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Kinetic Monte Carlo (KMC) simulations have
been instrumental in multiscale catalysis studies,
enabling the elucidation of the complex dynamics
of heterogeneous catalysts and the prediction of
macroscopic performance metrics, such as activity
and selectivity. However, the accessible length-
and time-scales have been a limiting factor in such
simulations. For instance, handling lattices containing
millions of sites with ‘traditional’ sequential KMC
implementations is prohibitive owing to large
memory requirements and long simulation times.
We have recently established an approach for exact,
distributed, lattice-based simulations of catalytic
kinetics which couples the Time-Warp algorithm with
the Graph-Theoretical KMC framework, enabling the
handling of complex adsorbate lateral interactions
and reaction events within large lattices. In this
work, we develop a lattice-based variant of the
Brusselator system, a prototype chemical oscillator
pioneered by Prigogine and Lefever in the late
60s, to benchmark and demonstrate our approach.
This system can form spiral wave patterns, which
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would be computationally intractable with sequential KMC, while our distributed KMC
approach can simulate such patterns 15 and 36 times faster with 625 and 1600 processors,
respectively. The medium- and large-scale benchmarks thus conducted, demonstrate the
robustness of the approach, and reveal computational bottlenecks that could be targeted in
further development efforts.

This article is part of a discussion meeting issue ’Supercomputer modelling of advanced
materials’.

1. Introduction
Kinetic Monte Carlo (KMC) simulations have made a significant contribution towards
understanding and predicting the dynamic properties of materials [1–4]. Among the different
fields, heterogeneous catalysis has widely adopted lattice-based KMC simulations, whereby
the catalytic surface is represented by a set of connected sites, on which adsorbates can
bind and react. Crucially, the rate constants of the pertinent elementary reaction events, i.e.
adsorption/desorption, surface site hopping (diffusion), and reaction, can be calculated by lower-
level methods, e.g. ab initio quantum chemistry methods or molecular dynamics. Combining KMC
with these methods grants it significant predictive power and makes it the method of choice for
unravelling the complexity of catalytic kinetics. The increasing popularity of lattice-based KMC is
evidenced by the number of mature software codes available that implement this method. Some
examples of widely adopted such codes include Zacros [5–10], SPPARKS [11,12], KMCLib [13] and
kmos [14,15].

While increasingly popular, KMC simulations can be computationally challenging. The cost of
a KMC simulation is, in principle, determined by the complexity of the chemical system under
study in terms of number of reactions and adsorbate–adsorbate lateral interactions (either short-
or long-range). For the most complex chemical reaction systems, KMC runs can require wall
times ranging from several hours to several days for a sufficient number of elementary events
to be executed, and accurate statistics to be obtained. A key computational limitation is the serial
(sequential) nature of KMC [16], whereby execution of an event, e.g. an adsorption on a certain
site, depends on the previous history, e.g. past events that result in that adsorption site being
empty. Events must therefore be executed sequentially to ensure that the simulated history is self-
consistent. This serial execution has limited the applicability of ‘traditional’ KMC algorithms to
small domains, on the order of a few tens of nm [17,18].

Broadening the applicability of KMC to larger systems and improving its computational
efficiency is an active area of research, and tends to focus on tackling specific needs, for example,
addressing the timescale disparity [19–21], or on generic algorithms and implementations that
improve certain procedures without affecting the accuracy (e.g. [6,9,22–24]). Despite these
developments, KMC simulations on larger lattices, with millions of sites, have remained generally
intractable.

Such large simulations may indeed be necessary to capture phenomena like spatio-temporal
pattern formation and oscillations exhibited by reactions taking place in extended media.
Pertinent research efforts are motivated by the need to unravel the complexity of such systems (i.e.
obtain fundamental understanding), but also by the potential benefits of controlling, improving,
and/or engineering novel chemical systems for technologies of practical interest. For instance,
CO oxidation on Pt catalysts in surface science experiments [25] and in reactors [26–28], partial
oxidation of methane on Pd catalysts [29], N2O decomposition on Cu-ZSM5 [30], and the NO
reduction by CO, H2 or NH3 on Pt surfaces [31,32] have all been shown to exhibit oscillations
that may markedly affect activity or selectivity. In general, it has been argued that oscillations
and spatio-temporal pattern formation may lead to potentially dangerous operating regimes
in industrial reactors, but when properly managed and effectively controlled they could lead
to enhancements in the conversion [33], thereby motivating fundamental studies to better
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understand such phenomena. Moreover, patterns such as spiral waves have been observed in
extended chemical media, a well-known case being the Belousov–Zhabotinsky reaction [34].
Applications of such spatio-temporal complexity that might be of practical interest encompass the
development of chemical systems that can perform computations [35] or the control of biological
systems [36].

