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H I G H L I G H T S  

• Uncertainty-based optimal energy retrofit methodology is developed for building heat electrification. 
• Energy flexibility and climate adaptability are taken into account. 
• The revenue from smart grid accounts for 1.1% of total cost savings. 
• 88% lifespan carbon emission reduction is achieved with an average payback period of around 3 years. 
• Retrofitted air-source heat pumps can mostly meet the future cooling demand in light of global warming.  
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A B S T R A C T   

To reach net zero emissions by 2050, the UK government relies heavily on heat degasification in buildings by 
using heat pump technology. However, existing buildings may have terminal radiators that require a higher 
operating temperature than what heat pumps typically provide. Increasing the size of radiators and thermally 
insulating building envelopes could be a potential solution, but the feasibility of these practices is uncertain due 
to space constraints and high retrofit costs. This study investigates the feasibility and potential benefits of 
incorporating air-source heat pumps into existing gas boiler heating systems to meet heating demands. The 
proposed probabilistic optimal air-source heat pump design method enhances energy flexibility and climate 
adaptability, taking into account a wide range of uncertainty sources and multiple flexibility services (e.g., 
energy and ancillary services). Heating systems of three educational buildings at the University of Cambridge are 
used as a testbed to assess and validate the effectiveness of the proposed method, under future climate scenarios 
and projected decreases in heating demand due to climate change. Results indicate that the best retrofit alter-
native of the hybrid heating system reduces carbon emissions by 88%, total costs by 54% over its lifespan, and 
has an average payback period of around 3 years. Air-source heat pumps can meet the majority of the heating 
demand (around 80%) with gas boilers used for “top-up” heating during high demand. Furthermore, air-source 
heat pumps’ design capacity can fulfil future cooling demand even if retrofit optimization is initially focused on 
meeting heating needs.   

1. Introduction 

1.1. Background 

The UK government has committed to becoming carbon zero by 2050 
[1] and has reinforced its emissions targets for 2035 of reducing 
greenhouse gases by at least 78% compared to 1990 [2] in line with the 

commitments of the Paris Agreement. To ensure success in this ambi-
tion, a series of unprecedented adjustments are required across the en-
ergy supply and demand sectors, such as increasing penetration of 
renewable energy sources, greater deployment of low-carbon heating 
and reduction of demand-side energy intensity. By exploiting freely 
accessible ambient heat, Air Source Heat Pumps (ASHPs) are a viable 
strategy to lower greenhouse gas emissions and boost energy efficiency 
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in the building sector as the carbon content of grid electricity reduces in 
the future with increasing quantities of renewable electricity generation 
[3]. Existing buildings account for approximately 40% of the UK total 
demand [4], so the energy-saving potential is significant when applying 
ASHPs to upgrade existing heating systems (e.g., with gas boilers). 
Additionally, in an attempt to boost the installation of low-carbon 
heating technologies such as heat pumps in the building sector, the 
UK government has recently launched a Boiler Upgrade Scheme [5], 
which helps property owners overcome the upfront cost of low-carbon 
heating technologies. 

Add-on solutions in the shape of ASHPs are necessary when low- 
temperature supply water (e.g., ≤65 ◦C [6]) is inadequate to meet the 
heating demands for existing buildings with low thermal efficiency. For 
those buildings, the heating delivered by ASHPs might not be able to 
match the demand under the cold/extreme-cold weather conditions, due 
to the limitations of terminal heating equipment (e.g., designed for high 
flow temperature of 75 ◦C as suggested by BS-EN 442-2:2014 [7]) and 
the thermal comfort (mean radiant temperature). The electric demands 
and accompanying costs of heat pumps would significantly increase 
with electrification in poorly insulated buildings. Due to the low levels 
of building fabric thermal insulation and poor airtightness in some UK 
building stocks, heat pumps are forced to operate at higher flow tem-
peratures, lowering efficiency and raising running costs. To date, there 
are extensive studies on the retrofitting of ASHPs in the domestic sector 
(e.g., Safa et al. [8] in Canada, Kelly et al. [9] in Ireland and Le et al. [10] 
in the UK). Prior to any heat electrification interventions, measures such 
as adding insulation layers should be implemented to improve the 
thermal performance of the building envelope and increase the overall 
energy efficiency of the building, hence reducing heating demands after 
electrification. For instance, Leibowicz et al. [11] upgraded the thermal 
insulation levels in a US residential building, achieving a 37% carbon 
cost reduction prior to ASHP installation. Lingard [12] found that solid 
wall insulation and low U-value glazing in UK semi-detached residential 
buildings are the cost-optimal solutions, which lowers 65% heat demand 
for effective heat pump application. However, although increasing 
radiator sizes and thermally insulating building envelopes could 
potentially address this problem, the retrofit cost could be prohibitive 
when fully replacing existing boilers with ASHPs [13]. In addition, the 
technical feasibility of increasing radiator sizes will be constrained by 
indoor spaces, especially for dwellings. The estimated cost of radiator 
upgrades and thermal insulation accounted for 33% and 60% of ASHP 
capital costs for domestic buildings [14], while these relative costs can 
be much higher due to larger fabric surface area and greater radiator 
capacity needed for non-domestic buildings. Alternatively, adopting 
hybrid heating systems, which compose of ASHPs and gas boilers (GBs), 
can be a promising approach where replacing existing radiators or 
updating envelopes is economically unfeasible. 

Hybrid operation and coordination of electric-driven ASHPs and 
natural gas-driven GBs also have enormous potential to provide energy 
flexibility for smart grids. Recently, new policies have been passed to 
encourage demand to contribute to the power balance of the power grid 
and to participate in ancillary services, also known as “demand 
response” [15]. Heat pumps, as large electricity consumers in buildings, 
can be engaged in energy and ancillary services markets (incentive- 
based and price-based programs [16]). For instance, heat pumps can 
effectively reduce grid frequency deviations and earn revenue from 
electric grids by regulating the variable speed drive in response to grid 
control signals [17,18]. Meanwhile, model predictive control (MPC)- 
based control strategies enabled heat pump response to dynamic real- 
time electricity pricing, yielded 5% energy reduction and 4.5% sav-
ings in [19], and 10.8% of energy cost savings in [20]. In addition, heat 
pumps can be coupled with advanced building technologies, such as 
thermal energy storage [21], electrical energy storage [22] and photo-
voltaic systems [23], to further improve energy flexibility and economic 
benefits of building operations. However, very limited studies take into 
account the energy flexibility advantage of ASHPs in hybrid heating 

systems (i.e., composed of GBs) when performing retrofitting analysis 
and design optimisation. 

Another challenge encountered in practice is a lack of confidence in 
the energy-saving potential of such systems. Even well-selected data/ 
information (e.g., building fabric, occupancy, weather, equipment load, 
etc.) used as inputs for retrofit analysis can be rather different from real 
operation conditions, due to inherent deviations in climate change, 
building demands, energy policies and equipment performance. Such a 
difference will cause the performance of the system to be deviated from 
the expected, possibly accompanied by increased cost and energy con-
sumption. For instance, the average Earth’s surface temperature has 
increased by at least 1.1 ◦C since 1880 [24], with most of that warming 
occurring after 1975 at a rate of roughly 0.15 to 0.20 ◦C per decade [25]. 
The impacts of climate change affect both the energy efficiency of ASHPs 
and the future building energy demands [26]. Other intrinsic un-
certainties, such as fuel price fluctuations and equipment performance 
degradation, might hamper the potential benefits of a retrofit system. A 
slight change in the values of these uncertainty parameters might cause 
a mismatch between ASHPs’ capacity and their operation/control, thus 
an unexpected effect on the return on investment for heating system 
retrofit [27]. Therefore, it is necessary to size the heating systems such 
that the variation in performance, based on the variation of design 
variables and noise factors, becomes minimal. In addition, taking 
different uncertainties into account helps achieve a cost-effective design 
option which provides the system with the capability to operate at high 
efficiency under all possible conditions, particularly at partial load, 
through having the ability to accommodate design and operation 
uncertainties. 

