisotropic 2D TV 
semi-norm is defined as [36,14]

‖x‖TV =
N=K×L∑

n=1

|�h
nx| + |�ν

n x| = ‖Dx‖1, (10)

where �h
nx and �ν

n x denote the vertical and horizontal first order 
differences at pixel n, ‖·‖1 is the �1-norm (sum of absolute val-
ues), and the matrix D ∈ R2N×N is the vertical concatenation of 
both the horizontal and vertical first order differences. This reg-
ularizer is a discrete version of the TV regularizer proposed in 
[36]. The optimization problem in equation (9) (and also Eq. (8)), 
although convex, cannot be solved using standard gradient-based 
methods due to the non-smooth terms. The core idea is to convert 
this unconstrained minimization problem into another constrained 
one by the application of a variable splitting operation (see Eq. 
(11) below). Finally, the obtained constrained problems are solved 
with using the alternating direction method of multipliers (ADMM) 
[2,30,19]. By a careful choice of the new variables, the initial prob-
lems are converted into a sequence of much simpler problems, 
which can be solved iteratively.

To solve the problems depicted in Equation (9), we introduce 
new variables y and z for the regularization functions �1 and �2

respectively, in order to decouple them from the data fidelity term. 
Therefore, the constrained version of problem Eq. (9) can be writ-
ten as follows
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minimize
{a(i),r(i),y(i),z(i)}I

i=1,c

N=K×L∑
n=1

1

2
‖sn −

I∑
i=1

an(i) exp
(−rn(i) t

) − cn‖2
2

+
I∑

i=1

(
α(i)‖y(i)‖TV + β(i)‖z(i)‖TV

) + γ ‖c‖2
2,

subject to y(i) = a(i), z(i) = r(i), for i = 1,2, · · · , I.

(11)

Subsequently, the corresponding augmented Lagrangian can be 
written as
L({a(i), r(i), y(i), z(i), h(i), g(i)}I

i=1, c) =
N=K×L∑

n=1

1

2
‖sn −

I∑
i=1

an(i) exp
(−rn(i) t

) − cn‖2
2

+
I∑

i=1

(
α(i)‖y(i)‖TV + β(i)‖z(i)‖TV

) + γ ‖c‖2
2

+
I∑

i=1

μ

2
‖y(i) − a(i) − h(i)‖2

2 + μ

2
‖z(i) − r(i) − g(i)‖2

2,

(12)

where h and g are the set of Lagrange multipliers corresponding to 
the splitting, and μ > 0 is a constant. The ADMM algorithm using 
to solve Eq. (12) is shown in Algorithm 1. During each step of this 
iterative scheme, L is optimized with respect to a (step 4), r (step 
5), y (step 6), z (step 7) and c (step 9); and then the Lagrange 
multipliers are updated (steps 11 and 12).

Algorithm 1 Iron overload estimation using ADMM.

1: set k = 0, choose a(0), r(0), c(0)y(0), z(0), h(0), g(0) , and μ > 0
2: repeat (k ← k + 1)
3: For i = 1 : I;
4: a(k+1)

(i) ← min
a

L(a(i), r(k)
(i) , c(k), y(k)

(i) , z
(k)
(i) , h

(k)
(i) , g

(k)
(i) ),

5: r(k+1)
(i) ← min

r
L(a(k+1)

(i) , r(i), c(k)
(i) , y

(k)
(i) , z

(k)
(i) , h

(k)
(i) , g

(k)
(i) ),

6: y(k+1)
(i) ← min

y
L(a(k+1), r(k+1), c(k), y, z(k), h(k), g(k)),

7: z(k+1)
(i) ← min

z
L(a(k+1), r(k+1), c(k), y(k+1), z, h(k), g(k)),

8: End
9: c(k+1) ← min

c
L(a(k+1)

(i) , r(k+1)
(i) , c, y(k+1)

(i) , z(k+1)
(i) , h(k)

(i) , g
(k)
(i) ),

10: For i = 1 : I;

11: Update h(i) : h(k+1)
(i) ← h(k)

(i) −
(

y(k+1)
(i) − a(k+1)

(i)

)
,

12: Update g(i) : g(k+1)
(i) ← g(k)

(i) −
(

z(k+1)
(i) − r(k+1)

(i)

)
,

13: End
14: until some stopping criterion is satisfied.

We now detail each step of Algorithm 1 as follows.

