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Deep learning (DL) has become a key component of modern software. In the “big model” era, the rich features of DL-based software
(i.e., DL software) substantially rely on powerful DL models, e.g., BERT, GPT-3, and the recently emerging GPT-4, which are trained on
the powerful cloud with large datasets. Hence, training effective DL models has become a vital stage in the whole software lifecycle.
When training deep learning models, especially those big models, developers need to parallelize and distribute the computation and
memory resources amongst multiple devices (e.g., a cluster of GPUs) in the training process, which is known as distributed deep learning
training, or distributed training for short. However, the unique challenges that developers encounter in distributed training process
have not been studied in the software engineering community. Given the increasingly heavy dependence of current DL-based software
on distributed training, this paper aims to fill in the knowledge gap and presents the first comprehensive study on developers’ issues in
distributed training. To this end, we focus on popular DL frameworks that support distributed training (including TensorFlow, PyTorch,
Keras, and Horovod) and analyze 1,131 real-world developers’ issues about using these frameworks reported on Stack Overflow and
GitHub. We construct a fine-grained taxonomy consisting of 30 categories regarding the fault symptoms and summarize common fix
patterns for different symptoms. We find that : (1) many distributed-specific faults and non-distributed-specific faults inherently share
the same fault symptoms, making it challenging to debug; (2) most of the fault symptoms have frequent fix patterns; (3) about half of the
faults are related to system-level configurations. Based on the results, we suggest actionable implications on research avenues that can
potentially facilitate the distributed training to develop DL-based software, such as focusing on the frequent and common fix patterns
when designing testing or debugging tools, developing efficient testing and debugging techniques for communication configuration
along with the synthesis of network configuration analysis, designing new multi-device checkpoint-and-replay techniques to help
reproduction, and designing serverless APIs for cloud platforms.
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1 INTRODUCTION

Deep learning (DL) has been a key component in modern software, ranging from supporting daily activities (e.g.,
speech-to-text [60]) to safety-critical tasks (e.g., autonomous vehicles [62]). The rich features of these DL-based software
applications (i.e., DL software) increasingly rely on powerful “big” DL models. To increase the accuracy of DL models, on
the one hand, a substantial volume of training data is required; on the other hand, the DL model architectures become
more and more complex, e.g., BERT large [67] with 340 million parameters and GPT-3 [40] with 175 billion parameters.
As data increases in volume and DL models in complexity, the computational intensity and memory demand of DL
increase proportionally [59]. It is reported that the computation demand of DL training grows at a speed of 35× every 18
months [20]. As a result, developers have no other options but to parallelize and distribute computation and memory to
multiple devices (e.g., GPUs and servers) during the training process of DL models, i.e., distributed training. Distributed
training has drawn a lot of attention from the research community [67, 74, 75, 80, 82, 91, 94, 101], and gained significant
considerations in popular AI frameworks like TensorFlow [49], PyTorch [46], Horovod [41], etc. It is also observed
that distributed training draws a lot of attention from software developers. Fig. 1 presents the cumulative number of
the distributed-training-related posts on Stack Overflow (SO) over the years to 2021. We can see the overall trend of
continuous interest from developers in this topic.

Compared to non-distributed training, distributed training has its unique features and challenges. Distributed training
is performed in more complex environment settings, requiring protocols (e.g., for communication among devices) and
algorithms (e.g., for collaborations among devices). As a result, developers inevitably encounter a variety of issues
about distributed training in practice and these issues are frequently asked on developers’ Q&A forums. For example,
some developers find it difficult to configure communication between multiple devices that participate in distributed
training [12] and complain that they cannot achieve the expected training speedup [29]. Moreover, some developers
report that training may be stuck due to the drop-out of involved devices [47]. These issues are quite essentially
significant, as they not only affect the quality of DL models, but also incur a high cost of computation resources
and developers’ efforts. However, characterizing faults related to distributed training is missing. To the best of our
knowledge, only Humbatova et al. [77] mentioned a fault about data parallelism in distributed training. Zhang et
al. [102] characterized job failures in DL platforms, but did not discuss the specific features of distributed training.

To fill in the knowledge gap, this paper presents the first comprehensive study on developers’ issues in distributed
training. Given the increasing dependence of current DL software on distributed training, it is important to understand
the relevant issues that developers encounter, so that researchers and framework vendors could help developers prevent,
detect, and fix the common issues in a targeted manner. We aim to answer three research questions:

RQ1 (topics in how-to questions):What are the distributed training topics that developers frequently seek for
help? To answer this question, we investigate the common challenges that developers encounter in distributed training
by analyzing the relevant how-to-questions, which indicate the distributed training knowledge that developers are
inexpert at and thus tend to induce future faults.
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https://doi.org/10.1145/nnnnnnn.nnnnnnn


Rise of Distributed Deep Learning Training in the Big Model Era: From A Software Engineering Perspective 3

2016 2017 2018 2019 2020 2021
(till Dec. 6)

0 year

# 
po

st
s

500

1000

1500

2000

2015

2500

14
203

681

1091

1479

1901

2311

Fig. 1. The number of distributed-training-related posts on SO until each year.
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Fig. 2. Workflow of distributed training.

RQ2 (symptoms of faults): What are the fault symptoms that developers frequently encounter in distributed
training? To answer this question, we summarize the frequent software faults related to distributed training, which are
overlooked by previous work, via constructing a comprehensive taxonomy of the fault symptoms.

RQ3 (fix patterns): What are the common fix patterns for different fault symptoms in distribution training? To
answer this question, we study each symptom’s common fix patterns to provide actionable insights for automated
testing and repair techniques for distributed-training-related faults.

To collect the data of our interest, we focus our study on the three most popular DL frameworks, i.e., TensorFlow [55],
PyTorch [93], and Keras [44] that support distributed training and a widely-used DL framework that is specifically
designed for distributed training, i.e., Horovod [97]. Specifically, we construct a dataset of 1,131 distributed-training-
related developers’ issues that occur during the use of these frameworks from SO and GitHub, two commonly-used
data sources for studying software issues [63, 70, 77, 78, 103].

The results offer a series of findings that provide practical insights on better distributed training practice for
developers, future research topics for researchers, and suggestions for DL framework vendors. We summarize the key
findings and implications in Table 6. We make publicly available the code and the data in this study [54] as an additional
contribution to the research community.
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2 BACKGROUND

With the growing computation demands of DL, distributed training has been an important enabling technique for
DL software. It parallelizes and distributes the computation and memory of DL training across multiple devices, e.g.,
GPUs, TPUs, and server machines. This process involves how to split training tasks, allocate computation resources,
and coordinate various functional modules among different devices to achieve a balance between training speed and
accuracy. To facilitate the understanding of distributed training, we present its common workflow in Fig. 2.

2.1 workflow

A distributed training job first needs to be partitioned into multiple tasks that can run in parallel on different devices
( 1 ). The most common parallelization ways are data parallelism and model parallelism [90]. For data parallelism, the
training data is split into non-overlapping chunks, and then these data chunks are fed into different devices; each device
loads an identical copy of the DL model [84]; For model parallelism, the DL model is split, and then each device loads a
different part of the DL model for training [66]. Through data/model parallelism, the training data and the DL model
are distributed on different devices. Then, every device trains its own model with the data allocated to it ( 2 ). During
this process, the devices communicate with each other to transfer essential data and synchronize the training progress
on them. Finally, the trained models distributed on different devices are aggregated to obtain a new global model ( 3 ).
In the workflow, distributed training also relies on the environment, including hardware characteristics of devices,
runtime environment (e.g., memory), network setting, and installed dependency libraries.