1.2. Problem definition, research objectives and original contributions 

Based on the literature review, the following observations were 
made: (1) Hybrid heating systems, by incorporating ASHPs into existing 
GBs, could be an economical approach for existing building retrofit. (2) 
The bivalent heating system (ASHPs + GBs) provides significant energy 
flexibility potential that should be taken into account in the retrofit 
analysis. (3) The impacts of multiple uncertainty sources in future sce-
narios (e.g., weather, heating demand, energy prices), on the actual 
performance of the hybrid heating system should be part of the system 
design and optimisation process. The following research questions (RQs) 
were, thus, formed:  

• RQ1: How to quantify and integrate uncertainty sources (such as 
weather and building heating demands) that affect ASHP system 
performance into existing heating system retrofit? 

• RQ2: How to properly size the ASHPs while coordinating the oper-
ation of the hybrid ASHP-gas boiler systems to provide enhanced 
energy flexibility? 

• RQ3: What is the lifespan performance (e.g., cost and carbon emis-
sion reduction) of the hybrid heating system?  

• RQ4: Will the retrofitted ASHP systems also satisfy future cooling 
demand in light of global warming? 

To address the above-mentioned research gaps, this work aims to 
develop an integrated uncertainty-based optimal energy retrofit design 
method for building heat electrification, taking into account energy 
flexibility provision and the multiple uncertainty sources. An automated 
global climate model and a self-correcting building energy model 
generate uncertain weather and heating load profiles considering the 
impacts of climate change. A hierarchical optimization framework is 
developed which determines the baseline power of ASHPs in energy 
service markets and selects the optimal mode and service type in 
ancillary service markets, respectively. We illustrate this novel meth-
odology using an existing gas boiler heating system serving three 
educational buildings located at the University of Cambridge, UK. 
Achievable savings under the proposed methodology are tested by 
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comparing the lifespan performance of the retrofitted hybrid heating 
system to that of the original heating system. 

The principal difference between existing scenario-based studies and 
ours is that we propose a generalisable methodology for the design and 
operation of heating system retrofits. Additionally, retrofit designs that 
incorporate potential demand response capabilities are often over-
looked. The original contributions of this study are briefly summarised 
as follows: (1) It represents the very first effort to optimise the design of 
bivalent heating systems (consisting of new ASHPs and existing GBs) 
during the retrofit stage to maximise potential benefits while consid-
ering a wide range of uncertainty sources, with a self-correcting building 
model and automated global climate model. (2) A novel hierarchical 
optimization framework is proposed that provides multiple flexibility 
services for retrofitted heating systems in sequential electricity markets. 

2. Procedure and method of uncertainty-based optimal energy 
retrofit 

2.1. Outline of uncertainty-based energy retrofit optimisation 

Fig. 1a shows the schematic of the original gas boiler heating system. 
This system adopts constant-speed water pumps. The return water from 
the building is supplied by circulation pumps to the GBs. The high- 
temperature hot water (HTHW) heated by the GBs is then supplied to 
buildings. The supply water temperature is determined according to 
building heating loads with the design water temperature (e.g., 75 ◦C). 
Fig. 1b shows the schematic of the retrofitted hybrid heating system, 
including the existing GBs and new ASHPs. The gas boilers serve as a 
backup heating source during periods of high demand, while the ASHP 
has a maximum low-temperature hot water (LTHW) (e.g., 65 ◦C) due to 
various limitations such as system efficiency, component stress, and 
available heat from the outdoor air. If the required return water tem-
perature from the building exceeds the maximum LTHW temperature set 
by the ASHP, the gas boilers will take over all heating demand. Three 
operation modes are adopted using the hybrid heating system while the 
selection of the best operation mode is based on the estimated operation 
cost and the availability to meet the heating loads. i. GB mode: only the 
GBs will be used for providing heating services and the electric valves at 
the ASHP side are fully closed. ii. hybrid operation mode: the return water 
from the building has two parallel flows, one is heated by ASHPs, and 
the other is heated by GBs. The outlet water from the GBs and ASHPs is 
mixed and eventually supplied to buildings. iii. ASHP mode: only the 
ASHPs will be used for providing heating services and the electric valves 
at the GB side are fully closed. 

It should be noted that hybrid heating systems can be configured in 
series or parallel, but here parallel configuration is considered advan-
tageous for several reasons. Firstly, it has a lower system pressure drop, 
which can reduce the energy costs associated with circulation pumps. 
Additionally, the ASHP is used as the primary heating source, with the 
GB serving as a backup during periods of high demand. The parallel 
configuration is easier to control because we can directly close the GB 
water loops most of the time. In contrast, the series configuration would 

require a bypass pipe, which increases control complexity. The heating 
system performance of the retrofit scenario is compared with the 
reference scenario. The reference scenario utilises existing gas boilers for 
heating only, while the retrofit scenario re-uses existing gas boilers and 
introduces new ASHPs for hybrid heating. The modification of building 
fabrics and radiator systems was not taken into account to save invest-
ment costs and prevent construction in working spaces. The key issue of 
the hybrid heating system involves how to properly size the ASHPs to 
minimise the life-cycle costs, as an add-on solution for existing gas boiler 
heating systems. 

To optimize the sizing of ASHPs with the best operation modes, an 
uncertainty-based energy retrofit optimization method is proposed as 
shown in Fig. 2. It contains two steps: uncertainty quantification and 
retrofit optimisation. In the first step, the weather profiles, building 
heating demand, component performance deviations of hybrid heating 
systems and economic factors (energy prices, inflation rate, discount 
rate) for future scenarios are estimated. It is important to recognise that 
the key parameters affecting building heating demand differ between 
the design stage and the retrofit stage. For example, while building 
characteristics at the design stage are typically estimated based on as-
sumptions, during retrofitting, these properties can be obtained through 
on-site investigations or architectural drawings, leading to a higher 
degree of accuracy. In the second step, all future uncertain parameters are 
used as the inputs for the hybrid energy system models, and the “opti-
mizer” determines the number and capacity of ASHPs, thus, minimizing 
the lifecycle cost of retrofitted hybrid heating systems. The rated heating 
capacity for each ASHP is assumed identical. The main function of the 
energy system model is to determine the best operation mode according 
to the operation cost, taking into account the electricity cost, gas cost, 
flexibility revenue and carbon cost. 