3.1. Solving for a

Given that we run an optimization over the variable a, the 
terms of the objective function (12) which do not contain this vari-
able are not taken into account. Thus, the reduced optimization 
function becomes, then

minimize
an(1)

,··· ,an(I)

N∑
n=1

1

2
‖sn −

I∑
i=1

an(i) exp
(−rn(i) t

) − cn‖2
2

+
I∑

i=1

μ

2

(
yn(i) − an(i) − hn(i)

)2
,

(13)

whose solution is given by
4

a(k+1)
n(i)

←
(

ũ(k)
n(i)

+ μ
)−1 (

(sn − c(k)
n )uT (k)

n(i)
+ μ(y(k)

n + h(k)
n(i)

)
)

,

for i = 1,2, · · · , I,
(14)

with u(k)
n(i)

= exp
(
−r(k)

n(i)
t
)

, and ũ(k)
n(i)

= u(k)T

n(i)
u(k)

n(i)
.

3.2. Solving for r

It can be seen from Eq. (12) that solving for the variable r re-
duces to solving the following minimization problem

r∗
(1), · · · , r∗

(I) = minimize
r(1),··· ,r(I)

H(r(1), · · · , r(I)), (15)

where

H(r(1), · · · , r(I)) =
N∑

n=1

1

2
‖sn −

I∑
i=1

an(i) exp
(−rn(i) t

) − cn‖2
2

+
I∑

i=1

μ

2

(
zn(i) − rn(i) − gn(i)

)2
.

(16)

Since there is no closed form solution to this minimization prob-
lem, the solution can be efficiently computed using gradient de-
scent [15]. The update equation for this iterative method is

r(p+1)
n(i)

= r(p)
n(i)

− δ
∂H(r(p)

n(i)
)

∂r(p)
n(i)

, for i = 1,2, · · · , I, (17)

where r(p)
n(i)

is the estimate of rn(i) after the pth iteration (with 
r(0)

n(i)
= r(k)

n(i)
), δ is the step size of the gradient descent, and ∂H

∂rn(i)

is the partial derivative of the cost function H with respect to rn(i) , 
which is given as follows

∂H(r(p)
n(i)

)

∂r(p)
n(i)

= a(k+1)
n(i)

(
t � exp

(
−r(p)

n(i)
t
))T

×
(

a(k+1)
n(i)

exp
(
−r(p)

n(i)
t
)

− sn + c(k)
n

)
+ μ(r(p)

n(i)
− z(k)

n(i)
− g(k)

n(i)
), for i = 1,2, · · · , I,

(18)

where � is the Hadamard (term-wise) product. Thus the update of 
r(k+1)

n(i)
is given by the final solution to the gradient descent algo-

rithm r∗
n(i)

, e.g.,

r(k+1)
n(i)

← r∗
n(i)

, for i = 1,2, · · · , I. (19)

3.3. Solving for c

It can be seen from Eq. (12) that solving for the variable c re-
duces to solving the following minimization problem

minimize
c

N∑
n=1

1

2
‖sn −

I∑
i=1

an(i) exp
(−rn(i) t

) − cn‖2
2 + γ ‖c‖2

2,

(20)

whose solution is given by

c(k+1)
n ← γ̃

M∑
m=1

(
snm −

I∑
i=1

a(k+1)
n(i)

exp
(
−r(k+1)

n(i)
tm

))
, (21)

where γ̃ = 1/(2γ + M).
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3.4. Solving for y

In order to estimate y(1), · · · , y(I) , the optimization problem to 
solve is

minimize
y(1),··· ,y(I)

I∑
i=1

α(i)‖y(i)‖TV +
I∑

i=1

μ

2
‖y(i) − a(i) − h(i)‖2

2, (22)

whose solution can be given by Chambolle’s algorithm [14], e.g.,

y(k+1)
(i) ← Chambolle

(
a(k+1)
(i) − h(k)

(i) .
α(i)

μ

)
, for i = 1,2, · · · , I.

(23)

3.5. Solving for z

In a similar fashion to solving for y, the minimization problem 
to solve for z(1), · · · , z(I) is given by

minimize
z(1),··· ,z(I)

I∑
i=1

β(i)‖z(i)‖TV +
I∑

i=1

μ

2
‖z(i) − r(i) − g(i)‖2

2, (24)

whose solution can be given by Chambolle’s algorithm [14], e.g.,

z(k+1)
(i) ←Chambolle

(
r(k+1)
(i) − g(k)

(i) .
β(i)

μ

)
, for i = 1,2, · · · , I.