When it comes to computational investigations of such phenomena with KMC, the size of
the lattice that is required to capture the dynamics of interest is dictated by the characteristic
wavelength of the pattern. For example, the spiral waves reported by Nettesheim and co-
workers for the catalytic CO oxidation on Pt(110) [25], the wavelengths are on the order of a
few micrometres, requiring tens of millions of sites to be reproduced. Since the serially executed
KMC implementations are unable to simulate systems in which patterns form on the micrometre
scale, other means must be sought to make such simulations possible.

This has motivated the development of approaches in which the computational workload is
distributed to multiple processing units (computer processors), thereby enabling the execution of
KMC simulations in parallel [37–42]. Conceptually, these methods involve domain decomposition
and algorithmic protocols to execute elementary events concurrently, in such a way that
(eventually) the simulated history is self-consistent, i.e. free of conflicts due to events occurring on
the boundaries of the subdomains. This self-consistency is achieved either via synchronization or
by rolling back in time and correcting (re-simulating) the history that is invalidated because of the
boundary conflicts. In the latter approach, each processing unit (PU) generates a KMC trajectory
for its subdomain and once all those trajectories are validated as consistent up to a specific point
in time, they are all ‘registered’ to the global history that corresponds to the entire computational
lattice.

Owing to the technical complexities of such distributed KMC simulation approaches, software
implementations thereof in the fields of catalysis and materials science are currently scarce.
For instance, SPPARKS [11,12] has implemented the approximate semi-rigorous synchronous
sublattice algorithm [39] and SPOCK [43] includes an exact parallel KMC implementation
based on the Time-Warp paradigm [37]. Still though, the latter implementation is not generic,
and the user needs to provide system-specific code when building custom models. Also, both
approaches mentioned above, lack validation procedures that would verify the correctness of the
implementation.

To address these challenges and deliver a generic, parallel KMC implementation that can be
validated, Stamatakis and co-workers have coupled the optimistic Time-Warp algorithm with the
graph-theoretical KMC framework into the software package Zacros [5]. Preliminary benchmarks
have demonstrated acceleration factors of more than 3 orders of magnitude on 400 processing
units for a simple system with adsorption/desorption and up to first nearest-neighbour lateral
interactions [5]. The better-than-expected performance was attributed to the smaller memory
requirements and faster memory reading and writing, in addition to distributing the time-
consuming operations to several processing units. A more complex system was also benchmarked
in [5], which includes 22 elementary events capturing CO oxidation dynamics on a Pd(111) lattice
with two site types (fcc and hcp), and incorporates a cluster expansion with 88 patterns, including
single-, two- and three-body patterns [44]. For this system, a speed-up factor of about 110 × was
obtained when simulating a lattice with more than 13.4 million sites on 729 processing units,
compared with a serial run.

While demonstrating the power of the new approach coupling the Time-Warp algorithm
with the graph-theoretical KMC framework, all these benchmarks entailed systems in which the
adsorbate layer is homogeneous on the nanometre scale and beyond. Indeed, while local site-to-
site correlations can be observed, e.g. (2 × 2) or (

√
3 × √

3) ordering, no large-scale concentration
gradients are exhibited by these systems. Since, as argued earlier, pattern formation is of particular
interest in chemical kinetics and catalysis, this work focuses on benchmarks of our approach
on a prototype system capable of exhibiting spiral wave pattern formation. This system is a
lattice-based variant of the Brusselator system invented by Prigogine and Lefever to study non-
equilibrium instabilities [45–47]. We demonstrate that our distributed KMC algorithm is capable
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of reproducing the spiral wave patterns of this system, and we explore the robustness and
computational efficiency of the approach.

The rest of this paper is organized as follows. First, we provide a brief overview of the Time-
Warp algorithm. Then, we provide a detailed description of the lattice benchmark model. Finally,
we present our results and discuss some technical and computational aspects regarding the
observed performance.

2. Methodology

(a) Overview of the Time-Warp algorithm
The concept of Virtual Time and the Time-Warp algorithm are thoroughly discussed in the original
paper by Jefferson [37], and the full details of our implementation coupling this algorithm with
the graph-theoretical KMC can be found in [5]. Below, we provide a brief overview thereof.

Based on the Time-Warp paradigm, the main idea behind distributed KMC simulation is to
decompose the entire lattice domain into smaller, non-overlapping, subdomains, each one of
which is assigned to a different PU (also referred to as a processing element (PE)). A PU (or
PE) is conventionally a CPU core. Each PU stores and deals with not only the lattice state of
the subdomain to which it has been assigned, but also a ‘halo’ region comprising sites from
neighbouring subdomains. The depth of this halo region is chosen to be just large enough to
handle all possible boundary events, by considering the spatial extent of all the adsorbates
(which may be multi-dentate), elementary reactions and lateral energetic interactions involved
[5]. In general, a halo region with a small area relative to that of each subdomain is associated
with good parallel efficiency, since each PU executes the usual KMC method independently
from other PUs for events within the ‘private portion’ of its subdomain. The latter encompasses
sites that are essentially far enough from shared boundaries that they do not immediately affect
events happening in other domains. However, events that occur close to such boundaries, i.e.
within one or more halo regions, necessitate some ‘collaboration’ between the PUs sharing these
boundaries.