2.2 Related Work

Distributed training. With the increment of data size, model size, and computation requirement, distributed training
has become a standard practice [81]. Distributed training for DL comes with many possibilities for parallelization,
among which data and model parallelism are predominant. In data parallelism[84], each worker (e.g., machines and
GPUs) loads an identical copy of the DL model. Training data is split into non-overlapping chunks and fed into the
model replicas of the workers. In model parallelism[66], the DL model is split, and each device loads a different part of
the model. Apart from data and model parallelism, there are also novel parallelization methods such as hybrid [81, 90]
and pipeline parallelism[76]. With the innovation of parallelization methods, the distributed DL ecosystem has become
rich and diverse [98]. DL frameworks such as TensorFlow [55] and PyTorch[93] support distributed training. Many
distributed training frameworks and systems have also emerged, such as Horovod [97], BytePS [82], PaddlePaddle [45].
Empirical study on faults. There have been a number of empirical studies that focus on faults in software systems,
including traditional parallel computing systems and large-scale distributed systems [57, 71, 87]. However, distributed
training is different from traditional parallel computing and traditional distributed programs in hardware devices they
run on and program characteristics. First, in parallel computing, the processors can access shared memory to share
information between processors, whereas memory is usually not shared in distributed training [13]. For example, a
developer asked how to implement a sparse matrix in shared memory for parallel computing [1]. This kind of issue rarely
happens in distributed training because in distributed training the processors share information with communication
between devices. Also, compared to traditional parallel computing and distributed computing, distributed training is
more likely to run on GPU/TPU devices instead of CPU devices [53]. Therefore, the GPU-related and TPU-related
faults (e.g., GPU device error) do not happen in traditional parallel computing or distributed programs. Moreover, many
faults in traditional distributed programs are related to data processing and state consistency [71]. These faults do not
Manuscript submitted to ACM
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Table 1. Summary of publication years, main objectives, and datasets in related work.

Paper Year Main Objective Dataset

[103] 2018 Symptoms and root causes of TensorFlow program bugs and challenges
in TensorFlow program bugs detection and localization. SO posts, GitHub commits

[78] 2019 Types, root causes, impacts, prone stages, commonality, and evolution of
bugs in the usage of DL libraries. SO posts, GitHub commits

[63] 2020 Popularity trend, difficulty, and taxonomy of challenges in deploying
DL-based software. SO posts

[79] 2020 Common bug fix patterns, fix pattern across bug types and libraries, risk in
fix, and challenges of fixing bugs inside deep neural networks. SO posts, GitHub issues

[77] 2020 The taxonomy of faults in DL systems. SO posts, GitHub issues,
developer interview

[102] 2020 Failure error type, common root causes, and current testing and debugging
practices in DL programming.

Failed jobs in Philly,
developer interview

[64] 2021 Symptoms and fix strategies of DL-based mobile applications. SO posts, GitHub issues

happen often in distributed training, because distributed training is compute-intensive instead of data-intensive, and
many aggregation algorithms do not require strict consistency. Therefore, existing studies on parallel computing and
distributed program faults are not applicable to distributed training faults.

With the rapid development of DL technologies, empirical studies on faults in software applications that make use
of DL frameworks have emerged. Table 1 summarizes the publication years, main objectives, and datasets of these
empirical studies. Zhang et al. [103] categorized four high level symptoms and seven root causes of TensorFlow program
faults. They found that TensorFlow users relied on statistical values to determine test results and non-determinism was
prevalent in the training process. Compared to our paper, this paper focused on only one DL framework. In addition,
none of them focused on bugs related to distributed training or analyzed the fix patterns accordingly. Islam et al. [78]
studied the characteristics of DL bugs. They found that data bugs and logic bugs were the most severe bug types in
DL software and the major root causes of these bugs were incorrect model parameters and structural inefficiency.
They characterized the bugs at a high level and did not focus on distributed training. Humbatova et al. [77] built a
large taxonomy of faults in DL systems. Their taxonomy is mainly based on the root cause and include only one fault
about data parallelism in distributed training. There are studies on the deployment challenges and faults of DL-based
mobile applications [63, 64]. Different from them, we focus on the training process instead of the deployment process
and we focus on a specific domain, i.e., distributed training. Zhang et al. [102] studied the symptoms, root causes,
and fix patterns of job failures in a cloud-based DL platform. They found that 48.00% of the failures occurred in the
interaction with the platform rather than in the execution of code logic, mostly due to the discrepancies between local
and platform execution environments and deep learning specific failures were mainly caused by inappropriate model
parameters/structures and framework API misunderstanding. Distributed training jobs were included in the dataset, but
they did not consider the differences between distributed jobs and single-device jobs when summarizing the failures.
Our paper builds a fine-grained taxonomy of fault symptoms that includes distributed-specific symptoms and analyzes
the fix patterns of distributed-specific faults.

2.3 Scope

In this paper, we focus on the technical issues that developers encounter in distributed training. First, we analyze
the frequent topics of general how-to questions about distributed training (RQ1). Then, we analyze the faults that
occur during distributed training. Specifically, we analyze the fault symptoms (RQ2) and distill common fix patterns
for different symptoms (RQ3). Note that there are two kinds of faults during distributed training: distributed-specific

Manuscript submitted to ACM



6 Liu et al.

Collect relevant 
GitHub issues

RQ1: how-to topic

RQ2: symptom
RQ3: fix pattern

Refine 
dataset

How-to 
questions

Distributed 
Training faults

Collect related 
SO questions Manual 

labeled 
data

Fig. 3. Overview of the methodology.

faults, which are caused by distributed-specific reasons (e.g., communication failure and invalid data partition), and
non-distributed-specific faults, which are caused by non-distributed-specific reasons (e.g., wrong type of input data).
Some of them share common symptoms (e.g., out of memory), although they are caused by different reasons. To show
the whole picture of fault symptoms in distributed training, in RQ2, we construct our taxonomy based on both kinds of
faults. However, the fix patterns for non-distributed-specific faults have been comprehensively studied in previous
work [77–79, 102, 103]. Therefore, in RQ3, we focus on only the fix patterns of distributed-specific ones.

3 METHODOLOGY

To characterize developers’ issues in distributed training, we collect and analyze relevant SO questions and GitHub
issues. The overview of our methodology is illustrated in Fig. 3.

3.1 Data Collection

Since distributed training is mainly supported by state-of-the-art frameworks, we collect developers’ issues that occur
during the use of relevant frameworks to construct the dataset of our interest. Specifically, we focus our study on
Horovod, which is the most popular framework specifically designed for distributed training and has been widely
adopted in both academia [18, 21, 104] and industry [16–18, 21, 22]. In addition, we also consider the three most popular
DL frameworks, i.e., TensorFlow, PyTorch, and Keras [32, 50–52], since all of them support distributed training.

3.1.1 Mining SO. SO is one of the most popular Q&A websites where developers ask for help on unresolved technical
issues [63]. It has been a commonly used data source for studying developers’ software issues [63, 77–79, 100, 103].
Moreover, SO users range from novices to experts [103], increasing the diversity of collected issues.

First, we download the entire SO dataset from the official Stack Exchange Data Dump [48] on December 6, 2021.
The dataset (denoted as set A) contains all of the questions that were ever posted on SO, covering a time period from
July 31, 2008 to December 6, 2021. Each question has one to five tags indicating its topics. From A, we extract 103,099
questions tagged with at least one of the four selected frameworks and denote these questions as set B.