(25)

Finally, the parameter μ > 0 is updated within the algorithm to 
keep the primal and dual residual norms within a factor of ρ = 10
of one another [12]. The stopping criterion we use is [2,19]

I∑
i=1

‖y(k)
(i) − a(k)

(i) ‖2 + ‖z(k)
(i) − r(k)

(i) ‖2

+ μ
(
‖h(k)

(i) − h(k+ρ)

(i) ‖2 + ‖g(k)
(i) − g(k+ρ)

(i) ‖2

)
≤ ε,

(26)

which is the sum of the primal and dual residuals, where ε =√
N × 10−5. Given the detailed updates of the variables mentioned 

above, several models can be extracted as we will see in the next 
section.

4. Estimation algorithms

Following the step updates presented in the previous section, 
the final version of Algorithm 1 is presented in Algorithm 2. Sev-
eral versions can be derived from this general model, depending 
on the application. In this section, we extract three models that 
are widely common in the literature for iron overload quantifi-
cation using MRI, that are the single exponential (SEXP), the bi-
exponential (BiEXP) and the exponential plus constant (CEXP).

4.1. The single exponential (SEXP) model

By setting the offset c to c = 0, and number of exponential 
components I to I = 1, in the updates of a, r, y, and z in Equations 
(14), (19), (23), and (25), respectively, we can obtain Algorithm 3
for the SEXP model.

4.2. The bi-exponential (BiEXP) model

For the BiEXP model, we follow that proposed in [23,26,25,24,
42], which can be written as
5

Algorithm 2 Iron overload estimation using ADMM.

1: set k = 0, choose a(0), r(0), c(0)y(0), z(0), h(0), g(0) , and μ > 0
2: repeat (k ← k + 1)
3: For i = 1 : I;
4: Update a(k+1)

(i) using Eq. (14),

5: Update r(k+1)
(i) using Eq. (19),

6: Update y(k+1)
(i) using Eq. (23),

7: Update z(k+1)
(i) using Eq. (25),

8: End
9: Update c(k+1) using Eq. (21),

10: For i = 1 : I;

11: Update h(i) : h(k+1)
(i) ← h(k)

(i) −
(

y(k+1)
(i) − a(k+1)

(i)

)
,

12: Update g(i) : g(k+1)
(i) ← g(k)

(i) −
(

z(k+1)
(i) − r(k+1)

(i)

)
,

13: End
14: until some stopping criterion is satisfied.

Algorithm 3 Iron overload estimation using SEXP Model.
1: Set k = 0, Choose a(0), r(0)y(0), z(0), h(0), g(0), δ, μ > 0

2: Define u(l)
n = exp

(
−r(l)

n t
)

, ũ(l)
n = u(l)T

n u(l)
n

3: Repeat (k ← k + 1)
4: For n = 1 : N

5: a(k+1)
n =

(
ũ(k)

n + μ
)−1

(
u(k)

n
T

sn + μ ỹn
(k)

)
,

with ỹn
(k) = y(k)

n + h(k)
n

6: Gradient descent algorithm
Set p = 0, and r(0)

n = r(k)
n

Repeat (p ← p + 1)
r(p+1)

n = r(p)
n − δH

H = a(k+1)
n

(
t � u(p)

n

)T (
a(k+1)

n u(p)
n − sn

)
+μ(r(p)

n − z(k)
n − h(k)

n ),
until some stopping criterion is satisfied.
r(k+1)

n = r∗
n ,

7: End
8: y(k+1) = Chambolle(a(k+1) − h(k), αμ ) which can be computed using [14]

9: z(k+1) = Chambolle(r(k+1) − g(k), βμ ) which can be computed using [14]

10: h(k+1) = h(k) − (
y(k+1) − a(k+1)

)
11: g(k+1) = g(k) − (

z(k+1) − r(k+1)
)

12: until some stopping criterion is satisfied.

S =
N=K×L∑

n=1

0.9an exp (−rnt) + 0.1an exp (−t/200) , (27)

where, as in comparison with the general model in Eq. (4), the 
number of exponential components I = 2, the offset c = 0, the ini-
tial intensity a(1) and the inverse time constant r(1) of the first 
exponential component are given by a(1) = 0.9a and r(1) = r re-
spectively, and that of the second exponential component are given 
by a(2) = 0.1a and r(2) = {1/200}N , respectively. Thus, in this case, 
we aim at estimating both a and r.

By substituting by the above parameters in the updates of a, 
r, y, and z in Equations (14), (19), (23), and (25), respectively, we 
obtain Algorithm 4 for the BiEXP model.

4.3. The exponential plus constant (CEXP) model

By setting the number of exponential components I to I = 1, in 
the updates of a, r, c, y, and z in Equations (14), (19), (21), (23), 
and (25), respectively, we obtain Algorithm 5 for the CEXP-model.