Thus, all events that happen away from the boundaries are executed concurrently by each PU,
whereas the events at the boundaries are communicated among PUs and handled appropriately.
Owing to the asynchronous nature of the execution of events and the random time advancement
in KMC simulations, each PU has its own simulation time; hence, causality violations may occur,
as will be discussed in more detail shortly. For the KMC trajectory to be exact, these violations
need to be resolved in an algorithmically robust manner. The Time-Warp algorithm provides the
required ‘machinery’ so that exact KMC simulations can be performed in a distributed manner.

Consider a scenario in which process PU1 executes an event at a boundary shared with its
neighbour PU2 (figure 1 for a visual representation). The latter PU needs to have knowledge about
this event, and thus, an appropriate message is sent from PU1 to PU2. If the receiving processor,
PU2, is lagging behind PU1, then handling the message is straightforward. The message is put
into a queue and appropriate action is taken when PU2 reaches that particular KMC time. What
is less straightforward, however, is when the sender, PU1 lags behind the receiver, PU2. To better
appreciate this, suppose that the message about an event that had just occurred on the timeline of
PU1 is communicated to PU2. That message has a timestamp of t1. However, PU2 is ahead (t2 > t1)
and therefore the message pertains to its past. The history of PU2 from time t1 onwards is wrong
because the communicated event has not been accounted for; this constitutes a causality violation.

The only way to resolve this causality violation is to revert (roll back) to a time before t1 and
re-simulate the history, taking into account the communicated event. To enable such rollbacks, all
PUs need to have snapshots of the system available along their history, so that they can revert
to them when needed. Therefore, as each PU propagates only its allocated subdomain, it takes
complete snapshots of its entire simulation state and stores them in memory at regular intervals
during the course of the KMC simulation, e.g. every 1000 KMC steps.
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Figure 1. Schematic procedure of causality violations and of the way they are resolved. The blue rectangular bars represent
KMC timelines; black squares represent snapshots saved; circles with inward and outward arrows represent received and sent
messages, respectively; triple arrows represent anti-messages. (a) PU2 receives a message with timestamp t5, which is at its
past. (b) PU2 reverts back to time t2 using a saved snapshot and re-simulates the history until t5. PU2 sends anti-messages with
timestamps t6 and t7 corresponding to the previously sent messages. (c) PU1 receives the anti-messages and reverts back to t4
using a saved snapshot. (Online version in colour.)

The situation described above is even more complicated if PU2 had sent messages to other
units, after KMC time t1 but before the causality violation occurred. Since the history of PU2
between t1 and t2 is now being re-simulated, any actions performed by other PUs as a result
of such messages need to be corrected. Then, PU2 needs to send each of those units an ‘anti-
message’, that encodes an ‘undo’ action to a previously sent message. The PUs that receive these
anti-messages may have to revert back as well and correct their histories (this would happen if
the timestamp of an anti-message is smaller than the current KMC time of the receiving PU). A
schematic of causality violations involving three processing units is illustrated in figure 1. It is
possible that the causality violations and the rollback procedure produce a cascade of violations
that could affect the entire domain and slow down the whole simulation. However, such cases
are system-dependent and are rare in practice. In any case, the Time-Warp algorithm provides
all the procedures necessary to resolve such conflicts and ensure the consistency of the simulated
history.

As already noted, rolling back in KMC history necessitates that PUs regularly save snapshots
of the entire state of the simulation in the memory. However, since the latter is limited, the
simulation needs a procedure to free up memory and delete the snapshots that are no longer
needed. Such a procedure involves global communications. Therefore, at regular intervals, all PUs
communicate with each other to determine which one has the smallest KMC time, ts. Assuming
that there are no pending messages, the histories of all PUs are mutually consistent up until ts,
and thus, any snapshots taken before ts may be safely deleted. If there are pending messages, the
smallest between the PUs’ KMC times and the timestamps of pending messages is taken as ts. The
latter (ts) is referred to as Global Virtual Time (GVT) and represents the time-point up to which
the global simulation history is consistent and will never again be revised (corrected). Thus, the
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Table 1. Elementary events (not including diffusions) of the lattice-based Brusselator adaptation, vis-à-vis those of the original
system. The labelling of the events corresponds to that in [36].

event label ‘Original’ Brusselator lattice-based Brusselator

(a, d) A→ X, X→ E X(gas) + ∗ ↔ X∗
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) 2X + Y→ 3X 2X∗ + Y∗ → 3X∗
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(c) B + X→ Y + D B(gas) + X∗ ↔ Y∗ + D(gas)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GVT serves as a metric to quantify the overall progress of the KMC simulation and decide when
the simulation can be terminated (i.e. when the GVT exceeds the final simulation time set by the
user).