SO questions in B are tagged with DL frameworks, but may contain noise that is not related to distributed training.
For example, there are posts about traditional single-device DL [4, 27]. Therefore, we need to further extract the
distributed training-related questions from B. To this end, we randomly extract 1,000 questions from B and two
authors discuss these questions carefully to manually identify a set of keywords that are highly related to distributed
training. Next, we evaluate the recall level of these keywords, i.e., the percentage of the distributed-training-related
posts that can be identified by these keywords. Specifically, we randomly select another 500 questions to perform
the evaluation and also identify new keywords from them. We add the new keywords to the keyword set after the
evaluation. We repeat the above evaluation process four times until the keyword set can achieve a recall of 90%. Note
that here we do not consider the precision level of these keywords since any misidentified post can be filtered out
during the refining process in Section 3.1.3 and will not threaten the validity of our results. As a result, we have
the following keywords: {“distributed”, “distribute”, “parallel”, “paralleled”, “parallelism”, “data-parallel”, “dataparallel”,
Manuscript submitted to ACM
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Table 2. Rules to identify distributed-training-related issues on GitHub.

Framework Labels to identify distributed-training issues Labels to exclude issues Filter by
keywords

# extracted
GitHub issues

Horovod N.A. bug, enhancement, update docs,
wontfix, awaiting response ✘ 762

TensorFlow comp:dist-strat
type:feature, type:bug, type:docs-bug,
stalled, stat:awaiting response,
type:docs-feature

✘ 135

PyTorch
oncall: distributed, module: ddp,
module: multi-gpu, module: data parallel,
pt_distributed_rampup

enhancement, feature, function request ✘ 726

Keras N.A.
type:bug/performance, type:feature,
type:docs, stale, Enhancement,
stat:awaiting response

✔ 305

“model-parallel”, “modelparallel”, “workers”, “multi-server”, “multiple server”, “multiple servers”, “multi_gpu”, “multi-gpus”,
“multi-gpu”, “multiple gpus”, “multiple gpu”, “multi-machine”, “multiple machines”, “multiple machine”}. We perform a
case-insensitive search within the title and body (excluding code snippets) of each question in B and identify 2,311
questions (denoted as set C) that contain at least one of these keywords. The cumulative numbers of the questions in
set C per year are shown in Fig. 1. Finally, we follow previous studies [64, 77, 89] to exclude questions that do not have
an accepted answer, ensuring that we consider only questions with a confirmed answer. As a result, we obtain a total of
724 questions from set C and denote them as set D.

3.1.2 Mining GitHub. GitHub is another commonly used data source for studying software issues [64, 70, 77, 103]. In
line with previous work [64, 70], we mine issues posted in the official GitHub repositories (“GitHub issues” for short)
of the selected frameworks to identify developers’ issues that occur during their use. Compared to commits, GitHub
issues contain more information such as original reports and developers’ discussions [70]. This characteristic makes
GitHub issues more suitable for studying the difficulties and faults encountered by developers. In addition, on GitHub,
framework vendors employ repository-specific keywords to label different types of GitHub issues, such as bug reports,
feature requests, users’ questions, etc. Following previous work [64, 70], we leverage these labels of GitHub issues to
help us identify relevant developers’ issues. We use the GitHub search API [38] to extract these GitHub issues from the
framework repositories on December 6, 2021. The detailed process is as follows.

For each framework, two authors jointly examine the labels in its GitHub repository to determine which labels are
related to distributed training and then extract GitHub issues marked with these relevant labels. Since Horovod is
specifically designed for distributed training, we take all of the GitHub issues in its repository into consideration no
matter which labels they are marked. As for Keras, we cannot find any labels related to distributed training, so we use the
keywords identified in Section 3.1.1 to extract relevant issues. Then, for each repository, we follow previous work [64] to
use labels to exclude GitHub issues about new feature requests, bugs in the framework itself, and problematic documents.
Additionally, to ensure that we consider only closed issues with a confirmed solution, GitHub issues without answers
or responses are excluded with the help of labels. The remaining issues are denoted as set E. Table 2 shows the used
labels and the number of identified GitHub issues in each repository, respectively.

3.1.3 Refining dataset. Two authors further manually examine all the extracted posts (i.e., SO questions in C and GitHub
issues in E) to refine the final dataset. Specifically, we jointly read each post and exclude posts that (1) do not have clear
descriptions or solutions, (2) fix a bug in the framework itself rather than in distributed training program, or (3) are not
related to distributed training. The disagreements are all resolved with the involvement of an arbitrator, who has more
than five years of experience in distributed training and has published many related papers in top-tier conferences.
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For example, an author labelled a post that mentioned multiple GPU devices as an eligible post to be included in our
study, while another author excluded this post because it did not mention model training [10]. After analyzing the
code snippets provided in the post and discussing it with the arbitrator, they reach an agreement that this post is about
partitioning data to multiple GPUs and distributed training with the CIFAR10 dataset, which fits in the scope of our
paper. Therefore, this post is included in our final dataset. We measure the agreement during the data refining process
with Cohen’s Kappa (̂ ) [65], which is commonly adopted for inter-rater agreement measurement [64, 79]. The ^ value
is 0.95, indicating almost perfect agreement [85]. The final dataset for our study consists of 1,075 posts, including 511
posts about Horovod, 329 posts about TensorFlow, 157 posts about PyTorch, and 83 posts about Keras.1 The scale
of our dataset is comparable and even larger than those used in existing fault-related empirical studies with manual
labeling [63, 64, 70, 103].

3.2 Manual Labeling

To distill how-to topics, symptoms, and fix patterns, we label every post in the refined dataset manually. To get an
overview of the entire dataset, we first conduct a pilot labeling procedure with 50% of the dataset. We choose a 50%
dataset because it is sufficient for the authors to be familiar with the posts and the 50% dataset left is also sufficient
for validating the taxonomy for multiple rounds. During pilot labeling, we build a pilot taxonomy. Then, we validate
the taxonomy built by pilot labeling with the rest of the dataset for five rounds and continuously refine the taxonomy.
Specifically, we follow the procedure below.

3.2.1 Pilot labeling. First, we randomly sample 50% of our dataset for pilot labeling. Two authors follow an open
coding procedure [96] to summarize categories for how-to topics, symptoms, and fix patterns by jointly analyzing
the sampled posts. Specifically, they read all the posts carefully to understand their context and assign each post with
a set of labels describing (1) the how-to topic, which describes the how-to question briefly, (2) whether the fault is
specific to distributed training, (3) the fault symptom, which shows what the fault looks like, and (4) the fix pattern,
which tells how a fault is resolved. These labels are optional for each post. If a post is raising a how-to question (e.g.,
asking how to implement a specific distributed training task or inquiring conceptual knowledge about distributed
training), it is labeled with only the how-to topic. Otherwise, a post with a clear fault description is labeled with
whether it is distributed-specific, the fault symptom, and the fix pattern. Then, they construct taxonomies for how-to
topics, symptoms, and fix patterns by grouping similar labels together into categories and finally establish hierarchical
taxonomies in a bottom-up way. The taxonomies are adjusted continuously in the construction process. A post is
assigned to all related categories if it contains multiple how-to questions or faults. During the pilot labeling process,
any disagreement is resolved by the arbitrator mentioned before. All labels, categories, and taxonomies are approved by
all participants.

3.2.2 Reliability analysis. For reliability analysis, two authors independently label the remaining posts with how-to
topics, whether they are distributed-specific, symptoms, and fix patterns based on the classification criteria generated in
the pilot labeling. The posts that cannot be classified into the current taxonomies are labeled with a new category named
Pending. Specifically, the process of reliability analysis involves five rounds, each with 20% of the remaining posts. In
each round, we measure the inter-rater agreement of the independent labeling using Cohen’s Kappa (^) [65], which
is suitable for the scenarios where two raters examine the same set of data and assign the data to a set of categories.