5. Simulations using synthetic datasets

In order to assess the performance of the proposed approaches 
for T2* estimation using T2*-weighted magnetic resonance im-
ages, we created simulated datasets by following each of the three 
models in Equations (5), (7), and (6). A sequence of twelve time-
frames of 32 × 32 each, was created to simulate signal relaxation 
for image acquisition at different echo times, ranging from 1 to 
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Algorithm 4 Iron overload estimation using BiEXP Model.
1: Set k = 0, Choose a(0), r(0)y(0), z(0), h(0), g(0), δ, μ > 0

2: Define u(l)
n = exp

(
−r(l)

n t
)

, ũ(l)
n = u(l)T

n u(l)
n ,

w = exp (−t/200), w̃ = wT w
3: Repeat (k ← k + 1)
4: For n = 1 : N

5: a(k+1)
n =

(
0.81ũ(k)

n + 0.01w̃ + 0.18wT u(k)
n + μ

)−1

(
qT

n sn + μ ỹ(k)
n

)
,

with ỹ(k)
n = y(k)

n + h(k)
n and qn = 0.9un + 0.1w

6: Gradient descent algorithm
Set p = 0, and r(0)

n = r(k)
n

Repeat (p ← p + 1)
r(p+1)

n = r(p)
n − δH

H = 0.9a(k+1)
n

(
t � u(p)

n

)T (
a(k+1)

n q(p)
n − sn

)
+μ(r(p)

n − z(k)
n − hn

(k)),
until some stopping criterion is satisfied.
r(k+1)

n = r∗
n ,

7: End
8: y(k+1) = Chambolle(a(k+1) − h(k), αμ ) which can be computed using [14]

9: z(k+1) = Chambolle(r(k+1) − g(k), βμ ) which can be computed using [14]

10: h(k+1) = h(k) − (
y(k+1) − a(k+1)

)
11: g(k+1) = g(k) − (

z(k+1) − r(k+1)
)

12: until some stopping criterion is satisfied.

Algorithm 5 Iron overload estimation using CEXP Model.
1: Set k = 0, Choose a(0), r(0), c(0), y(0), z(0), h(0), g(0), δ, μ > 0

2: Define u(l)
n = exp

(
−r(l)

n t
)

, ũ(l)
n = u(l)T

n u(l)
n

3: Repeat (k ← k + 1)
4: For n = 1 : N

5: a(k+1)
n =

(
ũ(k)

n + μ
)−1

(
u(k)

n
T

s̃(k)
n + μ ỹ(k)

n

)
,

with ỹ(k)
n = y(k)

n + h(k)
n , and s̃(k)

n = sn − c(k)
n

6: Gradient descent algorithm
Set p = 0, and r(0)

n = r(k)
n

Repeat (p ← p + 1)
r(p+1)

n = r(p)
n − δH

H = a(k+1)
n

(
t � u(p)

n

)T (
a(k+1)

n u(p)
n − sn + cn

)
+μ(r(p)

n − z(k)
n − h(k)

n ),
until some stopping criterion is satisfied.
r(k+1)

n = r∗
n ,

7: c(k+1)
n = 1

2γ+M

∑M
m=1

(
snm − a(k+1)

n exp
(
−r(k+1)

n tm

))
8: End
9: y(k+1) = Chambolle(a(k+1) − h(k), αμ ) which can be computed using [14]

10: z(k+1) = Chambolle(r(k+1) − g(k), βμ ) which can be computed using [14]

11: h(k+1) = h(k) − (
y(k+1) − a(k+1)

)
12: g(k+1) = g(k) − (

z(k+1) − r(k+1)
)

13: until some stopping criterion is satisfied.

16 ms in equal increments, that is t ∈ R12. Different model pa-
rameters are tested and the results of the three models are re-
ported accordingly. Precisely, different T2* values, belonging to 
T2*= {5, 10, 15, 20} ms, and different initial intensity values be-
longing to a = {155, 255, 355, 455} are tested. Moreover, in or-
der to test the robustness of the proposed approaches, different 
noise variances of σ 2 = {0, 2, 4, 6, 8, 10} are tested. The perfor-
mance metric adopted in this work to measure the estimation 
quality of estimated parameters x̂ = {r̂, ̂a} of the three fitting mod-
els (SEXP, BiEXP, and CEXP) is root mean square errors (RMSE), cal-
culated between the actual and predicted values, as RMSE(x, ̂x) =√∑N

n=1

(
x(n) − x̂(n)

)2
/N , where x and x̂ are vectors of the refer-

ence and estimated parameters, respectively.
Different experiments are considered to assess the performance 

of the proposed approaches. First, we consider simulated images of 
different T2* values of T2*= {5, 10, 15, 20}, at fixed initial intensity 
value of a0 = 255. Second, we consider experiments of simulated 
images at fixed T2* value of T2*= 20, at different initial inten-
6

sity values of a = {155, 255, 355, 455}. The offset used in the CEXP 
model is fixed at c = 10. In each experiment, we report RMSE be-
tween actual a (resp. actual T2*) and estimated â (resp. estimated 
ˆT2* = 1/r̂), that we call RMSEa (resp. RMSET2*).