2.2. Energy flexibility available by hybrid heating systems 

The hybrid heating systems proposed here account for the provision 
of energy flexibility in electricity markets of multiple services. The 
hybrid heating systems, driven by electricity (ASHPs) and natural gas 
(GBs), strategically optimise peak shaving and allocate the available 
flexibility capacities in the sequential electricity market (run by market 
operators and system operators respectively in Europe). Market opera-
tors, such as Nord Pool [28], provide platforms for trading energy 
products (in day-ahead and intraday markets) before the hour of oper-
ation. System operators, such as the European Network of Transmission 
System Operators for Electricity (ENTSO-E [29]) provide platforms for 
trading ancillary services products (in balancing markets) in the hour of 
operation. The energy product (kWh) is marketed for end-user energy 
consumption, whereas the ancillary service products (kW) provide 
revenues to end-users. According to Zhang et al. [30], the hybrid heating 
systems can provide the flexibility services such as energy service (e.g., 
load covering [31]) and ancillary service (e.g., Frequency Containment 
Reserve (FCR) [32] and Frequency Restoration Reserve (FRR) [33]), as 
shown in Fig. 3. 

Fig. 1. Schematic of the (a) gas boiler heating system (b) hybrid heating system.  
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2.2.1. Energy service-load covering flexibility 
As a common energy service, “load covering” reduces a building’s 

electric loads during peak electricity times. Peak and off-peak times refer 
to the price signal (e.g., time-of-use, critical peak pricing, and hourly 
real-time pricing) at high and low prices respectively that reflect power 
grids’ daily flexibility requirements. This flexibility type reshapes a 
building’s daily electric demand profile by intelligently controlling 
deferrable loads (e.g., using GBs for heating if the natural gas price is 
lower) in the context of cost-optimal control or other optimization goals. 
Notably, the covering flexibility provided by the hybrid heating system 
is the electricity load change of the ASHP system throughout load 
reduction periods. The load covering capacity provided by ASHPs is the 
function of the covered building heating load and overall coefficient of 
performance (COP) of ASHP systems, as shown in Eq. (1). The GBs can 
provide standby heating when the electricity price is high and natural 
gas price is low as presented by Eq. (2). 

Ecv
ASHP =

∫

t∈Δτcv

Pload,cv(t)
COP(t)

dt (1)  

Pload,cv(t) = PGB(t)ηGB(t) (2) 

where 
Ecv

ASHP = load covering capacity provided by ASHPs (kWh). 
Pload,cv = covered building heating load (kW) at hour t. 
Δτcv = covering periods (h). 
ηGB = boiler efficiency (%). 
PGB = boiler heat output (kW). 
“Load covering” flexibility can be provided by the hybrid heating 

system in both day-ahead and intraday markets. In the case study, both 
the day-ahead market and intraday market were selected to provide 
energy services. 

Fig. 2. Outline of uncertainty-based energy retrofit optimisation.  

Fig. 3. Energy flexibility available by hybrid heating systems.  
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2.2.2. Ancillary service-FCR 
Frequency Containment Reserve (FCR), also known as “primary 

reserve”, aims to automatically stabilise the frequency after the occur-
rence of minor and unanticipated imbalances. This service’s actions 
begin no later than 30 s after the imbalance, with a reaction period of up 
to 15 min. Existing studies have shown the potential of heat pumps in 
providing such a service by controlling the variable speed drivers [34]. 
The flexible loads of buildings qualified for such service have the po-
tential to provide FCR capacity (e.g., fastest responsive flexibility) in the 
ancillary service market as shown in Eq. (3). 

PFCR
ASHP = αPrated,ASHP (3)  

where 
PFCR

ASHP = FCR capacity provided by ASHPs (kW). 
α = available adjustment rate of Variable Frequency Drives (VFD) of 

ASHPs (%). 
Prated,ASHP = rated power of ASHPs (kW). 

2.2.3. Ancillary service-FRR 
Frequency Restoration Reserve (FRR) aims to address imbalances 

that are too severe or prolonged for the FCR to address, including 
automatic frequency restoration reserve (aFRR, also known as “sec-
ondary reserve”) and manual frequency restoration reserve (mFRR, also 
known as “tertiary reserve”). From the frequency variation, it operates 
from 30 s (aFRR) to maximum 15 min (mFRR). The hybrid heating 
system can provide either aFRR or mFRR services. According to the 
European Network of Transmission System Operators for Electricity 
(ENTSO-E), the average regulation price for aFRR in 2021 was £10.4/ 
MW, while the average regulation price for mFRR was £6.8/MW [35]. 
Upon the situation that the aFRR service has higher revenue than mFRR, 
we consider the aFRR service to provide ancillary services. The aFRR 
capacity of the ASHPs is defined as the baseline power output of ASHPs 
for the shedding duration, in response to a contingency event of the 
smart grid, shown in Eq. (4). 

PaFRR
ASHP =

∫
Pb,ASHP(t)dt

Δτsd
(4)  

where 
PaFRR

ASHP = FRR capacity provided by ASHPs (kW). 
Pb,ASHP = baseline power output of ASHPs (kW). 
Δτsd = shedding duration (h). 

2.3. Formulation of the optimisation problems 

2.3.1. Objective function 
The choice of an appropriate objective function, which simulta-

neously considers investment cost, energy cost and carbon cost, is a 
complicated decision. The formulation of the optimization objective for 
retrofitting existing building heating systems with add-on ASHPs is 
presented as Eq. (5), aiming at minimising system life-cycle costs (Ctotal). 

min(Ctotal = Cinv +Cegy +Ccbn +Cmt) (5)  

where Cinv is the investment cost, including the capital and installation 
costs of ASHPs (Eq. (6)). The installation cost is assumed 30% of the 
capital cost [36]. The capital costs of ASHPs are determined by the 
selected manufacturer and size at the beginning of the retrofit and are 
therefore deterministic. As no changes would be made to the current 
GBs, it is assumed that there will be no investment cost for GBs. Cegy 
stands for the energy cost, including the net electricity trading costs and 
natural gas costs (Eq. (7)). Ccbn is the carbon costs charged due to the 
greenhouse gas emissions raised by UK Emissions Trading Scheme (Eq. 
(8)) [37]. Cmt is the additional maintenance cost due to the installation 
of ASHP. The annual maintenance cost is set as 2.5% of the capital cost 
[38]. 

Cinv = 1.3 × (γASHP×n) (6)  

Cegy = Cele +Cgas (7)  

Ccbn = γcbn(ξgasEgas + ξele
∫

t∈T
Pele(t)dt) (8)  

where 
γASHP = the unit price of an ASHP (GBP/kWh). 
n = total number of ASHPs. 
γcbn = carbon price (GBP/tCO2e). 
ξgas = natural gas carbon emission factor, set as constant 0.184 kg/ 

kWh. 
ξele = electricity carbon emission factor (kg/kWh). 
Egas = purchased energy from natural gas at the period T (kWh). 
Pele(t) = ASHP power at the hour t (kW). 
The net electricity trading costs by ASHPs are presented in Eq. (9), 

where the trading involves energy and ancillary service products. The 
load covering, FCR, and aFRR flexibility (i.e., the amount of purchased 
energy and offered ancillary service capacity) of ASHPs are fully utilised, 
subject to the constraints of hierarchical operational flow as further 
elaborated in Section 2.5. The hybrid heating system can only provide 
one type of ancillary service to meet regulation quality requirements. 
The total provided load covering capacity and FCR capacity (or FRR 
capacity) at each time step should not be higher than the rated capacity 
of ASHPs, while the total reserve capacity should not exceed the baseline 
power of ASHPs. According to the proposed assessment criteria of 
building flexibility, the hourly regulation capacity is anticipated to be 
symmetrical in both up and down directions. The impacts of FCR flex-
ibility on energy consumption are ideally neutral. The natural gas (fuel) 
cost by GBs is presented in Eq. (10). The unit price of ASHPs is the 
function of the corresponding capacity expressed by Eq. (11), curve 
fitting derived from Daikin UK Price Book [39], including an ASHP and 
additional accessories (such as low-lift pumps, energy meters, inverter, 
etc.). 