1Note that an SO post may be tagged with multiple framework tags.
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Table 3. The process of reliability analysis. The third column shows the number of newly added categories for how-to
topics, symptoms, and fix patterns in each round, respectively.

Round # analyzed posts # new categories ^

1 108 3/4/3 0.39
2 108 0/5/8 0.66
3 108 0/3/4 0.73
4 108 0/1/2 0.78
5 106 0/0/0 0.88

Total 538 3/13/17 -
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Fig. 4. Topics in how-to questions of distributed training.

In addition, we use fixed marginal kappa because we have a fixed set of categories that have been determined during
the pilot study and fixed marginal kappa is suitable for such cases [61, 95]. It is also a widely-adopted metric in SE
literature [64, 79]. After each round, with the help of the arbitrator, all the authors jointly solve the conflicts of labeling
results and discuss the posts in Pending category to determine whether new categories need to be added. Then all the
posts in Pending are assigned to the adjusted taxonomies.

Table 3 reports the ^ values for the five rounds in reliability analysis. We also report the number of new categories
added in each round. In the final round, no new category is added, indicating saturation for all categories; the ^ value is
0.88, indicating an almost perfect agreement [85].

In summary, among the 1,075 posts in pilot labeling and reliability analysis, we identify a total of 1,131 developers’
issues, including 494 how-to questions and 637 faults. We merge the categories with few developers’ issues (less than
1% in how-to questions or less than 1% in the faults of the corresponding stage in distributed training) together as the
“others” category. Based on the 494 how-to questions, we answer RQ1 in Section 4; based on the 637 real-world faults,
we answer RQ2 and RQ3 in Section 5 and Section 6, respectively.

4 HOW-TO TOPICS (RQ1)

Fig. 4 shows the hierarchical distribution of how-to topics in distributed training issues. We observe that the topics
asked by developers cover a wide spectrum of 9 high-level categories. There is no overlap between the topics in
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Fig. 4, where communication, parallelization, device usage, model, and evaluation can be mapped to different steps in
distributed training. The remaining three categories (i.e., performance, function support, and API usage) include general
questions about distributed training and these questions are not about specific step(s) in distributed training. Questions
about performance ask about the efficiency or accuracy of distributed training. Questions about function support are
general ones about the current support of distributed training (e.g., whether distributed training frameworks support
multi-GPU [37]). Questions about API usage ask about APIs that are related to distributed training but not specific
to a step of distributed training. For example, a developer asked what changes to neural networks were made by the
strategy.scope() API [34]. This API covers most steps in distributed training, including data and model partition,
data and model aggregation, and communication between devices, so it is not specific to any stage or component. Next,
we will elaborate on the most frequent how-to topics.

Communication is the most frequently asked topic (28.34%). More specifically, 7.09% of questions are related to
algorithms about how to achieve the purpose of multi-device cooperative learning, such as ring all-reduce [5] and
parameter server [86]. 5.87% of the questions ask about data and model aggregation. 4.25% of the questions are on the
communication configuration. 3.85% of the questions are about collective communication operators (e.g., send, receive,
broadcast, etc.). 3.85% are concerned about backend communication libraries such as NCCL [24] and gloo [39]. The
remaining questions about communication ask about synchronous or asynchronous training, such as the timing to
update model parameters (i.e., weights and biases) [3].

The second most frequently asked (16.19%) topic is parallelization, which describes how DL workflows are parallelized
and run cooperatively. Most questions on parallelization are about the concept, support, or details of data parallelism
(13.16%). The rest are about model parallelism and other novel parallelization methods.

15.59% of how-to questions are about device usage. Asmultiple devices are involved in distributed training, configuring
devices can be difficult; 7.69% of questions are on device configuration. Developers also ask about the supported device
usage of DL frameworks (e.g., whether Horovod supports training on multiple servers [7]). The rest are questions on
memory usage, device utilization, device information, and monitoring.

Developers are also concerned about the performance of distributed training (14.57%). 10.73% are about the efficiency
and accuracy of distributed training compared to non-distributed methods. Developers also ask about how to profile
performance.

Overall, the how-to questions vary from naive concepts (e.g., basic knowledge) to very advanced algorithms (e.g.,
synchronization and aggregation), from general questions (e.g., training efficiency) to particular details (e.g., network
setting). This diversity may owe to the huge differences between novices’ and experts’ posts on SO and GitHub, both of
which reveal the difficulties and vulnerabilities in distributed training. We conduct Chi-Square test [72] to compare the
similarity of the how-to topic distribution for each of the two frameworks at a 95% confidence level. The Chi-Square
test is suitable for comparing the distribution of categorical data [72] and suits our purpose well. Since we carry out
multiple tests, we adopt the Benjamini/Yekutieli method to adjust the p-values [68]. We hypothesize that there is no
significant difference between the observed frequencies of how-to topics across frameworks:

𝐻0 : 𝑝𝑎𝑖 = 𝑝𝑏𝑖 ,∀ 𝑖 ≤ 𝑘, (1)

where 𝑎 and 𝑏 are two frameworks and 𝑘 is the number of how-to topics. Table 4 shows the adjusted p-values found
from this test across the frameworks. We find that the adjusted p-values for all framework pairs are more than 0.05.
This implies that the distributions of how-to topics in different frameworks are similar.

For RQ1, see Findings F.1 and Implications I.1 in Table 6.
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Table 4. Adjusted p-values of the distributions of how-to topics between the frameworks

Horovod TensorFlow PyTorch Keras
Horovod 1.000 0.897 1.000 0.897
TensorFlow 0.897 1.000 1.000 0.897
PyTorch 1.000 1.000 1.000 1.000
Keras 0.897 0.897 1.000 1.000
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Fig. 5. Taxonomy of symptoms in distributed training. Each category has the number of corresponding faults in its top
right corner with the number of distributed-specific faults in the bracket.

5 SYMPTOMS (RQ2)

Some steps of distributed training have been integrated in the APIs of DL frameworks. For example, communication
between devices and data/model aggregation are integrated in the torch.nn.parallel.DistributedDataParallel
API in PyTorch. Therefore, we cannot tell the exact stage of distributed training that a fault belongs to from the symptom.
Fortunately, we can accurately know whether a fault is caused by the used packages and whether a fault happens before
training starts. Therefore, we construct the hierarchical taxonomy of fault symptoms in distributed training according
to the programming steps of developers, which is shown in Fig. 5. The root node consists of four children nodes, which
are linked to four stages of distributed training. Each leaf node represents a category. We use a number in the top right
corner to represent the number of faults assigned to such a category and another number in brackets to represent the
distributed-specific faults in this category.

Package build & import (A). To write distributed training programs, developers import certain modules in their
code (e.g., torch.distributed) or build and install distributed training frameworks (e.g., Horovod). Faults that appear in
this stage are included in the package build & import category, accounting for 12.87% of the distributed training faults.
62.20% of faults in this stage happen when installing and building frameworks from source (i.e., installation & build

failure (A.1)). Many developers reported that the error messages in this stage are difficult to understand [35]. This makes
it difficult for developers to resolve such faults and makes it difficult for us to further classify this category. Developers
might also fail to import framework packages or certain package modules even though they have already installed
frameworks successfully (i.e., import error (A.2)).