For different T2* at fixed initial intensity value of a0 = 255, 
Fig. 2 shows plots of RMSEa and RMSET2* versus different T2* val-
ues for the three models, at different noise variances ranging from 
the free noise case σ 2 = 0 to the severe noise case of σ 2 = 10. 
Similar behaviour is observed for other a0 values and hence the re-
sults are not reported here. As of the noise variance effect, we can 
observe that, for the SEXP and BiEXP models, as noise variance 
increases, RMSET2* and RMSEa increase. However, for the CEXP 
case, this effect is preserved for low T2* values (i.e. T2* = {5, 10}), 
whereas when T2* increases, RMSET2* and RMSEa become con-
stant. This is due to the identifiability problem when estimating 
the parameters a and c in Eq. (2), as when T2* increases, the 
decaying curve becomes more linear, making it difficult to the 
algorithm to distinguish the estimation of both c and a. On the 
other hand, for the different T2* values effect, for the three mod-
els, we can observe that when T2* increases, RMSET2* increases, 
whereas RMSEa decreases. Considering the mean or median values 
of estimated T2* and a reduce RMSET2* and RMSEa significantly, 
as estimated values become very close to actual ones, as shown in 
Fig. 3.

On the other hand, for different initial intensity values a at 
fixed T2* = 20 (similar behaviour is observed for other T2* values 
and hence the results are not reported here), Fig. 4 shows plots of 
RMSEa and RMSET2* versus different T2* values for the three ap-
proaches, at different noise variances ranging from the free noise 
case σ 2 = 0 to the severe noise case σ 2 = 10. As of noise variance 
effect, we can observe that, for the SEXP and BiEXP models, as 
noise variance increases, RMSET2* and RMSEa increase. However, 
for the CEXP case, due to the identifiability problem mentioned 
earlier, when estimating the parameters a and c, both RMSET2*
and RMSEa become higher than those of the SEXP and BiEXP cases 
for the tested noise variances. As similar to the experiments of 
fixed a mentioned earlier, considering the mean value of estimated 
T2* and a reduce both RMSET2* and RMSEa significantly, as es-
timated values become very close to actual ones, except for the 
CEXP model, as shown in Fig. 5.

For completeness, we show visual examples of experiments of 
estimated a and T2*. Fig. 6 shows in (a) an image of 64 ×64 of dif-
ferent initial intensity values of a = [155, 255, 355, 455] and in (b) 
the corresponding T2* values of T2*= [5, 10, 15, 20]. Consequently, 
Fig. 7 shows the resulting first frame when applying the SEXP, Bi-
EXP and CEXP models in Equations (5), (6), and (7) respectively. 
The offset c in the CEXP model is set to c = 25, and two differ-
ent noise variances are presented; the noise free case σ 2 = 0, and 
a severe noise case of σ 2 = 10. The SEXP, BiEXP and CEXP algo-
rithms in 3, 4 and 5 are then run to estimate a and T2*. Figs. 8
and 9 show estimated a in the free and severe noise cases. We 
can observe that, in the SEXP and BiEXP cases, the restored im-
ages are similar to those of the ground truth, whereas for the 
CEXP case, it is slightly different as because of the identifiabil-
ity problem when estimating both a and c, as mentioned earlier. 
Moreover, for the noisy case, when considering the means of es-
timated values, the resulting estimates become closer to ground 
truth values. On the other hand, Figs. 10 and 11 show the cor-
responding estimated T2* images. As similar to a, the SEXP and 
BiEXP models provide very similar results to the actual T2* images, 
whereas slightly different for the CEXP, for the similar identifiabil-
ity problem mentioned earlier. Moreover, considering the mean of 
estimated T2* of each block provides closer results to ground truth 
in the noisy case.