Cele =

∫

t∈T
(γele(t)Pele(t) − γFCR(t)PFCR(t) − γaFRR(t)PaFRR(t))dt (9)  

Cgas =

∫

t∈T
γgas(t)Pgas(t)dt (10)  

γASHP = Prated,ASHP×221.51 + 6805.6 |Prated,ASHP ∈ [62kW, 468kW] (11)  

where 
γele = electricity unit price (GBP/kWh) from the day-ahead (γele,DA) or 

intraday (γele,ID) market. 
γgas = natural gas unit price (GBP/kWh). 
γFCR = FCR service unit price (GBP/kW). 
γaFRR = aFRR service unit price (GBP/kW). 
PFCR(t) = offered FCR capacity in ancillary service at the hour t (kW). 
PaFRR(t) = offered aFRR capacity at the hour t (kW). 
Prated,ASHP = rated capacity of ASHPs (kW). 

2.3.2. Performance models of hybrid heating system 
Radiator: The heat output of the radiators can be calculated by Eqs. 

(12) and (13). 

Q = KF
(ti,R + to,R

2
− ta

)1.3
(12)  

Q = mcp(to,R − ti,R) (13)  

where 
Q = radiator heat output (kW). 
ti,R = inlet water temperature (◦C). 
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to,R = outlet water temperature (◦C). 
ta = indoor air temperature (◦C). 
K = heat transfer coefficient (kW/(m2⋅K)). 
F = radiator surface area (m2). 
m = mass flow rate (m3/s). 
cp = specific heat capacity of water (kJ/(kg⋅K)). 
Heating network: As heating network distribution loss is unavoid-

able, heating network efficiency should be considered. To simplify the 
calculation, the distribution loss of the supply water pipe is considered 
to be equal to that of the return water pipe. The system heating load, 
supply and return water temperature can be calculated by Eqs. (14)- 
(16), respectively. 

Qsys =
Q

(1 − ηDL)
(14)  

ti,sys = to,R −
Qsys

mcp
(1 −

ηDL

2
) (15)  

to,sys = to,R +
QsysηDL

2mcp
(16)  

where 
Qsys = system heating load (kW). 
ti,sys = system supply water temperature (◦C). 
to,sys = system return water temperature (◦C). 
ηDL = the distribution loss ratio (assumed to be 8% [40]). 
Air-source heat pump: The ASHP power is the function of the ASHP 

heating load and operating COP (Eq. (17)). The operating COP of ASHP 
is calculated by multiplying the full load COP by a part load factor (PLF) 
as Eq. (18). The COP at maximum power was determined as a function of 
the water temperature exiting the ASHP and the ambient temperature 
using biquadratic polynomial curve fitting generated from operational 
data [8], as presented by Eq. (19). PLF is calculated as a function of the 
part load ratio (PLR) in Eq. (20). 

Pele =
QASHP

COPp
(17)  

COPASHP = COPPmaxPLF (18)  

COPPmax = c0 + c1ti,ASHP + c2tamb + c3t2
i,ASHP + c4ti,ASHPtamb + c5t2

amb (19)  

PLF = − 0.0217 − 0.2713PLR3 − 1.297PLR2 + 2.6012PLR (20)  

where 
QASHP = ASHP heating load equals to Qsys when heating is provided 

by ASHPs only (kW). 
C0-C5 are obtained from the manufacturer performance data, with C0 

= 10.47 (10.07,10.86), C1 = − 0.2416 (− 0.2588, − 0.2245), C2 = 0.1494 
(0.143, 0.1559), C3 = 0.001895 (0.0001715, 0.002076), C4 =

− 0.0001637 (− 0.001764, − 0.001509), and C5 = − 0.0004748 
(− 0.0006019, − 0.0003478) as coefficients with 95% confidence 
bounds. 

ti,ASHP = water temperature exiting the ASHP (◦C), equals to ti,sys 

when heating is provided by ASHPs only. 
tamb = outdoor air temperature (◦C). 
COPPmax = the COP of ASHPs at maximum power. 
COPASHP = the actual COP of ASHPs considering the part load 

influence. 
Gas boiler: The total energy provided by natural gas (kWh) can be 

calculated by Eq. (21). Gas boiler efficiency is a function of the PLR 
presented by Eq. (22), obtained from a typical part-load efficiency curve 
for a non-condensing boiler [41]. 

Egas =

∫

t∈T

QGB (t)
ηGB(t)

dt (21)  

ηGB = 0.7107PLR3 − 1.4216PLR2 + 0.8825PLR+ 0.6693 (22)  

where 
QGB = gas boiler heating load, which equals to Qsys when heating is 

provided by GBs only (kW). 
ηGB = gas boiler efficiency. 

2.4. Quantification of uncertain input parameters 

2.4.1. Probabilistic future weather profiles 
In this study, we propose a probabilistic future weather model to 

generate the possible future weather profiles instead of using existing 
morphed climate change weather files for the following two reasons. i. 
Unlike the existing weather files, such as from UK Climate Projections 
2018 (UKCP18) based on CMIP5 (Coupled Model Intercomparison 
Project 5), the proposed method utilises the global climate model (GCM) 
data from the CMIP6, which develops the most up-to-date climate model 
experiments with finer resolution and improved dynamical processes 
[42]. ii. The proposed probabilistic future weather model takes advan-
tage of existing GCMs simultaneously and therefore can generate more 
accurate weather data and take account of more possibilities of future 
weather scenarios. 

The process of generating probabilistic future weather profiles is 
shown in Fig. 2 (upper left corner), which involves three steps. The first 
step is the selection of base Typical Meteorological Year (TMY) weather 
files, representing the uncertainty in present-day weather [43]. The 
base TMY files used in the morphing process were two weather files from 
the University of Exeter (Ext1, Ext2) [44], two Meteonorm weather files 
(Metn1, Metn2) [45], and an Ensim weather file (Ensim) [46]. In the 
second step, the morphing method proposed by Belcher et al. [47] was 
introduced to generate future weather profiles. This method generates 
future weather data by merging current-day observed weather data 
(referred to as TMY in the first stage) with outputs from time series- 
based global climate models (GCMs). To represent the uncertainty in 
climate models, 67 GCMs from the ScenarioMIP and HighResMIP 
Endorsed Model Intercomparison Projects were utilised to generate 
future climate data. ScenarioMIP simulated four shared socioeconomic 
pathways (SSPs): SSP126, SSP245, SSP370, and SSP585 [48], whereas 
HighResMIP simulated three experiments: control-1950, highres-future, 
and highresSST-future [49]. Electronic Supplementary Material (ESM) 
Table A-1 lists the detailed information on these 67 climate models. In 
the third step, each GCM model’s forecasted historical monthly weather 
data between 2015 and 2021 were compared to actual measured data 
from a local weather station. The performance of GCMs was ranked from 
the lowest to highest according to the Root Mean Square Error (RMSE) of 
monthly average temperature. The GCMs were then selected given these 
GCMs had the highest Prediction Interval Coverage Probability (PICP, 
Eq.24). Here, PICP is defined as the proportion of observed monthly 
average temperature located at the predicted monthly average temper-
ature confidence interval. The larger the PICP is, the better the model 
performs. In the fourth step, future hourly weather data from 2022 to 
2041 were generated for retrofit optimization by applying the morphing 
approach to the output of the selected GCMs, assuming that the lifespan 
of ASHPs is 20 years [50]. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1
(ri − qi)