An important detail regarding the Time-Warp implementation pertains to the case in which
all the available memory is filled up before a global communication takes place to remove the
no-longer-needed snapshots. In this case, certain procedures must be invoked to: (a) sparsify the
queue in which snapshots are saved, e.g. by deleting every other snapshot to free memory, and (b)
increase the interval over which snapshots are taken so that the queue does not fill up again after
the GVT is calculated (e.g. instead of saving a snapshot every 1000 KMC steps, now save every
2000 KMC steps). If needed, the above procedures are invoked again to ensure that the frequency
of saving snapshots is appropriate, given the available memory.

The Time-Warp algorithm, as briefly introduced above, includes two user-defined parameters
that affect the computational performance. These are (a) the number of KMC steps after which
the PUs take a snapshot and (b) the real time interval after which the global communication takes
place. The investigation of the impact of these parameters on the performance of the Time-Warp
algorithm is, however, out of the scope of the current study. For this reason, in our simulations we
have chosen optimal values following a limited number of shorter runs and we kept them fixed
for all the runs presented in the following section.

(b) Lattice-based Brusselator benchmark system
The Brusselator reaction mechanism was introduced by Prigogine and Lefever in the late
60s to study symmetry-breaking instabilities in dissipative systems [46]. It involves two main
species, one of which promotes its own production in an autocatalytic manner. This results
in rich dynamic behaviour, specifically oscillations, under certain parametric constraints and
assuming fast diffusion (well-mixed system). Furthermore, if the reaction is embedded into a
spatially extended medium into which molecular species can diffuse (in addition to reacting), an
instability occurs when diffusion is slow compared with reaction, and as a result, the system can
exhibit spatio-temporal pattern formation. Such a system is therefore ideal for demonstrating the
capabilities of our distributed KMC approach by reproducing such spatio-temporal patterns at
large scales.

To use our KMC approach on the Brusselator system, the reaction mechanism of the latter
needs to be adapted for on-lattice simulation. The pertinent elementary reactions (excluding
diffusion events) are shown in table 1, vis-à-vis those of the original system [46]. In the surface
events, a star, ∗, denotes an empty site, and a species with a star, e.g. Y∗, represents an adsorbed
molecule. Thus, in the lattice-based Brusselator, two reactions that produce and consume species
X in the ‘original’ Brusselator are lumped into an adsorption/desorption event. The trimolecular
step is simulated with Y∗ in the middle, surrounded by two X∗ molecules. The conversion of X∗
into Y∗ is considered as a reversible Eley–Rideal reaction with B and D as gas-phase species. The
reason that this reaction was taken to be reversible in our model, is to avoid getting trapped into
a state in which the lattice is completely covered by Y∗ species. In such a case, if the reaction in
discussion was irreversible, there would be no mechanism for X∗ molecules to reappear on the
surface: X would no longer be able to adsorb, since there would be no empty sites, and there
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Table 2. Schematics and values of the pre-exponentials of the elementary events of the lattice-based Brusselator. The rate
constants are also shown for each event at the conditions of the simulations; these rate constants give the expected rate of
occurrence of each event per instance of the pertinent coverage pattern on the lattice.

event number event/reaction Afwd Afwd/Arev kfwd krev

(i) 0.7 bar–1 s–1 0.91 bar–1 0.28 s–1 0.769 s–1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) 3.8 s–1 — 3.8 s–1 —

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(iii) 9 bar–1 s–1 15 3.6 s–1 0.12 s–1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(iv) 400 s–1 — 400 s–1 —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(v) 4 s–1 — 4 s–1 —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(vi) 400 s–1 — 400 s–1 —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

would be no mechanism to convert Y∗ into X∗; hence, the surface would be poisoned. This is not
a concern in the ‘original’ Brusselator, in which there are no constraints on the molecule numbers
(or species concentrations) and thus reaction (a) of table 1, which brings X∗ into the system,
never ceases. Furthermore, we neglect species A and E of the ‘original’ Brusselator, without
distorting the dynamics of the reaction mechanism, since anyway the concentrations of both of
these species were kept constant in the analysis of Prigogine & Lefever [46]. In our lattice-based
Brusselator, defining the kinetic and thermodynamic constants for adsorption (the latter being the
ratio between the kinetic constants of adsorption versus desorption) enables us to precisely tune
the fluxes of X into and out of the system. Moreover, the partial pressures of B(gas) and D(gas) are
kept constant, in line with the concentrations of species B and D of the ‘original’ Brusselator being
maintained at constant levels.