The proposed approaches are compared with the Levenberg-
Marquardt (LM) fitting algorithm, which is widely used in the 
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Fig. 2. Plots of RMSE between actual T2* and estimated ones (RMSET2*) in Row 1; and RMSE between actual initial intensity value a0 and estimated ones (RMSEa) in Row 
2, at fixed initial intensity value a0 = 255 for different T2* values and different noise variances (σ 2). Column 1: SEXP model; Column 2: BiEXP model, and Column 3: CEXP 
model.

Fig. 3. Plots of RMSE between actual T2* and means of estimated ones (RMSET2*) in Row 1; and RMSE between actual initial intensity value a0 and means of estimated ones 
(RMSEa) in Row 2, at fixed initial intensity value a0 = 255 for different T2* values and different noise variances (σ 2). Column 1: SEXP model; Column 2: BiEXP model, and 
Column 3: CEXP model.

Fig. 4. Plots of RMSE between actual T2* and estimated ones (RMSET2*) in Row 1, and RMSE between actual initial intensity value a0 and estimated ones (RMSEa) in Row 2, 
at fixed T2* = 20, for different initial intensity values a and different noise variances (σ 2). Column 1: SEXP model; Column 2: BiEXP model, and Column 3: CEXP model.
literature for T2* estimation in MRI problems [27,26,37], and a lin-
ear fitting (LF) algorithm [11]. The LM, which is a damped least 
square fitting algorithm, is considered as a fitting method for the 
three models SEXP, BiEXP and CEXP in Equations (5), (6) and (7)
respectively, whereas the LF algorithm is considered for the SEXP 
model. The built-in matlab function lsqcurvefit is used for the LM 
7

algorithm. Table 1 provides a comparison between T2* estimation 
using the proposed approaches and the LM and LF algorithms, for 
different T2*, a, and σ 2. We can observe that the proposed ap-
proaches provide better estimation performance in most of tested 
experiments. This is probably because the nature of the proposed 
approaches in promoting spatial correlation between neighbouring 
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Fig. 5. Plots of RMSE between actual T2* and mean of estimated ones (RMSET2*) in Row 1, and RMSE between actual initial intensity value a0 and mean of estimated ones 
2
(RMSEa) in Row 2, at fixed T2* = 20, for different initial intensity values a and different noise variances (σ ). Column 1: SEXP model; Column 2: BiEXP model, and Column 

3: CEXP model.

Fig. 6. (a) Image of 64 × 64 of different initial intensity values of a =
[155, 255, 355, 455] and (b) the corresponding T2* values T2*= [5, 10, 15, 20].

Fig. 7. The resulting first frame when applying the models in Equations (5) for the 
SEXP model (a) and (d); (6) for the BiEXP model (b) and (e); and (7) for the CEXP 
model when setting c = 25 (c) and (f). Row 1: in the noise free case σ = 0, and 
Row 2: the severe noise case σ 2 = 10.

Fig. 8. Initial intensity value (a) estimation using the proposed approaches in the 
noise free case. (a) Original a, and results of estimation of a, in the noise free case, 
using the (b) SEXP, (c) BiEXP and (d) CEXP models. (e), (f) and (g) show the corre-
sponding estimates when considering the mean of estimated a in each case.

Fig. 9. Initial intensity value (a) estimation using the proposed approaches for σ 2 =
10. (a) Original a, and results of estimation of a, in the noise free case, using the 
(b) SEXP, (c) BiEXP and (d) CEXP models. (e), (f) and (g) show the corresponding 
estimates when considering the mean of estimated a in each case.

Fig. 10. Relaxation time (T2*) estimation using the proposed approaches in the noise 
free case. (a) Original T2*, and results of estimation of T2*, in the noise free case, 
using the (b) SEXP, (c) BiEXP and (d) CEXP models. (e), (f) and (g) show the corre-
sponding estimates when considering the mean of estimated T2* in each case.

voxels using TV regularization functions, compared to the LM al-
gorithm which provides a least-squares estimation.

As of computation time, Table 2 provides the average computa-
tion time of ten runs of each of the three proposed approaches, 
and existing methods described above. The algorithms are im-
plemented in MATLAB and the experiments are carried out on a 
laptop with a 2.8 GHz processor CPU, with 16 GB of RAM, un-
der Microsoft Windows 10. Experiments of different T2* and initial 
8
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Table 1
Comparison between the proposed approaches and Levenberg-Marquardt (LM) and lin-
ear fitting (LF) algorithms, using RMSE between actual and estimated T2*. Best results 
are highlighted in bold.