2

√

NP
(23)  

PICP =

∑N

i=1
ki

N
,whileki =

{
1, if li ≤ ri ≤ ui

0, otherwise
(24) 
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where 
ri = measured data points for each model instance ‘i’ 
qi= simulated data points for each model instance ‘i’ 
Np = the number of data points at interval ‘p’ 
li = lower limit for each model instance ‘i’ 
li = upper limit for each model instance ‘i’ 

2.4.2. Probabilistic building heating demand 
The probabilistic weather profiles were further used as the inputs for 

building simulation models, which in turn generated future building 
demand. TRNSYS3D, a SketchUp plugin that enables users to draw 
multizone buildings and import geometry (including building self- 
shading and internal view factors for radiation exchange) directly 
from the SketchUp interface into the TRNSYS Building environment 
(TRNBuild, TYPE 56 [51]), was utilized. The building model in 
SketchUp features the same geometry and envelop details as the case 
buildings. Building’s internal gains, such as lighting, equipment, and 
occupancy were assumed not to be changed in the future years, and thus 
only climate change impacts on building heating load were investigated. 
Based on inputs (x1, x2, …, xn), the outputs Q (i.e., building heating 
loads) are obtained as Eq. (25). The design inputs involving un-
certainties (X) are generated by Latin hypercube sampling (LHS) method 
as Eq. (27), according to their probability distributions (G). 

Q = [q1, q2,⋯, q8760] = f (x1, x2,⋯, xn) (25)  

X = [X1,X2,⋯,Xn] (26)  

Xi =
[
xj1, xj2,⋯, xjm

]T
, Xi ∼ Gi | j = 1, 2,⋯, n (27) 

A self-correcting building model was first developed to generate the 
building heating load as closely as feasible to the real heating load. The 
automated calibration process compares a sequence of differences be-
tween hourly heating load profiles generated from building simulations 
versus actual measured heating load by smart heat meters, as shown in 
Fig. 4. One goal in developing the auto-calibrated approach was to build 
a simple and time-efficient calibrated model with minimal inputs. The 
measured hourly heating load, meteorological data, and the to-be- 
calibrated model were the only inputs necessary for the building 
model calibration process. The method starts with the input data and 
relies on parameter auto-tuning to eliminate inconsistencies between 
the simulated and actual load profiles iteratively. The parameter and 
parameter range for tuning were chosen based on the specific charac-
teristics of the load profile mismatch. This iterative parameter tuning 
process continues until the load profile converges within a given 
tolerance. 

A parameter selection process was developed using sensitivity 
analysis and engineering judgement to list all available parameters for 

potential selection during auto-tuning, as shown in the co-author’s 
previous study [52]. By tuning different input parameters, the priority 
list of parameter selection was established. The parameters that 
exhibited the widest uncertainty following minor modifications were 
selected. The fabric parameters of the building, such as window U-value 
and window SHGC, are not tuned as they can be obtained from the 
design drawings and won’t be significantly changed over building 
operation time. The building’s internal gains, heating setpoint, infil-
tration and ventilation, which are of high randomness and are changed 
over time, are selected for calibration. 

For each automated tuning stage, a maximum adjustment of 5% was 
made to the parameters based on the last calibrated value. The tuning 
direction of the selected parameter was assigned a sequence of values 
ranging from the initial value to the upper or lower limit. A series of sub- 
models were generated in this process, while only the sub-model with 
the lowest Mean Bias Error (MBE) and Coefficient of Variation of the 
Root Mean Square Error (CVRMSE) was chosen for the next calibration 
stage. The MBE and CVRMSE are calculated in accordance with ASHRAE 
Guideline 14 [53], where r is the average of the measured data points. 
The values of 10% for the MBE and 30% for the CVRMSE were used as 
the threshold level. 

MBE(%) =

∑Np
i=1(ri − qi)
∑Np

i=1(ri)
(28)  

CV(RMSE)(%) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑Np

i=1
(ri − qi)

2
/NP

√

r
(29)  

2.4.3. Uncertain economic and performance factors 
Probabilistic energy and carbon prices: Natural gas and electricity 

prices in the baseline year (i.e., 2021) were multiplied by the relative 
prices to determine the future prices (Eqs. (30) and (31)). These energy 
price relatives followed a uniform distribution (Eq. (32)), with the lower 
and upper bounds obtained from US Energy Information Administration 
(EIA) [54]. The projections take different policy scenarios (e.g., oil price, 
economic growth, and renewable costs) into account. The future carbon 
prices and electricity carbon emission factors were also set following a 
uniform distribution (Eqs. (33)-(34)), with the lower and upper bounds 
obtained from the UK Green Book supplementary guidance [55]. 

γgas
k,J = γgas

k,base × αgas
J (30)  

γele
k,J = γele

k,base × αele
J (31)  

αJ ∼ U
(
αmin,J ,αmax,J

)
(32)  

Fig. 4. Inputs, calibration process, and outputs for the automated calibration.  
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γcbn
J ∼ U

(
γcbn

min,J , γ
cbn
max,J

)
(33)  

ξele
J ∼ U

(
ξele

min,J , ξele
max,J

)
(34)  

where 
γgas

k,base and γgele
k,base are baseline gas and electricity price at hour k, 

respectively (GBP/kWh) 
αgas

J and αele
J are gas and electricity price in year J relative to the 

baseline year respectively 
γcbn

min,J and γcbn
max,J are lower and upper bounds of the carbon price 

(GBP/kWh) 
ξele

min,J and ξele
max,J are lower and upper bound of electricity carbon 

emission factors 
αmin,J and αmax,J are lower and upper bound of energy relative price 
Present value factor: Cash flows are multiplied by the Present Value 

Factor (PVF) to derive the present value (Eq. (35)), where r is the interest 
rate and d is the discount rate. The interest rate and discount rate for 
each year followed stochastic distributions based on the statistics data 
from the UK government [56]. 

PVFJ =
∏J

i=1

(1 + ri)

(1 + di)
(35) 

Equipment performance variation: The performance of GBs/ASHPs 
may decline over time due to the natural ageing of the equipment, 
characterized by a decrease in heating output over an extended period of 
operation, resulting in diminished energy efficiency and increased sys-
tem lifecycle expenses. In the meantime, regular maintenance can help 
alleviate the performance degradation of the equipment (represented by 
the ageing alleviation rate). The rated coefficient of performance (COP) 
of the component in year J was estimated by Eq. (36) considering both 
the effects of natural ageing and regular maintenance, where COPrated,0 is 
the equipment rated COP when newly installed or calibrated. The 

Fig. 5. A hierarchical analytical process for optimal retrofit optimisation.  
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uncertainty of the annual degradation rate (Da) and ageing reduction 
rate (Ra) can be characterised as stochastic distributions [57,58]. 

COPrated,J = COPrated,0

∏J

i=1
(1 − Da,i(1 − Ra,i)) (36)  

2.5. A hierarchical analytical process of optimal retrofit optimisation 

Fig. 5 presents a hierarchical analytical process for optimal retrofit 
optimisation based on the probabilistic input parameters outlined in 
Section 2.4. The proposed hybrid heating systems offer three different 
operation modes (i.e., running HPs only, running GBs only, and hybrid 
running of HPs and GBs) that enhance energy flexibility. During each 
time step of performance evaluation, the feasibility of utilizing optimal 
operation modes was assessed by verifying whether the required heating 
capacity and thermal constraints (e.g., the supply water temperature of 
ASHP <65 ◦C) were met for the given trial ASHP number and capacity 
provided by the optimiser. 