Communication setup (B). Communication setup is an essential step in distributed training when devices build up
a topology for the communication in training. 20.88% of faults related to distributed training show symptoms in this
stage. As there is no need to set up communication in non-distributed training, all of the faults in this stage are specific
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to distributed training. 63.91% of faults in this stage are triggered when the devices cannot access each other correctly
(setup failure (B.1)). Besides, there are cases when the whole program is stuck at the communication setup stage or
crashes because of timeout. We classify these issues into hang & timeout (B.2). Unexpected protocol (B.3) happens when
devices do not communicate through the network protocol that developers set to.

Data and model preparation (C). Before training, developers load or download training datasets; they also load
or construct DL models to be trained. Then, as described in Fig. 2, developers split the datasets and models, and then
distribute them to multiple devices for distributed training. Faults that appear in the above steps are included in the data
and model preparation category. We observe only a few related cases (8.95%) in the entire dataset; 19.30% of faults in
this stage can also happen in non-distributed training. Model loading failure (C.1) occurs when developers cannot load
pre-trained models into memory. We use communication error (C.3) to refer to program crashes because of unsuccessful
communication between devices in this stage. The program might also hang or crash because of timeout (i.e., hang &
timeout (C.4)) in this stage. Device error (C.5) refers to program crashes because of invalid device assignments. Developers
sometimes encounter problems with datasets (i.e., data loading failure (C.2), iteration failure (C.6), and partition error

(C.7)).
Training & Evaluation (D). Training & evaluation (D) is the most important stage of DL. It is also the largest

category (57.30% of identified faults) in our taxonomy, including a wide range of issues (17 symptom categories) related
to all facets of training and evaluation. We classify these symptoms into two sub-categories: program failures (D.1) and
unexpected performance (D.2). Program failures (D.1) refers to faults that lead to program crashes. Unexpected performance

(D.2) refers to cases when there is no crash but the programs do not behave as developers expect.
There are various program failures (D.1) symptoms in this stage. As common symptoms in both training & evaluation

and data and model preparation, communication error (D.1.1) and device error (D.1.3) account for 10.41% and 7.67%
of faults in training & evaluation, respectively. 7.67% of the faults occur when there is illegal memory access or the
memory is not enough for use (i.e., memory issue (D.1.2)). Graph execution error (D.1.4) occurs because of the improper
computational graph that represents the architecture of the DL model, even though no symptom was shown before this
stage. A few faults are caused by the shape or type of a tensor not matching its expectation (i.e., tensor mismatch (D.1.5)),
which is a common symptom in both distributed and non-distributed training. Checkpoint nonfunctioning (D.1.6) is
triggered when developers fail to save DL models. Sometimes, programs try to read or write an illegal memory location
and trigger segmentation fault (D.1.7). Some faults are triggered due to reference to non-exist variables or functions (i.e.,
attribute not found (D.1.8)). Path error (D.1.9) refers to crashes because of unfound path references. Not Implemented

Error (D.1.10) happens when developers use functions or methods not implemented by frameworks. Even though some
of these symptoms occur in non-distributed training as well, the root causes and fix patterns of them might be specific
to distributed settings. We will discuss the details of root causes and fix patterns in Section 6.

Some faults do not trigger failures explicitly, but generate problematic outputs or behave unexpectedly. As the
most common symptom in this stage, 12.05% of faults belong to hang (D.2.1), which means the program is stuck.
Sometimes the distributed training workflow does not parallelize on devices as expected. We classify these issues into
unexpected parallelization & device (D.2.2). Low efficiency (D.2.3) indicates distributed training does not achieve the
expected speed-up. Such cases account for 9.59% of faults identified in the stage. Developers also encounter faults when
programs give problematic outputs (i.e., unexpected intermediate result (D.2.4)) or the model does not converge (i.e.,
non-convergence (D.2.5)).

Compared to traditional single-device training, setup failure (B.1), unexpected protocol (B.3), partition error (C.7),
and communication error (C.3, D.1.1) are uniquely specific to distributed training and not been reported by previous
Manuscript submitted to ACM
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Fig. 6. Distribution of fix patterns for leaf categories in package build & import issues.

studies [77–79, 102, 103]. These symptoms are related to data partition or communication between workers, which are
the specific steps of distributed training as shown in Fig. 2.

For the rest of the symptoms, it is difficult to tell whether a fault is caused by distributed factors (e.g., data partition)
or non-distributed factors (e.g., model architecture) from only the symptom, which poses a big challenge to debugging.
Developers can identify which component is responsible for a fault by troubleshooting, i.e., checking whether the
distributed-specific modules work properly. Moreover, unit testing (i.e., testing one or more modules together) for
distributed-specific modules can potentially help identify whether the fault is caused by the distributed-specific modules.
For example, memory issue (D.1.2) can be caused by setting a too-large batch size in the data loader, assigning data
to the wrong devices, etc. To identify which component leads to the fault, developers can adopt unit testing on the
relevant components

For RQ2, see Findings F.2 and F.3, as well as Implications I.2 and I.3 in Table 6.

6 FIX PATTERNS (RQ3)

To capture how developers fix the observed distributed training faults, we summarize fix patterns for each symptom
category. Since existing studies have already shown prevalent fix patterns for generic DL faults, here, we only focus on
the fix patterns of the faults caused by distributed-specific mistakes. For the four stages in distributed training, we show
the frequency of different fix patterns on their leaf categories in Fig. 6, 7, 8, and 9. Due to space limit, patterns with low
frequency (i.e., #faults < 10 for training & evaluation and #faults < 5 for other stages) are not shown. In each figure, the
X-axis represents leaf categories with letter identifiers consistent with Fig. 5; the Y-axis shows fix patterns following
with their frequencies in the corresponding stage. We next elaborate on the prevalent fix patterns and demonstrate
some real-world examples of faults and fixes. Except for the fix patterns that are already described, we present fix
patterns for each stage in frequency order.

6.1 Faults in Package Build & Import

We identify six prevalent fix patterns for faults in package build & import and illustrate the distribution of these patterns
on leaf categories in Fig. 6.

Fix dependency installation/version & install missing dependency. 43.21% of distributed-specific faults in
package build & import are solved by re-installing DL framework dependencies, switching dependencies to a different
version, or installing missing dependencies. These strategies are frequently adopted in both installation & build failure

(A.1) and import error (A.2). The installation of DL frameworks usually relies on compilers and third-party libraries
(such as communication libraries [24, 31, 39] and device-specific computing tools [92]). Horovod also relies on other
DL frameworks (TensorFlow, PyTorch, etc.). Wrong installation or version of any dependency leads to failure in
installation, build, or import. For example, a developer solved an installation failure by fixing CUDA version and NumPy
installation [14]).
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Question Description:
Horovod pypi release doesn't have horovod.spark package

Fix Pattern: fix framework version
Fix: update Horovod to v0.15.3.

Symptom: Import Error (A.2)

Example (a) – Horovod GitHub issue # 818
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Fig. 7. Distribution of fix patterns for leaf categories in communication setup issues.

Fix dependency path. This pattern fixes 14.81% of both installation & build failure (A.1) and import error (A.2).
DL frameworks set default values for the paths where dependencies are installed. If developers install dependencies
elsewhere, they should explicate the paths to dependencies in environmental variables. For example, a developer tried
to install Horovod, but the build was unsuccessful because certain header files were not found [30]. She resolved the
problem by adding header files of dependencies to the “CPLUS_INCLUDE_PATH” environmental variable.

Fix build/install configuration. 13.58% of distributed-specific faults in package build & import are resolved by fixing
the build or install configuration of DL frameworks, including fixing dependency library reference, fixing compilation
options, etc. This fix pattern mainly resolves installation & build failure (A.1).