a0 155 455

σ 2 5 10 5 10

Model T2
*

5 20 5 20 5 20 5 20

SE
X

P Pr 0.01 0.01 0.02 0.02 0.001 0.001 0.004 0.005

LM 0.01 0.09 0.03 0.2 0.002 0.9 0.006 1.1

LF 0.09 0.01 0.25 0.03 0.01 0.001 0.01 0.01

Bi
EX

P Pr 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01

LM 0.01 0.08 0.01 0.16 0.01 0.8 0.02 0.9
CE

X
P Pr 0.06 1.8 0.3 1.8 0.01 0.01 0.1 0.6

LM 0.03 0.9 0.04 1.4 0.5 8.1 0.6 9.6
Fig. 11. Relaxation time (T2*) estimation using the proposed approaches for σ 2 =
10. (a) Original T2*, and results of estimation of T2*, in the noise free case, using 
the (b) SEXP, (c) BiEXP and (d) CEXP models. (e), (f) and (g) show the corresponding 
estimates when considering the mean of estimated T2* in each case.

Table 2
Approximate computation time in seconds for the proposed approaches and exist-
ing methods.

Proposed Levenberg-Marquardt Linear Fitting

Model SEXP BiEXP CEXP SEXP BiEXP CEXP SEXP

Time 4 7 8 4 6 12 1

intensity values a0 are run and the mean computation time is 
reported. It is clear that the LF algorithm provides the least compu-
tation cost. However, the proposed approaches provide competitive 
computation time with respect to the LM algorithm. Moreover, the 
SEXP algorithm always provides the least computation cost, then 
BiEXP, and finally CEXP.

6. Simulations using patient datasets

In-vivo scans of the abdomen of nine human subjects with 
sickle cell disease (five males, four females; age: 38 ± 12 years) 
were imaged on a 3.0-Tesla Siemens Skyra MRI scanner (Siemens 
Healthcare, Erlangen, Germany) using a body surface coil and a 8-
echo gradient echo (GRE) sequence with TEs ranging from 1 to 16.4 
ms in equal increments. The imaging parameters were as follows: 
repetition time (TR) = 5200 msec, matrix 192 × 256; bandwidth = 
1776 Hz/pixel, flip angle = 20◦ , slice thickness = 10 mm, and field 
of view that depended on the patient size. A mid-liver axial slice 
was acquired in a single end-expiration breath-hold. Informed con-
sent in this Institutional Review Board-approved study was given 
for this study. Fig. 12 shows a sequence of T2* weighted images of 
the abdomen of a patient included in this study, with the parame-
ters mentioned above. We can observe the decay of signal intensity 
in the liver as TE increases. Due to the heterogeneous iron concen-
tration in the liver, susceptibility artifacts, and inclusion of vascu-
9

lature, T2* measurements can be different in different parts of the 
liver. As observed in the results using synthetic data, that comput-
ing the average of T2* in a defined region results in better esti-
mation performance, in this work, we consider T2* estimation in a 
region of interest (ROI) in the liver as in [27,26,24,23,25]. Fig. 13
shows the location of ROI used to estimate the T2*, as identified 
by a trained clinician. The location of the selected ROI was not ex-
actly the same for all patients; however, it was selected away from 
the boundary and vasculature in the region of most homogeneous 
signal intensity in the right lobe. In this study, reference standard 
biopsy samples from the patients indicating iron overload content 
were not acquired, as this was not part of standard-of-care proce-
dures. However, T2* values measured on the MRI scanner console 
were obtained for the ROIs, and are considered for comparison. 
Algorithms 3, 4, and 5 are run to estimate T2* for each patient. 
We investigate averaging (T2*-AVG) values of T2* estimates of the 
ROI. In all cases, the regularization parameters (α, β, γ ) are set to 
(α, β, γ ) = (10−3, 10−3, 10−3). Note that we did not observe no-
ticeable changes in T2* estimates when we slightly changed these 
hyperparameters.

As mentioned earlier, the proposed approaches are compared 
against the Levenberg-Marquardt (LM) and linear fitting (LF) algo-
rithms. For the LM and LF algorithms, several post-analysis tech-
niques are applied to obtain final T2* values. In particular, T2*-
pixel-wise, where exponential fitting is applied to each pixel inside 
the ROI, followed by obtaining the mean (T2*-AVG) of the result-
ing T2* values, and, averaging signal intensities (Sig-AVG) inside 
the ROI, followed by exponential fitting of the resulting values at 
different TEs, to obtain the final T2* measurement.