By following the bidding sequence, in stage 1, the baseline power in 
the energy services markets (i.e., day-ahead market and intraday mar-
ket) was determined for the hybrid heating system without providing 
ancillary services. The operational schedule at each operation hour was 
established by comparing the power among available operation modes 
(e.g., ASHP mode, GB mode, or hybrid mode) and selecting the optimal 
mode with minimal power to meet the space heating demand. In stage 2, 
the service type for each available operation mode at each operation 
hour was selected, and subsequently, the optimal operation mode with 
minimal operation cost was chosen. It is important to note that ASHPs 
cannot provide both FCR and aFRR simultaneously as these services 
require different types of response and may have different priorities 
depending on the specific needs of the electricity grid. Subsequently, a 
golden section search and parabolic interpolation algorithm [59] was 
used to search for the optimal retrofit alternatives, which ensured that 
the overall lifecycle cost of the hybrid heating system reached the 
minimum within the pre-set convergence tolerance. 

3. Overview of reference building, uncertain inputs and 
validation results 

3.1. The reference buildings and their heating systems 

Three GBs with a total heating capacity of 3060 kWh, serve three 
educational buildings through a shared heating network, as shown in 
Fig. 6. The three buildings are located at the University of Cambridge 
with a total area of 34,560 m2. The terminal radiators were designed 
with 75/65 ◦C (water flow/return temperature) and heat meters were 
used to measure buildings’ total heating load on an hourly basis. 

3.2. Uncertainty inputs 

Table 1 illustrates the four distinct categories considered for retrofit 
optimization, which include weather, building heating demand, eco-
nomic factors, and performance factors. Economic, emission and 

Fig. 6. (a) The view of buildings and (b) their existing heating schematic.  

Table 1 
Classification and quantification of uncertain parameters.  

Category Parameter Uncertainty/distribution 

Future weather Outdoor dry-bulb air 
temperature (◦C) 

Generated from probabilistic 
global climate models based on 
diverse TMY files (Section 3.2.1) Outdoor air relative 

humidity (%) 
Global solar irradiance 
(W/m2) 

Building demand Future heating load 
(kWh/m2) 

Generated based on the calibrated 
building model with future 
weather as inputs (Section 3.2.2) 

Economic and 
emission factors 

Future gas price (γgas
J ) Calculated by Eq. (30), where 

baseline gas price (γgas
base) was 

shown in ESM Fig. B-1 and price 
relatives (αgas

J ) was sampled 
referring to ESM Fig.B-2a 

Future electricity price 
(γele

J ) 
Calculated by Eq. (31), where the 
baseline electricity price (γele

base) was 
shown in ESM Fig. B-1 and price 
relatives (αele

J ) was sampled 
referring to ESM Fig. B-2b 

Future carbon price 
(γcarbon

J ) 
Sampled referring to ESM Fig. B-3 

Electricity carbon 
emission factors (ξele

k ) 
Sampled referring to ESM Fig. B-4 

Discount rate (d) N (0.025,0.00252) [56] 
Interest rate (r) N (0.0199,0.00842) [56] 

Component 
performance 
variations 

The degradation rate of 
gas boilers (Da,GB) per 
year 

Γ (6.5,0.077) [57] 

The degradation rate of 
ASHPs (Da, ASHP) per 
year 

Γ (6.5,0.154) [57] 

The ageing alleviation 
rate of ASHPs and GBs 
(Ra) per year 

U [0.1, 0.25] [58] 

*Note: Γ(k, θ), N(µ, σ2) and U(a,b) represent gamma, normal and uniform dis-
tributions, respectively. µ refers to the mean value and σ refers to the standard 
deviation. k and θ refer to the shape parameter and scale parameter respectively. 
a is the lower limit and b is the upper limit. The distributions for the degradation 
rate of ASHPs and GBs per year were derived from the technical report of the 
National Renewable Energy Lab (NREL) [57]. The distributions for the ageing 
alleviation rate of ASHPs and GBs were derived from the U.S. Department of 
Energy [58], taking into account performance enhancements achieved through 
routine maintenance. 
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performance factors are introduced by random sampling according to 
their distributions. The future weather profiles were generated from 
probabilistic GCMs, while the future building heating demands were 
derived from calibrated building models that utilised the projected 
weather data as inputs. Details can be found in Sections 3.2.1-3.2.3. 

3.2.1. Future weather profiles 
Base TMY files and GCMs: A comparison between the weather pa-

rameters (dry bulb temperature, relative humidity and global horizontal 
irradiance) of different TMY files can be found in Fig. 7. The external 
mean dry bulb temperature, relative humidity and global horizontal 
irradiance were 9.6–12.0 ◦C, 74–81% and 199.5–224.7 W/m2

, respec-
tively. The variances of the weather data came from the historical time 
slices (Met1: 1996–2019; Met2: 1961–90; Ext1&Ext2: 1961–90; Ensim: 
1986–2021) and weather station locations (Met1, Met2&Ensim: Cam-
bridge airport; Ex1&Ext2: Cambridge botanic garden). The 5 base TMY 
files were used as the inputs for 67 climate models (see ESM Table A-1). 
Therefore, a total of 5 × 67 = 335 future weather scenarios were 
generated. 

Selection of representative GCMs: To select the representative GCMs 
that can generate the future climates, the RMSE of monthly mean tem-
perature between GCMs and actual measurement was first calculated. 
The GCMs were then sorted according to the values of computed RMSE 
(i.e., from the lowest to the highest). Fig. 8 shows the RMSE and PICP of 
monthly mean temperature with the increased number of GCMs. With 
the increase in the cumulative share of GCMs, the RMSE first sharply 
decreased, which bottomed at 1.21, and then increased. The best indi-
vidual GCM achieved the minimum RMSE at 1.57, while multiple GCMs 
performed better than the best individual GCM. The PICP of monthly 
mean temperature increased with the increased share of GCMs and then 
stabilised at 98.8% when the share of GCMs was over 33%. This in-
dicates that 33% of GCMs would be enough to represent all the features 
of all GCMs. As shown in Fig. 9, 110 weather scenarios were selected and 
compared with the actual measured outdoor air temperature between 
2015 and 2021. Almost all actual monthly mean temperature was in the 
temperature ranges of probabilistic GCMs, and thus the accuracy was 
satisfactory. 

Generation of future climates: Future 20-year (from 2022 to 2041) 
weather profiles generated from probabilistic GCMs were presented in 
Fig. 10. The annual mean air temperature climbed by 0.7 ◦C from 
approximately 10.9 ◦C in 2022 to 11.6 ◦C in 2041 due to climate change. 
The annual mean relative humidity ranged from 76.9% to 78.3%, while 
the annual mean solar radiation varied between 1138.3 kWh/m2 and 
1179.1 kWh/m2. Future climate scenarios with increased average out-
door air temperatures are expected to improve COP for ASHPs used in 
heating applications. 