Fix framework installation/version. On one hand, some failures in building or installing frameworks are caused
by broken framework packages or environment misconfiguration. On the other hand, sometimes framework vendors
fix bugs that lead to unsuccessful installation or build in the updated versions of frameworks. Therefore, re-installing
DL frameworks or switching the frameworks to a different version fixes certain faults in package build & import. For
example, in Example (a), a developer encountered an import error because the old versions of Horovod did not support
the package she wanted to use [23]. The fault was fixed by updating Horovod to a new version.

Change hardware. Sometimes developers’ hardware devices do not support the certain instruction set to build
frameworks. In this case, the only approach to solving installation & build failure (A.1) is using devices with required
supports. For example, a developer resolved an installation failure after switching to a server with CPUs that support
AVX [36]).

Most fixes in this stage are related to software dependencies, including framework installation, framework version,
dependency installation, dependency version, dependency path, etc. Although many DL frameworks leverage depen-
dency management tools such as Pip in installation, developers still need to fix the installation problems because the
dependencies are too diverse and complex for these tools.

Please see Finding F.4 and Implication I.4 in Table 6 for fix patterns in package build & import.

6.2 Faults in Communication Setup

We identify six frequent fix patterns for faults in communication setup and present the distribution of these patterns in
Fig. 7.
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Question Description:
init_rpc: TENSOR_PIPE backend sigaborts when CUDA is not available

Fix Pattern: fix communication configuration
Symptom: Setup Failure (B.1)

Example (b) – PyTorch GitHub issue # 54266 

Code Fix:
import tempfile
import torch.distributed.rpc as rpc
init_file = tempfile.mkstemp()[1]
options = rpc.TensorPipeRpcBackendOptions(

-.init_method="file://" + init_file, _transports=["uv"])
+.init_method="file://" + init_file, _channels=["uv"])

rpc.init_rpc("worker0", rank=0, world_size=1, 
backend=rpc.BackendType.TENSORPIPE,   
rpc_backend_options=options)

Fix communication configuration of training. Developers can configure the world size (i.e., the number of
processes participating in communication), ranks (i.e., unique IDs of processes), and other configurations in the
distributed settings. Correctly configuring them mainly fixes setup failure (B.1) and hang & timeout (B.2), accounting for
33.08% of distributed-specific faults in the stage. In Example (b), the developer encountered a fault when initializing
RPC communication [43]. The fix was to modify the configuration options.

Fix network setting of devices. 16.54% of faults in communication setup can be resolved by fixing network settings
such as IP address, port, firewall, access permission, and so on. Wrong network setting is the main reason why devices
cannot communicate with each other. The pattern can be adapted to all symptoms in this stage. For example, a developer
could not build up the connection between two nodes because of “permission denied” [19]. The solution is to fix the
public key setting for ssh.

Fix consistency between devices. The inconsistency between different devices may lead to unsuccessful com-
munication connections. For example, a developer had the problem of being unable to build up the communication
connection between two nodes [11]. She found out the reason was that the installation configurations of Open MPI
on the two nodes were different. The final solution was to reinstall Open MPI with the same configuration on the
nodes. Sometimes, if some devices are ready to train DL models whereas others are not, the inconsistency of device
states attributes to unsuccessful communication setup as well. A developer reported that she got an error “connection
refused” [2]. The reason was she did not successfully start training on the same number of devices as her topology
configuration, leading to inconsistent device states.

Fix device assignments. In communication setup, each process should specify the device they are responsible for
correctly, especially for the backends that rely on GPU-GPU communication (e.g., NCCL [24]).

The remaining fix patterns have already been described in §6.1. They are also applicable to faults in communication

setup.
Fix dependency installation/version. Communication in distributed training depends largely on third-party

communication libraries such as NCCL [24] and gloo [39]. The faults mainly belong to the symptom setup failure (B.1)

and hang & timeout (B.2). For instance, a developer fixed the hang in Horovod when setting up communication by
changing Open MPI version [15].

Fix framework installation/version. This group of fixes re-install the DL framework or switch the framework to
a different version. As DL frameworks and the distributed-related modules in DL frameworks are still in development,
framework vendors fix bugs inside frameworks and update frameworks frequently. In addition, sometimes developers
should change the framework version to make it compatible with dependencies.
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In communication setup, wrong communication configuration and wrong device network setting lead to most of the
communication problems. The options of configurations and settings are diverse and scattered. This indicates that the
communication configuration and network setting are too tedious to be set correctly.

Please see Finding F.5 and Implication I.5 in Table 6 for fix patterns in communication setup.

6.3 Faults in Data and Model Preparation

The solutions for distributed-specific faults in this stage are very diverse. Only four fix patterns are frequent. These fix
patterns are illustrated in Fig. 8.

Fix distributed API usage. DL frameworks provide APIs for distributed training, such as torch.nn.DataParallel
and torch.nn.parallel.DistributedDataParallel in PyTorch and tf.distribute.Strategy in TensorFlow. De-
velopers follow certain steps required by frameworks and write distributed training programs with these APIs. However,
the complicated arguments of APIs and excessive procedures are difficult for developers to follow. For example, a
developer could not initialize the communication topology because she forgot to call a certain API [28]. The API is
indispensable in distributed training with PyTorch.

Fix device assignment. In data and model preparation, if data or model cannot be correctly assigned to corresponding
devices, there will be a device error (C.5). Developers need to be careful with the device assignment (on type of device to
use and the device id) of data and model to avoid device error (C.5).

The remaining fix patterns have been described in Section 6.1 and Section 6.2.
Fix framework installation/version. Reinstalling framework or switching framework versions can also avoid

faults in this stage, such as communication error (C.3), model loading failure (C.1), and so on. This is also because only
certain framework versions provide mature support for some functionalities in distributed training.
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Question Description:
Script freezes with no output when using DistributedDataParallel

Fix Pattern: fix behavior logic
Code Fix:
for trial in range(maxtrials):

# code for training or inference
finish = time.time()

-. if finish - start >= mintime and trial >= mintrials:
+. if trial >= mintrials:

break

Symptom: Hang (D.2.1)

Example (c) – PyTorch GitHub issue # 22834 

Fix communication configuration of training. Communication is mandatory when assigning data and models to
different devices. Fixing communication configuration helps avoid symptoms such as communication error (C.3) and
hang & timeout (C.4).

From the above fix patterns, we find that fix patterns such as fixing communication configuration and fixing
framework installation/version are frequent in different stages of executing distributed training software. We also
observe that there can be multiple fix patterns for one symptom, indicating that many fault symptoms in distributed
training are attributed to diverse factors.

Please see Finding F.6 and Implication I.6 in Table 6 for fix patterns in data and model preparation.

6.4 Faults in Training & Evaluation

We identify 11 fix patterns for faults in training & evaluation stage, which includes the most symptoms and real-world
faults. The distribution of these patterns is shown in Fig. 9.

Fix batch size/data partition. This fix pattern mainly solves faults in memory issue (D.1.2), hang (D.2.1), and low

efficiency (D.2.3). Batch size and data partition influence memory usage and distributed training efficiency. As distributed
training introduces communication overheads and additional memory usage, only a proper batch size can make sure of
high efficiency without out of memory faults. Besides, DL frameworks such as Horovod and Keras implement data
parallelism naively. They require the dataset to be partitioned equally over devices. Otherwise, there might be a tensor
shape mismatch problem or synchronization problem, because the number of data samples on different devices does
not match up. For example, a developer encountered a tensor shape mismatch problem in distributed training [9]. The
solution was to make the number of samples divisible by 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 ×𝑁 , where 𝑁 is the number of GPU devices to use.