The spatially extended medium onto which the reactions are happening is represented
as a two-dimensional fourfold (square) lattice. To ensure effective adlayer mixing at a local
level, three diffusion steps were considered: diffusion of X∗, as well as Y∗, to a neighbouring
vacant site, but also exchange between X∗ and Y∗ (last three rows of table 2). The diffusion
of Y∗ was taken to be 100 times slower than the other two diffusion events, in order to
induce the instability necessary for spiral wave formation. The activation energies of all events
were taken to be zero and there are no adsorbate lateral interactions in this model. Thus,
the rate constants of surface events were equal to the corresponding pre-exponential (Afwd
or Arev), and for events involving gas-phase species, the pre-exponentials were multiplied
by the corresponding partial pressures. For instance, for the adsorption step (i)-forward, the
rate constant is 0.7·PX(gas) while for the desorption it is 0.7/0.91 = 0.769 s–1. The gas species
partial pressures were: PX(gas) = 0.4 bar, PB(gas) = 0.4 bar, PD(gas) = 0.2 bar, and the rate constants
calculated with these values are shown in table 2. Finally, note that in the latter table, step (ii)
is depicted with an angle of 90° but it can also occur when the three sites (occupied by the Y∗
and two X∗ adsorbates) are co-linear. A detailed discussion on the preliminary investigations that
led to the choice of the parameter values just noted, appears in the electronic supplementary
material.
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Figure 2. Geometry and coverages used as initial condition. (a) The overall domain of 4000× 4000 sites was separated into
four sections using two overlapping rectangles as indicated in the diagram. The centre of the larger rectangle is positioned
exactly at the centre of the domain, and the long sides of both rectangles form an angle of 45° with the side of the overall
domain. (b) Adsorbed molecules of species X∗ and Y∗ were seeded onto the lattice thereby achieving the coverages denoted in
the diagram, for each of the four sections. (Online version in colour.)

3. Results and discussion
We now proceed to discuss the results of a lattice-based Brusselator simulation in which the
evolution of spiral wave patterns was observed from an appropriate initial state (initial condition).
This simulation was performed with the Time-Warp algorithm and the graph-theoretical KMC
approach as implemented in our KMC software Zacros. A domain of size 4000 × 4000 was used
(16 million sites in total) and the simulation started from an initial state in which molecules
of species X∗ and Y∗ were seeded throughout the domain in such a way as to invoke the
formation of spiral waves (figure 2), by creating a ‘broken’ wavefront that curls around its edges
in opposite directions. The mechanism of wave propagation is discussed in detail below, but we
can already note that at the front-end of the wave, the ‘activator’ species X∗ exhibits a sharp
increase in coverage, which propagates through the medium as Y∗ gets converted into X∗. This
peak coincides with a drop of Y∗ coverage, while this species is gradually repleted at the rear-
end of the wave. Imposing solely a higher initial coverage of X∗ in a linear segment of the lattice
would result in an oval wave, since conversion of Y∗ would be possible in all directions. To create a
‘broken’ wavefront, we additionally impose low coverage of Y∗ (pink shaded domain in figure 2)
so that the wave can propagate only towards the upper right corner of the domain (since there is
not enough Y∗ to get converted at the opposite direction), and then curl spontaneously around at
its edges. Some preliminary simulations in smaller domains helped in adjusting the thicknesses
of the domains and identifying minimum lengths for which prominent spiral patterns would
emerge.

Representative snapshots of the average coverages of the two species over time are shown
in figure 3. The initial state of figure 2, also shown at t = 0 s in figure 3a,d, gives rise to two
spirals that rotate in opposite directions. To explain how these patterns emerge, we first revisit
the dynamics of the underlying reaction network from a qualitative standpoint, noting that the
key feature of the Brusselator is the competition between the rapid conversion of Y∗ into X∗ in
the presence of pre-existing X∗, and the slower conversion of X∗ back into Y∗. More specifically,
the first conversion is achieved via the autocatalytic reaction (ii) of table 2, which requires two
molecules of X∗ to be located at neighbouring sites with Y∗, resulting in a quadratic rate-versus-
coverage dependence. The latter dependence leads to threshold behaviour: for low coverages of
X∗ the reaction rate is negligible, while, for higher coverages, the rate rises sharply. Of course, the
rate also depends on the coverage of Y∗, so when this species gets depleted, the rate of conversion
of Y∗ to X∗ drops dramatically. At that point, the system relies on the forward step of reaction (iii)
of table 2 for Y∗ to be replenished. This reaction, however, exhibits first order kinetics with respect
to the coverage of X∗ and therefore proceeds relatively slowly. Consequently, the Brusselator
exhibits oscillations in which the coverage of X∗ rises rapidly and concurrently with a depletion
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Figure 3. Snapshots of the average fractional coverages of X∗ (a, b, c, g, h, i) and Y∗ (d, e, f, j, k, l) at various times (in units
of seconds) during the simulation. The coverage of X∗ spans a range of about 0–0.5 and that of Y∗ a range of about 0.3–0.7.
The initial state (a, d) leads to the formation of two spirals rotating in opposite directions. At time 413 s, a secondary wavefront
emerges close to the tip of the lower spiral, and eventually pushes the tip closer to the centre of the domain. (Online version in
colour.)

of Y∗ (‘activation’ phase) followed by a more gradual or delayed repletion of Y∗ (‘refractory’
phase). Such oscillations are indeed observed during the initial times of the simulation, as shown
in figure 4a.