3.2.2. Future building heating load 
Calibration of building models: Table 2 illustrates the detailed cali-

bration process of the building models. Following a total of 186 tuning 
steps for 5 parameters, the building model was successfully calibrated, 
with the heating load NMBE at 4.0% and CVRMSE at 25.9%. The 5 
uncertain parameters, including heating setpoint, infiltration rate, 
appliance power density, lighting power density and occupant heat gain 
were selected for the calibration process. The sequence of the selected 5 
parameters was predetermined by sensitivity analysis performed on an 
office building in Cambridge [52]. The calibration results can be found 
in Fig. 11. The R2 between the predicted heating load and the actual 
heating load increased from 0.62 (Step 0) to 0.98 (Step 5), indicating the 
superior performance of calibrated building model. 

Generation of future building heating load: Based on the calibrated 
building model, the future building heating load was generated by using 
the probabilistic future weather as inputs. It is assumed that the building 
heating load was dominantly impacted by the future weather, while the 
other parameters of the buildings, such as internal gains and equipment 
efficiencies were kept unchanged following the settings of the calibrated 
building model. Fig. 12 shows the future building heating load from 
2022 to 2041. The annual heating load ranged between 47.2 and 74.8 
kWh/m2 in 2022, and between 45.8 and 76.8 kWh/m2 in 2041. Due to 
the impacts of global warming, the annual mean heating load of 335 
weather scenarios decreased from 63.4 kWh/m2 in 2022 to 60.0 kWh/ 
m2 in 2041. 

4. Retrofit optimisation results 

4.1. Optimal sizing of ASHPs 

The hybrid heating systems consist of the original gas boilers (a total 
heating capacity of 3060 kWh) and the newly add-on ASHPs. Fig. 13 
presents the required ASHP capacity at different numbers and the life-
cycle costs of the hybrid heating systems. It can be found that the 
optimal number of ASHP was 3 with each capacity of 468 kW. The 
capital cost per capacity decreased with the increased capacity per ASHP 
according to Eq. (11). Compared with the utilisation of GBs, although 
increasing total capacity (when the ASHP number is over 3) can prolong 
the ASHP running time, the increased capital cost would exceed the 
reduced operation cost. The optimal solution can reduce the total mean 
lifecycle cost by 52% compared to that of the original GB system. 

4.2. The performance improvement of the hybrid system 

4.2.1. Operation cost reduction 
Fig. 14 presents the annual operation cost of the original system 

Fig. 7. Comparison of weather parameters for the existing weather TMY files.  
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Fig. 8. RMSE and PICP of monthly mean outdoor air temperature with the increased cumulative share of global climate models.  

Fig. 9. Comparison of monthly mean temperature generated from the probabilistic climate model and actual measurement for the same period between 2015 
and 2021. 

Fig. 10. Future weather profiles from 2022 to 2041.  
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(existing GBs) and the hybrid system (existing GBs + new add-on 
ASHPs). From 2022 to 2041, the retrofitted hybrid system reduced 
annual mean operation costs by 54% to 70%. This attributes to the 
following reasons: (1) ASHPs offered improved energy efficiency to 
reduce cost and participate in power flexibility services to earn revenue. 
(2) Natural gas prices were projected to be increased while electricity 
prices were projected to be decreased due to the increased penetration of 
cheaper renewable energy as presented in ESM Fig. B-2. 

Fig. 15 shows the mean operation cost breakdown of the original 
heating system and the hybrid heating system in the next 20 years, 
where the operation cost includes the energy cost (+), carbon cost (+) 
and revenue (− ). Compared with the original GB system, the hybrid 
heating system achieved 62% lifespan operation cost savings. Given the 
capital cost of 431 k GBP of the ASHPs, 54% lifespan total cost saving 
can be achieved. It is worth noticing that the hybrid heating system also 
obtained revenue from the smart grids, which accounted for 1.1% of 
total cost savings. 

To further elaborate on the energy flexibility provided by the hybrid 
system, we analysed the running ratio (frequency) of the hybrid system, 
shown in Fig. 16. The HP mode was dominated over 20 years with an 
average running time of around 82%, indicating that operating ASHPs 
without gas boilers can meet the majority of the heating demand 
through the lifecycle. Hybrid mode occupied 17% of running time, while 
GB mode was the least frequent operation mode (less than 1%). This 
indicates significant carbon reduction potentials due to the reduced 
usage of natural gas, as further elaborated in Section 4.2.2. 

4.2.2. Carbon reduction 
The retrofit hybrid system had the potential to reduce carbon emis-

sions. Fig. 17a presents the carbon emissions between the original sys-
tem and the hybrid system. Due to the increased heating load as well as 
the performance degradation from 2022 to 2041, the carbon emissions 
of the original system would increase from 525 tons to 536 tons. In 
contrast, the electrification of the building energy system by utilising the 

Table 2 
Parameter tuning and the calibration index.  

Order Calibration actions Tuning range [lower, 
upper] 

Parameter value before tuning 
(mean) 

Parameter value after tuning 
(mean) 

NMBE 
(%) 

CVRMSE 
(%) 

0 Baseline     36.2  119.9 
1 Heating setpoint (◦C) [15,25] 20 21.0  22.4  70.2 
2 Infiltration rate (ACH) [0.5,1.25] 1 1.2  11.6  47.7 
3 Appliance power density (W/ 

m2) 
[3,22] 11 9.5  4.4  31.5 

4 Lighting power density (W/m2) [1.5,15] 9 8  − 1.3  27.3 
5 Occupant heat gain (W/m2) [0.1,7] 4 3.4  4.0  25.9  

Fig. 11. Comparison between the predicted heating load and actual heating load.  

Fig. 12. Future building heating load from 2022 to 2041.  
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ASHPs would reduce carbon emissions from 106 tons to 28 tons due to 
the decrease of electricity carbon emission factors in the future 20 years 
(ESM Fig. B-4). The carbon reduction rate by the hybrid system was from 
an average of 80% in 2022 to 95% in 2041, as shown in Fig. 17b. The 
hybrid air-source heat pump/gas boiler system offered an average of 
88% lifespan carbon emission reduction. 

4.2.3. Discounted payback period 
The payback period indicates the number of years needed for the 

payback of the surplus capital cost for installing ASHPs to the existing 
heating systems. The hybrid system had a satisfactory economic per-
formance. It can be seen from Fig. 18 that the discounted payback period 
of the hybrid system varied between 2.5 and 3.4 years with a mean value 
of 2.9 years. The shorter payback period indicates the better economic 
performance of the hybrid system. For the hybrid heating system, the 

ASHPs mainly provided heating under the part load conditions, while 
GBs provided heating under near full or full load conditions. Compared 
with the retrofit option that fully replaces the GBs with ASHPs, the 
hybrid operation of GBs and ASHPs could greatly reduce the capital cost 
as the required capacity of ASHPs would be reduced. It is worth noticing 
that the payback period for the full replacement of GBs with ASHPs is 
not discussed in this study. The reason is that when fully replacing of 
GBs with ASHPs, additional retrofit measures such as an upgrade of 
radiator and fabric should be performed. Otherwise, the ASHPs will fail 
to meet the building heating requirements due to a lower supply water 
temperature. Our future studies will investigate these holistically taking 
into account radiator and fabric upgrade costs. 

Fig. 13. Optimal sizing of ASHPs and lifecycle cost of hybrid heating systems.  