Fix behavior logic. Behavior logic refers to the logical relationship between the behaviors of different devices, such
as profile writing and communication operations. Developers make mistakes in behavior logic when they are confused
with the complicated logic or unfamiliar with distributed-related APIs. Inappropriate behavior logic leads to conflicts
in distributed training or unexpected training performance. Example (c) shows a program hang problem [25]. This is
because the training speeds on different devices are not exactly the same, leading to one process exiting before the other
one. To fix this fault, the developer needs to delete the timing code so that the training or inference on each device
executes exactly the same number of steps.

Save single-device model/weights only. This pattern applies to only model saving problems (i.e., checkpoint
nonfunctioning (D.1.6)). In PyTorch and Keras, the “single-device models” and “distributed-training models” belong to
different classes. In the case of unsuccessful model saving, saving the “single-device model” instead or saving model
weights only is an effective workaround.

Fix model construction. Fixing how the model is constructed resolves faults in eight different symptoms. On
one hand, model parallelism requires appropriate model partition. On the other hand, properly defining model layers

Manuscript submitted to ACM



18 Liu et al.

Question Description:
RuntimeError: arguments are located on different GPUs.

Fix Pattern: fix model construction
Code Fix:
class custom_model(torch.nn.Module): 

def __init__(self): super(custom_model, self).__init__()
self.layer = torch.nn.Linear(10,5)

-. self.weight = torch.ones(5,1, device='cuda:0’)
+. self.weight = torch.nn.Parameter(torch.ones(5,1))
+. self.weight.requires_grad = False

def forward(self, x):
return self.layer(x) @ self.weight

Symptom: Device Error (D.1.3)

Example (d) – SO post # 60799655 

and parameters (i.e., weights and biases) is essential for distributed training. For example, the symptom of the fault in
Example (d) is device error (D.1.3) which throws “RuntimeError: arguments are located on different GPUs” [33]. This is
because the developer did not define a certain tensor as an instance of torch.nn.Parameter in her model. This results in
the tensor not being assigned to certain GPU devices in graph replication. The corresponding solution is fixing the
definition of this tensor in model construction. Although her model is not correctly constructed, such fault does not
happen in non-distributed training as there is no need for graph replication.

Fix memory/core setting. This group mainly resolves memory issue (D.1.2) problems. By increasing the execution
memory and cores in use, more resources will be allocated, which can resolve out of memory errors. Besides, modifying
the configuration of how DL frameworks allocate memory is also effective [6].

The remaining fix patterns have been described in Sections 6.1, 6.2, and 6.3. They are also applicable to faults in
training & evaluation.

Fix distributed API usage. This group fixes incorrect distributed API usage of developers or fixes hyperparameter
configuration in these APIs. Since distributed APIs of frameworks control the whole distributed training procedure
including data and model aggregation, synchronization, and so on, fixing distributed API usage resolves faults with
almost every symptom in this stage.

Fix dependency installation/version. Fixing dependency installation or version is the most frequent fix pattern in
this stage. This strategy resolves 12.00% of the distributed-specific faults with symptoms such as segmentation fault

(D.1.7) and hang (D.2.1).
Fix device assignment. Fixing device assignment of model or data mainly fixes device error (D.1.3) and unexpected

parallelization & device (D.2.2). For instance, a developer encountered such an unexpected parallelization behavior that
TensorFlow allocates only one GPU device for computation [8]. The fixing strategy is to modify the device allocation
code and assign the model to every GPU device that is expected to be in use.

Fix communication configuration of training.Wrong communication configurations lead to communication
problems in training & evaluation. Therefore, fixing communication configuration mainly resolves communication error

(D.1.1) and hang (D.2.1). Some developers that encountered these faults also reported that they could not reproduce their
faults [42]. This is because multi-process communication can easily cause nondeterministic behaviors, which makes
fault reproduction difficult.

Fix framework installation/version. This strategy also applies for training & evaluation stage. On one hand, bugs
in outdated frameworks may lead to segmentation fault (D.1.7) symptoms. On the other hand, developers sometimes
misuse APIs in a way unsupported by the current framework version, since APIs frequently evolve with DL frameworks.
Therefore, developers should resolve such faults by changing the DL framework to a proper version. For example, a
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Table 5. Adjusted p-values of the distributions of fix patterns between the frameworks.

Horovod TensorFlow PyTorch Keras
Horovod 1.000 0.052 0.022 7e-4
TensorFlow 0.052 1.000 1.000 0.002
PyTorch 0.022 1.000 1.000 1e-4
Keras 7e-4 0.002 1e-4 1.000

developer reported that she received “RuntimeError: ProcessGroupNCCL does not support barrier” [26]. The corresponding
fix is to upgrade PyTorch to v1.0.1 or a later version because “barrier” is not supported by the 1.0.x version.

Fix consistency between devices. As we have described in Section 6.2, consistent installation configurations and
device states are essential for communication. These faults might not show until this stage. Besides, making sure that
the code and datasets on all servers are in the exact same directory avoids path error (D.1.9).

From all of the fix patterns of the 30 fault symptoms, we find that fixes related to communication are the most frequent,
resolving faults in three out of the four stages. Fixing dependency/framework installation/version, fixing distributed
API usage, and fixing device assignment are also frequent; in total, they resolve up to 37.93% of distributed-specific
faults in distributed training, covering 25 frequent symptoms. Most of the faults in 20 out of the 30 symptoms can be
fixed with no more than three fix patterns, indicating that there are frequent fix patterns for these symptoms. We also
found that about 47.25% of the fixes are system-level (including setting hardware devices, configuring environment, etc.)
instead of training algorithm programming, among which 93.69% are distributed-specific. This indicates that compared
to single-device training, the system-level configuration is challenging in distributed training.

Although some symptoms also happen in traditional single-device training, the fix patterns of these faults can be
different from the ones in single-device training. Many fix patterns of distributed-specific faults are to fix the modules
that are specific to distributed training. These modules, such as process groups of communication and device assignment,
are not required in traditional DL performed on a single device. For example, for low efficiency (D.2.3), fixing batch size
is a frequent fix pattern in single-device training, while fixing communication configuration and fixing data partition
are frequent in distributed training.

Please see Finding F.7∼9 and Implication I.6∼8 in Table 6 for fix patterns in training & evaluation and the
overall distributed training process.

6.5 Fix Patterns across Frameworks

To explore whether similar fix patterns occur on different frameworks, we study the distribution of fix patterns
across frameworks. Similar to RQ1, we conduct Chi-Square test [72] to compare the similarity of the fix pattern
distribution for each of the two frameworks at a 95% confidence level. Since we carry out multiple tests, we adopt the
Benjamini/Yekutieli method to adjust the p-values [68]. We hypothesize that there is no significant difference between
the observed frequencies of fix patterns across different frameworks:

𝐻0 : 𝑝𝑎𝑗 = 𝑝𝑏𝑗 ,∀ 𝑗 ≤ 𝑞, (2)

where 𝑎 and 𝑏 are two frameworks and 𝑞 is the number of fix patterns. The adjusted p-value of framework pairs are
shown in Table 5. Horovod-TensorFlow (0.052) and TensorFlow-PyTorch (1.000) are over 0.05, which implies that the fix
pattern distributions in these frameworks are statistically the same. This suggests that similar bug-fix patterns can be
applied to different frameworks after being converted into a common intermediate representation.

For fix patterns across frameworks, see Findings F.10 and Implications I.9 in Table 6.
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Table 6. Summary of findings and implications.

Findings about how-to questions Implications

F.1 Developers ask a wide range (9 high-level categories) of
topics on distributed training. Communication,
parallelization, device usage, and performance are most
frequently asked, indicating that these topics are hot,
challenging, and even confusing to developers.