In the spatially extended medium simulated, these oscillatory dynamics in tandem with the
diffusion of the two interacting species play a key role in the formation of wavefronts that
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propagate through the medium. Crucially, the diffusion rate of the activator species X∗ needs
to be higher than that of Y∗, so that any gradients in the coverage of the latter persist for
sufficiently long timescales, enabling the wavefront to propagate effectively towards regions with
high Y∗ coverages. Thus, in the absence of any external influence, the inherent noise of the KMC
simulation leads to the emergence of wavefronts from random points in the lattice. These can be
clearly seen in figure 3b,e, in the areas far beyond the rectangles imposed in the initial state as
a perturbation. The latter led purposely into a situation in which a ‘broken’ wavefront started
rotating around its tip, a behaviour known as ‘re-entry’ in the study of chemical waves and
excitable systems [48], which eventually leads to the formation of the two spiral waves. The
range of these spirals extends progressively, which also leads to the attenuation of the oscillations
of figure 4a due to the averaging-out of the species coverages over the spatial coordinates.
Eventually, at around 400 s, the spiral patterns take up the entire domain (figure 3h,k). The time
to form the fully developed spirals depends mainly on the period of the rotation of the spiral
and the size of the lattice: at every rotation of the spiral the pattern expands slightly, because the
period of rotation is slightly shorter than that of the oscillation. In our simulation, it took about
27–28 spiral rotations to reach a fully developed at time around 300 s (for comparison, during this
time interval, regions far from the spiral would have exhibited only about 25 oscillation peaks).
Larger lattices would require longer times for the spirals to take over the entire domain, and faster
rotations would result in shorter times for this to happen.

While the patterns are robust, they are subject to perturbations due to noise (stochasticity);
for instance, at time around 413 s, a secondary wavefront emerges close to the tip of the lower
spiral and pushes the tip slightly closer to the centre of the domain (figure 3i,j). In the electronic
supplementary material, we plot spatial reactivity maps within a short time interval at that time,
showing the location where each of the elementary events of table 2 took place. The overall
statistics, averaged in space and time appear in figure 4b.

Next, we focus on some technical (computational) aspects of these KMC runs. Owing to the
large size of our lattice, the simulation was distributed over 25 × 25 = 625 PUs, so that each one
of them is assigned a subdomain of 160 × 160 sites. The entire simulation was run on Thomas,
the UK National Tier 2 High Performance Computing (HPC) Hub in Materials and Molecular
Modelling. The computational nodes on Thomas each contain 24 CPU cores (2 × 12-core Intel(R)
Xeon(R) E5-2650 v4) and 128 GB RAM. Because of the wall time restrictions, this simulation was
broken into ‘chunks’ of 24 or 48 h each. Zacros’s core implementation provides a functionality for
stopping and resuming a simulation, and consequently, runs that use this checkpointing feature
produce identical results with continuous runs, while being more robust against system faults.
The simulation reached an overall KMC time of about 620 KMC seconds and involved more than
1.6 trillion elementary events (though, due to the rollbacks of the Time-Warp algorithm, the actual
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lines are used to indicatewhere the simulationwas paused and later restarted. The numbers on the top represent the simulation
restart index of each chunk. (Online version in colour.)

times and number of events executed by the PUs were larger, as will be discussed later). In terms
of real time, the distributed simulation was running for 38 days.

Figure 5 illustrates the overall progression of the simulation. More specifically, we plot the GVT
against the wall time for the entirety of the simulation, with red dashed lines used to indicate
where the simulation was paused and later resumed. Each chunk is also numbered using its
restart index shown at the top of figure 5 (restart index of 0 denotes the initial run). As explained
above, the GVT is to be interpreted here as a metric to quantify the progression of the overall KMC
simulation, keeping in mind, of course, that the subdomains evolve asynchronously. For most of
the simulation chunks, the distributed simulation has a consistent progression rate. This, however,
is not the case for the early stages of the simulation. Up to the seventh chunk, the GVT appears
to be progressing with a fluctuating rate. At first glance, one might attribute this behaviour to the
evolving nature of the adsorbate layer as the spirals began to develop from the initial conditions.
Yet, upon closer inspection, one notices that the GVT advancement rate within each chunk is
almost linear. In addition, simulation chunks with restart indices 2, 6 and 7 have a suspiciously
low GVT advancement rate that does not appear to correlate with the dynamics of our benchmark
system.