Fig. 14. Annual operation cost of the original system and the hybrid system.  
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5. Discussion 

5.1. Potentials to meet future cooling demand 

Fig. 19 shows the building cooling loads generated from the cali-
brated building model considering the climate impacts. The annual 
mean cooling loads were projected to increase from 9.5 kWh/m2 in 2022 
to 13.6 kWh/m2 in 2041 obtained from the calibrated building model. 

Would the retrofitted ASHPs have the potential to meet the future 
cooling demand? To answer this question, the total cooling capacity of 
the retrofitted ASHPs over the operating year was compared with the 
maximum cooling load. Here, the design cooling capacity of the ASHPs 
was obtained by referring to the technical manual [39]. According to 
this technical manual, if an ASHP has a design heating capacity of 468 
kW, its cooling capacity is 854 kW. If the equipment performance 
degradation is taken into consideration, the actual cooling capacity of 
the ASHPs will be reduced throughout their service lifecycle. Fig. 20 
shows the comparison of the building’s maximum cooling load and 
ASHP’s total cooling capacity over the future 20 years. It can be found 
that the ASHP total cooling capacity would be higher than the maximum 
cooling load in most scenarios, indicating that the retrofitted ASHP can 
mostly meet the future cooling demand. This is rather important 
because, in the context of climate change, ASHPS can effectively address 

the intensifying concerns over the mitigation of indoor overheating in 
more insulated and airtight buildings (with higher thermal efficiency) in 
the absence of other appropriate cooling means [60]. 

5.2. Research limitations and future work 

The main focus of this study is to introduce a retrofit strategy for 
buildings that rely on gas boilers for heating, a practice commonly found 
in the UK, North America, and Southern Europe. The proposed method 
may not be directly applicable to central heating systems typically seen 
in Scandinavia, Northern Europe, Eastern Europe, and Northern China. 
To retrofit central heating systems, optimisation of the heat distribution 
network and integration of large-scale renewable energy sources would 
be necessary, necessitating increased collaboration among stakeholders 
and taking into account the wider energy strategy and infrastructure 
within the network’s service area. Based on the performance tests of the 
developed method and a review of the existing literature, several issues 
still need to be addressed in further studies to ensure successful imple-
mentation in practice.  

• This study assumes that building internal gains would not be 
changed, and thus only investigate the impacts of climate change on 
building heating load in future scenarios. However, there might be 
some uncertainty based on the following current trends (some of 
them possibly counteracting each other): increasing use of appli-
ances, especially IT equipment, increasing equipment energy effi-
ciency, and reduced occupants due to remote working. For instance, 
a study by Jenkins et al [61] shows ASHPs could have an improved 
COP with reduced required size in the “2030” office, compared with 
the baseline “2005” office. The impact of internal gains on building 
heating load and system sizing should be further explored.  

• Identical ASHPs with different numbers were designed in this study 
to simplify control implementation, installation, and maintenance. 
However, it may not be the most efficient approach to account for 
partial load in some applications [62]. Therefore, a case-dependent 
investigation is necessary to determine the optimal sizing for 
improved efficiency, including different combinations of ASHPs with 
varying numbers and capacities.  

• The proposed uncertainty-based optimal energy retrofit method for 
integrating ASHPs and GBs was conducted under the condition that 
ideal controls were adopted to achieve the intended operation of a 
specific hybrid operation. Although this is reasonable under the 
retrofit planning stage, several issues still need to be addressed in 
further studies for successful implementation in practice. i. Devel-
oping an online control strategy, e.g., model predictive control [63], 
can improve environmental control and limit comfort sacrifice. ii. 
Online adaptive and calibration strategies [64] are also useful to 
refine the operating schedule of ASHPs and GBs when considering 
uncertainties and performance degradations. iii. The hybrid heating 
system can be further integrated with smart energy storage systems 
to increase system energy flexibility and participant in multiple de-
mand response programs in electricity markets.  

• Although plant rooms are normally designed to allow for a minimum 
of 20% additional space for equipment expansion [65], the addi-
tional spaces required for accommodating both the GBs and ASHPs of 
hybrid heating systems should be further investigated to test the 
feasibility and applicability prior to the energy retrofits. 

• The case study of Cambridge buildings has proved the generaliz-
ability of the proposed methods, by adopting the self-correction 
building model and automated global climate models. Nonetheless, 
the proposed method could be adapted and applied to other hybrid 
configurations of heating systems, depending on the availability of 
data and resources.  

• The consideration of the update of envelope systems has been 
ignored in this study, as the main focus is on developing a method-
ology for retrofitting heating systems. The importance of retrofitting 

Fig. 15. Lifecycle mean operation cost breakdown of the original system and 
the hybrid system. 
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both the building envelope and heating systems to minimize heating 
demand and reduce carbon emissions in some scenarios is recog-
nized. In future work, it is possible to extend the methodology to 
include fabric upgrades within the methodology.  

• This study focuses on exploring the benefits of integrating ASHPs 
into existing GBs without factoring in other energy systems associ-
ated with higher capital costs like thermal energy storage (TES) and 
renewable, waste heat, biomass, and geothermal energy systems. 

However, exploring the potential of upgrading building envelopes, 
enhancing building thermal inertia, and incorporating TES and 
electric boilers in future research can lead to further improvements 
in the energy flexibility of building heating systems. 

6. Conclusion 

This study proposes an uncertainty-based optimal energy retrofit 

Fig. 16. Operating modes of the hybrid system.  

Fig. 17. (a) Comparison of carbon emissions between the original system and the hybrid system and (b) carbon reduction rate by the hybrid system.  
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method for integrating the air sources heat pumps (ASHPs) with the 
existing gas boiler (GBs) heating systems, providing enhanced energy 
flexibility and climate adaptability. Four categories of uncertainties that 
could affect the sizing of ASHPs were quantified, including future 

weather, future building demand, economic and emission factors, as 
well as equipment performance variations. A hierarchical optimisation 
framework is then employed for electricity markets under uncertainty 
scenarios, in which it determines the baseline power of ASHPs in energy 
service markets and selects the optimal mode and service type in 
ancillary service markets. An existing gas boiler heating system, serving 
educational buildings located at the University of Cambridge, UK, was 
selected for retrofit analysis. Based on the testing results, some detailed 
conclusions can be drawn: 

• From 2022 to 2041 (the next 20 years), the annual mean air tem-
perature would climb by an average of 0.7 ◦C due to climate change 
based on the estimates from probabilistic climate models. The annual 
mean heating load decreased by 5.6%, from an average of 63.4 kWh/ 
m2 to 60.0 kWh/m2 due to the impacts of global warming.  

• The hybrid operation of air-source heat pumps and gas boilers can 
provide both energy and ancillary services, such as load covering, 
frequency containment reserve and frequency restoration reserve. 
Particularly, the energy revenue accounted for 1.1% of lifespan mean 
operation cost savings.  

• The best retrofit alternative of the hybrid heating system offered 
significant lifecycle performance, achieving an average of 88% life-
span carbon emission reduction, a 54% lifespan total costs reduction, 
and a payback period of around 3 years.  

• Retrofitted air-source heat pumps can also mostly meet the future 
cooling demand to address intensifying concerns over the mitigation 
of indoor overheating in light of global warming.  

• The hybrid heating system provides a three-win solution for various 
stakeholders: carbon reductions for society, cost savings for property 
holders and improved grid stability for utilities. 

Fig. 18. Discounted payback period of the hybrid heating system.  

Fig. 19. Future building cooling load from 2022 to 2041.  

Fig. 20. Building maximum cooling load versus ASHP total cooling capacity.  
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