Table 3 provides T2* measurements of the nine patients using 
the MRI scanner console, the proposed approaches and the existing 
methods mentioned above. We can observe that the results of pro-
posed SEXP and CEXP models are quite similar, compared to those 
of the BiEXP model. On the other hand, we can observe that there 
is small difference between T2* estimation using T2*-AVG and Sig-
AVG using the LM algorithm. In general, the proposed approaches 
provide the closest measurements to those of the scanner console, 
compared to the LM and LF algorithms. In particular, in terms of 
fitting model, the SEXP and the CEXP models provide the closest 
measurements to those the scanner console compared to those of 
the BiEXP model. This is probably because the ROIs chosen in this 
work are vasculature free and hence signal fitting is more accu-
rate using the SEXP and the CEXP models, and that T2* estimation 
using the scanner console considered SEXP/CEXP models.

7. Limitations

Although the benefits of the proposed approaches in estimat-
ing T2* are clear, a few limitations remain. The first is related to 
the lack of ground truth iron concentration for the patient datasets 
investigated in this work, as this was not part of standard-of-care 
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Fig. 12. A sequence of liver images of different time to echo, of a patient with mild iron overload.

Table 3
T2* estimation for patient data using the proposed approaches, and comparison with console and existing methods. 
Close results to the scanner console are highlighted.

Patients

Method Analysis Model 1 2 3 4 5 6 7 8 9

MRI Console 9.1 9.1 4.3 16.2 4.2 8.9 13.6 6.1 10.7

Proposed T2*-AVG
SEXP 9.2 9.4 4.4 16.2 3.6 9.0 11.7 6.2 10.8
BiEXP 7.2 7.4 3.7 13.6 3.4 7.0 9.5 5.0 8.7
CEXP 9.1 9.4 4.2 15.8 3.5 9.0 11.4 6.3 10.8

Levenberg-Marquardt

T2*-AVG
SEXP 9.3 9.7 4.4 15.6 3.6 8.0 9.5 5.6 11.4
BiEXP 14.0 17.6 3.8 21.0 3.7 13.4 18.3 13.0 20.5
CEXP 14.2 17.7 3.9 21.0 3.8 13.6 18.4 13.1 20.6

Sig-AVG
SEXP 9.4 9.9 4.1 15.5 3.7 8.6 11.0 5.8 11.3
BiEXP 13.6 18.2 3.7 22.6 3.7 12.8 21.3 13.0 20.9
CEXP 13.9 18.6 3.8 22.7 3.8 13.0 21.3 13.1 20.8

Linear Fitting
T2*-AVG SEXP 8.2 8.6 6.1 15.2 4.1 7.0 7.7 5.1 9.9
Sig-AVG SEXP 8.8 8.9 5.4 15.3 4.4 7.6 9.4 5.4 9.9
Fig. 13. T2* weighted images for mild (Left) and severe (Right) iron overload pa-
tients. The white circles indicate the location and size of the ROI used for analysis.

procedures. Liver biopsy is the current gold standard technique for 
iron overload quantification. However, due to the technique’s in-
vasiveness, pain, and high cost, it limits its widespread use. The 
second limitation is related to the lack of knowledge about the 
algorithm and the fitting model (SEXP, BiEXP or CEXP) used for 
T2* estimation using the MRI scanner console, which is used for 
comparison in this work. Although T2* estimates are provided for 
each patient, these measurements cannot be considered as ground 
truth. We note that in clinical context no ground truth will exist 
and it is a topic of further work.

8. Conclusion and future work

This paper introduced a general framework for T2* estimation 
in MRI. The problem was formulated as a minimization prob-
lem and suitable regularization functions were assigned to the 
unknown model parameters. An efficient estimation algorithm us-
ing the alternating direction method of multipliers was then used 
to estimate the unknown model parameters. Three different al-
gorithms were extracted, implying different physical phenomena, 
including the single exponential (SEXP), the bi-exponential (BiEXP) 
and the exponential plus constant (CEXP). Other algorithms can 
still be derived depending on the application. Extensive simula-
tions conducted using synthetic datasets, where ground truth is 
available, were conducted. The three models provided good estima-
tion performance to the unknown model parameters. It was found 
that introducing TV regularization in general provides better pa-
rameter estimation performance than using a damped least-square 
method (Levenberg–Marquardt algorithm) and linear fitting. Con-
sequently, the algorithms were validated using a hepatic iron over-
10
load quantification problem of patients of different iron overload 
content. The T2* estimation results of the proposed approaches 
were found to correlate with those obtained by the MRI scanner 
console. Moreover, the proposed algorithms outperformed existing 
methods in the literature for T2* estimation. Future work includes 
correlating T2* measurements with iron overload concentration, 
and investigating T2* estimation in other parts in the liver.
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