To further investigate this behaviour, we examine the number of snapshots taken during
the interval between two global communications. The latter interval is also termed as ‘GVT
computation block’. Since the snapshots are saved regularly by all PUs, i.e. at every fixed number
of KMC steps, one may conclude that the PUs that save more snapshots execute more KMC
steps, whereas the PUs that save fewer snapshots are executing fewer KMC steps. Figure 6
illustrates two such cases. In panel (a), that corresponds to the 4th simulation chunk (cf. figure 5),
all but one of the 625 PUs are saving approximately the same number of snapshots during a
GVT computation block. Having one fast-progressing PU was observed in all the runs, and this
was attributed to the way processors from different nodes of the HPC cluster Thomas were
allocated. In particular, since each node on Thomas had 24 processors, the allocation was done
by utilizing all processors of 26 nodes and only one processor of an additional (27th) node; the
latter processor was the fast-processing PU, and all other PUs exhibited slower but equal (on
average) speeds. On the contrary, for the slowly progressing 6th simulation chunk (figure 6b),
there is number of PUs that save considerably fewer snapshots per GVT computation block.
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Figure 6. Number of snapshots taken plotted against the GVT computation block for (a) restart number 4 and (b) restart
number 6 of the simulation. Each curve represents one PU so there are 625 curves in each of the panels (a) and (b). In (a)
all of the PUs except one save on average the same number of snapshots. In (b), there are several PUs that save considerably
fewer snapshots for the whole duration of the simulation. The computational load imbalance is responsible for the single PU
that shows a higher execution of KMC steps in both panels. (Online version in colour.)

Upon further investigation, it was identified that all of the slowly progressing PUs belonged
to a limited number of computational nodes. This was an indication that either the hardware
of the aforementioned nodes was not operating at full capacity or certain background processes
were consuming computational resources. In subsequent chunks, the ‘problematic nodes’ were
excluded and thus, we started observing a consistent pattern in the GVT progression (8th chunk
onwards in figure 5).

It is pertinent to consider the extent to which, if any, the asynchronization of processors
grows over time. Kolakowska & Novotny [49] among others [50–52] have applied techniques
from non-equilibrium surface growth to understand the evolution of the virtual time horizon
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(VTH), defined as the collection of all local virtual (KMC) times (LVTs) in a parallel simulation.
The degree of asynchronization is then analogous to the roughness of a one-dimensional surface,
such that each LVT corresponds to the height of a column on the surface; the columns grow
via pseudorandom ‘depositions’ of kinetic waiting times. The roughness of the VTH can be
quantified by the standard deviation of the LVTs, expected to grow like

√
t [49]. In figure 7,

we plot the progress of this quantity during our Brusselator simulation. While there are large
fluctuations, it is not possible to identify any consistent growth. This is encouraging, since a
higher degree of asynchronization may worsen simulation efficiency, but it is likely a fortuitous
result of the frequent restarts in our simulation. In our Time-Warp implementation, each time the
simulation is paused, all PUs roll back to the most recent KMC state that satisfies LVT < GVT;
thus, only one snapshot is saved in the checkpointing file, thereby reducing disc space utilization.
Hence the PUs become synchronized after every restart operation, effectively quenching any
roughening of the VTH. We expect that roughening would be observed, however, in a longer,
uninterrupted simulation. Pausing and resuming the simulation may thus be an effective way
to mitigate VTH roughening in Time-Warp simulations, although further investigations are
needed to verify this. Other methods have already been developed to suppress the roughening in
synchronous (conservative) schemes for parallel discrete-event simulation [50], which might also
be transferrable to asynchronous (optimistic) schemes such as Time-Warp.

While we did not observe asynchronization among the different processors, the simulation
efficiency is hampered by the need to correct the simulated history via the inherent rollbacks
of the Time-Warp algorithm. To quantify the pertinent overhead, we calculate the ratio between
the KMC time that was rerun due to rollbacks versus the GVT advancement, for each interval
between successive global communications. Clearly, this quantity is zero in the ideal case of
decoupled domains because of the lack of any rollbacks. For the Brusselator simulation, this ratio
is plotted in the electronic supplementary material, figure S1 for PUs 0, 100 and 624, for the last
simulation chunk (index 24). For all PUs, the overhead is substantial, e.g. for PU 0, the ratio in
discussion ranged between 5.8 and 69.2, and on average about 14.7 KMC time units had to be
re-simulated for every KMC time unit of GVT advancement. For the fast-processing PU 624, this
ratio was even higher, with a range between 13.0 and 122.2 and an average of 31.4.

To assess the potential of the distributed KMC algorithm, we executed a short serial run
of the Brusselator system on the 4000 × 4000 lattice (using the sequential KMC algorithm on
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Table 3. Normalized simulation wall time and acceleration factors of the distributed runs.

HPC cluster simulation type
normalized simulation wall time
(hours/KMC time) acceleration factor

Thomas serial 19.7 —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

distributed 625 PUs 1.3 15×
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Kathleen serial 15.6 —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

distributed 1600 PUs 0.44 36×
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

just one processor). This simulation was initialized with a lattice state that corresponded to
the well-developed spiral patterns at t = 399.5. To enable meaningful comparisons among the
different runs, we use the normalized simulation wall time, defined as the real-world time
hours needed to simulate one KMC time unit. For the serial run on HPC cluster Thomas, the
normalized simulation wall time was found to be 19.7 h. In comparison, for the distributed
simulation over 625 PUs only 1.3 h of wall time are needed on average per KMC time unit.
Therefore, the distributed algorithm achieves an acceleration factor of approximately 15 × and,
most importantly, makes possible the simulation of our benchmark model within a reasonable
amount of time. By comparison, the serially executed KMC simulation would need slightly more
than 1.5 years of computation in order to obtain the same results (i.e. reach a final KMC time of
620 KMC time units) as those obtained by the distributed implementation in just 38 days.