I.1 The frequency of performance-related questions indicates that current DL
frameworks’ implementations of distributed training are still far away from the
expected performance in practice. For example, the communication overhead has
been evidenced to be a main cause of performance issues [82]. Therefore, we
suggest DL framework vendors and researchers should carefully design useful
communication optimization techniques. In practice, some techniques can be
potentially promising. For example, the pipeline parallelism can better utilize all
of the devices in distributed training [91] and the gradient compression can
reduce the data to be transferred in communication [58].

Findings about faults symptoms Implications
F.2 We construct a taxonomy of 30 fault symptoms for
distributed training. Among them, there is no dominant
symptom. The most common symptoms are hang, setup
failure, and communication error, accounting for 35.32% of
the faults.

I.2 The diverse and non-dominated symptoms suggest the challenge of designing
automated tools for detecting and fixing distributed-training faults, which need
to cover a broad spectrum of faults. The three most common symptoms are all
related to communication. Researchers can pay more attention to these
categories that developers find difficult to fix.

F.3 We find that 80.88% of the non-distributed-specific faults
show the same symptom as distributed-specific ones.

I.3 It is difficult to tell whether a fault is caused by distributed factors (e.g., data
partition) or non-distributed factors (e.g., model architecture) from only the
symptom, which poses a big challenge to debugging. Developers can identify
which component is responsible for a fault by troubleshooting, i.e., checking
whether the distributed-specific modules work adequately. Moreover, unit
testing, i.e., testing one or more modules together, can potentially help identify
whether the fault is caused by the distributed-specific modules. For example,
memory issue (D.1.2) can be caused by setting a too-large batch size in the data
loader, assigning data to the wrong devices, etc. To identify which component
leads to the fault, developers can adopt unit testing on the relevant components.

Findings about fix patterns Implications
F.4 Most fixes in package build & import are related to the
installation or version of frameworks and dependencies.
This indicates that the currently-used dependency
management tools such as Pip do not well support the
complex and diverse dependencies of distributed training.

I.4 Framework vendors can design dependency management and version
management techniques that aim at the distributed environments to mitigate
these problems (e.g., multi-device dependency check and automated version
check). Developers can be more careful with package version requirements and
can use virtual environments or dockers for package management.

F.5 In communication setup, wrong communication
configurations and wrong device network settings lead to
most of the communication problems. The configuration and
setting options are diverse and scattered. Not only are there
many parameters in communication-related APIs, but also
many environmental variables to be set.

I.5 This finding indicates that the communication configurations and network
settings are too tedious, error-prone, and time-consuming to be adequately set by
developers, which heavily increases the development cost. To help developers
avoid and fix communication-related faults, the synthesis of software
engineering and network systems can be worth exploring. For example,
researchers can develop efficient testing and debugging techniques for
communication configuration, along with the synthesis of network configuration
analysis [69, 105].

F.6 Many faults in distributed training are attributed to
diverse factors, indicating challenges in fault localization.
For example, communication errors can be caused by misuse
of distributed-training APIs, wrong dependency version,
wrong model construction, invalid network setting, etc.

I.6 Framework vendors are encouraged to provide deeper hints for faults to assist
developers’ resolution. For SE researchers, we suggest that they build runtime
monitoring frameworks to collect traces for reproduction or adopt
dynamic-analysis-based repair techniques. Existing fault reproduction methods
such as checkpoint-and-replay may not be directly applied to distributed training
because of the high runtime overhead or recovery overhead [99]. Researchers
can design new multi-device checkpoint-and-replay techniques to help
developers reproduce their faults efficiently.

F.7 Distributed training is usually multi-processing and can
easily cause nondeterministic behaviors [99]. Sometimes
developers cannot reproduce faults by running the same
code again because of these characteristics of distributed
training [42]. This also makes fault localization challenging.

F.8 For 20 out of the 30 symptoms, most of the issues in these
categories can be fixed with no more than three fix patterns.

I.7 Our results of the frequent symptoms and their corresponding fix patterns
also provide implications for testing of distributed training. When designing
testing or debugging tools, researchers can focus on the frequent and common
fix patterns of these symptoms. For example, for communication error (C.3, D.1.1),
developers can test the device assignments, device ranks, the IP address, the port,
the world size, etc.; for tensor mismatch (D.1.5), the batch size, parameters of data
partition, and parameters of model layers can be tested to locate the fault. For
symptoms without frequent fix patterns, there is still a lot of space and
challenges to integrate more existing patterns and explore more fix strategies.

F.9 About 52.75% of the issues can be resolved through
programming. The fix patterns of the remaining 47.25% are
related to hardware devices, environment, and
configurations, among which 93.69% are distributed-specific.

I.8 The system-level configurations are challenging for developers who do not
have expertise knowledge of underlying systems. To alleviate low-level device
management and environment configurations for developers, one solution is to
alleviate these efforts in a serverless way, i.e., cloud providers provide efficient
APIs by abstracting the low-level and tedious system configurations and allocate
resources on demand according to the training jobs [73, 83]. This has been
demonstrated to be effective for reducing developers’ programming efforts [88]

F.10 Horovod, Tensorflow, and PyTorch show similar fix
pattern distribution.

I.9 Similar automatic bug fix tools may be reused for these frameworks after
being converted into a common intermediate representation.
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7 THREATS TO VALIDITY

Selection of frameworks, keywords, and labels. First of all, the selection of frameworks may lead to possible
selection bias in this study. To mitigate this threat, we focus on the three most commonly-used DL frameworks and
Horovod, which is widely adopted for distributed training. In addition, the keyword- and label-matching identification
may result in false positive posts and loss of relevant posts. The false positives are all discarded during the refining
process in Section 3.1.3. Moreover, as mentioned in Section 3.1.1, our keywords have a high level of recall (i.e., 90%),
ensuring that most of the relevant issues can be identified. As for the label-matching identification, to reduce manual
efforts, we first follow previous work [64, 70] to automatically filter the collected dataset by a set of rules, which may
result in a potential threat to the validity. For example, we directly exclude new feature requests and reports about bugs
in frameworks from GitHub. However, there could be data in them related to facilitating distributed training.
Selection of data sources. Given the rapid evolution of distributed training, it is possible that new challenges and bugs
can emerge in the future. Following the same methodology presented in this paper, we can reproduce the study with new
industry and academia efforts of distributed training, in order to keep our results updated. Also, it is impossible to collect
all the issues about distributed training of DL software in the world, which may lead to a threat to the external validity
of our study. To mitigate this threat, we select SO and GitHub, the two most widely-used data sources in empirical
studies in the SE community [56, 77–79, 103], to collect representative real-world issues reported by developers.
Subjectivity of researchers. The subjectivity in manual labeling presents a possible internal threat to the validity of
our results. To minimize this threat, we follow the widely-adopted open coding procedure, in which two authors are
involved in inspecting cases and another experienced arbitrator helps to reach an agreement through discussions. We
also use Cohen’s Kappa to measure the inter-rater agreement of independent labeling. The high kappa values indicate
almost perfect inter-rater agreement.

8 CONCLUSION

In this paper, we presented an empirical study on issues in distributed training of DL software by manually inspecting
1,131 related issues from Stack Overflow and GitHub. We distilled frequent topics in developers’ how-to questions. We
also constructed a fine-granularity taxonomy of 30 fault symptom categories and summarized fix patterns for different
fault symptoms. Our findings are helpful to developers of distributed training software and the framework vendors of
distributed training platforms. In the future, researchers can develop debugging, testing, and auto-configuration tools
based on the frequent combinations of fault symptoms and fix patterns, our findings, and insights.
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