Lastly, aiming to investigate the scalability and stability of the Time-Warp implementation in
large-scale distributed runs, we performed a limited number of runs using the same benchmark
set-up (Brusselator system on a 4000 × 4000 lattice) distributed over 1600 PUs instead of 625
PUs. The computational cluster Kathleen@UCL was used for these simulations, which is a UCL
HPC Facility, comprising 192 discless compute nodes each containing 40 CPU cores (2 × 20-core
Intel Xeon Gold 6248 2.5 GHz processors), 192 gigabytes of 2933 MHz DDR4 RAM, and an Intel
OmniPath network. For the first chunk of this large run, the initial condition was that of the
fully developed spirals at t = 399.5 (as in the serial run discussed in the previous paragraph).
The simulation was run for 12 h and was restarted two more times to reach a final KMC time of
57.2 KMC time units in a total real time of 35 h. These runs revealed similar slowdown issues as
those observed the runs with 625 PUs, due to slow hardware or background processes consuming
computational resources (electronic supplementary material, figure S2). Yet, the acceleration
factors achieved are significant. Table 3 summarizes both our medium- and large-scale distributed
runs by presenting the computation cost of our simulations and the achieved acceleration factors
by the distributed simulations as compared against the serial runs. As expected, distributing the
workload over more PUs, namely over 1600 versus 625, we obtain a better (higher) acceleration
factor of about 36 × .

It is useful to note that the acceleration factor from the serial run to the distributed with 625
PUs is quite less than ideal due to the extra time required to save and delete state snapshots,
perform rollbacks and re-simulate KMC history. As the number of PUs is increased further to
1600 and the subdomain area correspondingly decreases, the number of rollbacks (and fraction
of time spent re-simulating history) will be even higher. However, the speed-up relative to
625 PUs is almost ideal (1600/625 = 2.56 ≈ 36/15 = 2.4). This may be explained by less time
being required for saving/deleting snapshots, which are smaller and thus occupy less memory
per PU.

4. Conclusion
In this study, we demonstrated and benchmarked our coupled implementation of the Time-
Warp algorithm [37] and the Graph-Theoretical KMC framework [7,8], for exact, distributed
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KMC simulations of reactive phenomena. The main idea behind the Time-Warp approach is
to decompose the domain (lattice) into smaller subdomains and assign each one of them to
a different PE. Events are executed ‘locally’ for the internal sites of each subdomain, and
events that involve boundary sites are communicated to the neighbouring subdomains. Since
each subdomain has its own timeline, causality violations may occur when, for example, one
subdomain that is ‘lagging behind’ in KMC time, tries to send a species via diffusion to a nearby
domain that is further ahead in time. The KMC history of the domain that receives the particle
is no longer valid and needs to be corrected. This is achieved by saving snapshots along the
KMC simulation and restoring the most suitable one when such conflicts arise. Corrections to
the history are made repeatedly as necessary, up to the point that histories which are mutually
consistent among all subdomains are obtained.

The key feature of this method is that it reproduces exactly the dynamics of the underlying
stochastic model, without introducing numerical approximations (being only subject to the
precision errors of the computing architecture used). This is particularly attractive when
simulating complex systems in chemistry and catalysis, such as those that exhibit spatio-
temporal inhomogeneities, with examples encompassing chemical oscillators in extended media
(Belousov–Zhabotinsky reaction [34]) or pattern formation due to surface reconstruction in
catalysis. For such simulations, the absence of artefacts due to numerical approximations is key
to confidently ascertain the relationship between the underpinning reaction mechanisms and the
observed behaviour.

To demonstrate our approach in this context, we developed a lattice-based variant of the
Brusselator system and performed simulations for sufficiently large lattices and KMC times in
which spiral wave patterns were successfully observed. The distributed runs were found to have
overheads, stemming from the saving and restoring of snapshots, the necessary re-simulations to
correct the history, and the communications among the PUs. Still though, the newly implemented
parallelization in our software Zacros proved to be stable and performant, being able to simulate
the Brusselator dynamics about 15 times faster when using 625 PUs, compared with the sequential
KMC algorithm, and 36 times faster with 1600 PUs. Our approach is thus expected to be
invaluable in future research efforts aiming at obtaining a fundamental understanding of intricate
spatio-temporal phenomena on catalytic surfaces. Such phenomena could e.g. arise from surface
reconstruction, which is considered responsible for pattern formation on even simple systems
like CO oxidation on Pd(110) [25]. Harnessing the power of HPC architectures with our software
could thus make it possible to capture new physics, and bridge the gap between the molecular
scale and the meso- and macro-scales towards unravelling the complexity of heterogeneous
catalysts.
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